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Abstract

We prove the uniqueness of weak solutions to the critical defocusing
wave equation in 3D under a local energy inequality condition. More
precisely, we prove the uniqueness of u ∈ L∞t (Ḣ1)∩ Ẇ 1,∞

t (L2), under
the condition that u verifies some local energy inequalities.

1 Introduction and statement of result

We consider the defocusing quintic wave equation in 3D,

(1)

{
�u+ u5 = 0,
u(t = 0) = u0, ut(t = 0) = u1.

Existence of global weak solutions goes back to Segal ([9], under milder as-
sumptions on the nonlinearity). Existence of global smooth solutions was
proved by Grillakis ([3]), while global solutions in the energy space C(R;H1)∩
C1(R;L2) were constructed by Shatah and Struwe [11]. Uniqueness was
proved only under an additional space-time integrability of Strichartz type,
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which is a crucial ingredient to the proof of the existence result. Indeed, local
existence can be proved using a fixed point argument in some Banach space
which can be taken to be B = C(R;H1) ∩ C1(R;L2) ∩ L5

loc(R;L10). More
recently, uniqueness was obtained under a different set of conditions in [13],
using the energy inequality, but still with a space-time integrability condi-
tion. One should also mention [1] where the smooth solutions are proved to
be globally in L5

t (L
10
x ) and stability under weak limits is proved.

In this paper, we intend to give a more physical condition which yields
the uniqueness in the energy space. This condition can be easily under-
stood in terms of finite speed of propagation and is satisfied by the solutions
constructed by Shatah and Struwe [11].

We consider two solutions u, v ∈ L∞(Ḣ1)∩Ẇ 1,∞
t (L2) to the wave equation

(1), with the same (real) initial data φ0 ∈ Ḣ1, φ1 ∈ L2, namely

u(t = 0) = v(t = 0) = φ0 ∂tu(t = 0) = ∂tv(t = 0) = φ1,

(note that the second condition, on ∂tu makes sense since a solution which
is in L∞(Ḣ1) ∩ Ẇ 1,∞

t (L2) is also in C1(Ḣ−1)).
The two solutions u and v are supposed to be weak solutions, i.e. equation

(1) holds in the sense of distributions: for any φ ∈ C∞
0 ([0,∞); R3),∫

R×R3

u�φ+ u5φ dxdt =

∫
R3

−φ1(x)φ(0, x) + φ0(x)∂tφ(0, x) dx

and the same equation holds for v.

1.1 The local energy condition

Let us state the local energy or the finite speed of propagation condition.
Let (t0, x0) be the vertex of a backward cone K, K = {|x−x0| = t0− t} and
e(u) = |∂u|2/2 + u6/6 be the energy density (here and thereafter ∂ denotes
the full space-time gradient). Then we assume that for all 0 ≤ s ≤ t ≤ t0∫

B(x0,t0−t)

e(u(t, x))dx ≤ C

∫
B(x0,α(t0−s))

e(u(s, x))dx.(2)

where C and α are some constants, C ≥ 1 and α ≥ 1.
Similarly, consider the forward cone K1 of vertex (t1, x1), namely K1 =

{|x− x1| = t− t1}, and let t′ ≥ t1, denote by ∂K1 the tangential derivatives,
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we assume that

1√
2

∫ t′

t1

∫
∂B(x1,τ−t1)

|∂K1u(τ)|2

2
+
u(τ)6

6
dσdτ(3)

≤ C

∫
B(x1,α(t′−t1))

e(u(t′, x))dx.

We insist on the fact that both constants C and α are supposed to be uniform
with respect to the vertex.

We point out that (2) and (3) are weak versions of the local energy equal-
ities which are recalled in the next section. Indeed, for smooth solutions, one
can prove that (2) and (3) hold with C = α = 1. We also notice that the left
hand side of (3) does not make sense (actually can be a priori infinite) if we
only assume that u ∈ L∞(Ḣ1)∩Ẇ 1,∞

t (L2). Let us explain the meaning of (3).
Let ρ(x) ∈ C∞

0 (R3) be such that ρ ≥ 0,
∫
ρ = 1 and define ρn(x) = n3ρ(nx),

then we define un = u∗ρn a (space) regularization of u. Since u ∈ Ẇ 1,∞
t (L2),

we deduce that un is continuous in both space and time variables. Condition
(3) can be understood as

lim sup
n→∞

∫ t′

t1

∫
∂B(x1,τ−t1)

|∂K1un(τ)|2

2
+
un(τ)6

6
dσdτ(4)

≤ C

∫
B(x1,α(t′−t1))

e(u(t′, x))dx.

1.2 An important example

Let us prove that these conditions hold for any weak solution which also
satisfies the local energy identity, namely

(5) ∂te(u(t, x))− div(∂tu∇u) = 0.

