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we generalize the one dimensional results obtained in [6] to the case of several dimen-
sions using global renormalized solutions. The method of moments and a velocity
averaging lemma are used to prove the convergence of the renormalized solutions to
the semiconductor Boltzmann-Poisson system towards a global weak solution of the
Drift-Diffusion-Poisson model.
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1 Introduction and Main results

In this paper, we study the diffusion limit of the initial-boundary value problem for
the semiconductor Boltzmann-Poisson system (see [27, 31]). The model we consider
here is associated with a linear low density approximation of the electron-phonon
collisions. In other words it is a low density approximation of the physically correct
Fermi-Dirac system. When the potential is given and is smooth enough, Poupaud
[31] has proved the convergence of the rescaled Boltzmann equation towards a linear
Drift-Diffusion model. Let us recall that the Drift-Diffusion equation is a standard
model for semiconductors physics, and suited for numerical computations since it
does not involve the kinetic variable v. We refer to [10, 16, 17, 27] for a discussion
about Drift-Diffusion models.

In the one dimensional case, the convergence results of [31] are extended in [6] to
the semiconductor Boltzmann system with a Poisson coupling. In [6] the solutions
considered are defined in a weak sense [1, 5, 6]. The entropy inequality and a
hybrid-Hilbert expansion are used to approximate the entropy production term due
to the boundary and allow to prove the convergence of the rescaled Boltzmann
equation towards the Drift-Diffusion for self-consistent potential. The method is
based essentially on the fact that solutions to the limit system are smooth, which
gives useful uniform bounds on all terms of the Hilbert expansion and then allows
to obtain a strong convergence and also to exhibit a convergence rate. The multi-
dimensional case is different. Indeed, if we want to work with global solutions, we can
only deal with solutions to the semiconductor Boltzmann-Poisson which are defined
in the renormalized sense (see [12, 29]). Indeed, due to the presence of the Poisson
term and the Boltzmann collision term in the equation for the density, we can not
prove global uniform bounds in any Lp space for p > 1. On one hand, we can see
that if we remove the collision term than we can easily get a priori estimates for f in
any L∞((0, T );Lp(dxdv)), 1 ≤ p ≤ ∞. On the other hand, if we remove the Poisson
term, then we can get a priori estimates for f in any L∞((0, T );Lp(dxM1−pdv)),
1 ≤ p < ∞. Hence, we can see that, mathematically, these two terms can not be
treated in the same spaces. This is one of the major mathematical difficulties of this
model.

Before recalling the Boltzmann-Poisson system, let us mention that Drift-Diffusion
models can also be derived from other singular limits. We refer for instance to [32]
where the Drift-Diffusion model is derived from a Vlasov-Fokker-Planck system.

1.1 Formulation of the problem

In this paper we study the parabolic limit of the rescaled Boltzmann-Poisson system.
Hence, the rescaled system, defined on the phase space Ω = ω × Rd where d ≥ 1,
reads as follows

∂tf
ε +

1

ε

(
v.∇xf

ε −∇x(φ
ε + φ̃b).∇vf

ε
)
− Q(f ε)

ε2
= 0, (x, v) ∈ Ω, (1)

where ε is a small parameter related to the mean free path and f ε(t, x, v) denotes the
electron distribution function. The time variable t is nonnegative. The position x
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belongs to an open set ω of Rd, assumed to be smooth and bounded and the velocity
v belongs to Rd. This equation has to be complemented with initial and boundary
conditions which take into account how particles are injected in the semiconductor
device. We assume that the boundary ∂ω is sufficiently smooth. We denote by
n(x) the outward unit normal vector at the position x ∈ ∂ω and dσx the Lebesgue
measure on ∂ω. The outgoing and incoming parts are defined as

Γ± = {(x, v) ∈ ∂Ω; ± v.n(x) > 0}.

The initial data is assumed to be known and depend on the mean free path ε:

f ε(0, x, v) = f ε
0 (x, v), (x, v) ∈ Ω. (2)

The incoming boundary data is assumed to be a well prepared function [5, 6, 31],
in the sense that

f ε(t, x, v) = fb(t, x, v) := ρb(t, x)M(v), (x, v) ∈ Γ− (3)

where M is the normalized Maxwellian

M(v) =
e−|v|

2/2

(2π)d/2

and ρb(t, x) is a boundary data. The precise assumptions we choose on the initial
and boundary conditions will be detailed later on. The linear operator Q describes
physical conservation properties during collisions. Here, we only assume that the
charge is conserved during the collision [2, 27]. A typical model for such situation
is the linear approximation of the electron-phonon interaction, given by

Q(f)(v) =

∫
Rd

σ(v, v′)(M(v)f(v′)−M(v′)f(v))dv′. (4)

The cross section σ is assumed to be symmetric (micro-reversibility principle) and
bounded from above and below:

σ(v, v′) = σ(v′, v), (v, v′) ∈ R2d,

∃ σ1, σ2 > 0 / 0 < σ1 ≤ σ ≤ σ2.
(5)

Here, we are making an other approximation, by assuming that σ is bounded from
below and above instead of taking delta measures concentrated on balls of constant
kinetic energies (see [4, 7]).

The mean free path is defined to be an average of the collision frequency λ(v)
given by

λ(v) =

∫
Rd

σ(v, v′)M(v′)dv′.

Here, for all v, we have σ1 ≤ λ(v) ≤ σ2. Hence, the mean free path in (1) is of
order 1/ε. We refer to [5, 6, 31] for the detailed properties of these kind of collision
kernels. We assume that the potential φε is self consistent:

−∆xφ
ε =

∫
Rd

f εdv,

φε
|∂ω = 0.

(6)
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The potential φ̃b is given in ω. It takes for instance into account the distribution of
positive background charges.

We define the charge density ρε and the current density jε associated to the
distribution f ε by

ρε(t, x) =

∫
Rd

f ε(t, x, v)dv, jε(t, x) =
1

ε

∫
Rd

vf ε(t, x, v)dv.

1.2 Assumptions and preliminaries

Throughout the paper we shall make the following assumptions and notations

A1: f ε
0 ≥ 0,

∫
Ω

f ε
0 (1 + |v|2 + |logf ε

0 |) ≤ C and φε(t = 0) is bounded in H1(ω).

A2: (
√
ρb, ∂tρb) ∈ L∞loc(R+; H1/2(∂ω) × L∞(∂ω)) and the density is bounded from

above and below : there exist c and c such that 0 < c ≤ ρb(., x) ≤ c̄, for x ∈ ∂ω.
A3: φ̃b ≥ 0 and (φ̃b, ∂tφ̃b) ∈ L∞loc(R+; W 1,∞(ω)× L∞(ω)).

