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Introduction

Systems coupling fluids and polymers are of great interest in
many branches of applied physics, chemistry and biology.
There are many models to describe them :

I The FENE (Finite Extensible Nonlinear Elastic) dumbbell
model. In this model, a polymer is idealized as an “elastic
dumbbell” consisting of two “beads” joined by a spring.
The microscopic variable is R ∈ B(0,R0).

I The Hooke model is the case when R0 = ∞.

I The Doi model (or Rigid model): The polymers have a
fixed length and R ∈ SN−1



At the level of the polymeric liquid, we get a system coupling
the Navier-Stokes equation for the fluid velocity with a
Fokker-Planck equation describing the evolution of the
polymer density.

I Bird, Curtis, Amstrong and Hassager

I Doi and Edwards,

I Ottinger



The FENE model



∂tu + (u · ∇)u − ν∆u +∇p = divτ, divu = 0,

∂tψ + u.∇ψ = divR

[
−∇u · Rψ + β∇Rψ +∇RUψ

]
.

τij =
∫

B
(Ri ⊗ ∂Rj

U)ψ(t, x ,R) dR

(∇RUψ + β∇Rψ).n = 0 on ∂B(0,R0).

We will take β = 1.



Here, ψ(t, x ,R) is the distribution function for the internal
configuration and F (R) = ∇U is the spring force which
derives from a potential U :

U(R) = −k |R0|2log(1− |R |2/|R0|2)

for some constant k > 0. We take R0 = 1 and we denote

ψ∞ =
e−U∫
B

e−U
=

(1− |R |2)k

Z
.



The Fokker Planck equation can also be written

∂tψ + u.∇ψ = divR

[
−∇u · Rψ + ψ∞∇

ψ

ψ∞

]
.



I If R0 = ∞, we take U(R) = kR2 and we get the Hooke
model which yields the Oldroyd B model.

I If we replace ∇u by W (u) = ∇u−t∇u
2

in the second
equation, we get the co-rotational model.

I We have to add a boundary condition for u. We take
Dirichlet boundary condition, namely u = 0 on ∂Ω where
Ω is a bounded of RN



We can think of the distribution function ψ as the density of a
random variable R which solves

dR + u.∇Rdt = (∇uR −∇RU(R))dt +
√

2dWt

where the stochastic process Wt is the standard Brownian
motion in RN and the additional stress tensor is given by the
following expectation τ = E(Ri ⊗ ∂Rj

U). Of course, we may
need to add a boundary condition when R reaches the
boundary of B .



The Doi model



∂tu + (u · ∇)u − ν∆u +∇p = divτ, divu = 0,

∂tψ + u.∇ψ = divR

[
− PR|(∇u · R)ψ

]
−∆Rψ

τij =
∫

SN−1 N(Ri ⊗ Rj)ψ(t, x ,R) dR+
b∇kul :

∫
SN−1 RkRlRiRjψ dR ,

PR| is the orthogonal projection on the tangent space to the
sphere at R , namely PR|(∇uR) = ∇uR − (R .∇u.R)R and b is
a parameter.



Existence results
For Oldroyd B model :

I Renardy

I Guillopé and Saut (1990)

I Fernández-Cara, Guillén and Ortega (1997)

I Chemin and Masmoudi 2001

I Lions and Masmoudi 2001

I Lin, Liu and Zhang 2005



For micro-macro models :

I Renardy

I W. E, Li and Zhang

I Jourdain, Lelievre and Le Bris

I Zhang and Zhang

I Barrett, Schwab and Suli

I Lin, Liu and Zhang

I Otto and Tzavaras

I Constantin, Fefferman, Titi and Zarnescu



For numeric results :

I Keunigs

I Ottinger

I Jourdain, Lelievre and Le Bris

I P. Zhang



Main results

Three types of results

I Local well-posedness for the FENE model (and global
well-posedness for small data).

I Global existence of weak solutions for the co-rotational
FENE model and for the Doi model (with P.-L. Lions).

I Global existence of regular solution for the Doi model in
2D (with P. Constantin) and for the co-rotational FENE
model (with P. Zhang and Z. Zhang).



A priori estimates

The free energy for FENE

∂

∂t

[∫
Ω

|u|2

2

]
= −ν

∫
Ω

|∇u|2 −
∫

Ω

τ : ∇u.

∂

∂t

[∫
Ω×B

ψ log
ψ

ψ∞

]
= −

∫
Ω×B

|∇R

√
ψ

ψ∞
|2ψ∞ +

∫
Ω

τ : ∇u.

