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There have been many excellent studies of the aortic
sinus vortex, beginning of course with the work of
Leonardo da Vinci (3) and including the elegant experi-
ments of Bellhouse and Talbot (1), the detailed nu-
merical studies of Gillani and Swanson (4), and the re-
cent combined experimental and theoretical work of van
Steenhoven et al. (10).

The present paper is therefore intended only as a
modest contribution to an area in which much excellent
work has already been done. The approach that we de-
scribe differs from the earlier work not so much in the
results as in the method by which the problem is at-
tacked. Since this paper is part of a symposium on
computational methods, we have also used this oppor-
tunity to include expository material on vortex dynamics
in general and on the vortex method of A. J. Chorin (2)
in particular. The combination of the vortex method
with conformal mapping that is described in this paper
is new, however.

This paper describes an analytic and a numerical
method for the aortic sinus problem Both methods are
based on the dynamics of point vortices, and both exploit
a particular conformal mapping from a model aortic
sinus to the upper half plane.

The analytic description of the sinus vortex is based on
the simplest possible model: an isolated, inviscid point
vortex in equilibrium with a free stream. Despite its
simplicity, this model sheds light on the stability of the
aortic sinus vortex, and it allows us to draw useful con-
clusions about the mechanism of aortic valve closure.

The point vortex model does not include viscosity, and
it tells us nothing about the mechanism of formation of
the aortic sinus vortex. To remedy this situation, we use
a numerical method, the vortex method of A. J. Chorin
(2), in which the fluid is represented by a collection of
modified point vortices that are convected by the fluid
and undergo a random walk representing viscous dif-
fusion. Since this numerical method is based on the
dynamics of point vortices, many of the formulas of the
analytic part of this paper can be used directly in the
numerical method.

1. POINT VORTEX IN THE AORTIC SINUS

The influence of boundaries on a point vortex

A point vortex is a singularity in a two-dimensional,
inviscid, incompressible flow. An isolated point vortex in
the plane has circular streamlines, and the speed of the
fluid has the form K/2zr, where K is the strength
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ABSTRACT

This paper describes an analytic and a numerical method for the aortic
sinus problem. Both methods are based on the dynamics of point
vortices, and both exploit a particular conformal mapping from a
model aortic sinus to the upper half plane. The analytic description .
is based on an isolated point vortex in equilibrium with a free stream.
This inviscid model is used to study the stability of the aortic sinus
vortex and to elucidate the mechanism of aortic valve closure, but it
cannot be used to study the formation of the sinus vortex and it gives
a somewhat incorrect picture of the flow pattern. These difficulties are
overcome by the introduction of a numerical method for the aortic
sinus problem with fluid viscosity. We use Chorin’s vortex method
combined with conformal mapping. The conformal mapping approach
gives an explicit formula for the vortex velocities and it resolves the
singularities associated with the corners of the domain. This method is
then used to study the formation of the sinus vortex and to confirm
the predictions of the point vortex model with respect to the role of
the vortex in valve closure.—Peskin, C. S., and A. W. Wolfe. The
aortic sinus vortex. Federation Proc. 37: 2784-2792, 1978.

(circulation) of the point vortex and r is the distance
from its center. K > 0 corresponds to counterclockwise
rotation. The point vortex may also be described by the
complex velocity potential

D =¢+ip= ———log(z—zo) (1.1)
where ¢ is the real velocity potential, ¢ is the stream
function, and z, is the position of the singularity in the
complex plane.

It is obvious by symmetry that a point vortex in an un-
bounded fluid does not move itself. In the presence of
boundaries, however, this symmetry is lost, and the
vortex acquires a velocity. The computation of the vortex
motion is complicated by the singularity in the fluid
velocity field at the vortex itself. A procedure that cir-

cumvents this difficulty is outlined in the following.
Consider an arbitrary domain € in the z-plane, z
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= x + 7y, and assume that we know a conformal mappin
{ =f(z) which maps Q onto the upper half {-plane,
{ =¢& +m. Let the flow in the z-plane be given by the
complex velocity potential

®(z) = Ufz) + 2£—,10g (f@z) — f(zo)) — Llog (fz) — f(z0)) (1.2)
T 2mri

where 2, is a point in Q and where the overbar denotes
complex conjugate.

In the special case f(z) = z (see Fig. 1), the domain  is
the upper half plane, the first term represents a uniform
flow in the x direction with velocity U, the second term
represents a vortex of strength K atz = zy, and the third
term represents an image vortex with strength —K at the
point Z,. Note that the singularity associated with the
third term lies outside of ). This term gives the non-
singular potential flow that is needed to satisfy the
boundary condition u-n = 0 on the border of Q. In the
general case, the flow given by equation 1.2 consists of a
potential flow in ) with a point vortex of strength K at
z = zo. If the mapping has no singularity in the interior
of Q, then this point vortex is the only interior singularity
of the flow.