We define the total charge (or mass), the kinetic energy and two distances to the
local equilibrium by

Mε(t) =

∫
Ω

f ε(t, x, v)dxdv, Kε(t) =

∫
Ω

|v|2

2
f ε(t, x, v)dxdv,

Rε(t) =
1

2

∫ t

0

∫
Ω

(√
f ε −

√
ρεM

)2

dxdvds

R1
ε(t) =

1

2

∫ t

0

∫
Ω

(f ε − ρεM ) (logf ε − log(ρεM) ) dxdvds.

(7)

The entropy and entropy fluxes through the inflow and outflow boundaries are de-
fined by

Eε(t) =
1

2
‖∇xφ

ε(t)‖2
L2(ω) +

∫
Ω

f ε

(
log f ε +

|v|2

2
+ φ̃b

)
(t),

I±ε (t) =

∫ t

0

∫
Γ±
f ε

(
log f ε +

|v|2

2
+ φb

)
|v.n(x)| dσxdvds.

(8)

We also define the quasi-Fermi level (defined on the boundary ∂ω)

EF (t, x) = log

(
ρb(t, x)

(2π)d/2

)
+ φ̃b(t, x). (9)

Let us recall two lemmas about the collision kernel (see [31])

Lemma 1.1 (H-Theorem). Assume that (5) holds, then the operator Q is bounded
in L1(dv) and satisfies for all f ∈ L1(dv), f ≥ 0 and f(|logf |+ |v|2) ∈ L1(dv)∫

Rd

Q(f) = 0 and H(f) =

∫
Rd

Q(f) log

(
f

M

)
≤ −σ1

2

∫
Rd

(√
f −

√
ρM

)2
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where ρ =
∫
f(v)dv. Moreover,

H(f) = 0 ⇔ Q(f) = 0 ⇔ f(v) = ρM(v).

Lemma 1.2 . Assume that (5) holds, then

1. −Q is a bounded, symmetric, nonnegative operator on L2(Rd; M−1dv),

2. KerQ = RM,

3. −Q is coercive on R(Q) = KerQ⊥.

1.3 Statement of the result

Our motivation in this work is to prove the convergence of renormalized solutions
(f ε, φε) to (1–6) towards (ρM, φ) where (ρ, φ) satisfies the following Drift-Diffusion-
Poisson system [16, 21, 31]:

(DD-P)



∂tρ+∇x.J(ρ, φ) = 0,

J(ρ, φ) = −D[∇xρ+ ρ∇x(φ+ φ̃b)],

D = −
∫

Rd

v ⊗ Q−1(vM)dv > 0,

−∆xφ = ρ,

ρ(t = 0) = ρ0, (ρ, φ) |∂ω = (ρb, 0).

Definition 1.3 We say that (ρ, φ) is a weak solution to the Drift-Diffusion-Poisson
system (DD-P) if

ρ ∈ L∞(0, T ; LlogL(ω)) ∩ L2(0, T ; L2(ω)),
√
ρ ∈ L2(0, T ; H1(ω)),

∂tρ ∈ L1(0, T ; W−1,1(ω)),

φ ∈ L2(0, T ; H1
0 (ω)).

and (ρ, φ) satisfies (DD-P) in the weak sense. 2

We recall here the definition of the space LlogL(ω),

LlogL(ω) = {f |f ≥ 0 and

∫
ω

[ f (1 + |logf |)] is finite} (10)

and that ρ ∈ L∞(0, T ; LlogL(ω)) if and only if
∫

ω
ρ(t) (1 + |log ρ(t)|) dx ≤ C where

C is independent of t ∈ (0, T ).
We also point out that due to the fact that ∂tρ ∈ L1(0, T ; W−1,1(ω)), we deduce

that ρ is continuous in time with values in W−1,1(ω) and hence the initial data for
ρ makes sense. The main result of this paper is the following theorem
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Theorem 1.4 Assume that Assumptions (A1), (A2) and (A3) hold. Let (f ε, φε) be
a renormalized solution of (1–6), (in the sense of Theorem 2.2). Then,

f ε → ρM in L1((0, T )× Ω),
φε → φ in L2((0, T );W 1,p(ω)), ∀ p < 2.

(11)

where (ρ, φ) is a weak solution of the Drift-Diffusion-Poisson system (DD-P).
Moreover,

φ ∈ L∞(0, T ; H1
0 (ω)) ∩ L2(0, T ; H2(ω)).

2

The proof of this Theorem is as follows. In Section 2 we prove the existence of
renormalized solutions to the semiconductor Boltzmann-Poisson system. In Section
3 we establish some a priori uniform estimates. These estimates generalize the
estimates obtained in [6]. To get the convergence we argue in a different manner
as in [6]. Indeed, in the one dimensional case the energy estimate of section 3 and
the convergence are deduced from an hybrid-Hilbert expansion which is based on
the regularity of the limiting system. In the present case, the solution to the Drift-
Diffusion-Poisson is not regular enough and the solutions of the initial system are
only renormalized. Instead, the method of moment and velocity averaging are used
to pass to the limit (ε→ 0). In section 4, we use a velocity averaging lemma to prove
the compactness of the charge density ρ. In section 5, we pass to the limit weakly
in the equation. In section 6, we recover the boundary condition for ρ. Finally,
section 7 is devoted to the proof of the regularity estimates on (ρ, φ) and that the
limit solution (ρ, φ) is a weak solution of (DD-P).

2 Existence of renormalized solutions

For the existence of renormalized solutions to the full Boltzmann-Poisson system we
refer to [12, 29]. It is noteworthy that even though the Boltzmann kernel we are
considering here is linear, the combination of the Boltzmann term and the Poisson
term makes the existence of weak solutions to (1–6) with uniform bounds a difficult
problem and we were not able to construct such kind of solutions. This is coming
from the fact that the Poisson term can be well treated in Lp(dv) type of spaces
whereas the linear Boltzmann term can be well treated in Lp(M1−pdv). This incom-
patibility is responsible for the lack of estimates. We notice then, that the entropy
bound given in (15) is not enough to give a sense to ∇xφ

εfε.
Before stating an existence theorem for (1–6) let us give a definition for renor-

malized solution or more precisely the definition we are going to use.