Hence

∂

∂t

[∫
Ω

|u|2

2
+

∫
Ω×B

ψ log
ψ

ψ∞

]
= −

∫
Ω×B

|∇R

√
ψ

ψ∞
|2−ν

∫
Ω

|∇u|2



For the co-rotational FENE model, we get

∂

∂t

[∫
Ω×B

ψ log
ψ

ψ∞

]
= −

∫
Ω×B

|∇R

√
ψ

ψ∞
|2ψ∞

More generally, for p > 0, we have

∂t

∫
B

ψ∞

(
ψ

ψ∞

)p

dR + u.∇
∫

B

ψ∞

(
ψ

ψ∞

)p

dR =

−4(p − 1)

p

∫
B

ψ∞

∣∣∣∣∣∇R

(
ψ

ψ∞

)p/2
∣∣∣∣∣
2

dR .



The free energy for the Doi model

∂t

[∫
Ω

|u|2

2
+

∫
Ω×SN−1

ψ logψ − ψ + 1

]
=

−ν
∫

Ω

|∇u|2 + 4

∫
Ω×SN−1

|∇R

√
ψ|2

+b

∫
Ω

∇kul :

∫
SN−1

RkRlRiRjψdR : ∇iuj

To make sure that the free energy is dissipated, we have to
assume that b > − N

N−1
ν.



Higher order derivatives
We use the notations

|u|2s =
∑
|α|≤s

∫
Ω

|∂αu|2dx

|ψ|2s =
∑
|α|≤s

∫
Ω

∫
B

|∂αψ|2 dR

ψ∞
dx

|ψ|2s,1 =
∑
|α|≤s

∫
Ω

∫
B

ψ∞|∂α∇R
ψ

ψ∞
|2dRdx



From the first equation of FENE system, we deduce that

∂t |u|2s + ν|u|2s+1 ≤ C |u|3s +
C

ν
|τ |2s .

From the second equation, we get

∂t

∫
B

ψ2

ψ∞
dR + u.∇

∫
B

ψ2

ψ∞
dR +

∫
B

ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2
≤|Du|

(∫
B

ψ2

ψ∞

)1/2
(∫

B

ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2
)1/2

≤C |Du|2
(∫

B

ψ2

ψ∞

)
+

1

2

(∫
B

ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2
)



We define the flow Φ by{
∂tΦ(t, x) = u(t,Φ(t, x))
Φ(0, x) = x

Integrating along the flow, we get

sup
x

∫
B

ψ2(t)

ψ∞
dR + sup

x

∫ t

0

∫
B

ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2 (s,Φ(s, x))ds

≤ sup
x

∫
B

ψ2
0

ψ∞
e
C

∫ t

0

|Du|2L∞



∂t

∫
B

(∂sψ)2

ψ∞
+ u.∇

∫
B

(∂sψ)2

ψ∞
+

∫
B

ψ∞

∣∣∣∣∇R
∂sψ

ψ∞

∣∣∣∣2 =

= −
∑

|α|+|β|≤s

∫
B

divR(∂αDuR∂βψ)
∂α+βψ

ψ∞

Integrating in the x variable, we get

∂t |ψ|2s +
1

2
|ψ|2s,1 ≤ C

(
|Du|2L∞ |ψ|2s + |u|2s+1 sup

x

∫
ψ2

ψ∞
dR

)



Global existence of weak solutions for co-FENE
Theorem
(with P.-L. Lions) Take u0 ∈ L2(Ω) and ψ0 such that∫
ψ0dR = 1 a.e in x and

∫
B

ψ2
0

ψ∞
dR ∈ L∞x . Then, there exists

a global weak solution (u, ψ) of co-FENE with

u ∈ L∞(0,T ; L2) ∩ L2
loc(0,T ; H1) and

ψ ∈ L∞(0,T ; L∞(L2(
dR

ψ∞
))).



Proof: Stability of weak solutions:
Take (un, ψn) a sequence of weak solutions with initial data
(un

0 , ψ
n
0) and such that (un

0 , ψ
n
0) converges strongly to (u0, ψ0)

in L2(dx)× L2( dR
ψ∞

dx).

We extract a subsequence such that un converges weakly to u
in Lp((0,T ); L2(Ω)) ∩ L2((0,T ); H1(Ω)) and ψn converges
weakly to ψ in Lp((0,T )× Ω; L2( dR

ψ∞
)) for each p <∞.

We would like to prove that (u, ψ) is still a solution of
co-FENE.



Take N = 2:

(ψn−ψ)2 → η, |∇(un−u)|2 → µ, ψn∇un → ψ∇u+β

|∇R(ψn − ψ)|2 → κ, |τ n − τ |2 → α

We can prove that

νµ =

∫
βijRi∇jφdR ≤ C

√
µ
√
α, |βij | ≤

√
µ
√
η

µ ≤ Cα ≤ C

∫ (
ψ∞κ+

η

ψ∞

)
dR .



And

∂t

∫
B

η

ψ∞
+ u.∇

∫
B

η

ψ∞

≤ C
√
µ

∫
B

√
η

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣− ∫
B

ψ∞κ

≤ C
√
µ

(∫
B

η

ψ∞

∫
B

ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2
)1/2

−
∫

B

ψ∞κ

≤ C

(
1 +

∫
B

ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2
)∫

B

η

ψ∞



Local existence for FENE
We take, s > N

2
+ 1.

