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Summary

We have used computational fluid dynamics to study
changes in lift generation and vortex dynamics for
Reynolds numbers Re) between 8 and 128. The immersed
boundary method was used to model a two-dimensional
wing through one stroke cycle. We calculated lift and drag
coefficients as a function of time and related changes in lift
to the shedding or attachment of the leading and trailing

wing during each ‘half stroke’. In three-dimensional
studies, large lift forces are produced by ‘vortical
asymmetry’ when the leading edge vortex remains
attached to the wing for the duration of each half stroke
and the trailing edge vortex is shed. Our two-dimensional
study suggests that this asymmetry is lost foRe below
some critical value (between 32 and 64), resulting in lower

edge vortices.

We find that the fluid dynamics around the wing fall
into two distinct patterns. For Re=64, leading and trailing
edge vortices are alternately shed behind the wing,
forming the von Karman vortex street. For Re<32, the
leading and trailing edge vortices remain attached to the

lift forces. We suggest that this transition in fluid
dynamics is significant for lift generation in tiny insects.
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Introduction

Insect flight has been a topic of considerable interest in a One unsteady mechanism that has been suggested as a
variety of fields. For instance, evolutionary biologists havenmeans to provide additional lift during insect flight is delayed
long been fascinated by the evolution of flight and thestall. Essentially, a large leading edge vortex (LEV) is formed
functional morphology of flight apparatus (Dudley, 2000).at the beginning of each half stroke and remains attached to
Biologists have also been interested in the diversity of flighthe wing until the beginning of the next half stroke. In a typical
kinematics, flight control and aerodynamic mechanisms. Morairplane wing translating at a constant angle of attack, stall
recently, engineers have been involved in the study of inseotcurs above some critical angle of attack when the LEV is
flight and its aerodynamic mechanisms as interest has emerggted and lift forces consequently drop. Stall, however, appears
in the design of micro-robotic flyers (Ellington, 1999). Thereto be delayed or suppressed for revolving insect wings
has also been progress in mathematics and computer sciengerating at high angles of attack. The question then remains
to understand better the complicated fluid dynamics involveds to whether or not the LEV would be shed during translation
in insect flight, with use of analytical models andat some time beyond the length of the half stroke or whether
computational fluid dynamics (CFD; Lighthill, 1973; Sun andit would remain attached indefinitely in a three-dimensional
Tang, 2002; Wang, 2000a,b). In early studies, scientistt3-D) stroke. Attached LEVs have been observed in flow
attempted to describe the lift-generating mechanisms of insecisualization studies of the hawkmoth, a dynamically scaled
flight with traditional quasi-steady-state aerodynamic theorynodel flapper (Ellington et al.,, 1996; van den Berg and
(Ellington, 1984a; Lighthill, 1975; Osborne, 1951). This Ellington, 1997a,b; Willmott et al., 1997), and revolving model
method essentially reduces the motion of the wing to a seriegings (Usherwood and Ellington, 2002). An attached LEV was
of consecutive states of steady flow over the entire wing asbserved in a 3-D CFD simulation of hawkmoth flight by Liu
span-wise sections of the wing. However, early quasi-steadgt al. (1998), and Birch and Dickinson (2003) also observed a
state analysis often failed to predict the magnitude andtable attached LEV using time-resolved digital particle image
direction of forces measured directly in tethered insectselocimetry (DPIV) of the flow around the wings of a
(Cloupeau et al., 1979; Ellington, 1995; Zanker and Goétzgdynamically scaled robotic insect. In a later study, Birch et al.
1990). These findings have led researchers to explore furth@004) showed that this stable attached LEV is a robust
possible unsteady mechanisms of lift and thrust generatigghenomenon for Reynolds number&)(in the range of 120 to
and to develop revised quasi-steady-state models (Sane at4DO.

Dickinson, 2002). To understand the mechanism of the formation and
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attachment of the LEV, consider a wing translated from reswing. Sane and Dickinson (2002) incorporated this idea (based
immersed in a viscous fluid initially at rest. At the onset ofon thin airfoil theory) into a quasi-steady-state model of
motion, the solid body has a non-zero tangential velocityflapping flight using rotational force measurements taken from
relative to the surrounding fluid. This motion shears the fluida dynamically scaled model insect. Sun and Tang (2002)
and the discontinuity creates a sheet of concentrated vorticitguggest that these large rotational forces can be attributed to
At later times, the vortex sheet is transported away from théhe rapid generation of vorticity during wing rotation and
boundary by diffusion and convection. As a result of theeversal. Walker (2002) suggests that the large forces
negative pressure region generated instantaneously behigdnerated during wing rotation can be described by a quasi-
the wing due to the motion of the fluid, the vortex sheet ‘rolisteady-state model without a rotational term analogous to the
up’ to form the LEV. The ‘attachment’ of the LEV to the Magnus effect.
wing maintains the negative pressure region behind the wing, ‘Wake capture’ and vortex effects from previous strokes are
which leads to higher lift forces. A question of interest to botlother possible mechanisms proposed to generate lift during
fluid dynamists and biologists is why the shedding of the LEVMnsect flight (Dickinson, 1994; Sane and Dickinson, 2002;
is delayed or suppressed at high angles of attack during insédang, 2000b). Essentially, vortices produced from previous
flight. Several authors have suggested that axial flow alongtfrokes enhance the lift generated by subsequent strokes. One
the wing derived from a span-wise pressure gradienway this might act to enhance lift is that the flow generated
stabilizes the LEV and delays stall (Ellington, 1999; Liu etby one stroke increases the effective fluid velocity at the start
al., 1998). of the next stroke. By definition, these forces are not observed
Although there is no rigorous theory regarding the stabilityduring the first stroke. As one would expect, they depend upon
of the attached LEV, insight can be gained by considering a 3he point of rotation, timing of rotation and rotational speed
D fixed wing in a steady flow with an attached LEV. There aréDickinson, 1994; Dickinson et al., 1999; Wang, 2000b).
three processes occurring in this case: the convection of thWgang (2000a,b) described this phenomenon computationally
vortex, the intensification of vorticity when vortex lines areand found that there exists an optimal flapping frequency for
stretched, and the diffusion of vorticity by viscosity (Achesonlift generation. This optimum results from two time scales:
1990). In order for the LEV to be steady and remain attachedbrtex growth and the shedding of the LEV. In a 3-D
to the wing, these three processes should be balanced. Notemerical simulation, Sun and Tang (2002) did not find
that in the two-dimensional (2-D) case, vortex stretchingvidence for lift augmentatioria wake capture and argue that
cannot occur. This might account for differences observed ianhanced lift attributed to wake capture can be explained by
the stability of the leading edge vortex between the 2-D and 3aertial forces. However, Birch and Dickinson (2003) showed
D cases. In addition to differences in the dimensionality of thexperimentally that wake capture can influence lift forces
problem, Birch et al. (2004) found that the structure of théased on the magnitude and distribution of vorticity during
stable attached LEV differed for high (1400) and low (1R€@)  stroke reversal.
At anReof 1400, they found an intense narrow region of span- Although there have been a number of theoretical and
wise flow within the LEV. At afReof 120, this region of span- experimental studies investigating lift generation in larger
wise flow was absent, suggesting that the 3-D mechanisinsects, few have considered those insects that Rgbéelow
contributing to the stability of the LEV takes different forms 100. These insects are therefore said to be in the ‘twilight zone’
at high and lowRe of flight (Dudley, 2000). The lack of emphasis on these small
Weis-Fogh (1973) proposed another unsteady liftinsects could be partially due to several experimental and
generating mechanism termed ‘clap-and-fling’, which ismathematical difficulties. For example, it would be rather
mostly observed in the smallest flying insects (Ellingtondifficult to measure actual lift and drag forces for insects this
1984b; Weis-Fogh, 1975). Basically, the wings clap togethesmall. Kinematic analyses using video are expensive given the
at the end of the upstroke and are then quickly peeled aparttdagh range of wingbeat frequencies estimated for tiny insects.
the beginning of the downstroke. This motion has been showor example, measured wingbeat frequencies can be as high as
both experimentally and analytically to enhance circulatiorl046Hz (Sotavalta, 1947). Furthermore, most analytical work
around the wings and augment the lift generated during thesssumes that the fluid is inviscid and it seems unlikely that this
downstroke (Lighthill, 1973; Spedding and Maxworthy,is a good approximation foRein the range of 10 to 100.
1986). Experimentalists have proposed several ideas as to how these
Another possible mechanism for enhanced lift generation imsects generate lift. One idea involves an asymmetric stroke
insect flight is that circulation around the wing is enhanced bysing a mechanism similar to that which generates thrust in
the quick rotation of the wing at the end of the downstrokerowing. Lift is generated during the downstroke, and the wing
Dickinson et al. (1999) suggested that large rotational forcds turned to minimize negative lift on the upstroke (Horridge,
generated during rotation induce a net lift force that is1956; Thompson, 1917). Another idea is that lift enhancement
analogous to the Magnus effect seen in the case of a spinnifigm clap-and-fling is sufficient for flight in this regime (Weis-
baseball. In this case, however, the force is generated by tRegh, 1973).
rotation of a flat plate rather than a round cylinder, and the net There are several reasons to believe that flight
rotational force acts approximately normal to the chord of thaerodynamics change significantly fBe below 100. It is
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well known that below afRe of ~40, vortices are no longer . o

