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Abstract
We prove local and global well-posedness for the FENE dumbbell model for a very general

class of potentials. Indeed, in prior local or global well-posedness results conditions on the
parameter b were made. Here we give a proof in the case b = 2k > 0. We also prove global
existence results if the data is small or if we restrict to the co-rotational model in dimension
2.

1. introduction

Systems coupling fluids and polymers are of great interest in many branches of applied
physics, chemistry and biology. Although a polymer molecule may be a very complicated
object, there are simple theories to model it. One of these model is the FENE (Finite Exten-
sible Nonlinear Elastic) dumbbell models. In this model, a polymer is idealized as an “elastic
dumbbell” consisting of two “beads” joined by a spring which can be modeled by a vector R
(see Bird, Curtis, Amstrong and Hassager [3], Doi and Edwards, [10] and Ottinger [28]). At
the level of the polymeric liquid, we get a system coupling the Navier-Stokes equation for the
fluid velocity with a Fokker-Planck equation describing the evolution of the polymer density.
The coupling comes from and extra stress term in the fluid equation due to the microscopic
polymers. This is the micro-macro interaction. There is also a drift term in the Fokker-Planck
that depends on the spatial gradient of the velocity. This is a macro-micro term. The coupling
satisfies the fact that the free-energy dissipates which is important to get energy estimates.

The system obtained attempt to describe the behavior of this complex mixture of polymers
and fluid, and as such, it presents numerous challenges, simultaneously at the level of their
derivation, the level of their numerical simulation and that of their mathematical treatment.
In this paper we concentrate on the mathematical treatment and more precisely at the well-
posedness for the FENE dumbbell model (1).

An approximate closure of the linear Fokker-Planck equation reduces the description to
closed viscoelastic equations for the added stresses themselves. This leads to well-known non-
Newtonian fluid models such as the Oldroyd B model. that has been studied extensively.
In Guillopé and Saut [17] and [18], the existence of local strong solutions was proved. Also,
Fernández-Cara, Guillén and Ortega [13], [12] and [14] proved local well posedness in Sobolev
spaces. In Chemin and Masmoudi [6] local and global well-posedness in critical Besov spaces
was given. For global existence of weak solutions, we refer to Lions and Masmoudi [26]. We
also mention Lin, Liu and Zhang [23] where a formulation based on the deformation tensor is
used to study the Oldroyd-B model.

At the micro-macro level, there are also several works. Indeed, from mathematical point
of view, the model was studied by several authors. In particular Renardy [31] proved the
local existence in Sobolev space where the potential U is given by U(R) = (1 − |R|2)1−σ
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for some σ > 1. W. E, Li and Zhang [11] proved local existence when R is taken in the
whole space and under some growth condition on the potential. Also, Jourdain, Lelievre and
Le Bris [21] proved local existence in the case b = 2k > 6 for a Couette flow by solving a
stochastic differential equation (see also [19] for the use of entropy inequality methods to prove
exponential convergence to equilibrium). Zhang and Zhang [32] proved local well-posedness
for the FENE model when b > 76. Moreover, Lin, Liu and Zhang [24] proved global existence
near equilibrium under some restrictions on the potential. Global existence of weak solutions
was also proved in [27] for the co-rotational model (see also [2]).

We end this introduction by mentioning other micro-macro models. Indeed, a principle
based on an energy dissipation balance was proposed in [7], where the regularity of nonlinear
Fokker-Planck systems coupled with Stokes equations in 3D was also proved. In particular
the Doi model (or Rigid model) was considered in [29] where the linear Fokker-Planck system
is coupled with a stationary Stokes equations. The nonlinear Fokker-Planck equation driven
by a time averaged Navier-Stokes system in 2D was studied in [8]. Also, the Doi model was
considered in [9].

1.1. The FENE model. A macromolecule is idealized as an “elastic dumbbell” consisting of
two “beads” joined by a spring which can be modeled by a vector R (see [3]). The micro-macro
approach consists in writing a coupled multi-scale system of the

(1)



∂tu+ (u · ∇)u− ν∆u+∇p = divτ, divu = 0,

∂tψ + u.∇ψ = divR
[
−∇u ·Rψ + β∇ψ +∇Uψ

]
.

τij =
∫
B(Ri ⊗∇jU)ψ(t, x,R)dR (∇Uψ + β∇ψ).n = 0 on ∂B(0, R0).

In (1), ψ(t, x,R) denotes the distribution function for the internal configuration and F (R) =
∇U is the spring force which derives from a potential U . Besides, β is related to the tem-
perature of the system and ν > 0 is the viscosity of the fluid. In the sequel, we will take
β = 1.

Here, R is in a bounded ball B(0, R0) which means that the extensibility of the polymers is
finite. Moreover, U(R) = −klog(1−|R|2/|R0|2) for some constant k > 0. We have also to add
a boundary condition to insure the conservation of ψ, namely (−∇uRψ+∇Uψ+β∇ψ).n = 0
on ∂B(0, R0). The boundary condition on ∂B(0, R0) insures the conservation of the polymer
density and should be understood in the weak sense, namely for any function g(R) ∈ C1(B),
we have

(2) ∂t

∫
B
gψdR+ u.∇x

∫
B
gψdR = −

∫
B
∇Rg

[
−∇u ·Rψ + β∇ψ +∇Uψ

]
dR.

Notice in particular that it implies that ψ = 0 on ∂B(0, R0) and that if initially
∫
ψ(t =

0, x,R)dR = 1, then for all t and x, we have
∫
ψ(t, x,R)dR = 1. We will see later an other

way of understanding this singular boundary condition.
If ∇u is replaced by W (u) (the anti-symmetric part of ∇u, namely W (u) = ∇u−t∇u

2 ) in
the second equation of (1), then we get the so-called co-rotational FENE model. The fact of
putting W (u) instead of the whole ∇u in (1) allows to get better estimate on ψ. This will
only be done in theorem 2.3. Also, we point out that, if R is in the whole space, we get the
Hooke model for which U(R) = k|R|2 and the model reduces to the Oldroyd-B model (see [6]
and [26] for some local and global existence results).

When doing numerical simulation on the FENE model, it is usually better to think of the
distribution function ψ as the density of a random variable R which solves (see [28])

(3) dR+ u.∇Rdt = (∇uR−∇RU(R))dt+
√

2dWt
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where the stochastic process Wt is the standard Brownian motion in RN and the additional
stress tensor is given by the following expectation τ = E(Ri ⊗∇jU). Of course, we may need
to add a boundary condition for (3) if R reaches the boundary of B. This is done by requiring
that R stays in B (see [20]). Using this stochastic formulation has the advantage of replacing
the second equation of (2.1) which has 2N + 1 variables by (3). Of course one has to solve
(3) several times to get the expectation τ which is the only information needed in the fluid
equation. This strategy was used for instance by Keunings [22] (see also [15]) and by Öttinger
[28] (see also [16]).

In the sequel, we will only deal with the FENE model and we will take β = 1 and R0 = 1.

2. Statement of the results

In this paper, we present three different results which all hold for any k > 0. The first one
deals with local existence in Sobolev spaces. The second one deals with global existence if
the data is small or more precisely if the initial state is close to equilibrium. The third result
treats the global existence in 2d for the co-rotational FENE model.

2.1. Local existence. The system (1) has to be complemented with an initial data u(t =
0) = u0 and ψ(t = 0) = ψ0. Before stating our results, let us mention that local well-posedness
for (1) was considered by Renardy [31], by Jourdain, Lelievre and Le Bris [21], by Zhang and
Zhang [32] for b = 2k > 76 and by Lin, Zhang and Zhang [25] for b > 12.

We take, s > N
2 + 1. Notice that (u, ψ) with u = 0 and

(4) ψ∞(R) =
e−U(R)∫

B e
−U(R′)dR′

defines a stationary solution of (1).