Let us prove that (2) holds. We denote M t
s = {(τ, x)|s < τ < t, |x − x0| <

t0 − τ}.
Integrating (5) over M t

s, we formally get (7). Let us prove this rigorously.
Let ρ(x) ∈ C∞

0 (R3) be such that ρ ≥ 0,
∫
ρ = 1 and define ρn(x) = n3ρ(nx).

Hence

(6) ∂te(u(t, .)) ∗ ρn − div((∂tu∇u) ∗ ρn) = 0.
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Using the fact that ∂tu∇u ∈ L∞t (L1
x), we deduce that (∂tu∇u) ∗ ρn ∈

L∞t (C∞
x ). Hence, e(u(t, .)) ∗ ρn ∈ W 1,∞

t (C∞
x ). Integrating (6) in M t

s, we
get

∫
B(x0,t0−t)

e(u) ∗ ρn dx+
1√
2

∫ t

s

∫
∂B(x0,t0−τ)

[e(u)− (∂tu∇u)] ∗ ρn dσdτ

=

∫
B(x0,t0−s)

e(u) ∗ ρn dx,

Taking the limit when n goes to infinity, we see that the first and third
terms converge to the corresponding terms in (7). For the second term, we

rewrite e(u)− (∂tu∇u) as e(u)− (∂tu∇u) = |∂Ku|2
2

+ u6

6
. Then, using Jensen

inequality, we deduce that

|∂Kun(τ)|2

2
+
un(τ)6

6
≤ [

|∂Ku(τ)|2

2
+
u(τ)6

6
] ∗ ρn.

Hence,∫
B(x0,t0−t)

e(u) dx+ lim sup
n→∞

∫ t

s

∫
∂B(x0,t0−τ)

|∂Kun(τ)|2

2
+
un(τ)6

6
dσdτ

≤
∫

B(x0,t0−s)

e(u) dx.

Arguing in the same way for the forward cone K1, we deduce that (4)
holds with C = α = 1.

1.3 The main result

We now state our main result.

Theorem 1
Let u be a weak solution to (1) which satisfies (2) and (3). Then this solution
is unique among all weak solutions satisfying (2) and (3).

Corollary 1
Let u be a weak solution to (1) which satisfies the local energy identity (5).
Then this solution is unique among all weak solutions satisfying the local
energy identity (5).
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This unique solution is actually equal to the solution constructed in [11],
but we will not use this fact in the proof, unlike for higher dimensions where
a strong-weak uniqueness argument is used ([8] and remark at the end of the
present paper), see also [6] for a similar uniqueness result.

It does seem fairly reasonable for weak solutions to assume that (2) and
(3) hold: certainly one is willing to have at least the weak energy inequality,
namely

∫
e(φ)dx ≤

∫
e(φ0)dx, and in light of the finite speed of propaga-

tion,both (2) and (3) are not really stronger requirements. At any rate,
control of the flux is already an essential tool in order to prove regularity for
smooth data ([3, 10]).

A weak solution to (1) satisfying in addition (3) and (2) can be considered
as a suitable weak solution. This is similar in spirit to the notion of suitable
weak solutions for the Navier-Stokes system introduced in [2]. Indeed, both
conditions are local versions of the energy inequalities.

To prove theorem 1, we introduce a dual problem as was done in [5].
Then, we prove the existence of a smooth solution to a regularized version
of this dual problem. This solution is used as a test function in the weak
formulation. Passing to the limit, we deduce that u = v.

In the next section, we recall the energy identities on backward and for-
ward cones. In section 3, we give the proof of theorem 1. We will start by a
formal argument and then explain the regularization procedure.

2 Finite speed of propagation

Let us recall that a smooth solution of the wave equation (1) satisfies the
following energy identity on each backward cone : let again (t0, x0) be the
vertex of such a backward cone K, K = {|x − x0| = t0 − t} and e(u) =
|∂u|2/2 + u6/6 be the energy density. Then we have for all s ≤ t ≤ t0∫

B(x0,t0−t)

e(u(t, x)) dx+
1√
2

∫ t

s

∫
∂B(x0,t0−τ)

|∂Ku(τ)|2

2
+
u(τ)6

6
dσdτ

=

∫
B(x0,t0−s)

e(u(s, x)) dx,(7)

where we recall that ∂K denotes the derivatives tangent to the backward
cone K. The second term on the left-hand side is usually referred to as the
(outgoing) flux through the cone K.
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Moreover, the solution verifies the same inequality for forward cones as
well: specifically, consider the forward cone K1 of vertex (t1, x1), namely
K1 = {|x− x1| = t− t1}, and let t′ ≥ t1, we have

1√
2

∫ t′

t1

∫
∂B(x1,τ−t1)

|∂K1u(τ)|2

2
+
u(τ)6

6
dσdτ(8)

=

∫
B(x1,t′−t1)

e(u(t′, x)) dx.