shed behind cylinders immersed in a moving fluid (Landat ‘j;“-.}? 2/
and Lifshitz, 1959). Experimental work shows that this is alsc A AN N\ : f\‘?
true for fixed plates (Batchelor, 1967). This transition mighi \ \ I\
alter the lift enhancement generated by wake capture. In fac d’)
Wang (2000b) found that the lift coefficients are more thar B b\ g }
halved for flapping 2-D wings when tliReis lowered from \ \ < \_.../'\t\)
157 to 15.7, and Wu and Sun (2004) found in a 3-C . ~ ".,'.'_\, S

simulation that lift coefficients were decreased while drag I, y, ¢
coefficients were greatly increased Rebelow 100. Walker C @N
(2002) also argues that for loRe flight, viscous forces l / / (‘;ﬁi
become increasingly important to the force balance - ";f\)
Furthermore, at some critic®le separation at the leading

edge of the wing does not occur and the LEV does not fornFig. 1. A two-dimensional approximation of a three-dimensional

The authors assert that, in addition, the trailing edge vortestroke. The motion of the wing is divided here into three stages:
will not form below this criticaRe downstroke (A), rotation (B) and upstroke (C). In reality, the

In the or nt studv. the immersed boundary method W,rotational phase overlaps with the downstroke and the upstroke. The
€ present study, y ‘wing moves approximately along a horizontal plane. The center of

used to simulate a simple tW_o-dimensionaI wing during OM'otation is 0.2 chord lengths from the leading edge of the wing.
complete stroke forRe ranging from 8 to 128. These

simulations were constructed to be similar to Dickinson ani
Gotz's experiments (Dickinson, 1994; Dickinson and Go6tzpf the wing,U is the velocity of the fluidy is the dynamic
1993) using a single dynamically scaled robotic wing. Theviscosity andv is the kinematic viscosity of the fluid.
motion of this wing was strictly 2-D and was divided into Dickinson and Goétz used an aluminum wing with a chord of
three separate stages: translation, rotation and translation ba&&km immersed in a sucrose solution with a kinematic viscosity
through the previous stroke. However, later experiments bgf 0.000023%g m1s1(~20 times that of water) moving with
Dickinson et al. (1999) on a fully 3-D robofly did not separatea characteristic velocity in the range of 0.04-0vl&?. In
the rotation of the wing from the translational phase. Thaddition, the dimensions of the sucrose tank used in the
motion used in our simulations is a 2-D version of that useghysical experiment werert in length by 0.4n in width. The
in the later experiments. Consequently, it is also similar to theame parameters were used in all of the following numerical
motion used by Sun and Tang (2002) and Ramamurti anekperiments with two exceptions: (1) the size of the
Sandberg (2002), who modeled Dickinson’s experiments witkomputational grid was increased tonk1 m to reduce wall
CFD. The purpose of our simulations, however, is not teffects at lowerRe and (2) the translational velocity was
mimic previous work but rather to investigate what happenshanged to vary thRe
when theReis lowered to that of the smallest flying insects The motion of the model wing is a simplification of flight in
using the same wing kinematics. We do, however, compaif@. melanogasteiThe ‘downstroke’ is defined as the motion of
results with published lift and drag data ®eranging from the wing from the dorsal to the ventral side of the body, and
~6 to 200. the ‘upstroke’ is the motion from ventral to dorsal (see Ejg.
The body of the insect is tilted upright during flight so that the
flapping motion of the wing is approximately horizontal. The
Materials and methods motion of the downstroke is divided into three stages: (1)
Our 2-D numerical simulation of flight was constructed totranslational acceleration at the beginning of the downstroke,
be similar to the physical experiment by Dickinson and Go6t£2) constant translational velocity and constant angle of attack
(1993) but using a 2-D motion similar to later experiments anduring the middle of the downstroke and (3) translational
numerical simulations (Dickinson et al., 1999; Sun and Tangjeceleration and rotation at the end of the downstroke.
2002). Dickinson and Go6tz designed a single robotic wing t&imilarly, the motion of the upstroke is divided into three
model flight similar to that dbrosophila melanogasteand to  stages: (1) translational acceleration and the end of rotation at
understand better the aerodynamic forces generated usittge beginning of the upstroke, (2) constant translational
flow visualization and direct force measurements. Thesegelocity and constant angle of attack during the middle of the
experiments were dynamically scaled such thatR@ef the  upstroke and (3) translational deceleration at the end of the
model was approximately that of the flighttafmelanogaster  upstroke. Throughout the paper, ‘stroke’ is defined as an entire
The Re is a dimensionless variable that gives the ratio oktroke cycle. ‘Half stroke’ refers to one downstroke or one

P

3

inertial to viscous forces: upstroke (half of the entire stroke cycle). In all simulations, the
plU U center of rotation is located 0.2 chord lengths from the leading
Re= e = (1)  edge of the wing.