Theorem 2.1. Take u0 ∈ Hs(RN ) and ψ0 ∈ Hs(RN ;L2( dRψ∞ )) with
∫
ψ0dR = 1 a.e in

x. Then, there exists a time T ∗ and a unique solution (u, ψ) of (1) in C([0, T ∗);Hs) ×
C([0, T ∗);Hs(RN ;L2( dRψ∞ ))). Moreover, u ∈ L2

loc([0, T
∗);Hs+1) and ψ ∈ L2

loc([0, T
∗);Hs(RN ;H1))

2.2. Global existence for small data. The local existence result of the previous section
gives global existence if the data is small or more precisely if it is close to equilibrium (0, ψ∞).

Theorem 2.2. There exists a constant c0 such that for u0 ∈ Hs(RN ) and ψ0 ∈ Hs(RN ;L2( dRψ∞ )),∫
ψ0dR = 1 a.e in x, if

(5) ν|u0|2Hs + |ψ0 − ψ∞|2Hs(L2( dR
ψ∞

))
≤ c0(νmin(1, ν)2),

then the solution constructed in theorem 2.1 is global.

We refer to Lin, Liu and Zhang [24] for a similar result under some restrictive condition on
the potential.

2.3. Global existence for the co-rotational model in 2d. In dimension N = 2, we also
have global existence if we restrict to the so-called co-rotational model, namely, we replace
∇u by W (u) in the second equation of (1)

(6) ∂tψ + u.∇ψ = divR
[
−W (u) ·Rψ + β∇ψ +∇Uψ

]
.

This extends the result of Lin, Zhang and Zhang [25] to the case b > 0. We also refer to
Constantin and Masmoudi [9] for a similar result concerning the Doi model. The two results
mentioned above use losing regularity estimates in the spirit of [6] and [1].
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Theorem 2.3. Take u0 ∈ Hs(R2) and ψ0 ∈ Hs(R2;Lr ∩ L2( dRψ∞ )) for some r such that
(r− 1)k > 1 with

∫
ψ0dR = 1 a.e in x. Then, the solution constructed in theorem 2.1 for the

co-rotational model (the second equation of (1) is replaced by (6)) is global.

Remark 2.4. 1) The assumption
∫
ψ0dR = 1 a.e in x in the 3 previous theorems is not

essential and can be replaced by the fact that
∫
ψ0dR ≤ C0 which follows from the fact that

ψ0 ∈ Hs(R2;L2( dRψ∞ )).
2) The regularity assumption s > N

2 +1 can be weakened to prove existence in some critical
spaces as was done in [6]. This will be done elsewhere.

The paper is organized as follows. In the next section, we give some preliminaries where we
prove three inequalities and study the linearized operator in the R variable. In section 4, we
give some a priori estimates for the full model (1) which are needed for the proof of theorems
2.1 and 2.2. In section 5 we prove theorems 2.1 and 2.2 by using a fixed point argument.
Section 6 is devoted to the study of the co-rotational model in 2d.

3. Preliminaries

3.1. Notations. We will use the following notations. For α ∈ NN , ∂α will denote α1 deriva-
tives in x1, ... and αN derivatives in xN . Also for s ∈ N, ∂s will denote all the derivatives ∂α

for |α| ≤ s.

(7) |u|2s =
∑
|α|≤s

∫
Ω
|∂αu|2dx

(8) |ψ|2s =
∑
|α|≤s

∫
Ω

∫
B
|∂αψ|2 dR

ψ∞
dx

(9) |ψ|2s,1 =
∑
|α|≤s

∫
Ω

∫
B
ψ∞|∂α∇R

ψ

ψ∞
|2dRdx

We will also use the notation CT (Hs), L2
T (Hs) to denote C([0, T ];Hs(RN )), L2(0, T ;Hs(RN )).

We also recall that ψ∞(R) = e−U/
∫
e−U = (1− |R|2)k which behaves like (1− |R|)k when

R goes to the boundary of B.
We will also denote H = L2( dRψ∞ ) and

H1 =

{
ψ |

∫
ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2 +
ψ2

ψ∞
dR <∞

}
.

For r ≥ 1, we denote Lr and Lr,1 the spaces

Lr =
{
ψ | |ψ|rLr =

∫
ψ∞

∣∣∣∣ ψψ∞
∣∣∣∣r dR <∞

}

Lr,1 =
{
ψ ∈ Lr | |ψ|rL̇r,1 =

∫
ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣r dR <∞
}
.

Notice that H = L2 = L2( dRψ∞ ) and H1 = L2,1. Finally, we denote C∞0 (B) = D(B) the set
of C∞ functions on B with compact support.
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3.2. Some inequalities. One of the main ingredients of the proof is the use the following
Hardy type inequality. We denote x = 1− |R|

Proposition 3.1. For all ε > 0, there exists a Cε such that

(10)
(∫

B

|ψ|
x
dR

)2

≤ ε

∫
B
ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2 dR+ Cε

∫
B

|ψ|2

ψ∞
dR

Remark 3.2. 1) In the case k > 1, we can take ε = 0 in proposition 3.1 since, we have

(11)
(∫

B

|ψ|
1− |R|

dR

)2

≤ C

∫
B

|ψ|2

ψ∞
dR

2) As can be seen from the proof, we only need the radial part of the gradient in (10)

Proof. The proof is a simple consequence of the following 1d inequality

(12)
(∫ 1

0

ψ

x
dx

)2

≤ ε

∫ 1

0
xk
∣∣∣∣( ψ

xk

)′∣∣∣∣2 dx+ Cε

∫ 1

0

ψ2

xk
dx.

To prove (12), we have to distinguish between three cases.
Case k > 1: In this case, we can take ε = 0 and we have just to use Cauchy-Schwarz

inequality, namely

(13)
∫ 1

0

ψ

x
dx ≤

(∫ 1

0

ψ2

xk
dx

)1/2(∫ 1

0
xk−2dx

)1/2

and the last integral converges since k > 1.
Case k < 1: We make the following change of variables y = x1−k hence dy = (1− k)x−kdx.

We also denote g(y) = ψ(x)/xk. Hence

(14)
∫ 1

0
xk
∣∣∣∣( ψ

xk

)′∣∣∣∣2 dx = (1− k)
∫ 1

0
g′(y)2dy

Moreover, denoting α = k
1−k , we get

(15)
∫ 1

0

ψ(x)
x

dx =
1

1− k

∫ 1

0
yα
g(y)
y
dy

(16)
∫ 1

0

ψ2(x)
xk

dx =
1

1− k

∫ 1

0
y2αg(y)2dy

Hence, it is enough to prove that for all ε > 0, there exists Cε > 0 such that for all g ∈ H1(0, 1),
we have

(17)
(∫ 1

0
yα
g(y)
y
dy

)2

≤ ε

∫ 1

0
g′(y)2dy + Cε

∫ 1

0
y2αg(y)2dy.

We prove this by contradiction. Assume that for some ε > 0, (17) does not hold. Hence, there
exists a sequence gn ∈ H1(0, 1) such that

∫ 1
0 y

α gn(y)
y dy = 1∫ 1

0 y
2αgn(y)2dy → 0∫ 1

0 g
′
n(y)

2dy is bounded.
(18)

Extracting a subsequence, we deduce that gn converges weakly to some g in H1(0, 1). More-
over, from the second relation of (18), we deduce that yαgn converges to 0 in L2 and hence
g = 0. Besides, by compact embedding, we deduce that gn converges to 0 in L∞(0, 1). Since,
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yα−1 is in L1, we deduce that
∫ 1
0 y

α−1gn(y)dy → 0 when n goes to infinity and this yields a
contradiction. Hence, there exists a Cε > 0 such that (17) holds

Case k = 1: We make the following change of variables x = e−y hence dx = −e−ydy. We
also denote g(y) = ψ(x)/x. Arguing as in the case, k < 1, we see that (13) is equivalent to
the existence of Cε such that for g ∈ Ḣ1(R+), we have

(19)
(∫ ∞

0
g(y)e−ydy

)2

≤ ε

∫ ∞

0
g′(y)2dy + Cε

∫ ∞

0
g(y)2e−2ydy

We prove this by contradiction. Assume that for some ε > 0, (19) does not hold. Hence, there
exists a sequence gn ∈ Ḣ1(R+) such that

∫∞
0 gn(y)e−ydy = 1∫∞

0 gn(y)2e−2ydy → 0∫∞
0 g′n(y)

2dy is bounded.
(20)

Extracting a subsequence, we deduce that gne−y converges to 0 in L2(R+). Hence, gn con-
verges to 0 in L2

loc(R+). Since gn is bounded in Ḣ1(R+), we deduce that gn(0) goes to zero
when n goes to infinity. Besides,

(21) gn(y) ≤ gn(0) + y1/2

∫ y

0
g′n(y)

2dy.