Definition 2.1 We say that (f ε, φε) is a renormalized solution to the semiconductor
Boltzmann-Poisson system if it satisfies

1. ∀ β ∈ C1(R+), |β(t)| ≤ C(
√
t + 1), and |β′(t)| ≤ C, β(f ε) is a weak solution
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of 
ε∂tβ(f ε) + v.∇xβ(f ε)−∇v.(∇x(φ

ε + φ̃b)β(f ε)) = β′(f ε)Q(fε)
ε

β(f ε)|Γ− = β(f ε
b ),

β(f ε)(t = 0) = β(f ε
0 ),

(12)

2. ∀ λ > 0, θε,λ =
√
f ε + λM satisfies

ε∂tθε,λ + v.∇xθε,λ−∇v.[∇x(φ
ε + φ̃b)θε,λ] =

Q(f ε)

2εθε,λ

+
λM

2θε,λ

v.∇x(φ
ε + φ̃b). (13)

Theorem 2.2 The semiconductor Boltzmann-Poisson system (1–6) has a renor-
malized solution in the sense of definition 2.1 which satisfies in addition

1. the continuity equation
∂tρ

ε +∇x.j
ε = 0, (14)

2. the entropy inequality[∫
Ω

f ε

(
φ̃b +

|v|2

2
+ log f ε

)
+

1

2
‖∇φε‖2

L2

]t

0

− 1

ε2

∫ t

0

∫
Ω

Q(f ε)log

(
f ε

M

)

≤
∫ t

0

∫
Ω

∂tφ̃bf
ε − 1

ε

∫ t

0

∫
Γ+∪Γ−

f ε

(
φb +

|v|2

2
+ log f ε

)
(v.n(x)).

(15)

Proof. For the convenience of the reader, we give an idea of the proof in the
Appendix. We also refer to [29] for more details.

3 Uniform energy estimates

Lemma 3.1 Assume that assumptions A1, A2 and A3 are satisfied. Then, any
renormalized solution (f ε, φε) of the semiconductor Boltzmann-Poisson system (1-6)
satisfies

Mε(t) +Kε(t) + ‖∇φε(t)‖2
L2 +

Rε
1(t)

ε2
+

∫ t

0

‖jε(s)‖L1ds ≤ CT (16)

uniformly in ε, where Mε, Kε and Rε
1 are defined in (7).

Proof. Starting from the entropy inequality (15), one can write the entropy dissi-
pation in the following form∫

Rd

Q(f ε)log

(
f ε

M

)
dv = −1

2

∫
R2d

σMM ′
(

log
f ε(v′)

M(v′)
− log

f ε(v)

M(v)

)(
f ε(v′)

M(v′)
− f ε(v)

M(v)

)
dvdv′.
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Using the Jensen inequality∫
Rd

Q(f ε)log

(
f ε

M

)
≤ −σ1

2

∫
Rd

M

(
log ρε − log

f ε(v)

M(v)

)(
ρε − f ε(v)

M(v)

)
.

Applying the relation

(a− b)log(a/b) ≥
(√

a−
√
b
)2

(17)

we obtain

−
∫ t

0

∫
Ω

Q(f ε)

(
log f ε +

|v|2

2

)
≥ σ1Rε

1(t) ≥ σ1Rε(t). (18)

Moreover, we have also to approximate the entropy production term by the bound-
ary, (I+

ε − I−ε )(t), defined in (7). We write this quantity as follows

(I+
ε − I−ε )=

∫ t

0

∫
Γ+

|v.n|
[
f ε(v) log

(
f ε(v)

f ε(−v)

)
+ (f ε(v)− f ε(−v)) EF (s, x)

]
.

Using the inequality alog(a/b) ≥ a− b for a, b > 0, we obtain

(I+
ε − I−ε )(t) ≥

∫ t

0

∫
Γ+

|v.n(x)|[f ε(v)− f ε(−v)] (1 + EF (t, x))dσx dv ds. (19)

Then, we can replace (15) according to (18) and (19) and obtain

[Eε(t)]t0 +
σ1

ε2
Rε

1(t) ≤
∫ t

0

∫
Ω

∂tφ̃bf
ε − 1

ε

∫ t

0

∫
Γ+

|v.n(x)|[f ε(v)− f ε(−v)](1 + EF )

(20)
where

Eε(t) =
1

2
‖∇xφ

ε(t)‖2
L2(ω) +

∫
Ω

f ε

(
log f ε +

|v|2

2
+ φ̃b

)
(t)

and

EF (t, x) = log

(
ρb(t, x)

(2π)d/2

)
+ φ̃b(t, x).

We extend the quasi-Fermi level on ω̄ (denoted by ẼF ) and replace ρb by its harmonic
extension, (in ω̄), ρ̃b. According to assumptions A2 and A3, ∇xẼF and ∂tẼF , defined
on ω by

∂tẼF = (∂tρ̃b + ρ̃b ∂tφ̃b)/ρ̃b,

∇xẼF = (∇xρ̃b + ρ̃b∇xφ̃b)/ρ̃b

are bounded. By multiplying (14) by (1 + ẼF (t, x)) and integrating by parts, we
obtain

1

ε

∫ t

0

∫
Γ+

(1 + EF )(f ε(v)− f ε(−v))|v.n(x)| =

∫ t

0

∫
ω

∂tẼF ρε +

∫ t

0

∫
ω

∇xẼF .j
ε

−
[∫

ω

(1 + ẼF )ρε

]t

0
(21)
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and then (20) is equivalent to

[Eε(t)]t0 +
σ1

ε2
Rε

1(t) ≤
[∫

ω

(1 + ẼF )ρε

]t

0

−
∫ t

0

∫
ω

∇xẼF .j
ε −

∫ t

0

∫
ω

∂tρ̃b

ρ̃b

ρε

which implies, according to (A1), (A2) and (A3) that

Eε(t) +
Rε

1(t)

ε2
≤ CT

(
1 +

∫ t

0

Mε(s)ds+

∫ t

0

‖jε(s)‖L1ds

)
where CT depends only on T. Let us estimate the current density in the following
way ∫ t

0

‖jε(s)‖L1ds =
1

ε

∫ t

0

∫
ω

∣∣∣∣∫
Rd

v
(√

f ε −
√
ρεM

)(√
f ε +

√
ρεM

)∣∣∣∣
≤ 1

ε

√
Rε(t)

(∫ t

0

∫
Ω

|v|2
(√

f ε +
√
ρεM

)2
)1/2

.

The Young’s inequality (α a2 + 1
4α
b2 ≥ ab, ∀α > 0), gives∫ t

0

‖jε(s)‖L1 ds ≤ α

ε2
Rε(t) +

CT

4α

∫ t

0

(Mε(s) +Kε(s))ds (22)

where α does not depend on ε (for example α = 1/2). Then, one can deduce

Eε(t) +
Rε

1(t)

2ε2
≤ CT

(
1 +

∫ t

0

Mε(s)ds+

∫ t

0

Kε(s)ds

)
(23)

and bound Mε and Kε in terms of Eε using that∫
Ω

f εlog

(
f ε

e−|v|2/4

)
≥Mε − |ω|e

∫
Rd

e−|v|
2/4. (24)

Hence, we deduce

Mε(t) +Kε(t) + ‖∇xφ
ε(t)‖2

L2 +
Rε

1(t)

ε2
≤ CT

(
1 +

∫ t

0

Mε(s)ds+

∫ t

0

Kε(s)ds

)
.