Theorem
Take u0 ∈ H s(RN) and ψ0 ∈ H s(RN ; L2( dR

ψ∞
)) with∫

ψ0dR = 1 a.e in x. Then, there exists a time T ∗ and a
unique solution (u, ψ) of FENE system in
C ([0,T ∗); H s)× C ([0,T ∗); H s(RN ; L2( dR

ψ∞
))). Moreover,

u ∈ L2
loc([0,T

∗); H s+1) and ψ ∈ L2
loc([0,T

∗); H s(RN ;H1))

where we denote H = L2( dR
ψ∞

) and

H1 =

{
ψ |

∫
ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2 +
ψ2

ψ∞
dR <∞

}
.



Proof
We have

∂t |u|2s + ν|u|2s+1 ≤ C |u|3s +
C

ν
|τ |2s .

∂t |ψ|2s +
1

2
|ψ|2s,1 ≤ C

(
|Du|2L∞ |ψ|2s + |u|2s+1 sup

x

∫
ψ2

ψ∞
dR

)



We have
|τ |2s ≤ ε|ψ|2s,1 + Cε|ψ|2s

for each ε > 0, since

(∫
B

|ψ|
1− |R |

dR

)2

≤ ε

∫
B

ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2 dR + Cε

∫
B

|ψ|2

ψ∞
dR



We choose T such that∫ T

0

|u|2s + |Du|2L∞ + |u|s ≤ A

for some fixed constant A. Hence,

|ψ(t)|2s +
1

2

∫ t

0

|ψ|2s,1 ≤ |ψ0|2seCA + Ce2CA

∫ t

0

|u|2s+1.

Moreover,

|u(t)|2s + ν

∫ t

0

|u|2s+1 ≤ (|u0|2s +

∫ t

0

|τ |2s )eC
R t
0 |u|s



Hence,

∫ t

0

|τ |2s ≤ ε

∫ t

0

|ψ|2s,1 + Cε

∫ t

0

|ψ|2s ≤

(ε+ CεT )e2CA(C +

∫ t

0

|u|2s+1)

and if ε and T are chosen small enough, we get

|u(t)|2s +
ν

2

∫ t

0

|u|2s+1 ≤ (|u0|2s + C )eCA.



Remark : The linearized problem and boundary

condition

Lψ = −div(ψ∞∇
ψ

ψ∞
)

on the space H = L2( dR
ψ∞

) with domain

D(L) =

{
ψ ∈ H2, ψ∞∇

ψ

ψ∞
|∂B = 0

}
where H1 and H2 are given by

H1 =

{
ψ |

∫
ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2 +
ψ2

ψ∞
dR <∞

}

H2 =

{
ψ ∈ H1 |

∫ (
div(ψ∞∇

ψ

ψ∞
)

)2
dR

ψ∞
<∞

}



If k ≥ 1 then

C∞
0

H1

= H1 (1)

and D(L) = H2.

However, (1) does not hold when k < 1 since ψ∞ is not in

C∞
0

H1

and, D(L) ⊂ H2 is strict. Indeed, for k < 1, ψ
1/k
∞ ∈ H2

but does not satisfy the boundary condition and hence it is not
in D(L).

This is related to Jourdain and Lelievre who proved that when
k ≥ 1, then the stochastic process Rt does not reach the
boundary and when k < 1, it reaches the boundary a.s.



Global existence in 2D for co-Hooke
Theorem
(with Zhang and Zhang) Let 1 < s < 2. Let u0 ∈
H1(R2) ∩ C s(R2), ψ0 ∈ H1(R2; L2(R2)) ∩ C s−1(R2; L2(R2)),
and |R |f0 ∈ L∞(R2; L2(R2)). Then co-Hooke has a unique
global solution (u, ψ) such that for any T > 0, there holds

u ∈ C
(
[0,+∞); H1(R2) ∩ C s(R2)

)
∩ L2((0,T ); H2(R2)),

ψ ∈ C
(
[0,+∞); H1(R2; L2(R2)) ∩ C s−1(R2; L2(R2))

)
,

Furthermore, there holds

‖u(t)‖C s + ‖f (t)‖s−1 ≤ C0(C + ‖u0‖C s + ‖f0‖s−1)
exp(C0t), ∀t <∞.

where C0 only depends on
‖u0‖2

L2 + ‖f0‖2
L2 + ‖(1 + |R |)f0‖2

L∞(R2;L2(R2)).



I We have a similar type of result for the Doi model (with
P. Constantin)

I The proof is based on losing regularity type of estimates
(Bahouri and Chemin)

I In Chemin and Masmoudi, it was proved that if τ ∈ L∞,
then we get global existence in 2D for the Oldroyd B
model.
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