The left-hand side is usually referred to as the (incoming) flux through the
cone K1.

Remark 1
Of course (8) is only a special case of the backward version of (7): we could
have stated an inequality between the two space-like surfaces t = t′ and t = t′′

with t1 ≤ t′′ ≤ t′. Here we chose to take t′′ = t1 as this is what will actually
be needed later in the proof.

The conditions (3) and (2) which imply the uniqueness are weaker versions
of (8) and (7). Indeed, the equality is replaced by an inequality and we can
even allow the presence of fixed constants C and α.

Alternatively, one could rephrase both equalities in terms of only one
equality, if one is willing to replace space balls by annuli (or even, say, do-
mains with reasonably smooth boundaries). Then, if Σ is the boundary of
the backward domain of influence, one would ask the sum of the energy in
our space domain at time T and the outgoing flux through Σ between times
T and S ≤ T to be equal to the energy at time S in the space domain
Σ∩ {t = S}. Such equalities and their weaker counterparts are a reasonable
way to quantify the finite speed of propagation which one expects from any
physically meaningful solutions to the equation.

3 Proof of Theorem 1

Assume that u and v are two solutions of (1). Taking φ to be an admissible
test function φ ∈ C2

0([0,∞),R3), we have

(9)

∫
(u− v)�φ+ (u5 − v5)φ = 0,
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which can be rewritten as

(10)

∫
(u− v)(�φ+ (u4 + 4u3v + 6u2v2 + 4uv3 + v4)φ) = 0.

We intend to solve the following (dual) problem: let F ∈ C∞
0 ((0, T ) × R3)

and φ be the solution of the following backward wave equation

(11)

{
�φ+ V φ = F,
φ(T ) = ∂tφ(T ) = 0,

where we define V = u4+4u3v+6u2v2+4uv3+v4 and T > 0 is small enough,
to be fixed later. Provided we solve (11) and prove that φ is regular enough
to be used as a test function in (9), we will have uniqueness for our problem.
All is required is for φ to be an admissible test function, in order to justify
the integration by parts. Actually, this will turn out to be untrue, but one
may still proceed using a smoothing and a limiting procedure which will be
explained later.

Proposition 1
Provided T is small enough, there exists a (compactly supported) smooth
solution φn to (a regularized version of) the dual problem (11), such that φn

is uniformly bounded in L∞t,x.

3.1 Formal proof

Let us start by a formal proof. We will need a regularization of (11) to make
it rigorous. We denote K(z0) the forward cone with vertex z0 = (t0, x0)
and time t ≤ T i.e. K(z0) = {(t, x)| |x − x0| = t − t0, t0 ≤ t ≤ T}.
Then, the solution of (11) is given by, taking advantage of the explicit space
representation of the fundamental solution to the 3D wave equation,

(12) φ(t0, x0) =

∫
K(z0)

F (z)− V φ(z)

|z − z0|
dσ(z),

with z = (t, x) and where σ is the surface measure on forward cones. Then,
we proceed as Jörgens ([4]), with

(13) ‖φ‖L∞((0,T )×R3) ≤ C(F ) + ‖φ‖L∞((0,T )×R3) sup
z0

∫
K(z0)

|V (z)|
|z − z0|

dσ(z),
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and as |V | . u4 + v4, we use∫
K

|u|4

|z − z0|
dσ(z) ∼

∫
B(0,T−t0)

|w(y)|4

|y|
dy,

where w(y) = u(t0 + |y|, x0 + y). This in turn yields

(14)

∫
K

|u|4

|z − z0|
dσ(z) .

∫
B(0,T−t0)

|w(y)|2

|y|2
dy +

∫
B(0,T−t0)

|w|6.

By an appropriate local version of Hardy’s inequality (see e.g. [12]), the first
term in (14) is controlled:

(15)

∫
B(0,T−t0)

|w(y)|2

|y|2
dy .

∫
B(0,T−t0)

|∇yw|2dy + (

∫
B(0,T−t0)

|w(y)|6dy)2/6.

We then recognize the flux,

1

2

∫
B(0,t0)

|∇yw|2 +
1

6

∫
B(0,t0)

|w|6 dy = flux,

as
|∇yw|2 = |∇u− y

|y|
∂tu|2,

and recall

flux =

∫
K

1

2

∣∣∣∣∇u− y

|y|
∂tu

∣∣∣∣2 +
|u|6

6
dσ.

Hence (15) becomes

(16)

∫
K

|u|4

|z − z0|
dσ(z) . flux + flux

1
3 .