The Gronwall inequality leads to a uniform bound of Mε, Kε, ε−2Rε
1 and ‖∇xφ

ε‖L2 .
Then we get the L1−bound on jε using (22). 2

Corollary 3.2 The renormalized solution satisfies∫
Ω

f ε(1 + |v|2 + |log f ε|) +

∫ t

0

∫
Γ+

f ε(1 + |v|2 + |log f ε|)|v.n(x)| ≤ CT .

Moreover, f ε and its trace f ε
|Γ+

are weakly relatively compact in L1((0, T )×Ω)) and

L1((0, T )× Γ+, |v.n(x)|dtdσxdv)) respectively. 2
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Proof. Let us remark that∫
f ε|log f ε| =

∫
fε≥1

f ε log f ε −
∫

fε≤1

f ε log f ε. (25)

Estimates (16), (23) and (24) imply

|Eε(t)| ≤ CT ,

∫
fε≤1

f ε|log f ε| = −
∫

fε≤1

f ε log(f ε/e−|v|
2

) +

∫
|v|2f ε

≤
∫
|v|2f εdxdv + |ω|

∫
e−|v|

2

dv ≤ CT

and ∫
fε≥1

f ε log f ε ≤ |Eε(t)|+
∫

fε≤1

f ε|log f ε| ≤ CT .

The Dunford-Pettis Theorem [15] implies the weak compactness of f ε in the men-
tioned space. We obtain the bound and the weak compactness of f ε

|Γ+
by a similar

argument. Indeed, from the entropy bound we can deduce that∫ t

0

∫
Γ+

|v.n(x)|
[
f ε(v)

ρbM
log

(
f ε(v)

ρbM

)]
ρbM(v)dvdσdt ≤ Cε (26)

and then, we can argue as above. 2

The above Corollary will be used to approximate uniformly f ε by bounded func-
tion. Indeed, let βδ be an approximation of the identity, namely βδ(s) = 1

δ
β(δs)

where β is a C∞0 function satisfying β(s) = s for s ≤ 1, 0 ≤ β′(s) ≤ 1 for all s and
β(s) = 2 for s ≥ 3. As a consequence of the equi-integrability of f ε, we deduce that
(βδ(f

ε))δ,ε is weakly relatively compact in L1((0, T )× Ω)). Indeed, we have∫ T

0

∫
Ω

|βδ(f
ε)− f ε| ≤ C

∫
fε≥1/δ

f ε → 0, as δ → 0

and∫ T

0

∫
Γ+

|βδ(f
ε)− f ε|(v.n(x)) ≤

∫ T

0

∫
Γ+∩{fε≥1/δ}

|f ε|(v.n(x)) → 0, as δ → 0

uniformly in ε. Up to extraction of a subsequence, we also have

βδ(f
ε)− f ε → 0, a. e. as δ → 0,

β′δ(f
ε) → 1, a. e. as δ → 0.

More precisely
sup
ε<1

‖βδ(f
ε)− f ε‖L1

t,x,v
→ 0 as δ → 0. (27)
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Proposition 3.3 The renormalized solution (f ε, φε) satisfies

1. ρε is weakly relatively compact in L1((0, T )× ω).

2. Q(fε)
ε

is weakly relatively compact in L1((0, T )× Ω)).

3. ∇φε is relatively compact in L2(0, T ; Lp(ω)) for all 1 ≤ p < 2.

Proof. Let log+s = max(0, log s). Applying the Jensen inequality we get

ρεlog+ρε =

∫ (
f ε

M
Mdv

)(
log+

∫
f ε

M
Mdv

)
≤
∫
f εlog+ f

ε

M
dv.

The uniform energy bound (16) and Corollary 3.2 lead to∫ t

0

∫
ω

ρε(1 + log+ρε) ≤ CT

which implies the L1((0, T )× ω) weak compactness of the sequence ρε.
Let us define

rε :=

√
f ε −

√
ρεM

ε
√
M

.

Hence, from the energy bound (16), we deduce that rε is bounded in L2((0, T ) ×
Ω, Mdtdxdv). Extracting a subsequence if necessary, we denote by r its weak limit.
Using rε, we can rewrite

f ε = ρεM + 2εM
√
ρε rε + ε2r2

εM

and

Q(f ε)

ε
= 2

√
ρεQ(rεM) + εQ(r2

εM)

where r2
εM and rεM are respectively bounded in L1 and L2(M−1dv). The operator

Q is bounded in L1 and L2(M−1dv). This implies that Q(fε)
ε

is bounded in L1
t,x,v and

Q(f ε)

ε
= 2

√
ρεQ(rεM) + O(ε)L1(0,T )×Ω.

Moreover, let α > 0, then∫
A

|
√
ρεQ(rεM)| ≤ C

∫
A

ρεM +
1

4C

∫
A

Q2(rεM)

M

and choose C such that 1
4C
‖Q2(rε M)

M
‖L1

t,x,v
≤ α/2. For such fixed α and C the equi-

integrability of ρεM implies

∃ δ > 0,∀A ⊂ (0, T )× Ω, |A| < δ ⇒ C

∫
A

ρεM ≤ α/2.

11



So,
√
ρεQ(rεM) is equi-integrable. Besides, if ΩR := ω ×B(0, R), then∫ T

0

∫
Ωc

R

|
√
ρεQ(rεM)| ≤ ‖ρε‖1/2

L1
t,x

(∫
B(O,R)c

Mdv

)1/2
(∫ T

0

∫
Ωc

R

Q(rεM)2M−1

)1/2

→ 0

as R goes to infinity uniformly in ε. This proves the weak compactness of Q(fε)
ε

in
L1((0, T )× Ω).

The third assertion of the proposition is a consequence of the Lions-Aubin theo-
rem (see [25] lemma 5.1). Indeed, using that∇xφ

ε is bounded in L2(0, T ; L2(ω)) and
∆xφ

ε is bounded in L2(0, T, L1(ω)) we deduce that∇xφ
ε is bounded in L2(0, T ; L2(ω)∩

W r,q(ω)) for some q > 1 and 0 < r < 1 such that 1−r
d

> 1 − 1
q
. And, using that

∂t∇xφ
ε = ∇x(∆x)

−1∇x.(j
ε) we see that ∂t∇xφ

ε is bounded in L1(W−s,p
loc (ω)) for

some p > 1 and s > d − d
p
. Hence, ∇xφ

ε is compact in L2(0, T ; Lq
loc(ω)) for some

1 < q < 2. And using that ∇xφ
ε is bounded in L2(0, T ; L2(ω)) we deduce the

compactness in L2(0, T ; Lp(ω)) for all p < 2. 2

Proposition 3.4 rε is such that ε|rε|2|v|2M is bounded in L1((0, T )×Ω) and
√
ε|rε|2|v|M

is bounded in L1((0, T )× Ω).