Hence, we deduce that
∫∞
0 gn(y)e−ydy → 0 when n goes to infinity and this yields a con-

tradiction. Hence, there exists a Cε > 0 such that (19) holds. This end the proof of the
Proposition �

We point out that in the case, k > 1, we have a similar change of variable, namely y = x1−k

and hence denoting α = k
k−1 , we see that (12) is equivalent to

(22)
(∫ ∞

1

g(y)
y1+α

dy

)2

≤ ε

∫ ∞

0
g′(y)2dy + Cε

∫ ∞

0

g(y)2

y2α
dy

Remark 3.3. We called our inequality (10) a Hardy type inequality even though it is of a
different nature. We would like here to explain this more and compare (10) to the Hardy
inequality. We assume that ψ ∈ H1.

Case k > 1: First, we focus on the 1d problem and denote x = 1 − |R|. Notice that when
k > 1 and we denote f(x) = ψ(x)/xk/2, we get that f(0) = 0 and f ∈ H1(0, 1). Indeed, if
we make the change of variable y = x1−k, we get by Cauchy-Schwarz that for each ε > 0,
g(y) ≤ ε

√
y + Cε. Hence, f(x) ≤ ε

√
x+ Cεx

k/2. Moreover, after integration by parts we get∫ 1

0
xk
∣∣∣∣( ψ

xk

)′∣∣∣∣2 dx =
∫ 1

0
f ′(x)2 +

(
k

2

)2 f2

x2
− 2

k

2
f ′
f

x
(23)

=
∫ 1

0
f ′(x)2 +

(
k2 − 2k

4

)
f2

x2
− k

2
f2(1)(24)

If k ≥ 2, we get easily a bound on
∫ 1
0 f

′(x)2 and then on
∫ 1
0
f2

x2 by the Hardy inequality. If
1 < k < 2, we use Hardy inequality to control the second term of the right hand side and get

k

2
f2(1) +

∫ 1

0
xk
∣∣∣∣( ψ

xk

)′∣∣∣∣2 dx ≥ (k − 1)2
∫ 1

0
f ′(x)2 ≥ (k − 1)2

4

∫ 1

0

f2

x2
(25)

Of course, the f2(1) of the left hand side can be replaced by
∫ 1
0 f

2(x)dx modulo some constant.
Hence, written in the R variable, we get

(26)
∫
B

ψ2

ψ∞x2
dR ≤ C|ψ|2H1 .
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Case k ≤ 1: If k ≤ 1, we can not use Hardy inequality and a bound on
∫ 1
0 x

k

∣∣∣∣( ψ
xk

)′∣∣∣∣2 dx+

f2(1) does not imply a bound on
∫ 1
0 f

′(x)2 and on
∫ 1
0
f2

x2 as can be seen by taking ψ = ψ∞.
However, we have a weaker Hardy estimate, namely

(27)
∫ 1

0

ψ2

x2kxβ
dx ≤ C

∫ 1

0
xk
∣∣∣∣( ψ

xk

)′∣∣∣∣2 dx+ C

∫ 1

0

ψ2

xk
dx

or in the original variables

(28)
∫
B

ψ2

ψ2
∞x

β
dR ≤ C

∫
B
ψ∞

∣∣∣∣(∇(
ψ

ψ∞

)∣∣∣∣2 dR+ C

∫
B

ψ2

ψ∞
dR ≤ C|ψ|2H1

for any β < 1. This inequality can be easily deduced, in the case k < 1, from the following
inequality in the y variable

(29)
∫ 1

0

g2(y)
yγ

dy ≤ C

∫ 1

0
g′(y)2dy + C

∫ 1

0
y2αg(y)2dy

and where we denote γ = β−k
1−k < 1. In the case k = 1 it can be deduced from

(30)
∫ ∞

0
g(y)2e−(1−β)ydy ≤ C

∫ ∞

0
g′(y)2dy + C

∫ ∞

0
g(y)2e−2ydy

The inequalities (29) and (30) can be proved by an argument similar to the one in the proof
of the proposition. In Remark 3.8, we will prove an improved version of (28) using logarithmic
terms.

For the global existence result, we will also need the following Poincare inequality with
weight.

Proposition 3.4. There exists a constant C such that, for all ψ̃ ∈ H1 with
∫
B ψ̃ = 0, we

have

(31)
∫
B

|ψ̃|2

ψ∞
dR ≤

∫
B
ψ∞

∣∣∣∣∣∇R
ψ̃

ψ∞

∣∣∣∣∣
2

dR

Proof. By contradiction. Assume that there exists a sequence, ψ̃n ∈ H1,
∫
B ψ̃n = 0, and

(32)
∫
B

|ψ̃n|2

ψ∞
dR = 1,

∫
B
ψ∞

∣∣∣∣∣∇R
ψ̃n
ψ∞

∣∣∣∣∣
2

dR → 0.

Hence,
√
ψ∞∇R

ψ̃n
ψ∞

goes to 0 in L2(B) and ∇R
ψ̃n
ψ∞

goes to 0 in L2
loc(B). Hence ψ̃n

ψ∞
goes to

some constant c in L2
loc(B) Since, ψ̃n is bounded in L2(B), we deduce that ψ̃n goes to c in

L1(B) and using that
∫
B ψ̃n = 0, we deduce that c = 0.

From the Hardy inequality (26) if k > 1 or (28) if k ≤ 1, we deduce in all cases that

(33)
∫
B

|ψ̃n|2

ψ∞xβ
dR ≤ C

for some 0 < β < 1. This gives some tightness of the sequence |ψ̃n|2
ψ∞

. Hence, we deduce from

the strong convergence of ψ̃n in L2
loc(B) to 0 that ψ̃n√

ψ∞
converges to 0 in L2(B). This gives a

contradiction with (32). Hence, (31) holds.
�
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For the global existence for the co-rotational model in 2d, we will need the following in-
equality. If p is such that pk > 1 then

Proposition 3.5. If p is such that pk > 1 then

(34)
∫
B

|ψ|
x
dR ≤ C

(∫
B

|ψ|p+1

ψp∞
dR

) 1
p+1

Proof. The proof is based on Holder inequality. Indeed, using that x ∼ x1−kp/(p+1)ψ
p/(p+1)
∞ ,

we get ∫
B

|ψ|
x
dR ≤ C

∫
B

1
x1−kp/(p+1)

|ψ|
ψ
p/(p+1)
∞

dR(35)

≤ C

(∫
B

1
x1+1/p−k

) p
p+1
(∫

B

|ψ|p+1

ψp∞
dR

) 1
p+1

(36)

and the result follows. �

3.3. The linearized problem in R. One important ingredient in proving our existence
result is the study of the following linear operator in the R variable

(37) Lψ = −div(ψ∞∇
ψ

ψ∞
)

on the space H = L2( dRψ∞ ) and with domain

(38) D(L) =
{
ψ ∈ H|ψ∞∇

ψ

ψ∞
∈ H, div(ψ∞∇

ψ

ψ∞
) ∈ H andψ∞∇

ψ

ψ∞
|∂B = 0

}
We also define the Hilbert spaces H1 and H2 by

H1 =

{
ψ |

∫
ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2 +
ψ2

ψ∞
dR <∞

}
(39)

H2 =

{
ψ ∈ H1 |

∫ (
div(ψ∞∇

ψ

ψ∞
)
)2 dR

ψ∞
<∞

}
(40)

The boundary condition ψ∞∇ ψ
ψ∞
|∂B = 0 should be understood in the weak sense, namely for

any φ ∈ C1(B), we have

(41)
∫
B
φLψ dR =

∫
B
ψ∞∇

ψ

ψ∞
.∇φ dR

and for any φ ∈ H1, we have

(42)
∫
B
φLψ

dR

ψ∞
=
∫
B
ψ∞∇

ψ

ψ∞
.∇ φ

ψ∞
dR.