The translational velocities throughout the stroke were
wherep is the density of the fluid,is a characteristic length constructed using a series of equations to describe each part of
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the stroke (see Fig). The velocity during acceleration at the 1.5+ _ _
beginning of the downstroke is given by: — Translational velocity
2 1 Angular velocity
1 0 0 nt O 8
V(M) =5V O +cosu+ o, ) % o5
0 ] Ttrans[ ] @ :
Q
tv - s 0
1= , S
chord % —0.5
L . . . . £
wheret is dimensionless time defined by equation is the 8 _1]
actual time,chord is the chord length of the wing, is the
target translational velocity(1) is the translational velocity at 1.5/
dimensionless time, andAtyansis dimensionless duration of Dimensionless time

both the accelgratlon ar'1d deceleratlion phases of transllathz“ig.zl Translational velocity and the angular velocity of the wing as
After acceleration, the wing travels with constant translationza function of dimensionless time for one stroke cycle. This motion
velocity V. At the end of the downstroke, the deceleration owas used for all simulations unless otherwise stated. Note that the
the wing is given by: wing begins to rotate during the first half stroke (or downstroke).
1 O 0 t—1g00 Singe most qf the rotation occurs at the end .of the downstroke, this
V(1) =~V [ + coslit oo, 4) motion describes the case of ‘advanced rotation’.
2 0 0 ATtransDD

cases). Thushb was set to 90°. AlsQ\trot was taken to be

—ATtrans, (5) 3.48, andtrot to be 3. These values are similar to those used

2 by Dickinson et al. (1999) and Sun and Tang (2002) in the case
wheretq is the dimensionless time when deceleration begingf ‘advanced rotation’.
andtiinal is the dimensionless duration of the entire stroke. The The immersed boundary method (Peskin, 2002) was used to
translational velocity during the upstroke is symmetric tocalculate the flow around the wing. The essence of this method
the downstroke and may be constructed similarly. Unless that the deformation of a flexible boundary generates forces
otherwise noted;tqy was taken to be 10.8 (this gives aon the fluid, and the boundary itself moves at the local fluid
translation of ~5 chords during both the downstroke andelocity. For these simulations, we wanted the wing to move
upstroke, which is similar to that occurring Drosophila  with small deformations in a prescribed motion. To achieve
flight), Atiwrans was taken to be 0.65, and ranged from

_ Tiinal

~0.00375 to 0.06ns L.
The angle of attack relative to the horizontal axis was hel =
constant during the entire stroke except during the rotation: -
phase at the end of the downstroke and the beginning of tl W\‘.;
upstroke. Letr be the angle of attack relative to the horizontal : rf
plane, and le be the angle between the wing and the positive ""f-';'
x-axis (the origin is defined as the intersection of the wing witt 1‘?
thex-axis). The angular velocity during the rotational phase i L] VAA Target springs
given by: e =
. . o ~iigl «"* Boundary springs
1 -1 st )
o(t) = 5 Brot [1 — COS2TT rotDD, (6) @ Target points
O O Trot 00 ® Boundary points
B 2ABV A S
Brot = (7) Fig. 3. This diagram illustrates the numerical method used for these

Atrot X chord simulations: the immersed boundary method. The fluid domain is
where 6(1) is the angular velocity as a function of represented as a Cartesian grid. The. boqndary (w?ng) point§ are
dimensionless timeBro is a constant determined by the represented as red squares. These points mtera_ct with the fluid and
distance of rotation and duration of the rotational phasg, ~°Ve a the local fluid velocity. The green springs represent the
is the dimensionless duration of the rotational phases the bendlng_ an_d stretch_lng stiffness of the b_oundar)_/. The desired motion

8 X . ; . . of the wing is prescribed by the target points, which are shown as blue
d!men5|0nless t'me when _rOtat'on begins, ABds the ar?gular circles. These points do not interact with the fluid and they move
distance over which rotation occurs. Unless otherwise Noteccording to the desired motion of the wing. They also apply a force
the value of6 during the following simulations was 135° to the actual boundanjia the target springs (shown in purple). The
during the downstroke and 45° during the upstroke (note thifurther the actual boundary is from its target boundary, the larger the
this corresponds to the same angle of attaeld5°, in both  force applied to the actual boundary.
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this, a target boundary that does not interact with the fluid i¥hese equations describe the forces applied to the fluid by the
attached with virtual springs to the actual boundary. This targdtoundary in Lagrangian coordinates. Equafi@rdescribes the
boundary moves with the desired motion, and the sprinfprce applied to the fluid as a result of the target boundary.
attachments apply a force to the actual boundary that T, t) is the force per unit arelgargis a stiffness coefficient,
proportional to the distance between the two (see3figthe  crargis @ damping coefficient, and(r, t) is the position of the
force applied to the boundary by the target boundary and tharget boundary. EquatidiB describes the force applied to the
deformation of the boundary are then used to calculate tHiid as a result of the deformation of the actual boundary,

force applied to the fluid. which is here modeled as a bedpean(r, t) is the force per
The equations of motion are as follows: unit area, andkpeam is a stiffness coefficient. Equatidd
describes the force applied to the fluid as a result of the
0 [ou(x, t) £ U(x, 1) * Cu(x t)% resistance to stretching by boundary giverfsa@, t), where
O ot ' 0 kstr is the corresponding stiffness coefficient. Finally,

= —0p(x, t) + pAu(x, t) + F(x, 1), (8) Eq.uati0n15 describes the total force applied to the fluid per
unit areaf(r, t), as a result of both the target boundary and the

Oeu(x,t) =0, (9)  deformation of the boundary.
_ _ _ _ The discretization of the immersed boundary method used
whereu(x, 1) is the fluid velocity, p{, 1) is the pressurés(x, iy these simulations has been described before in depth (Peskin

immersed wing,p is the density of the fluid, and is the  the method described in that paper. The opens®rin the

dynamic viscosity of the fluid. The independent variables argoplinear term of the Navier—Stokes equations was discretized
vector quantities. Equatio@sand 9 are the Navier-Stokes nymerical viscosity (Lai and Peskin, 2000). Essentially, the
equations for viscous flow in Eulerian form. Equatois the  fjyid equations are discretized on a regular rectangular grid in

condition that the fluid is incompressible. _ the physical space of the position variahland the boundary
The interaction equations between the fluid and thequations are discretized in a one-dimensional space of the
boundary are given by: Lagrangian parametet The fluid domain is assumed to be
F(x, 1) = [f(r, )3[x — X(r, H]dr , (10)  periodic. However, the periodicity in these simulations was
broken by including a stiff outer boundary near the edges of
oxX(r, t) the domain. The dimensions of the physical domain defined by

=ulX(r, 9] = fulx, DO[x —=X(r, ldx, (11)  the stiff outer boundary measuremiin width and Im in

length. The computational (periodic) domain was slightly
larger: 1.05m in width and in length. The Eulerian fluid grid
covering this computational domain was &3B0. The
immersed boundary (wing) was discretized into 60 spatial

the Laarandian barameter Equationl0 spreads force from steps. The stiffness coefficients were chosen to reduce the
grang b q P deformation of the boundary to acceptable levels, and the

the boundary to the fluid grid, and equatidninterpolates the damping coefficient was chosen to provide light damping.

local fluid velocity at the boundary. The boundary is then . . :
. : : . Lift and drag forces were calculated as a function of time by
moved at the local fluid velocity, and this enforces the no-slip : ; .
S - . . .~ 'summing the forces that each immersed boundary point of the
condition. Each of these equations involves a two-dimensiona