Proof. The proof uses Young inequality (see [8] and [26] where a similar ar-
gument is used to control the distance to the Maxwellian). Let us denote r(z) =
zlog(1 + z) and

r∗(p) = sup
z>−1

(pz − r(z))

its Legendre transform. Hence r∗(p) behaves like ep when p goes to +∞. Moreover,
r∗(p) has a superquadratic homogeneity, namely for 0 < α < 1 and p > 0, we have
r∗(αp) ≤ α2r∗(p). We also denote zε = fε

ρεM
− 1 and zε = 0 if ρε = 0. Hence

ε|rε|2|v|2 ≤
1

ε
ρε|zε||v|2. (28)

By Young inequality, we have

1

ε
ρε|v|2|zε| ≤

4ρε

ε2

[
r∗(

ε

4
|v|2) + r(|zε|)

]
≤ 4ρε

ε2

[
ε2r∗(

|v|2

4
) + r(zε)

]
which is clearly bounded in L1((0, T ) × Ω, dtdxMdv) by using the growth of r∗

and the entropy dissipation bound Rε
1(t) ≤ Cε2. This proves the first assertion.

Interpolating with the fact that rε is bounded in L2((0, T )×Ω, dtdxMdv), we deduce
the second bound. This ends the proof of the proposition. 2

4 Compactness by velocity averaging

Proposition 4.1 The density ρε is relatively compact in L1((0, T )×ω): there exists
ρ ∈ L1((0, T )× ω) such that, up to extraction of a subsequence if necessary,

ρε → ρ in L1and a. e. 2

12



Using (27), it suffices to show the compactness of (βδ(f
ε))ε for all (fixed) δ > 0. This

is a consequence of the averaging lemma (see [20, 14]) and the continuity equation.
Let us recall the following averaging lemma

Lemma 4.2 Assume that hε is bounded in L2((0, T )×Ω), that hε
0 and hε

1 are bounded
in L1((0, T )× Ω), and that

ε ∂th
ε + v.∇xh

ε = hε
0 +∇v . h

ε
1. (29)

Then, for all ψ ∈ C∞0 (Rd),

‖
∫

Rd

(hε(t, x+ y, v)− hε(t, x, v) )ψ(v)dv‖L1
t,x
→ 0when y → 0 uniformly in ε

(30)
where hε(t, x, v) has been prolonged by 0 for x 6∈ ω.

Remark 4.3 The above lemma only gives the compactness in the x variable of the
averages in v of hε(t, x, v). This is due to the presence of an ε in front of the time
derivative in (29). We also refer to [21] and [8] for similar averaging lemmas where
there is only gain of regularity in the x variable.

This lemma can be deduced from the proof of theorem 1.8 of [9] or from the proof
of theorem 6 of [14] (see also the proof of theorem 3 of [14]). The only difference
here is the presence of the time derivative which comes with the factor ε in front and
hence does not imply regularity in time as in theorem 6 of[14]. Actually, following
the proof of theorem 3 of [14] with q = m = 1, p = 2, τ = 0, and writing the problem
in the whole space Rt × Rd

x, we can prove that
∫

Rd ψ(v)hε(t, x, v)dv is in the Besov
space Lr,∞((0, T );Bs,r

∞,∞) where r = 5
3

and s = 1
5
. For the definition of the Besov

space Bs,r
∞,∞, we refer to [14]. A sketch of the proof will be given in the appendix.

This, of course, yields the compactness stated in (30).

Proof of Proposition 4.1. Let δ be a (fixed) nonnegative parameter. Let us
verify that the rescaled Boltzmann equation (in the renormalized sense) satisfies the
assumptions of Lemma 4.2. Indeed, βδ(f

ε) is a weak solution of

ε ∂tβδ(f
ε) + v.∇xβδ(f

ε) = hε
0 +∇v. h

ε
1

where

hε
0 =

Q(f ε)

ε
β′δ(f

ε) and hε
1 = ∇(φε + φ̃b) βδ(f

ε).

The sequences (βδ(f
ε))ε is bounded in L∞∩L1((0, T )×Ω) and hence in L2((0, T )×

Ω). Moreover, hε
0 is weakly relatively compact in L1

t,x,v and by applying Holder’s
inequality and using the uniform bound of βδ(f

ε) in L2 (for fixed δ), we obtain

‖hε
1‖L1((0,T )×ω;L2(Rd)) ≤

C√
δ

sup
t≤T

‖∇(φε + φ̃b)(t)‖L2
x
.
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Since we are using a compactly supported function to localize in space, the L2 bound
in v also yields and L1 bound.

Assumptions of Lemma 4.2 are satisfied and hence we get the L1-compactness
in x of

∫
Rd ψ(v)βδ(f

ε)dv, namely (30) holds with hε replaced by βδ(f
ε) .

Next, using that (βδ(f
ε))ε is bounded in L∞(0, T ; L1((1 + |v|2)dxdv)), we see

that we can take ψ(v) to be constant equal to 1 in (30) and hence we deduce, after
also sending δ to 0 and using the equi-integrability of f ε, that

‖ρε(t, x+ y)− ρε(t, x)‖L1
t,x
→ 0 when y → 0 uniformly in ε

Finally, using that ∂tρ
ε = −∇x .j

ε is bounded in L1((0, T );W−1,1(w)), we deduce
that ρε is relatively compact in L1((0, T )× ω) and Proposition 4.1 is proved. 2

5 Passing to the limit

Using the previous section, there exists ρ ∈ L1((0, T )× ω) such that

ρε → ρ in L1
t,x and a. e.

The inequality
(√

a−
√
b
)2

≤ |a− b| leads to

√
ρε → √

ρ in L2
t,x and a. e.

The entropy dissipation given by (15) leads to

f ε → ρM in L1
t,x,v and a. e. (31)

Moreover, we have

Q(f ε)

ε
=
(
2
√
ρεQ(rεM) + εQ(r2

εM)
)

⇀ 2
√
ρ Q(rM), in L1

where r is the weak limit of rε in L2((0, T )× Ω, M(v)dtdxdv). So, one can pass to
the limit in (13) for λ > 0, up to extraction of a subsequence, and gets

v.∇x

√
(ρ+ λ)M −∇v.(∇x(φ+ φ̃b)

√
(ρ+ λ)M) =

√
ρ Q(rM)√
(ρ+ λ)M

+
λM v.∇x(φ+ φ̃b)

2
√

(ρ+ λ)M

(32)

where ∇xφ is the L2
t,x−weak limit of ∇xφ

ε. Sending λ to 0, we infer that(
∇x
√
ρ+

1

2

√
ρ∇x(φ+ φ̃b)

)
.vM = Q(rM).