Notice that for any φ ∈ C1(B), φψ∞ ∈ H1 and hence (41) follows from (42).

Proposition 3.6. L is self-adjoint and positive. Moreover, it has a discrete spectrum formed
by a sequence (`n) such that `n →∞ when n→∞.

Proof. Let us prove that L is self-adjoint. First, it is easy to see that D(L) is dense, indeed
C∞0 (B) ⊂ D(L) and is dense in H. Next, to see that L is symmetric, we notice that for
φ, ψ ∈ D(L), we have

(43)
∫
B
φLψ

dR

ψ∞
=
∫
B
ψ∞∇

ψ

ψ∞
.∇ φ

ψ∞
dR =

∫
B
ψLφ

dR

ψ∞
.
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Next, we use Riesz representation theorem (or Lax-Milgram) to deduce that for all f ∈ H,
there exists a unique ψ ∈ H1 such that for all φ ∈ H1, we have

(44)
∫
B
ψ∞∇

ψ

ψ∞
.∇ φ

ψ∞
+
ψφ

ψ∞
dR =

∫
B

fφ

ψ∞
dR.

By taking φ ∈ D(B), we deduce that −div(ψ∞∇ ψ
ψ∞

) + ψ = f and then that (42) holds.
Hence, we have {

(L+ 1)ψ = f

ψ∞∇ ψ
ψ∞
|∂B = 0.(45)

This insures that the operators L+ 1 and L are closed. Moreover, −1 is in the resolvent of L
which implies that necessary L is self-adjoint (see for instance Chapter X, p137 of [30])

To prove that L has a discrete spectrum, we define the operator K by for f ∈ H, Kf is the
unique solution ψ of the equation (L + 1)ψ = f in D(L). Hence, it is easy to see that K is
compact and symmetric. Hence, it has a discrete spectrum formed by a decreasing sequence
λn > 0 which goes to zero when n goes to infinity. Besides, it has a countable orthonormal
basis of eigenvectors wn. This implies that L has the same basis of eigenvectors with the
eigenvalues `n = 1/λn − 1, namely Lwn = `nwn.

�

We end this subsection by two remarks about the space H1 and about the boundary condi-
tion for L. These two remarks will not be used in the existence proof but they are interesting
in themselves.

Remark 3.7. If k ≥ 1 then

(46) C∞0
H1

= H1.

We will only give the proof when k = 1. The other case is simpler. First, we notice that (28)
can be improved, namely

(47)
∫
B

ψ2

x3 log(x)2
dR ≤ C|ψ|2H1

Indeed, this is a consequence of the following inequality

(48)
∫ ∞

0

g(y)2

y2
dy ≤ C

∫ ∞

0
g′(y)2dy + C

∫ ∞

0
g(y)2e−2ydy.

We define the function χ by χ(t) = 1 for 0 ≤ t ≤ 1, χ(t) = 2− t for 1 ≤ t ≤ 2 and χ(t) = 0
for t ≥ 2. For ψ ∈ H1, we take

ψn(R) = ψ(R)χ(
− log(1− |R|)

n
).

It is clear that ψn ∈ H1. Moreover,

(49) ‖ψ − ψn‖2
H1 ≤ C

∫
1−|R|≤e−n

ψ2

x3 log(x)2
+ |∇ψ|2 dR

which goes to 0 when n goes to infinity. Now, it is easy to see that ψn can be approximated
in H1 by a sequence of C∞0 (B). This ends the proof of (46).

It is clear that (46) does not hold when k < 1 since ψ∞ is not in C∞0
H1

.

Remark 3.8. We point out that if k ≥ 1 (which is equivalent to b ≥ 2), then the boundary
condition ψ∞∇ ψ

ψ∞
|∂B = 0 is a consequence of the fact that ψ ∈ H2 and hence D(L) = H2.

For the proof, we use the fact that for all ψ ∈ H2, the relation (42) holds when φ ∈ C∞0 .
Then, we use that any φ ∈ H1 can be approximated in H1 by a sequence φn ∈ C∞0 . Then, we
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pass to the limit and deduce that (42) holds for all φ ∈ H1. This implies that ψ∞∇ ψ
ψ∞
|∂B = 0

and hence, D(L) = H2.
The fact that the boundary condition ψ∞∇ ψ

ψ∞
|∂B = 0 is not needed when k ≥ 1 should be

related to a similar property of the stochastic differential equation (3). Indeed, in [20], it is
proved that when k ≥ 1, then the process Rt defined by (3) does not reach the boundary almost
surely. Besides, when k < 1, the process Rt reaches the boundary in finite time almost surely.
This explains why we need a boundary condition for the operator L when k < 1. Notice that in
this case the inclusion D(L) ⊂ H2 is strict. Indeed, we can notice that for k < 1, ψ1/k

∞ ∈ H2

but does not satisfy the boundary condition and hence it is not in D(L).

3.4. Solution for the linear equation in R. Now, we can solve the following linear problem
in R.

Proposition 3.9. Assume that A(t) ∈ C([0,∞)) is a matrix valued function and that f ∈
C([0,∞);H1), then {

∂tψ = −divR(A(t)Rψ)− L(ψ) + divR(f)
ψ∞∇ ψ

ψ∞ |∂B
= 0(50)

with the initial value ψ(t = 0) = ψ0(R) ∈ H has a unique very weak solution ψ in C([0,∞);H)
(see the definition below). Moreover, ψ ∈ L2

loc([0,∞);H1).

Before giving the proof, we have to give a sense to (50). For, ψ ∈ C([0,∞);H)∩L2
loc(0,∞;H1),

we say that ψ is a weak solution of (50) if for all T > 0, φ ∈ C1([0, T ];H1), φ(T ) = 0, we have

(51) −
∫
B

ψ0φ(0)
ψ∞

−
∫ T

0

∫
B

ψ∂tφ

ψ∞
=
∫ T

0

∫
B
A(t)Rψ∇ φ

ψ∞
−ψ∞∇

ψ

ψ∞
.∇ φ

ψ∞
−f.∇ φ

ψ∞
dRdt

For ψ ∈ C([0,∞);H), we say that ψ is a very weak solution of (50) if for all T > 0, φ ∈
C1([0, T ];D(L)), φ(T ) = 0, we have

(52) −
∫
B

ψ0φ(0)
ψ∞

−
∫ T

0

∫
B

ψ∂tφ

ψ∞
=
∫ T

0

∫
B
A(t)Rψ∇ φ

ψ∞
− ψ

ψ∞
L(φ)− f.∇ φ

ψ∞
dRdt

Proof. The proof uses a Galerkin approximation based on the eigenfunctions of the operator
L. Let us denote VN the space spanned by the eigenfunctions wn of L with eigenvalue `n ≤ N .
Let PN be the orthogonal projection onto VN . We consider the Galerkin approximation of
(50) {

∂tψN = −PN (divR(A(t)RχNψN ))− L(ψN ) + PN (divR(χNf))
ψN (t = 0) = PN (ψ0)

(53)

where χN (R) ∈ C1(B) is a cut-off function which is used to insure that divR(A(t)RχNψN ),divR(χNf) ∈
H. It satisfies, χN = 1 on B(0, 1 − 2