Dirac delta functiod, which acts in each case as the kernel;OdeI wing applied to the fluid at each time step and taking

ot

wheref(r, t) is the force per unit area applied by the wing to
the fluid as a function of Lagrangian position and tid{g) is

a two-dimensional delta function, and(r, t) gives the
Cartesian coordinates at timef the material point labeled by

of an integral transformation. These eguations converhe opposite sign of that value. Lift and drag coefficients were

. . . . : iltered to remove high frequency ‘noise’ from the vibrations
Lagrangian variables to Eulerian variables saiv@é versa ) oo .
) : . } of the elastic boundary. This did not change the basic shape of
The immersed boundary equations are given by:

the graphs. The lift and drag coefficients are defined as follows:

ftardr, t) = ktard:Y(r, t) —X(I’, t)] 2FL
DY(r,t) oX(r, 0 CL=—, (16)
_ S
+ Carg % ot at H, (12) p
_ 2Fp
3%X(r, 1) Co= S (17)

fhean(r, t) = —Kbeam ) (13)

or® whereC is the lift coefficient,Cp is the drag coefficienSis
o MoxD O ox(r, ofor [ the surface area per unit length of the model wings the
r, ylor velocity of the boundarykp is the drag force per unit length
fst(r, t) =kstr — O0—0O-10—— 1], X . " . . '
stlf, §) = ke or fmor O [0 |[9X(r, t)/ar| (14) Fu is the lift force per unit length, arplis the density of the
fluid. In the 2-D case, the surface area of the boundary means

f(r, t) =feard(r, t) + foean(r, t) + fsufr, t) . (15) the area of a rectangle with width equal to the chord length of
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the wing and length equal to the unit distance (in this cas¢he highReapproximation for the drag force no longer applies.
1 m). ThereforeSis just the chord length of the wing. It should The drag coefficient peaks during the advanced rotation of the
be noted that these definitions were derived for Rigflows.  wing. It also increases during times when the wing is
For Re well below 1, force scales 38U, wherel is some accelerated. These variations in drag coefficient are consistent
characteristic lengthy is dynamic viscosity and is velocity.  with the experimental results of Dickinson et al. (1999) and the
For intermediateRe forces on the boundary scale as someomputational results of Sun and Tang (2002). Fighows
combination of the high and loReapproximations. However, the drag coefficients averaged during pure translation for the
we use the highRe convention for comparison with other downstroke and upstroke fé&teranging from 8 to 128. For
results and note th&p andC. become functions dRkeas the  comparison with experimental results, steady-state drag
Redecreases. coefficients measured by Thom and Swart (1940), mean drag
coefficients of a wing translated from rest measured by
Dickinson and Go6tz (1993), and mean drag coefficients of a
wing translating through its wake measured by Dickinson
Changes in Re (1994) are also plotted. Mean drag coefficients are larger
We considered one set of stroke kinematics and varied thturing the upstroke for eadRe This phenomenon could be
Re by changing the speed of translation and rotation of thexplained by the fact that the wing travels through its wake
wing. For these simulations, the an@leas set to 135° during during the upstroke, increasing the velocity of the wing relative
the downstroke and 45° during the upstroke, so that the angie the fluid. Similar results were found by Birch and Dickinson
of attack,a, would be 45° in both cases. Since the stroke i$2003) when drag coefficients were compared for the first and
symmetric, the downstroke may also be thought of as the firsecond half strokes using a dynamically scaled robotic insect.
half stroke, and the upstroke may be thought of as the secorithey found that the velocity of the fluid relative to the wing
Each simulation considered only the first stroke cyclewas greater at the beginning of the half stroke as the wing
Therefore, the steady state of 2-D flapping flight will differtravels through its wake, resulting in larger drag forces.
from the results of these simulations. Lift coefficients as functions of time (fraction of the stroke)
Drag coefficients as functions of time (expressed as thare plotted in Fig6. The variations in lift for the differefiRe
fraction of the stroke) foReranging from 8 to 128 are plotted can be divided into two groups. F&e of =64, lift peaks
in Fig.4. The drag coefficient increasesR&decreases. This during the initial acceleration of the wing. During pure
dependence oReis expected in this intermediate range sinceranslation for the downstroke, lift coefficients begin to

Results

10 — 5-
gl — Re=8 | 4.5 A —s - Downstroke, 45°
= ge:%g - 4- o s - 4 Upgroke, 45°
8t - C ;
Re=64 o 3.5- ‘A
— Re=128 S *®
7F - s 34 %1. O
g 6l 8 2.54 - » .-
© o 2+ - &
= ©
g 5f 5 15 o2
o 4f 17
IS i 0.5+
o 3 0 : : .
2 1 10 100 1000
1 Re(logscde)
0 Jda b jyc 0d te 0 f 1g. h.l Fig. 5. Drag coefficient averaged during periods of steady translation

0O 01 02 03 04 05 06 0.7 08 09 1 at a constant angle of attack of 45° for the downstroke and upstroke
plotted against log Re Mean drag coefficients are higher during the
upstroke and increase with decreasiey Filled symbols represent
Fig. 4. Drag coefficients are plotted as functions of time for one stroknumerical data, and open symbols represent experimentally
cycle. The arrows along the axis show the times at which streamlirdetermined values reported in the literature. Open circles denote drag
plots in Figs9, 10 were drawn. The angles of attack were chosen tcoefficients measured by Thom and Swart (1940) for a wing held at
produce a symmetric stroke. In all cases, the angle of attack was 4lan angle of attack of 45° in a steady flow. Open diamonds represent
Reynolds numberRe was varied by changing the translational drag coefficients measured by Dickinson and Goétz (1993) averaged
velocity of the wing from 0.00375 to 0.96sL. In general, drag over a distance of seven chord lengths for a wing translated from rest.
coefficients increase with decreasiRg Maximum drag forces occur Open squares represent drag coefficients measured by Dickinson
during acceleration from rest at the beginning of the downstroke ar(1994) during translation at an angle of attack of 45° following one
rotation at the end of the downstroke and at the beginning of trhalf stroke at an angle of attack of 76° and wing rotation with a center
upstroke. of rotation at 0.2 chord lengths from the leading edge.