Using that Q(rM) is bounded in L2((0, T ) × Ω, M−1(v)dtdxdv), we deduce that
∇x
√
ρ+ 1

2

√
ρ∇x(φ+ φ̃b) is bounded in L2((0, T )× ω). Besides, the current density

is given by

jε = 2
√
ρε

∫
Rd

rε vMdv + ε

∫
r2
εvMdv.
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Using Proposition 3.4, we deduce that

jε = 2
√
ρε

∫
Rd

rε vMdv + O(
√
ε)L1((0,T )×Ω) ⇀ 2

√
ρ

∫
Rd

r vMdv, in L1
t,x.

The function vM ∈ R(Q) := KerQ⊥, therefore∫
r vM dv =

∫
Q(rM)Q−1(vM)

dv

M

and

jε ⇀ J(ρ, φ) := 2
√
ρ

[∫
Rd

(v ⊗Q−1(vM))dv

](
∇x
√
ρ+

1

2

√
ρ∇x(φ+ φ̃b)

)
.

Passing to the limit (ε→ 0) in (14) and the Poisson equation −∆φε = ρε, we obtain
∂tρ+∇xJ(ρ, φ) = 0,

J(ρ, φ) = 2
√
ρ
[
−D

(
∇x
√
ρ+ 1

2

√
ρ∇x(φ+ φ̃b)

)]
,

D = −
∫

Rd

(v ⊗Q−1(vM))dv and −∆xφ = ρ.

6 The limit boundary condition

In this section, we want to pass to the limit in the boundary condition and prove
that ρ = ρb on ∂ω. First notice that from the fact that ∇x

√
ρ+ 1

2

√
ρ∇x(φ+ φ̃b) is

bounded in L2((0, T )× ω), we deduce that ∇x
√
ρ is bounded in L1((0, T )× ω) and

hence the trace of
√
ρ makes sense on ∂ω.

For each sequence (gε)ε, gε will denote the weak limit of (gε)ε when ε goes to
zero, extracting a subsequence if necessary. In particular f ε

|Γ denotes the weak limit

of f ε
|Γ in L1((0, T )×Γ+, |v.n(x)|dtdσxdv)). We recall that βδ(f

ε) is a weak solution
of the renormalized semiconductor Boltzmann equation:

ε∂tβδ(f
ε) + v .∇xβδ(f

ε)−∇x(φ
ε + φ̃b).∇vβδ(f

ε) =
Q(f ε)

ε
β′δ(f

ε) (33)

with the following boundary condition and initial data

βδ(f
ε)|Γ− = βδ(ρbM) and βδ(f

ε)|t=0 = βδ(f
ε
0 ).

Passing to the limit in (33), we infer

v .∇xβδ(ρM)−∇x(φ+ φ̃b).∇vβδ(ρM) = 2
√
ρ Q(rM)β′δ(ρM). (34)

On one hand, using ξ(t, x, v) ∈ C∞([0, T ]× Ω̄), as a test function in (34) we get

−
∫ T

0

∫
Ω

βδ(ρM)v.∇xξ +

∫ T

0

∫
Ω

βδ(ρM)∇x(φ+ φ̃b).∇vξ

−
∫ T

0

∫
Ω

2
√
ρ Q(rM)β′δ(ρM)ξ +

∫ T

0

∫
∂Ω

ξβδ(ρM)(v.n(x)) = 0.
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On the other hand, using ξ(t, x, v) as a test function in (33) and passing to the limit,
we deduce that

βδ(ρM)|∂Ω = βδ(f ε)|∂Ω. (35)

From Corollary 3.2, we deduce that f ε
|∂Ω ∈ L∞(0, T ; LlogL(|v.n(x)|dσxdv)) and

hence βδ(f
ε)|∂Ω = βδ(f

ε
|∂Ω) ∈ L∞(0, T ; LlogL(|v.n(x)|dσxdv)) uniformly in ε, δ.

Hence, βδ(ρM)|∂Ω is uniformly bounded in L∞(0, T ; LlogL(|v.n(x)|dσxdv)) and con-
verges to (ρM)|∂Ω when δ goes to 0.

Using, ψ(t, x) ∈ C∞([0, T ]× ω̄) as a test function in (33) and passing to the limit,
we get ∫ T

0

∫
Ω

βδ(ρM)v.∇xψ +

∫ T

0

∫
Ω

2
√
ρ Q(rM)β′δ(ρM)ψ

=

∫ T

0

∫
Γ+

ψ
(
βδ(f ε)|Γ+ − βδ(ρbM)

)
(v.n(x))

Sending δ to 0 and using that∫ T

0

∫
Ω

ρMv.∇xψ +

∫ T

0

∫
Ω

2
√
ρ Q(rM)ψ = 0,

we deduce that

lim
δ→0

∫ T

0

∫
Γ+

[
βδ(f ε)|Γ+ − βδ(ρbM)

]
(v.n(x))ψ = 0 (36)

Using (35) and the fact that∫
Rd∩{v.n(x)≥0}

M(v.n(x))dv =
1

2π

we infer ∫ T

0

∫
∂ω

[ρ|∂ω − ρb]ψ = 0 (37)

and hence ρ = ρb on ∂ω.

7 Regularity of the density

In this section we shall prove that the limit ρ ∈ L∞(0, T ; L2(ω)) and that
√
ρ ∈

L2(0, T ; H1(ω)).
We assume that ρb(t, x) is defined in the whole domain ω. We can for instance

extend
√
ρb(t, x) in ω as a harmonic function. Hence, ρb(t, x) satisfies

ρb ∈ L∞((0, T )× ω) and
√
ρb ∈ L2(0, T ; H1(ω)).
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Lemma 7.1 Let ω be a regular and bounded open subset of Rd and ρ a positive
function of L∞(0, T ; L1(ω)) satisfying

∇x
√
ρ+ 1

2
∇xφ

√
ρ = G ∈ L2(0, T ; L2(ω)),

−∆xφ = ρ,

∇xφ ∈ L∞(0, T ; L2)
ρ = ρb on ∂ω.

(38)

Then

ρ ∈ L2(0, T ; L2(ω)),
√
ρ ∈ L2(0, T ; H1(ω))

and ∇φ√ρ ∈ L2(0, T ; L2(ω)). 2

Proof. The first and third equations of (38) imply that ∇x
√
ρ ∈ L1 and hence the

boundary condition ρ = ρb on ∂ω makes sense. Let us take βδ as in the proof
of Corollary 3.2. But since we will deal with possibly negative values, we take
βδ(s) = 1

δ
β(δs) where β is a C∞ function satisfying β(s) = s for −1 ≤ s ≤ 1,

0 ≤ β′(s) ≤ 1 for all s and β(s) = 2 for |s| ≥ 3.
We denote ψ =

√
ρ−√ρb. Hence

∇xβδ(ψ) = ∇xψ β
′
δ(ψ).