N ) and χN = 0 for |R| > 1 − 1
N . The equation (53) is

an ODE which can be solved locally in time. Moreover, the solution is global because of the
following estimate

∂t

∫
B

ψ2
N

2ψ∞
=

∫
B
A(t)RχNψN∇

ψN
ψ∞

− ψ∞

∣∣∣∣∇ψNψ∞
∣∣∣∣2 − χNf.∇

ψN
ψ∞

dR(54)

≤ C|A(t)|2
∫
B

ψ2
N

ψ∞
− 1

2

∫
B
ψ∞

∣∣∣∣∇ψNψ∞
∣∣∣∣2 + C|f |2H(55)

and ∫
B

ψ2
N

ψ∞
(t) +

1
2

∫ t

0

∫
B
ψ∞

∣∣∣∣∇ψNψ∞
∣∣∣∣2 ≤ (∫

B

ψ2
0

ψ∞
+
∫ t

0
C|f(s)|2Hds

)
eC

R t
0 |A(s)|2ds.(56)
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Besides, we have for T > 0, φ ∈ C1([0, T ];VN ), φ(T ) = 0,
(57)

−
∫
B

PN (ψ0)φ(0)
ψ∞

−
∫ T

0

∫
B

ψN∂tφ

ψ∞
=
∫ T

0

∫
B
A(t)RψNχN∇

φ

ψ∞
−ψ∞∇

ψN
ψ∞

.∇ φ

ψ∞
−χNf.∇

φ

ψ∞
dRdt

Extracting a subsequence and passing to the limit when N goes to infinity, we recover a weak
solution ψ ∈ L∞loc([0,∞);H) ∩ L2

loc([0,∞;H1) to (50).
To see that ψ ∈ C([0,∞);H), we first notice that, ψ ∈ C([0,∞);w − H) where w − H is

the space H equipped with the weak topology. Then

1
2

∣∣∣|ψ(t)|2 − |ψ(s)|2H
∣∣∣ =

∣∣∣ ∫ t

s
∂tψψ

∣∣∣(58)

≤
∫ t

s
C|A(t)|2

∫
B

ψ2

ψ∞
+

1
2

∫
B
ψ∞

∣∣∣∣∇ ψ

ψ∞

∣∣∣∣2 + C|f |2H(59)

and hence |ψ(s)|2H goes to |ψ(t)|2 when s goes to t. This yields that ψ ∈ C([0,∞);H).
To prove uniqueness in C([0,∞);H), we use the dual problem. Let ψ be a very weak solution

of (50) in C([0,∞);H) with zero initial data and with f = 0. For φ ∈ C1([0, T ];D(L)) and
φ(t = T ) = 0, we have

−
∫ T

0

∫
B

ψ∂tφ

ψ∞
ds =

∫ T

0

∫
B
A(t)Rψ∇R

φ

ψ∞
+ divR(ψ∞∇R

φ

ψ∞
)
ψ

ψ∞
(60)

For F ∈ C([0, T ];H), let φ be the solution of the following backward equation{
−∂tφ = ψ∞A(t)R.∇R

φ
ψ∞

− L(φ) + F

ψ∞∇ φ
ψ∞ |∂B

= 0, φ(t = T ) = 0(61)

The solution φ can be constructed using the same Galerkin approximation as above. Moreover,
due to the fact that φ ∈ L2

loc([0,∞;H1), we see that the force term ψ∞A(t)R.∇R
φ
ψ∞

+ F is
in L2

loc([0,∞;H) and maximal regularity results insure that φ ∈ L2
loc([0,∞;D(L)) and ∂tφ ∈

L2
loc([0,∞;H). Hence, φ can be used as a test function in (52) and yields that

∫ T
0

∫
B ψ

F
ψ∞

= 0
and hence ψ = 0. This ends the proof of the uniqueness and the proof of the proposition.

�

Next, we prove a proposition giving the regularity in the x variable, namely

Proposition 3.10. Given u ∈ C([0,∞);Hs) ∩ L2
loc([0,∞);Hs+1). Then,{

∂tψ + u.∇xψ = −divR(∇uRψ)− L(ψ)
ψ∞∇ ψ

ψ∞
|∂B = 0(62)

with the initial value ψ(t = 0) = ψ0(x,R) ∈ Hs(Ω;H) has a unique solution ψ in C([0,∞);Hs(Ω;H)).
Moreover, ψ ∈ L2

loc([0,∞);Hs(Ω;H1)).

Proof. First, we define the flow associated with u, namely Φ(t, x) such that{
∂tΦ(t, x) = u(t,Φ(t, x))
Φ(t = 0, x) = x.

(63)

Making the change of variable φ(t, x,R) = ψ(t,Φ(t, x), R), we see that ψ(t, x,R) solves (62)
if and only if φ(t, x,R) solves{

∂tφ = −divR((∇u)(t,Φ(t, x))Rφ)− L(φ)
ψ∞∇ φ

ψ∞
|∂B = 0(64)
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Using Proposition 3.9 for each x, we deduce the existence and uniqueness of φ(t, x,R) in
C([0,∞);H)). Integrating (56) with ψN replaced by φ(t, x,R), we deduce that∫

Ω×B

φ2

ψ∞
(t) +

1
2

∫ t

0

∫
Ω×B

ψ∞

∣∣∣∣∇ φ

ψ∞

∣∣∣∣2 ≤ ∫
Ω×B

ψ2
0

ψ∞
dRdx eC

R t
0 |∇u(s)|

2
L∞ds.(65)

Hence, φ(t, x,R) ∈ C([0,∞);L2(Ω;H)) ∩ L2
loc([0,∞);L2(Ω;H1))

To prove regularity in the x variable, we use difference quotients

φh = Dh
kφ(t, x,R) =

φ(t, x+ hek, R)− φ(t, x,R)
h

(66)

(∇u)h = Dh
k [∇u(t,Φ(t, x), R)] =

∇u(t,Φ(t, x+ hek))−∇u(t,Φ(t, x))
h

(67)

for h > 0 and 1 ≤ k ≤ N . Hence, φh solves{
∂tφh = −divR((∇u)(t,Φ(t, x))Rφh)− divR((∇u)hRφ(t, x+ hek, R))− L(φh)
ψ∞∇ φh

ψ∞ |∂B
= 0(68)

Applying proposition 3.9, we deduce that φh ∈ C([0,∞);L2(Ω;H)) ∩ L2
loc([0,∞);L2(Ω;H1)).

Hence, taking the limit h to zero, we deduce that φ ∈ C([0,∞);H1(Ω;H))∩L2
loc([0,∞);H1(Ω;H1)).

This gives a similar bound on ψ(t, x,R). Moreover, we can take higher order derivatives and
we can argue in a similar manner to prove the regularity of ψ stated in the proposition.

�

4. A priori estimates

From the first equation of (1), we deduce that

(69) ∂t|u|2s + ν|u|2s+1 ≤ C|u|3s +
C

ν
|τ |2s.