Time (fraction of stroke)
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oscillate. Large lift coefficients are generated during wingduring steady translation. Downstroke lift coefficients shown
rotation and the subsequent acceleration of the wing at the Fig. 7 seem to approach these experimental values8Fig.
beginning of the upstroke. During the upstroke translationshows the average lift to drag ratio during translation for the
stronger oscillations in the lift coefficients are shown. Rer downstroke as a function dRe Lift/drag increases with

of <32, lift coefficients peak during acceleration and drop tancreasingRe

relatively constant values during pure translation. Lift The aerodynamic basis of th@’echanges may be seen by
coefficients peak again during the rotation of the wing andtudying Fig®, 10. These figures are graphs of the streamlines
subsequent acceleration at the beginning of the upstroke. Aftef the fluid flow around the wing fdReof 128 and 8 taken at
acceleration, the lift coefficients then drop to relatively10 points during the stroke. These points in time are shown by
constant values during the pure translation phase of therows in Figst, 6. The streamlines are curves that have the
upstroke. Small oscillations, however, begin to grow in thesame direction as the instantaneous fluid velocify, t), at
Re-32 case. ThiReappears to be on the border of a transitioneach point. They were drawn by making a contour map of the
that will be discussed in more detail below. What may not betream function, since the stream function is constant along
apparent from this plot is that lift coefficients would continue

to oscillate forRe of =64 if translation continued, but lift

coefficients forRe of <32 would settle to constant values. 2.57
Increased lift during acceleration and rotation is consistent wit R
the results of Dickinson et al. (1999) and Sun and Tang (200z 21 &g
Mean and peak lift coefficients during downstroke € -2-% o
. . . . . Q &~ - o
translation are plotted in Fig. Experimentally determined 2 1.5 o o
mean lift coefficients are also plotted (Dickinson and Gétz g ©
1993; Thom and Swart, 1940). Mean lift values R&of 8 e 14
and 16 are slightly larger than those measured by Thom a1 = )
. . - & - Downstroke maximum
Swart. Their experimental values, however, were measure g5 —& - Downstroke mean
7 2 : 0 : . 3
— Re8 1 10 100 1000
- Re=16 Re(log scale)
6t — Re=32
Re=64218 Fig. 7. Peak and mean lift coefficients during periods of steady
5L Re=1 translation at a constant angle of attack of 45° for the downstroke only
plotted against log Re In general, lift coefficients increase with
4t increasingRe Filled symbols represent numerical data, and open

symbols represent experimentally determined values reported in the
literature. Open circles denote lift coefficients measured by Thom and
Swart (1940) for a wing held at an angle of attack of 45° in a steady
flow. Open diamonds represent lift coefficients measured by

Dickinson and Go6tz (1993) averaged over a distance of seven chord
lengths for a wing translated from rest.

Lift coefficient

Lf NgZihoyi

0 Jda b .gc A\ e , ]
0 01 02 03 04 05 06 07 08 091
Time (fraction of stroke) 1.2
Fig. 6. Lift coefficients are plotted as functions of time for one stroke 14 » ~*
cycle. The arrows along the axis show the times at which streamlir = 0.8 ’./
plots in Figs9, 10 were drawn. The angles of attack were chosen t S 7
produce a symmetric stroke. In all cases, the angle of attack was 4! & 0.6- /‘
Reynolds numberRe was varied by changing the translational S &
velocity of the wing from 0.00375 to 0.96s™L. Lift coefficients fall g 0.44
into two patterns. FdRe=64, lift peaks during the initial acceleration
of the wing and oscillate during pure translation for the downstroke 0.21
Large lift coefficients are generated during wing rotation. During the 0 1 : .
upstroke, lift coefficients show strong oscillations during pure 1 10 100 1000
translation. FoRe<32, lift coefficients peak during acceleration and Re(log sale)

drop to a constant value during pure translation. Lift coefficients pea~

again during the acceleration and rotation of the wing. The lifiFig.8. The diagram above shows lift/drag averaged during steady
coefficients then drop again to relatively constant values during purdownstroke translation at a constant angle of attack of 45° plotted
translation. against logo Re Lift/drag increases with increasifite
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Fig. 9. The plots show the streamlines of fluid flow around a flapping wing
0.8 . =7 . T for one stroke cycle starting from rest, atRaof 128. The arrow on the
E wing shows the direction of the normalized aerodynamic forces acting on
0.71 | the wing. The angle of attack during pure translation was 45° for both the
0.6t T ] downstroke and the upstroke. The maximum translational velocity was
\i@ " 0.06ms™L The colors of the streamline reflect the value of the stream
0.5¢ = @\, \ 1 function, W, along the streamlines. Red denotes the most positive values
S =/ and blue denotes the most negative values. During the downstroke, an
0.41 attached leading edge vortex (LEV) is initially formed while the trailing
03 - . n . . edge vortex is shed (A,B). This corresponds to a growth in lift forces. In

0.2 0.4 0.6 0.8 1 C, the LEV is being shed while a new trailing edge vortex is formed. This
corresponds to a drop in lift. During rotation (D,E), the leading and trailing
edge vortices are shed. At the beginning of the upstroke (F), a new LEV is formed and a new trailing edge vortex is fatmedd Emd
corresponds to an increase in lift. In G, the LEV is shed and a new trailing edge vortex is formed. This results ini&.dfomlly| a second
leading edge vortex is formed and the trailing edge vortex is shed, resulting in another lift peak (H,I).
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Fig. 10. Streamline plots of fluid velocity around a flapping wing for one
stroke cycle starting from rest, at Re of 8. The arrow on the wing
shows the direction of the normalized aerodynamic forces acting on the
wing. The angle of attack during pure translation was 45° for both the
downstroke and the upstroke. The maximum translational velocity was
0.00375msL. The colors of the streamline reflect the value of the
stream functiony, along the streamlines. Red denotes the most positive
values and blue denotes the most negative values. Note that both the
leading and the trailing edge vortices remain attached to the wing except
during stroke reversal (A—D and F-I). This differs from the higher
case, where lift forces oscillate due to the alternate shedding of leading
and trailing edge vortices. Similar vortex dynamics were observed for
Reup to 32.
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streamlines. The stream functiguix, t) in 2-D is defined by comparing the wake left by the downstroke in each case

the following equations: towards the end of the simulation. Any lift- or drag-altering
effects produced when the wing moves through its wake will
U, t) = o(x, 1) be diminished at loweRe This wake capture effect should
' ody decrease gradually with decreaskg
oW(x, 1) Streamline plots for aReof 16 were very similar to those
v(x, t) = — (18) for anReof 8, and streamline plots for &eof 64 were very

ox similar to those for afRReof 128. This division would appear
whereu(x, t) andv(x, t) are components of the fluid velocity: to be related to the transition seen behind steady plates and
u(x, t)=[u(x, t), v(x, t)]. The density of the streamlines is cylinders when the von Karman vortex street forms aRan
proportional to the speed of the flow. of ~40. The simulation at d&Reof 32 appears to be a borderline

For anReof 128, vortex shedding plays an important rolecase. The streamline plots during the downstroke are very
in the variation of lift throughout the stroke. In F&GA,B, itis  similar to those of aiReof 8. During the upstroke, the LEV
easy to see that an attached LEV has formed while the trailifgegins to shed, and a von Karman vortex street might develop.
edge vortex is being shed. This corresponds to a growth in li§ince the effective fluid velocity relative to the wing is larger
forces. In Fig9C, the leading edge vortex is being shed whileduring the upstroke (as the wing moves back through its wake),
a new trailing edge vortex is formed. This corresponds to the effective Re would be transiently higher. This could
drop in lift. During rotation, the leading and trailing edgeaccount for some variation as the flow regime nears the
vortices are shed (Fi§D,E). After rotation, the wing moves transitionRe
back through its wake (Fi@F-I). At the beginning of the
upstroke, a new LEV is formed and a new trailing edge vortex Changes in angle of attack
is formed and shed (Fi§E,F). This corresponds to an increase To investigate the effects &eon lift and drag generated at
in lift. In Fig. 9G, the LEV is shed and a new trailing edgedifferent angles of attack, we considered five angles &ean
vortex is formed. This results in a drop in lift. Finally, a secondf 8 and 128. In each case, the angle of attack during the
LEV is formed and the trailing edge vortex is shed, resultinglownstroke was the same as the angle of attack on the
in another lift peak (Fig@l). It has been shown by several upstroke. Changing the angle of attack also had the effect of
studies that in actual insect flight the LEV remains attached tchanging the angle through which the wing was rotated and the
the wing for the duration of each half stroke, and the trailingngular velocity, since the duration of rotation was held
edge vortex is shed. This sustained vortical asymmetr
(attached LEV and shed trailing edge vortex) results in highe
lift forces (Birch and Dickinson, 2003; Ellington et al., 1996).
The fact that the LEV is not stable in our 2-D simulations
supports the idea that the LEV in three dimensions is stabilize
by span-wise flow.