By choosing T small enough, we can make the local energy
∫

B(x0,αT )
e(u(T, x))dx

smaller than a fixed constant ε0, uniformly in x0: we simply use the energy
inequality (2), fixing T such that

∫
B(x0,α(α+1)T )

e(u(0, x))dx is (uniformly)

small enough, which in turn is a trivial consequence of the initial data being
in Ḣ1 × L2. Then we deduce that the flux through the forward cone which
is needed in the construction of φ can be made smaller than 1/2 by using
(3) and choosing ε0 such that Cε0 = 1

2
. Next, we can perform a contraction

argument in L∞t,x to obtain φ.
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Remark 2
Note that the whole argument is local in space-time. Hence, the assumptions

on the data could be relaxed to Ḣ1
loc × L2

loc, and one could consider local in
time weak solutions. We elected to keep Ḣ1 × L2 data and global in time
solutions for simplicity.

3.2 Rigorous proof

Let us explain the regularization procedure which yields a rigorous proof of
(13 ) and the proposition. Recall that ρ(x) ∈ C∞

0 (R3) is such that ρ ≥ 0,∫
ρ = 1 and ρn(x) = n3ρ(nx), then we define un = u ∗ ρn, vn = v ∗ ρn and

Vn = u4
n + 4u3

nvn + 6u2
nv

2
n + 4unv

3
n + v4

n. We intend to solve

(17)

{
�φn + Vnφn = F,
φn(T ) = ∂tφn(T ) = 0,

by a fixed point argument. Considering

(18)

{
�ψ + Vnψ̃ = F,
ψ(T ) = ∂tψ(T ) = 0,

for smooth ψ and ψ̃, we have

(19) ψ(t0, x0) =

∫
K(z0)

F (z)− (Vnψ̃)(z)

|z − z0|
dσ(z),

from which we infer that

(20) ‖ψ‖L∞((0,T )×R3) ≤ C(F ) + ‖ψ̃‖L∞((0,T )×R3) sup
z0

∫
K(z0)

|Vn|
|z − z0|

dσ(z).

Now, we can proceed as in the formal proof and choose T small enough so
that

sup
n

sup
z0

∫
K(z0)

|Vn|
|z − z0|

dσ(z) ≤ 1

2
.

Notice that given we are solving a linear problem, estimating ψ or ψ − φ
is identical, where φ solves

(21)

{
�φ+ Vnφ̃ = F,
φ(T ) = ∂tφ(T ) = 0.
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Hence we deduce from the previous computations that

‖ψ − φ‖L∞t,x
≤ 1

2
‖ψ̃ − φ̃‖L∞t,x

.

This estimate allows a fixed point argument in C0 to be carried out. There-
fore we have constructed a solution φn to the equation (17). Moreover, we
recover an estimate on ‖φn‖L∞t,x

which is uniform with respect to n, thanks
to (3). Furthermore, φn is smooth, as the regularity can as usual be carried
along the iterates which yield φn: for any derivative ∂, we have

‖∂ψ − ∂φ‖L∞t,x
≤ 1

2
‖∂ψ̃ − ∂φ̃‖L∞t,x

+ ‖ψ̃ − φ̃‖L∞t,x
C(∂Vn).

We do not get good control of norms, as they involve derivative of Vn, but
we will not need it. Moreover, φn is compactly supported, by finite speed of
propagation (again, all iterates are in a uniform way). This ends the proof
of proposition 1.

We now return to the proof of Theorem 1 and explain why the smoothing
procedure which yields φn still allows for the heuristic argument to be carried
out. In fact, we use φn as a test function: for all n, we have

(22)

∫
(u− v)(�φn + V φn) = 0.

This translates into

(23)

∫
(u− v)(F + (V − Vn)φn) = 0.

We know that u − v ∈ L∞t (L6), and that Vn converges to V strongly in

L∞t,locL
3/2. Hence, (V −Vn)φn converges toward zero in L1

t,locL
6/5
x,loc, given that

φn is uniformly in L∞t,x and is compactly supported; this ultimately gives the
desired equality: ∫

(u− v)F = 0,

from which we deduce that u = v on the interval [0, T ]. Now, we can argue
by contradiction, choosing the initial time to be t0 where

t0 = inf{t, t ≥ 0, u(t) 6= v(t)}.
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Using the fact that u and v are continuous in time with values in Ḣ−1, we
deduce that u(t0) = v(t0). Then we have u = v on some interval [t0, t0 + η],
which proves that no such t0 exists. Hence, we deduce that u = v on [0,∞)
which achieves the proof of the main theorem.

Finally, we make some comments on the case n ≥ 4. In higher dimensions,
one cannot rely on Jörgens estimate. However, uniqueness was proven under
the assumption φ ∈ Ct(Ḣ

1)∩C1
t (L2) in [8], for both focusing and defocusing

critical wave equation, with n ≥ 4. In the defocusing case, assuming only
the local energy identity (2), one can easily get rid of the continuity in time
and obtain uniqueness as in Theorem 1. We refer the interested reader to [7]
for further discussions in a similar (albeit more complicated) setting.
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