From the second equation, we get

∂t

∫
B

ψ2

ψ∞
dR + u.∇

∫
B

ψ2

ψ∞
dR+

∫
B
ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2(70)

≤ |Du|
(∫

B

ψ2

ψ∞
dR

)1/2
(∫

B
ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2
)1/2

(71)

≤ C|Du|2
(∫

B

ψ2

ψ∞
dR

)
+

1
2

(∫
B
ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2
)

(72)

We define the flow Φ by

(73)
{
∂tΦ(t, x) = u(t,Φ(t, x))
Φ(0, x) = x

Integrating along the flow, we deduce that

sup
x

∫
B

ψ2(t)
ψ∞

dR+ sup
x

∫ t

0

∫
B
ψ∞

∣∣∣∣∇R
ψ

ψ∞

∣∣∣∣2 (s,Φ(s, x))ds ≤ sup
x

∫
B

ψ2
0

ψ∞
dReC

R t
0 |Du|

2
L∞(74)

Taking s derivatives in x and taking the L2 norm in R, we get
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∂t

∫
B

(∂sψ)2

ψ∞
dR+ u.∇

∫
B

(∂sψ)2

ψ∞
dR +

∫
B
ψ∞

∣∣∣∣∇R
∂sψ

ψ∞

∣∣∣∣2 =(75)

= −
∑

|α|+|β|≤s

∫
B
divR(D∂αuR∂βψ)

∂α+βψ

ψ∞
(76)

Integrating by part and using the Cauchy-Schwarz inequality, the right hand side can be
controlled by

∑
|α|+|β|≤s

|D∂αu|
(∫

B

(∂βψ)2

ψ∞

)1/2
(∫

B

∣∣∣∣∇R
∂α+βψ

ψ∞

∣∣∣∣2
)1/2

(77)

≤
∑

|α|+|β|≤s

2|D∂αu|2
(∫

B

(∂βψ)2

ψ∞

)
+

1
4

(∫
B
ψ∞

∣∣∣∣∇R
∂α+βψ

ψ∞

∣∣∣∣2
)

(78)

Integrating in the x variable, we get

∂t|ψ|2s +
1
2
|ψ|2s,1 ≤ C

(
|Du|2L∞ |ψ|2s + |u|2s+1 sup

x

∫
ψ2

ψ∞
dR

)
(79)

We choose T such that

(80)
∫ T

0
|u|2s + |Du|2L∞ + |u|s ≤ A

for some fixed constant A. Hence,

(81) sup
t,x

∫
ψ2

ψ∞
dR ≤ sup

x

∫
ψ2

0

ψ∞
dReCA

Besides, integrating (79) in time and applying Gronwall lemma, we get

|ψ(t)|2s +
1
2

∫ t

0
|ψ|2s,1 ≤ |ψ0|2seCA + Ce2CA

∫ t

0
|u|2s+1.(82)

Moreover, we have from (69)

|u(t)|2s + ν

∫ t

0
|u|2s+1 ≤ (|u0|2s +

∫ t

0
|τ |2s)eC

R t
0 |u|s(83)

and from (10)∫ t

0
|τ |2s ≤ ε

∫ t

0
|ψ|2s,1 + Cε

∫ t

0
|ψ|2s ≤ (ε+ CεT )e2CA(C +

∫ t

0
|u|2s+1)(84)

Hence, if ε and T are chosen small enough, we get

|u(t)|2s +
ν

2

∫ t

0
|u|2s+1 ≤ (|u0|2s + C)eCA.(85)
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4.1. Small data. Here, we explain the changes we have to make in the small data case.
Instead of using ψ, we will use ψ̃ = ψ − ψ∞.

We have to use inequality (10) and (31) to bound the stress tensor τ . Hence

(86) |τ |2s ≤ |ψ̃|2s,1 + C|ψ̃|2s ≤ C|ψ̃|2s,1

We assume that ‖Du‖2
L∞ ≤ ε

C , that supx
∫ ψ̃2

ψ∞
dR ≤ ε

C ν
2 and that |u|s ≤ εν

C for some ε small
enough. Hence, (69) and (79) yield{

∂t|ψ̃|2s + 1
2 |ψ̃|

2
s,1 ≤ ε|ψ̃|2s + εν2|u|2s+1

∂t|u|2s + ν|u|2s+1 ≤ εν|u|2s + C
ν |ψ̃|

2
s,1.

(87)

Multiplying the second equation of (87) by ν
4C and adding the first one, we get

∂t(|ψ̃|2s +
ν

4C
|u|2s) +

min(1, ν)
8

(|ψ̃|2s +
ν

4C
|u|2s) ≤ 0(88)

if ε is taken small enough compared to C. Hence, if the initial data satisfies |ψ̃0|2s + ν
4C |u0|2s ≤

ε2

4C3 νmin(1, ν)2, we see that the assumptions made before (87) hold and hence |ψ̃|2s+ ν
4C |u|

2
s ≤

ε2

4C3 νmin(1, ν)2e−min(1,ν)t/8.

5. Existence proofs

In this section, we prove theorem 2.1 and 2.2. To prove the existence and uniqueness
of a solution in theorem 2.1, we use a fixed point argument. For T > 0, we define X =
CT (Hs)∩L2

T (Hs+1)×CT (Hs(H)). We define the operator Φ fromX toX by Φ((u, φ)) = (v, ψ)
where ψ is the unique solution in CT (Hs(H)) ∩ L2

T (Hs(H1)) of
∂tψ + u.∇xψ = −divR(∇uRψ)− L(ψ)
ψ∞∇ ψ

ψ∞
|∂B = 0

ψ(t = 0) = ψ0

(89)

Then v is the unique solution of the following linear problem ∂tv + u.∇v − ν∆v = div(τ)
divv = 0
v(t = 0) = u0

(90)

where τ is deduced from ψ. Let X0 be given by

(91) X0 = {(u, φ) ∈ X| sup
0≤t≤T

|u|2s +
ν

2

∫ T

0
|u|2s+1 ≤ 9|u0|2s + 1, sup

0≤t≤T
|φ|2s ≤ A1}

where A1 = (1 + Ce(20|u0|2s+2)
ν )e|ψ|20. We assume that T satisfies

(92) T ≤ 1
C(9|u0|2s + 1)

.

If (u, φ) ∈ X0, then (v, ψ) = Φ(u, φ) satisfies

(93) sup
t,x

∫
ψ2

ψ∞
dR ≤ sup

x

∫
ψ2

0

ψ∞
dR eC

R T
0 |u0|2s ≤ e|ψ0|2s.

Moreover,

sup
0≤t≤T

|ψ(t)|2s +
1
2

∫ T

0
|ψ|2s,1 ≤ |ψ0|2se+ C e sup

t,x

∫
ψ2

ψ∞
dR

∫ t

0
|u|2s+1 ≤ A1.(94)
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Hence, ∫ T

0
|τ |2s ≤ ε

∫ t

0
|ψ|2s,1 + Cε

∫ t

0
|ψ|2s ≤ 2εA1 + CεTA1(95)

sup
0≤t≤T

|v(t)|2s +
ν

2

∫ T

0
|v|2s+1 ≤ (|u0|2s +

C

ν
A1(2ε+ CεT ))e.(96)

We take ε such that C
ν A12ε < 1/8 and then T such that C

ν A1CεT < 1/8. Hence, the right
hand side of (96) is bounded by 9|u0|2s + 1. Next, we have to prove that Φ is a contraction on
X0. We put the L2 norm on X0, namely

(97) ‖(u, φ)‖X0 = sup
0≤t≤T

‖u‖2
L2 +

ν

2

∫ T

0
‖u‖2

H1 + sup
0≤t≤T

‖φ‖2
L2(H)

We want to prove by similar energy estimates that if T is taken even smaller then

(98) ‖Φ(u1, φ1)− Φ(u2, φ2)‖X0 ≤ 1/2‖(u1, φ1)− (u2, φ2)‖X0

Indeed, we denote (vi, ψi) = Φ(ui, φi) for i = 1 or 2 and define (v, ψ) = (v2 − v1, ψ2 − ψ1) .
Hence, (v, ψ)(t = 0) = 0 and{

∂tψ + u2.∇xψ + (u2 − u1).∇xψ1 = −divR(∇u2Rψ)− divR(∇(u2 − u1)Rψ1)− L(ψ)
∂tv + u2.∇xv + (u2 − u1).∇xv1 − ν∆v +∇p = ∇(τ2 − τ1).

(99)

A simple computation, similar to the Hs estimate, yields that

∂t(|v|20 + |ψ|20) + |∇v|20 ≤ C(|v|20 + |ψ|20 + |u2 − u1|20 + |φ2 − φ1|20).

Hence, taking T smaller if necessary, we see that (97) holds. This proves that Φ is a contraction
and yields the existence an uniqueness of a solution in the space X.