Hence, after subtracting
√
ρb from

√
ρ, we can renormalize the first equation ap-

pearing in (38) , it gives

∇xβδ(ψ) +
1

2
∇xφβ

′
δ(ψ)ψ = G̃β′δ(ψ) (39)

where G̃ = G −∇x
√
ρb − 1

2
∇xφ

√
ρb is also in L2(0, T ; L2(ω)). Then using that for

fixed δ > 0,

|∇xφβ
′
δ(ψ)ψ| ≤ 1

2δ
|∇φ| ∈ L2

we deduce that ∇xβδ(ψ) ∈ L2 for fixed δ. Taking the L2 norm of (39), we get

‖∇xβδ(ψ)‖2
L2 +

1

4
‖∇xφβ

′
δ(ψ)ψ‖2

L2 +

∫ T

0

∫
ω

∇xφ∇xβδ(ψ)β′δ(ψ)ψ ≤ ‖G̃‖2
L2 . (40)

Let β̃ be given by β̃(s) =
∫ s

0
τβ′(τ)2dτ and β̃δ(s) = 1

δ2 β̃(δs). Hence, β̃δ(s) goes to s2

2

when δ goes to 0.
Computing the third term in (40), we get∫

ω

∇xφ.∇xβδ(ψ)β′δ(ψ)ψ =

∫
ω

∇xφ.∇xβ̃δ(ψ) =

∫
ω

ρβ̃δ(ψ).

Hence, we deduce that for all δ > 0,

‖∇xβδ(ψ)‖2
L2 +

1

4
‖∇xφβ

′
δ(ψ)ψ‖2

L2 +

∫ T

0

∫
ω

ρβ̃δ(ψ) ≤ ‖G̃‖2
L2 .
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Letting δ go to zero, we get that

‖∇x(
√
ρ−√ρb)‖2

L2 +
1

4
‖∇xφ(

√
ρ−√ρb) ‖2

L2 +
1

2

∫ T

0

∫
ω

ρ(
√
ρ−√ρb)

2 ≤ ‖G̃‖2
L2 .

Using that
√
ρb is bounded, we conclude the proof of the lemma. 2

Now, using the lemma, we can see easily that we can rewrite the current

J(ρ, φ) = 2
√
ρ

[
−D

(
∇x
√
ρ+

1

2

√
ρ∇x(φ+ φ̃b)

)]
= −D[∇xρ+ ρ∇x(φ+ φ̃b)].

Finally, the regularity of φ can be easily deduced from that of ρ and this ends
the proof of the main Theorem 1.4.

Appendix 1 : Existence of renormalized solution

We present here a proof of the existence of renormalized solution to (1–6) satisfying
the conditions of Theorem 2.2. We refer to [29] for the existence of renormalized so-
lution to the Vlasov-Poisson-Boltzmann system with a nonlinear Boltzmann kernel.

To simplify the notations we take ε = 1. We begin by regularizing the collision
operator, and both Boltzmann and Poisson equations. Let us define

QR(f) =

∫
Rd

σR(v, v′)(Mf ′ −M ′f)dv′ (41)

where
σR(v, v′) = σ(v, v′)1|v|≤R(v)1|v′|≤R(v′). (42)

the regularized semiconductor Boltzmann-Poisson system reads

(V BP )α,R



∂tfα,R +
(
v.∇xfα,R −∇x(φα,R + φ̃b).∇vfα,R

)
= QR(fα,R),

−(1− α∆x)
2m∆xφα,R = ρα,R =

∫
|v|≤R

fα,Rdv,

fα,R(0, x, v) = f0(x, v), (x, v) ∈ Ω

fα,R(t, x, v) = fb(t, x, v), (x, v) ∈ Γ−

φα,R = ∆xφα,R = . . . = ∆2m
x φα,R = 0, x ∈ ∂ω

where α is a nonnegative parameter and m ∈ IN∗. We refer to [1, 6, 33] for further
details about this approximation.

A simple computation gives the following H-Theorem
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Lemma 7.2 The collision operator QR is bounded in L1 and L∞ and satisfies∫
|v|<R

QR(f)dv =

∫
Rd

QR(f)dv = 0

and∫
|v|<R

QR(f)log
f

M
=

∫
Rd

QR(f)log
f

M
≤ −σ1

2

∫ (√
f −

√
M

∫
fdv

)2

.

As a consequence of these conservation properties, one can prove, by a fixed point
procedure and by using the characteristic method, that the modified system (V BP )α,R

has a weak solution (fα,R, φα,R). More precisely, multiplying the semiconductor
Boltzmann equation by (1+|v|2/2+log fα,R), and integrating with respect to dtdxdv,
we get[

1

2

∫
ω

|(1− α∆)m∇xφα,R|2(s) +

∫
Ω

fα,R

(
log fα,R +

|v|2

2
+ φ̃b

)
(s)

]t

0∫ t

0

∫
Γ+

fα,R

(
log fα,R +

|v|2

2
+ φ̃b

)
|v.n(x)|+ σ1

2

∫ t

0

∫
Ω

(√
fα,R −

√
ρα,RM

)2

≤
∫ t

0

∫
Γ−
fb

(
log fb +

|v|2

2
+ φb

)
|v.n(x)|

For fixed α, the solution is weak. one can pass to the limit R→∞ and shows that
there exists a weak solution (fα, ρα, φα) of

(V BP )α



∂tfα + v.∇xfα −∇x(φα + φ̃b).∇vfα = Q(fα),

−(1− α∆x)
2m∆xφα = ρα =

∫
Rd

fαdv,

fα(0, x, v) = f0(x, v), (x, v) ∈ Ω,

fα(t, x, v) = fb(t, x, v) (x, v) ∈ Γ−

φα = ∆xφα = . . . = ∆2m
x φα = 0, x ∈ ∂ω

Moreover, this weak solution satisfies equations (12), (13) and (14) and[
1

2

∫
ω

|(1− α∆)m∇xφα|2(t) +

∫
Ω

fα

(
log fα +

|v|2

2
+ φ̃b

)
(s)

]t

0∫ t

0

∫
Γ+

fα

(
log fα +

|v|2

2
+ φb

)
|v.n(x)|+ σ1

2

∫ t

0

∫
Ω

(√
fα −

√
ραM

)2

≤
∫ t

0

∫
Γ−
fb

(
log fb +

|v|2

2
+ φb

)
|v.n(x)| ≤ CT .

As a consequence of this identity we get the following proposition

Proposition 7.3
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1. fα and fα|Γ+
are respectively weakly relatively compact in L1((0, T ) × Ω) and

L1((0, T )× Γ+, |v.n(x)|dtdσxdv).