For anReof 8 (Fig.10), leading and trailing edge vortices
remain attached throughout the downstroke. FOH-C
shows the streamlines around the wing during the downstrok
Vortices form on the leading and trailing edges of the wing an
remain attached until the end of the downstroke. Since n
vortices are shed, the lift coefficients seen during translatio
are relatively constant. During rotation (FIQE), the | _
downstroke vortices are shed. After rotation, the wing move / '
back through its wake and new vortices are formed on th & : : . 1‘ . =
leading and trailing edges of the wing (FI§F-I). These 0 01 02 03 04 05 06 07 08 09 1
vortices remain attached to the wing during the upstroke ar
would be shed during the rotation at the beginning of the ne:--
stroke. In the case of larger insects (i.e. higRey, lift is Fig.11. Drag coefficients as functions of time are plotted for five
generated when the LEV remains attached and the trailing edangles of attack for aReof 128. For each simulation, the same angle
vortex is shed. When the trailing edge vortex remains attache®! attack was used on the downstroke and upstroke. The angles of
positive vorticity is not shed from the wing, and negatiVeattack for the five simulations were 10°, 20°; 30°; 40° and 50°. The

circulation around the wing is reduced (see the Discussion f(maXimum ranslational velocity of the wing was Od§™. Drag
9 coefficients increase with increasing angle of attack. Maximum drag

an explanathn). Finally, the strength_ of the_ wake is dlmlnISheforces occur during acceleration from rest at the beginning of the
compared with the largeRe case since viscous forces are syoke and during rotation at the end of the downstroke and at the
relatively larger. beginning of the upstroke. Drag forces are larger during rotation at

Another difference between the two cases is that vorticitiower angles of attack because the distance over which the wing
dissipates relatively faster at lowBe This can be seen by moves and its angular velocity are larger.

=
o

Drag coefficient

o B N W b O O N 00 ©

Time (fraction of stroke)
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constant for the different cases. All other kinematic paramete
were the same as in the previous simulations.

Drag coefficients as a function of time (fraction of stroke)
are plotted in Fig&1,12. For both high and loRe the drag
coefficient increases with angle of attack. The drac
coefficients are also substantially higher during periods o
acceleration than during periods of constant translation in a
cases. Drag coefficients reach their largest magnitudes shor
before and/or after changing sign during wing rotation. Thit
effect is strongest at an angle of attack of 10°, because tl
wing rotates faster through larger angles than at higher angl
of attack. In interpreting Figkl and 12 it is important to keep
in mind that the pivot point is not in the center of the wing
rotation but rather is located 0.2 chord lengths from thi 0 ; ; ; Ak 7. %
leading edge. 0 01 02 03 0405 06 07 08 091

Lift coefficients as a function of time (fraction of stroke) are Time (fraction of stroke)
plotted in ':'9513’14 for high and lowRe respectively. For Fig. 13. Lift coefficients as functions of time are plotted for five
bothRe the lift coefficients are greatest near an angle of attac,nges of attack for aReof 128. For each simulation, the same angle
of ~40°. AtRe=8, fluctuations in lift during translation are of attack was used on the downstroke and upstroke. The angles of
significantly lower than aRe=128. The lift coefficients are attack for the five simulations were 10°, 20°, 30°, 40° and 50°. The
also larger when the wing accelerates than during translatiimaximum translational velocity of the wing was %L Lift
in all cases. Lift coefficients reach their largest values durinicoefficients are greatest for an angle of attack near 40°. Maximum lift
wing rotation. Similar to drag, this effect is strongest at aiforces occur during acceleration from rest at the beginning of each
angle of attack of 10°. For botRe lift drops significantly ~half stroke and during rotation at the end of the downstroke and at the
during the beginning of upstroke translation for low angles oPeginning of the upstroke.
attack. These lift coefficients approach downstroke values latt
during the upstroke.

Lift coefficient

Lift coefficient

Drag coefficient

0 0102 03 04 0506 07 08 091
Time (fraction of stroke)

OO 0.1 02 03 04 05 06 07 08 09 1 _ _ N _ _ _
Time (fraction of stroke) Fig. 14. Lift coefficients as functions of_tlme are plotted for five
angles of attack for aReof 8. For each simulation, the same angle
Fig.12. Drag coefficients as functions of time are plotted for fiveof attack was used on the downstroke and upstroke. The angles of
angles of attack for aReof 8. For each simulation, the same angle attack for the five simulations were 10°, 20°, 30°, 40° and 50°. The
of attack was used on the downstroke and upstroke. The angles maximum translational velocity of the wing was 0.008751.
attack for the five simulations were 10°, 20°, 30°, 40° and 50°. ThDuring translation, lift coefficients increase with increasing angle of
maximum translational velocity of the wing was 0.00875 1. Drag  attack in the range of 10-40°, and lift coefficients for angles of attack
coefficients increase with increasing angle of attack. Maximum draof 40° and 50° are quite similar. Maximum lift forces occur during
forces occur during acceleration from rest at the beginning of thacceleration from rest at the beginning of each half stroke and during
stroke and during rotation at the end of the downstroke and at ttrotation at the end of the downstroke and beginning of the upstroke.
beginning of the upstroke. Drag forces are larger during rotation cLift forces are larger during rotation at lower angles of attack because
lower angles of attack because the distance over which the wirthe distance over which the wing moves and its angular velocity are
moves and its angular velocity are larger. larger.
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Convergence test Gotz. Oscillations in drag coefficients in our simulations also

To test for convergence, we ran two simulations: one at theorrespond to the alternate shedding of the leading and
mesh size used for all previous simulations and another Hgiling edge vortices but are twice the frequency of the
about half that mesh size. The first simulation used x600  oscillations in lift. This difference in the oscillation
grid and the other used a 1200200 grid. Both simulations frequencies of the lift and drag forces is similar to what has
used the stroke kinematics described in Eigith a 45° angle been found for flow past cylinders in tfRerange (Lai and
of attack and anRe of 128. The resumng drag and lift Peskin, 2000) This difference can be explained by the fact
coefficients as a function of dimensionless time are plotted ifhat the shedding of either the leading or trailing edge vortices
Figs15,16, respectively. The calculated lift and dragtransiently reduces the drag force. However, the shedding
coefficients show good agreement, with small deviation:
during periods of wing acceleration and deceleration. Th

highestReis shown for the convergence study because it is th 3 . j ; ; : ; : ; .
most difficult case. Results at lowRe(not shown) yield better 7 oo (15(2)8%%(2)%
agreement. 2.5¢ 1
Comparison with experimental data _ 2
In order to compare our simulation results with experimente §
data, we ran a simulation of a wing started almost impulsivel = 1.5¢
from rest and translated at a constant speed over a distance 3
7 chord lengths. The wing was accelerated from rest at a re £ i
of 0.625ms2 until it reached a translational speed of 0.8