To prove that the solution is actually, unique in C([0, T ∗);Hs)×C([0, T ∗);Hs(RN ;L2( dRψ∞ ))),
we can use the same computation (99) were (vi, ψi) = (ui, φi). Without loss of generality, we
can assume that the solution (v2, ψ2) is the solution given by the fixed point argument in X.
Hence, Gronwall lemma implies that (v, ψ) = (0, 0) which gives the uniqueness.

5.1. The small data case. Now, we turn to the proof of the global existence if the data
is small. Using the local existence result of the previous subsection, we get a solution (u, ψ)
on a time interval [0, T ∗). We would like to prove that we can take T ∗ = ∞, The a priori
estimate of subsection 4.1 implies that (|ψ̃|2s + ν

4C |u|
2
s) decreases on the time interval [0, T ∗).

Then using that the existence time T in the previous subsection only depends on |u0|2s and
|ψ̃0|2s, we see that we can iterate the argument and prove the global existence. This proves
theorem 2.2.

Remark 5.1. An other way of proving the global existence for small data is to use a fixed
point argument on [0,∞) and take advantage of the fact that the data is small to prove that
Φ is a contraction on some X0 (which is global in time) to be chosen accordingly.

6. The co-rotational model in 2d

Let us start by explaining the idea of the proof of theorem 2.3. The main difference between
the full model (1) and the co-rotational model is that we have here an extra a priori estimate,
namely for r > 1

(100) ∂t

∫
B
ψ∞

∣∣∣∣ ψψ∞
∣∣∣∣r dR+ u.∇

∫
B
ψ∞

∣∣∣∣ ψψ∞
∣∣∣∣r dR = −4(r − 1)

r

∫
B
ψ∞

∣∣∣∣∣∇
(
ψ

ψ∞

)r/2∣∣∣∣∣
2

dR
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This yields an L∞ bound on
∫
B ψ∞

∣∣∣ ψψ∞ ∣∣∣r dR. Combining this with (34) when (r−1)k > 1, we
get and L∞ bound for the additional stress τ which is uniform in time. In [6], while studying
the Oldroyd-B model, the authors proved that a control on the L∞ norm of τ yields global
existence in the 2d case. The ideas of [6] were then used in [25] and [9] in the micro-macro
case.

Here, we follow the proof of [9]. For this theorem we use the Littlewood-Paley decomposi-
tion.

6.1. Preliminaries. We define C to be the ring of center 0, of small radius 1/2 and great
radius 2. There exist two nonnegative radial functions χ and ϕ belonging respectively
to D(B(0, 1)) and to D(C) so that

(101) χ(ξ) +
∑
q≥0

ϕ(2−qξ) = 1,

(102) |p− q| ≥ 2 ⇒ Supp ϕ(2−q·) ∩ Supp ϕ(2−p·) = ∅.
For instance, one can take χ ∈ D(B(0, 1)) such that χ ≡ 1 on B(0, 1/2) and take

ϕ(ξ) = χ(ξ/2)− χ(ξ).

Then, we are able to define the Littlewood-Paley decomposition. Let us denote by F the
Fourier transform on Rd. Let h, h̃, ∆q, Sq (q ∈ Z) be defined as follows:

h = F−1ϕ and h̃ = F−1χ,

∆qu = F−1(ϕ(2−qξ)Fu) = 2qd
∫
h(2qy)u(x− y)dy,

Squ = F−1(χ(2−qξ)Fu) = 2qd
∫
h̃(2qy)u(x− y)dy.

We use the para-product decomposition of Bony ([4])

uv = Tuv + Tvu + R(u, v)

where
Tuv =

∑
q∈Z

Sq−1u∆qv and R(u, v) =
∑

|q−q′|≤1

∆q′u∆qv.

We define the inhomogeneous and homogeneous Besov spaces by

Definition 6.1. Let s be a real number, p and r two real numbers greater than 1. Then we
define the following norm

‖u‖ eBsp,r def
= ‖S0u‖Lp +

∥∥∥(2qs‖∆qu‖Lp)q∈N

∥∥∥
`r(N)

and the following semi-norm

‖u‖Bsp,r
def
=
∥∥∥(2qs‖∆qu‖Lp)q∈Z

∥∥∥
`r(Z)

.

Definition 6.2.

• Let s be a real number, p and r two real numbers greater than 1. We denote by B̃s
p,r

the space of tempered distributions u such that ‖u‖ eBsp,r is finite.
• If s < d/p or s = d/p and r = 1 we define the homogeneous Besov space Bs

p,r as the
closure of compactly supported smooth functions for the norm ‖ · ‖Bsp,r .

We refer to [5] for the proof of the following results and for the multiplication law in Besov
spaces.
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Lemma 6.3.
‖∆qu‖Lb ≤ 2d(

1
a
− 1
b
)q‖∆qu‖La for b ≥ a ≥ 1

‖et∆∆qu‖Lb ≤ C2−ct2
2q‖∆qu‖Lb

The following corollary is straightforward.

Corollary 6.4. If b ≥ a ≥ 1, then, we have the following continuous embeddings

Bs
a,r ⊂ B

s−d
(

1
a
− 1
b

)
b,r .

Definition 6.5. Let p be in [1,∞] and r in R; the space L̃pT (Cr) is the space of distributions u
such that

‖u‖eLp(0,T ;Cr)

def
= sup

q
2qr‖∆qu‖LpT (L∞) <∞.

We will use the following theorem from [6]

Theorem 6.6. Let v be the solution in L2
T (H1) of the two dimensional Navier-Stokes system

(NSν)


∂v

∂t
+ v · ∇v − ν∆v = −∇p+ f

divv = 0
v|t=0 = v0.

with an initial data in L2 and an external force f in L1
T (C−1) ∩ L2

T (H−1); then, for any ε,
a T0 in the interval ]0, T [ exists such that

‖∇v‖eL1((T0,T );C0)
≤ ε.

6.2. A deteriorating regularity estimate. The main part of this subsection is the proof
of a deteriorating regularity estimate for transport equations in the spirit of [1] and [6]. After
this proof, we will apply this estimate in order to prove Theorem 2.3.

Theorem 6.7. Let σ and β be two elements of ]0, 1[ such that σ+β < 1. A constant C exists
that satisfies the following properties. Let T and λ be two positive numbers and v a smooth
divergence free vector field so that

(103) σ − λ‖∇v‖eL1
T (C0)

≥ β and σ + λ‖∇v‖eL1
T (C0)

≤ 1− β.

Consider two smooth functions f and v so that f is the solution of

(104)
{
∂tf + v · ∇f = −divR(W (v)Rf) + divR(ψ∞∇ f

ψ∞
)

f|t=0 = f0.

Then we have, if λ ≥ 3C and |f0|L∞(Lr) ≤ C,

(105) Mσ
λ (f) ≤ 3‖f0‖Bσp,∞(Lr) +

3C
λ
Mσ+1
λ (v)

where

Mσ
λ (v)

def
= sup

t∈[0,T ],q
2qσ−Φq,λ(t)‖∆qv(t)‖Lp and(106)

Mσ
λ (f)

def
= sup

t∈[0,T ],q
2qσ−Φq,λ(t)‖∆qf(t)‖Lp(Lr) with(107)

Φq,λ(t, t′)
def
= λ

∫ t

t′
(‖Sq−1∇v(t′′)‖L∞ + 1)dt′′, Φq,λ(t) = Φq,λ(t, 0).(108)
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Proof. The proof is the same as the proof of theorem 2.1 of [9], the only difference is that we
have to replace the space H−s in the R variable by the space Lr and that we have to split
the rest term into 2 parts and use integration by parts to estimate one of them. We give a
sketch of the proof here. We will use the notation fq

def= ∆qf . Applying the operator ∆q to
the transport equation (104), we get

(109){
∂tfq + Sq−1v · ∇fq + divR(W (Sq−1v)Rf) + divR(ψ∞∇ fq

ψ∞
) + R̃q(v, f) + divR(Rq(v, f)) = 0

fq |t=0 = ∆qf0.

where R̃q(v, f) + divR(Rq(v, f)) is a rest term which will be computed later. We denote

(110) N r
q (t, x) =

∫
B
ψ∞

∣∣∣∣ fqψ∞
∣∣∣∣r dR = |fq|rLr .