2. ‖∇xφα‖L2 ≤ ‖(1 − ∆x)
m∇xφα‖L2 ≤ CT and ∇xφα is relatively compact in

Lp((0, T )× ω), for all p < 2.

3. ρα is relatively compact in L1((0, T )× ω).

The proof of this proposition follows the same lines as the proofs of compactness
given in the paper (see the proofs of Corollary 3.2, Proposition 3.3 and Proposition
4.1). Notice however, that we do not get immediately the compactness of fα as in
(31). 2

Using this Proposition, we can end the proof of Theorem 2.2.
Let f, ρ, φ and j be the weak limits of subsequences of fα, ρα, φα and jα =∫
vfαdv. To prove that (f, φ) satisfies (12) and (13), we argue as in [24] (see also

[29]). The method is based on a double renormalization. First, we write the equa-
tion satisfied by βδ(fα) where βδ was defined in section 3 and then weakly pass to
the limit when α goes to zero. Then, we renormalize the resulting limit equation
using the function β or the function

√
s+ λM . Finally, we let α go to zero and

recover (12) and (13). The continuity equation (14) can be easily deduced from the
continuity equation for ρα and the entropy inequality (15) can be deduced from a
classical convexity argument (see also [29]). This ends the proof of Theorem 2.2.

Appendix 2 : Sketch of the proof of lemma 4.2

Here we would like to prove lemma 4.2.
Step 1 : First, we rewrite the problem in the whole space in t and x. This

step only uses the equiintegrability of hε. Indeed, for α small enough, we can find
C∞ cut-off functions χ1(t) and χ2(x) such that χ1 = 1 on (α, T − α), has compact
support in (0, T ) and χ2 = 1 on {x ∈ ω, |, dist(x, ∂ω) > α and has compact support
in ω. Denoting χ(t, x) = χ1(t)χ2(x) and h̃ε = χ(t, x)hε, we get

ε ∂th̃
ε + v.∇xh̃

ε = χhε
0 +∇v . (χh

ε
1) + (ε∂t + v.∇x)χh

ε. (43)

Moreover, due to the uniform bound of hε in L2, we have

‖
∫

Rd

(
hε(t, x, v)− h̃ε(t, x, v)

)
ψ(v)dv‖L1((0,T )×ω) → 0

when α goes to zero, uniformly in ε.
Step 2: From step 1, we see that it is enough to prove the lemma when, we

replace (0, T ) × ω by Rt × Rd
x since the extra term on the right hand side of (43)

is in L2. Notice also that since we localize in the v variable by integrating against
ψ(v), the L2 norm controls the L1 norm.
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More precisely, we can prove that under the conditions of the lemma,∫
Rd ψ(v)hε(t, x, v)dv ∈ Lr,∞((0, T );Bs,r

∞,∞) where r = 5
3

and s = 1
5

(see [14] for the
definition of the Besov space built on the Lorentz space Lr,∞). One way of proving
the bound in the Besov space is to use the Littlewood-Paley decomposition and
follow the proof of theorem 3 of [14]. The only difference is that ξ.v should be
replaced by ετ + ξ.v and that we take the Fourier transform in t and x (see also
theorem 1.8 of [9]).

Here, we would like to sketch a proof which follows the idea used in [22]. Adding
λhε to both sides of (29), we get

λhε + ε ∂th
ε + v.∇xh

ε = hε
0 +∇v . h

ε
1 + λhε.

Hence, ∫
Rd

hε(t, x, v)ψ(v)dv = Tλ(h
ε
0 +∇v . h

ε
1 + λhε) (44)

where

Tλg(t, x) =

∫ ∞

0

∫
Rd

g(t− εs, x− sv, v)e−λsφ(v)dv ds. (45)

Applying Proposition 3.1 of [22], we deduce that

‖Tλ(g)‖L2
t H

1/2
x
≤ Cλ−1/2‖g‖L2(R×Rd×Rd) (46)

‖Tλ(g)‖λ−2L1
t W−1,1

x +λ−1L1
t L1

x
≤ C‖g‖L1(Rt×Rd

x;W−1,1(Rd)) (47)

Hence, ∫
Rd

hε(t, x, v)ψ(v)dv = ρ = ρ1 + ρ2 (48)

where

‖ρ1‖
L2

t H
1/2
x

≤ Cλ1/2‖hε‖L2 (49)

‖ρ2‖λ−2L1
t W−1,1

x +λ−1L1
t L1

x
≤ C(‖hε

0‖L1 + ‖hε
1‖L1) (50)

This can also be written as ρ2 = ρ2
1 + ρ2

2, where

‖ρ2
1‖L1

t W−1,1
x

≤ Cλ−2(‖hε
0‖L1 + ‖hε

1‖L1) (51)

‖ρ2
2‖L1

t L1
x
≤ Cλ−1(‖hε

0‖L1 + ‖hε
1‖L1). (52)

We would like to deduce that ρ ∈ [L2H1/2, L1W−1,1](1/5,∞), the real interpolation
of order (1/5,∞) of the couple (L2H1/2, L1W−1,1). For all t ∈ R+, we define the
function

K(t) = inf
a1+a2=ρ

‖a1‖L2H1/2 + t‖a2‖L1W−1,1 (53)

To conclude it is enough to prove that K(t) ≤ Ct1/5 For t > 0, we take λ such that
t = λ5/2.

If 0 < t < 1, then ρ2
2 also satisfies ‖ρ2

2‖L1
t W−1,1

x
≤ Cλ−2 and hence taking a1 = ρ1

and a2 = ρ2, we deduce that K(t) ≤ Ct1/5.

21



If t > 1, then we write ρ2
2 as the sum of two terms ρ2

2 = ρ2
3 + ρ2

4 such that
ρ2

3 ∈ λ−2L1W−1,1 and ρ2
4 ∈ λ1/2L1W 3/2,1. Hence, if we define

K1(t) = inf
a1+a2=ρ

‖a1‖L2H1/2+L1W 3/2,1 + t‖a2‖L1W−1,1 (54)

we get that K1(t) ≤ Ct1/5 by taking a1 = ρ1 + ρ2
4 and a2 = ρ2

1 + ρ2
3.

This proves that ρ ∈ [L2H1/2 + L1W 3/2,1, L1W−1,1](1/5,∞). This is of course
enough to get the compactness stated in the lemma.
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[17] H. Gajewski and K. Gröger, Semiconductor equations for variable mobilities based on
Boltzmann statistics or Fermi-Dirac statistics, Math. Nachr., 140 (1989), 7-36.

[18] D. Gilbarg et N.S.Trudinger, Elliptic partial differential equations of second order,
Springer Verlag, Berlin Heidelberg, New York 1977.

[19] F. Golse and B. Perthame et R. Sentis, Un résultat de compacité pour les équations
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