0.10msL This simulation modeled the experiments of

Dickinson and Go6tz (1993) as closely as possible, using tt 0

same dimensions for the fluid domain (in this case ih

length X 0.4m in width) and the same chord length of the _g , , , , , , ) , ,

wing. Since this is a high&esimulation than previous cases, 0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.450.5

the size of the fluid grid was increased to 120Q00. Time (fraction of stroke)

Figs17,18 compare the drag and lift coefficients at a 45°_ _ - )

angle of attack with those measured by Dickinson and Got 19 16. L'f.t coeffucuent_s for two n?GSh. widths. The 60600 ”.‘eSh

(1993). In our simulations, lift oscillates with the aIternatewas used in all oth_er S|mula_t|ons_|n this paper. Both S|mula_t|ons used
. . . . .. _the stroke kinematics described in Figat anReof 128 and with an

shedding of t_he leading and trailing edgg vor_tlce_s. S_|m|laangle of attack of 45°.

vortex shedding was observed by flow visualization in the

Dickinson and Go6tz experiments. However, our oscillations

in lift force are larger than those measured by Dickinson an 3.5 ; ; .
== Numerical data
6 3t =@ Dickinson and Gotz
- 1200x1200 2
+++600X 600 S 55l
5t ‘ g
e 27
5 £ 15" ‘e0g
8 . o A4
B 3t 5 :
3 ? 1%
g ° k
5 2 o.sF
1t 0 ' : : ' ' : ‘
0 1 2 3 4 5 6 7 8
Distance (chord lengths)

00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.4505 Fig. 17. Drag coefficients as a function of distance traveled for a wing
Time (fraction of stroke) started from rest and translated seven chord lengths at a 45° angle of
attack. Dotted lines represent data collected during an experiment by
Fig. 15. Drag coefficients for two mesh widths. The 8®&00 grid Dickinson and Go6tz (1993), and solid lines represent the results of our
size was used for other simulations in this paper. Both simulatiortwo-dimensional simulation. Oscillations in drag are smaller than
used the stroke kinematics described in Eigt anReof 128 and  those measured in lift and correspond to the alternate shedding of the
with an angle of attack of 45°. leading and trailing edge vortices.
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of the LEV reduces lift while the shedding of the trailing Discussion
edge vortex augments lift. The drag oscillations in our Probably the most interesting result shown by these
simulation are smaller in amplitude than the lift oscillationssimulations is the aerodynamic transition observed between
and match reasonably well with those measured by DickinsoRe=64 andRe<32. The fundamental difference is that vortices
and Goétz. are formed but not shed during translation at IdRebut they
The discrepancies between the results of our simulatioreze alternately shed during translation at higRer Similar
and the experiments of Dickinson and Go6tz are unclear. Forgmnsitions have been found in this intermediate rangetdr
oscillations in their experiment decrease significantly durindglow past a variety of shapes (Batchelor, 1967). This transition
the 7 chord translation. In our simulations, the amplitudess significant because, below it, an important mechanism of lift
of force oscillations are relatively steady. Numerical errorgeneration may no longer apply. At soReabove 32, as the
and experimental error probably account for some of th®eis increased, vortical asymmetry is produced when vortices
differences. Other differences might be explained in part bgre alternately shed. In 3-D insect flight, this asymmetry is
minor 3-D effects. While the Dickinson and G6tz experimenimanifested as an attached LEV throughout the translation of
was nearly 2-D, there were necessarily some edge effectsedch half stroke and a shed trailing edge vortex. Such
the span-wise ends of the wings. Other 3-D effects mightasymmetry leads to increased lift forces during translation (see
include any span-wise flexing of the wing, although thisdiscussion below). At sonfiRebelow 64, as thReis reduced,
effect would most likely be minor. Dickinson and G6tz alsovortical near-symmetry is produced when both the leading and
found that the net force acting on the wing was approximatelyrailing edge vortices remain attached to the wing during each
normal to the chord of the wing. This is not the case in ouhalf stroke in two dimensions. This symmetry would, in
simulation, since oscillations in lift are larger than principle, reduce the amount of lift generated when compared
oscillations in drag, suggesting that viscous effects in ouwith the asymmetric case in 3-D flight. Further research,
simulation are significant. This might not be entirelyhowever, is needed to see if this near-symmetry also occurs in
unreasonable. Vandenberghe et al. (2004) have shown thitatee dimensions.
force can be generated tangent to the chord of a flat plate thafThis aerodynamic transition between vortical symmetry and
oscillates in the direction normal to the chord of the plateasymmetry is most likely related to similar transitions around
producing thrust. Moreover, alternate vortex shedding cathe sameReseen in flow past cylinders and thrust generation
generate large forces perpendicular to flow and tangent to threflapping flight. Between aReof 4 and 40, the wake behind
chord of a flat plate, causing ‘flutter’ or auto-rotation in thea cylinder consists of two symmetrical attached vortices, and
direction tangent to the chord of the plate (Mittal et al., 2004no lift forces (or forces perpendicular to the flow) are produced.
Skews, 1990). For Reabove 40, vortices are alternately shed from each side
of the cylinder, forming the well-known von Karman vortex
street (Acheson, 1990; Batchelor, 1967). This vortical structure

3 o aricel Jat leads to alternating positive and negative forces on the cylinder
i D.l::r:.izgi a:daGotZ perpendicular to the flow. Childress and Dudley (2004)
2.5 ] describe a similar transition for thrust generation between an

Reof 5 and 20. They considered the case of a wing flapping
in a strictly vertical motion. Above some criticRe this
motion produces thrust (horizontal force). Vandenberhe et
al. (2004) confirmed this transition in thrust production
experimentally using an oscillating plate that was allowed to
rotate perpendicular to the direction of the oscillations. These
transitions in lift and thrust generation are most likely the result
of a bifurcation inRey=pwlL%, wherep is the density of the
fluid, w is the flapping frequency, is the body length, ang

is the viscosity of the fluid (Childress and Dudley, 2004).

A question that remains, however, is how well the 2-D
models of insect flight at loRe apply to 3-D flight in tiny
insects. There are several 3-D components that could be
. . - . . _significant. First of all, actual wings are of finite span, whereas
Fig. 18. Lift coefficients as a function of distance traveled for awing, 5 - odels assume infinite span. Secondly, the chord length

started from rest and translated seven chord lengths at a 45° angle the wing varies with span. while the 2-D approximation
attack. Dotted lines represent data collected during an experiment 8 9 pan, PP

Dickinson and Gotz (1993), and solid lines represent the resuilts of o@SSUMes constant chord. Most importantly, the dorsal-ventral
two-dimensional simulation. Lift coefficients in both cases oscillatgMotion of the wings through translation is actually rotational
with the shedding of the leading and trailing edge vortices. Note thdthe wing is rotating at its root). At highRe these differences

lift forces in our simulation have stronger oscillations than the forcegére significant. In 3-D flapping flight, alternate vortex shedding
measured by Dickinson and Goétz. does not occur: the LEV remains attached to the wing until

Lift coefficient

1 2 3 4 5 6 7 8
Distance (chord lengths)
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wing reversal and the trailing edge vortex is shed. Thi
phenomenon appears to be robust for a randgretdading to
larger lift forces (Birch et al., 2004). Our 2-D simulations
suggest that this vortical asymmetry would be lost at |dReer
because the trailing edge vortex would not be shed. Such a lc
of asymmetry in three dimensions would result in relatively
lower lift forces for smaller insects. It is possible, however, tha
3-D effects could induce the shedding of the trailing edg:
vortex for Rebelow the 2-D transition. Future work in three
dimensions is necessary to verify this conclusion.