Hence, multiplying (109) by
(
fq
ψ∞

)r−1
and integrating in R, we get

∂tN
r
q + Sq−1v · ∇N r

q +
4(r − 1)

r
|fq|rL̇r,1 = −

∫
B
R̃q(v, f)

(
fq
ψ∞

)r−1

−Rq(v, f).∇
(
fq
ψ∞

)r−1

(111)

The right hand side is controlled by

C(|fq|r−1
Lr |R̃q|Lr + |fq|

r
2
−1

Lr |fq|
r
2

Lr,1 |Rq|Lr)(112)

Hence, we get

∂tNq + Sq−1v · ∇Nq ≤ C(Nq + ‖Rq‖Lr + ‖R̃q‖Lr)(113)

We also recall from (100) that |f |L∞T (L∞(Lr)) ≤ |f0|L∞(Lr) ≤ C.
To prove theorem 6.7, we have to prove the following lemma to control the rest term and

then argue exactly as in [9] to conclude

Lemma 6.8. Rq(v, f) and R̃q(v, f) satisfy

2qσ−Φq,λ(t)(‖Rq(v(t), f(t))‖Lp(Lr) + ‖R̃q(v(t), f(t))‖Lp(Lr)) ≤ Ce
Cλ‖∇v‖eL1

T
(C0)

×
(
Mσ+1
λ (v) +

(
1 + ‖Sq∇v(t)‖L∞ +

∑
|q′−q|≤N

‖∆q′∇v(t)‖L∞
)
Mσ
λ (f)

)
.(114)

To prove Lemma 6.8, we have to split R̃q + divR(Rq) into several terms and analyze each
one separately. Here, we will only focus on the term which is not in [9]. Indeed, as in [9], we
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have

R̃q(v, f) =
3∑
`=1

R`q(v, f) and divR(Rq(v, f)) =
6∑
`=4

divR(R`q(v, f)) with

R1
q(v, f) =

d∑
j=1

∆q(T∂jfv
j),

R2
q(v, f) =

d∑
j=1

[∆q, Tvj∂j ]f,

R3
q(v, f) =

d∑
j=1

∆q∂jR(vj , f) + ∆q−1v
j∂j∆q+1fq −∆q−2v

j∂j∆q−1fq

R4
q(v, f) =

d∑
i,j=1

∆q(TfW (v)ij)

R5
q(v, f) =

d∑
i,j=1

[∆q, TW (v)ij
]f

R6
q(v, f) =

d∑
i,j=1

(
R(W (v)ij , f) + ∆q−1W (v)ij∆q+1fq −∆q−2W (v)ji∆q−1fq

)
.

The first three terms are exactly treated as in [9]. The last three terms come from

∆q(divR(W (v)Rf)) = divR
( 6∑
`=4

R`q(v, f)
)

+ divR(W (Sq−1v)fq).

Here, we only explain the estimate for R4
q(v, f) and R5

q(v, f). The estimate for R6
q(v, f) is the

same as R̃3
q(v, f). We have

‖R4
q(v(t), f(t))‖Lp(Lr) ≤ C

∑
|q−q′|≤2

‖Sq′−1f‖L∞(Lr)‖∆q′∇v(t)‖Lp

≤ C
∑

|q−q′|≤2

‖∆q′∇v(t)‖Lp

and hence (114) holds for R4
q . For R5

q(v, f), we have

[∆q, TW (v)ij
]f = −

d∑
j=1

∑
q′

[Sq′−1W (v)ij ,∆q]∆q′f.

The terms of the above sum are equal to 0 except if |q − q′| ≤ 2. We also recall that
2W (v)ij = ∂jv

i − ∂iv
j . By definition of the operators ∆q, we have

[Sq′−1∂jv
i,∆q]∆q′f(x) = 2qd

∫
Rd
h(2q(x− y))(Sq′−1∂jv

i(x)− Sq′−1∂jv
i(y))∆q′f(y)dy.

So we infer that

‖R5
q(v, f)‖Lr ≤ 2−q|∇2Sq′−1v|2qd

((
2q| · | × |h(2q·)|

)
? ‖∆q′f‖Lr

)
(x).

Hence,
‖R5

q(v, f)‖Lp(Lr) ≤ 2−q‖∇2Sq′−1v‖Lp‖∆q′f‖L∞(Lr).
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Then, we have,

2qσ−Φq,λ(t)‖HR5
q(v, f)‖Lp(Lr)

≤ C
∑

|q−q′|≤2

q′′≤q′−1

2(σ−1)(q−q′′)−Φq,λ(t)+Φq′′,λ(t)Mσ+1
λ (v)‖∆q′f‖L∞(Lr).

Hence,

2qσ−Φq,λ(t)‖HR5
q(v, f)‖Lp(Lr) ≤ C

∑
q′′≤q+1

2−β(q−q′′)Mσ+1
λ (v)‖f‖L∞(Lr)

and the sum is uniformly bounded since σ− 1 + λ‖∇v‖eL1
T (C0)

≤ −β < 0. This ends the proof
of Lemma 6.8 and of theorem 6.7.

�

6.3. Proof of theorem 2.3. The proof follows the same ideas as in Chemin and Masmoudi
[6], Lin, Zhang and Zhang [25] and Constantin and Masmoudi [9]. We will only sketch the
proof.

First, we notice that theorem 2.1 yields the local existence of a solution with u ∈ L∞loc([0, T ∗);Hs)∩
L2
loc([0, T

∗);Hs+1) and ψ ∈ L∞loc([0, T ∗);Hs(H)). Moreover, estimating ∂sψ in Lr, we deduce
that ψ ∈ L∞loc([0, T ∗);Hs(Lr)). (see (79) for a similar estimate when r = 2). Besides, from reg-
ularity estimates for the heat equation, we have for all 0 < T0 < T , u ∈ L∞loc((T0, T

∗);Hs+1−ε).
To prove that we can extend the solution beyond the time T ∗. It is enough to prove that

∇u ∈ L∞((0, T ∗)× R2).
By Sobolev type embeddings of Corollary 6.4, we have

(u, ψ) ∈ L∞loc
(
[T0, T [; B̃s−ε

p,∞ × B̃s−1
p,∞(Lr)

)
.

This implies that (u, ψ) ∈ L∞loc(C̃
1+σ × C̃σ(Lr)) for any 0 < σ < 1. We fix such a σ. So we

can apply Theorem 6.6 and we can choose T0 such that, with the notations of Theorem 6.7,
we have

‖∇u‖eL1(T0,T ;C0)
≤ min(σ − β, 1− σ − β)

3λ
·

The deteriorating regularity estimate of Theorem 6.7 applied with σ and between T0 and T
tells exactly that ψ satisfies

(115) Mσ
λ (ψ) ≤ 3‖ψ‖Cσ(Lr) +

3C
λ
Mσ+1
λ (u).

Now, we have to estimate ∇u using that u solves the two dimensional Navier-Stokes equation.
Arguing as in [6] and [9] and using that Mσ

λ (τ) ≤Mσ
λ (ψ), we deduce that

Mσ+1
λ (u) ≤ ‖u0‖Cσ+1 +

3C
ν
‖ψ0‖Cσ +

(
C

λ
+
C

λν
+
C

ν
3
4

‖u‖
L4
T0,T ]

(H
1
2 )

)
Mσ+1
λ (u)

Now it is enough to choose T0 such that the quantity(
C

λ
+
C

λν
+
C

ν
3
4

‖u‖
L4
T0,T ]

(H
1
2 )

)
is small enough. Then as σ is greater than 0, u is such that ∇u belongs to L∞([T0, T ]×R2);
this concludes the proof of Theorem 2.3.
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