To understand how vortical asymmetry leads to lift
generation, we first present the general aerodynamic theory f
viscous flows given by Wu (1981). Consider a 2-D viscou:
fluid initially at rest with an immersed solid body also initially
at rest in an infinite spack;. LetRs define the space occupied
by the fluid, and define the space occupied by the solid. Since
the total vorticity iR« is initially zero, by the principle of total
vorticity conservation the total vorticity iR« is zero for all
time:

% w(x, t)dxdy =0,

R

(19)

Ro

Ro

Fig. 19. Regions of positive and negative vorticity for ‘high’ and ‘low’
Re Rn denotes regions of negative vorticifgp denotes regions of
positive vorticity, andRo, denotes regions of negligible vorticity.
(A) For a wing in a fluid moving from left to right &e>64, an
attached leading edge vortex with negative vorticity is formed. A

trailing edge vortex of positive vorticity is formed and shed from the
wing. This asymmetry in the time rate of change of the first moment
of positive and negative vorticity produces lift. (B) For a wing in a
fluid moving from left to right at aRebetween 8 and 32, an attached

wherex is the position vector xx(y)T, w is the vorticity in a
two-dimensional flow @=(dv/dx)—(du/dy)], and the fluid

velocity is given asu(x, t)=[u(x, t), v(x, 1)]T. Note that this
principle is only true because we are considering vorticity ir
the total space occupied by both the solid and the fluid. W
(1981) showed that the aerodynamic force exerted on the so
body is given as follows:

G

FO=—p——

d
a p o J&J&Su(x, t)dxdy , (20)

Ma(t) = J&& ya(x, t)dxdy

R

Maft) =~ xo(x, ey (21)
J IRy

whereM=[M1, M2]T is the first moment of the vorticity field,

p is the density of the fluid arfslis the region occupied by the

solid. The second term in equati®@ is an inertial term for the

leading edge vortex with negative vorticity and an attached trailing
edge vortex of positive vorticity are formed. This ‘near-symmetry’ in
the time rate of change of the first moment of positive and negative
vorticity reduces lift.

attached LEV and a shed trailing edge vortex in a region of
fluid, Rf (as shown in Figl9A). In the following discussion,
the coordinate axis moves with the center point of the boundary
(so that in this frame of reference the boundary is at rest and
the fluid moves past it). Positive flow moves from the left to
the right. An attached region of negative (clockwise) vorticity
forms along the leading edge of the wing. Positive
(counterclockwise) vorticity is shed from the wing in the form
of a starting vortex and wake. LR} be the region of negative
vorticity andRp the region of positive vorticity. Lé®o define

the rest ofRs with negligible vorticity. The total lift force can
then be calculated as follows:

body. During periods of constant translation, this term goes to

zero and we have the following equations:

dm d
Fo=—p % = 5 4Ll vondy, (22
dt dt JJRf
dm d
FL=-p dt2 :pa&& Xwadxdy (23)
JJRf

FL=p % &J&fooodxdy

=04
-3,

where {v| is the absolute value of the vorticity. The magnitude
of lift generated depends on the difference between time rate

xlooldxdy , (24)

n

Moty —p J&J&
R

p

whereF_ is the lift force on the body arb is the drag force of change of the total first moment of positive vorticity and the
on the body. These equations mean that lift and drag forces anme rate of change of the total first moment of negative
proportional to the time rate of change of the total first momentorticity. Due to the asymmetry in the vortical pattern behind
of the vorticity field. the wing, positive vorticity is convected away from the wing
Consider the case for a wing translated from rest with aat a greater rate than negative vorticity. Since total positive and



negative vorticity inRf must be equal (by the principle of x
vorticity conservation), this means that the total time rate oX(r, t)
change of the first moment of positive vorticity is greater inY(r, t)
magnitude than the total time rate of change of the first moment
of negative vorticity. As a result, positive lift is produced. «

For Rebelow 32, regions of negative and positive vorticity d(x)
remain attached to the wing as the leading and trailing edgsd
vortices (see Fidl9B). The vortical pattern behind the wing is Attrans
nearly symmetrical (true symmetry would occur at a 90° angle
of attack). As a result, the difference between the time rate @ftot
change of the total first moment of vorticity in the leading an®
trailing edge vortices is reduced, and the lift coefficients ar@rot
lower than for higheRe At a 90° angle of attack, the time rate 6(t)
of change of the first moment of negative and positive vorticity
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two-dimensional position vector

Cartesian coordinate vector of the wing

Cartesian coordinate vector of the target
boundary

angle of attack relative to the horizontal

two-dimensional delta function

angular distance of rotation

dimensionless duration of acceleration/
deceleration

dimensionless duration of rotation

angle between wing and positixeaxis

rotational constant

angular velocity as a function of dimensionless
time

would be balanced, producing no lift force. V] dynamic viscosity
p fluid density
T dimensionless time
List of symbols and abbreviations Td dimensionless time of deceleration
CL lift coefficient Tfinal dimensionless duration of entire stroke
Co drag coefficient Trot dimensionless time when rotation begins
Ctarg damping coefficient Y kinematic viscosity
CFD computational fluid dynamics vorticity in a two-dimensional fluid
chord chord length of the wing || absolute value of vorticity
DPIV digital particle image velocimetry w flapping frequency
f(r, t) force per unit area applied to the fluid by the Y(x, t) stream function
wing
fean(r, t) force per unit area applied to the fluid due to We wish to thank Stephen Childress, Marvin Jones,
bending stiffness Michael Dickinson and Will Dickson for many helpful
fsu(r,t)  force per unit area applied to the fluid due to conversations on insect flight and fluid dynamics. We also
stretching stiffness thank the reviewers for their insightful comments. This work
fiar(r, t)  force per unit area applied by the target boundarywas supported by the National Science Foundation under
Fo drag force per unit length Grant Number DMS-9980069.

FL lift force per unit length

F(x, t) force per unit volume acting on the fluid

Ktarg stiffness coefficient of the target boundary

Kbeam flexural stiffness coefficient of the wing

Kstr stiffness coefficient of the wing proportional to
resistance to stretching

I characteristic length of the wing

LEV leading edge vortex

M first moment of vorticity

p(x, t) fluid pressure

r Lagrangian position parameter

Re two-dimensional infinite space

R two-dimensional fluid space

Rn region of negative vorticity

Ro region of negligible vorticity

Rp region of positive vorticity

Re Reynolds number

S surface area per unit length

S two-dimensional region occupied by solid bodies

U characteristic velocity

u(x, t) fluid velocity

Y target translational velocity

V(1) translational velocity at dimensionless time

t time
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