To compute the velocity of the vortex itself, we write
the singular term as a sum of a symmetrical part and a
continuous part:

X

_ - X — ) + K Jog f0) ~ fz0)
i log (f(z) — f(z0)) = i log (z — z) + o log P (1.3)
Thus K
Pz) = %log (z — zo) + Dy(2) (1.4)
where

K ) — fzo) K —
= + = Jog JB T Ha0) _ X - 1.
Do(z) = Ufe) + 5—log ——— . 5 108 (@) = fzo))  (1.5)
The vortex velocity may now be computed from ®,, since
the first term in eg. 1.4 is symmetrical around the vortex
and does not contribute to its motion. The vortex velocity
(u,v) is found by setting

dd,
dz

U —w=

(o) (1.6)

In evaluating this derivative, it is convenient to use

f(z) — f(zo)

2=z

=1'(zo) + %(z = zo)f"(z9) + - - (1.7)

Then

4P .\ _ g K |1 £"0) £'(z0)

= U o S | 09
The term involving f"(zy) may be thought of as arising
from the curvature of the boundary, since it is absent
when f(z) is a linear function and the border of Q is a
straight line.

These formulas assign a definite vortex velocity (u,v)
to each possible position z, of the point vortex. Thus,
they define a velocity field which should not, however, be
confused with the velocity field of the fluid. The pos-
sible trajectories of the vortex are the integral curves of
this velocity field. That is, they are the solutions
zo(t) of

dzy _ . dd,
]T—u+w— o (20) (1.9)

A conformal mapping for the aortic sinus problem

Let Q) be the union of the upper half plane and the in-
terior of a circle through the points z = +1. There is a
one-parameter family of circles through this pair of
points, and we define {} uniquely by specifying a param-
eter « in the interval [%,1] such that 7/« is the interior
angle of  at z = +1. For example, when a = %, the
interior angle is 37/2, and Q is made up of the upper
half plane and a half disc.

The part of () that lies below the real axis represents
the aortic sinus itself and the rest of Q represents the
nearby part of the aorta. (We assume that the fluid
dynamics of one aortic sinus is not much influenced by
the others, and we treat the aorta as an unbounded
free stream.)

It can be verified that the following conformal map-
ping takes ) onto the upper half plane

{ = f(z) = B(A(B(2))) (1.10)
where
B =21 (1.11)
z—1
A@R) = 2~ (1.12)

Note that B has the property B = B~ so thata = 1 yields
{ =z. It is also clear that the points z = =1 and z =
are fixed points of the mapping for any a. It can be
shown that f'(z) = l/a as |z| — . This shows that the
mapping reduces to a simple scaling far from the sinus.

Figure 1. Sketch of the equilibrium flow configuration with an isolated point vortex in the aortic sinus. The flow is described by equation 1.2 and the

conformal mapping { = f(z) is described by equations 1.10-1.12.

U/a

Z-plane
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Equilibrium of the sinus vortex with a uniform stream

We now ask the following question: In the context of
inviscid, incompressible fluid dynamics, is there a steady
flow consisting of a stationary point vortex in the aortic
sinus with a free stream at ® and with a separating
streamline that connects the upstream border of the
sinus with the downstream border?

The assumption that streamline separation occurs at
the upstream border with reattachment at the down-
stream border cannot be motivated within the context of
inviscid fluid dynamics. The point of separation is de-
termined by the effects of fluid viscosity in the boundary
layer. The numerical computations discussed in section 2
show, however, that this assumption is valid for the
steady aortic sinus flow pattern in the presence of fluid
viscosity, and we simply impose it as a constraint here.

The condition that the points of separation and reat-
tachment be atz = =1 implies, first, that the vortex must
lie along the imaginary axis, x = 0. Accordingly, let the
position be z, = iy, Our conformal mapping takes the
imaginary axis into itself, a fact which we express by
writing f(iy) = in(y), so the image of the vortex in the
¢ plane is § =im(yo). The separation condition then
implies

Km(y0)

—_ 2 =0 : 1.13
2L+ () (113)

which is a relationship between the free stream velocity,
the vortex position, and the vortex strength. (This rela-
tionship is most easily found by considering the flow in
the { plane and imposing the condition that the velocity
be zero at the point of separation.)

We now consider the condition that the vortex be at
rest. This is found by setting the right-hand side of eq. 1.8
equal to zero. We simplify the resulting expression,
however, using f(zy) = im(y). The result is

: K [_ 1'(0) n’(yo)] -
U LI + =0 1.14
7o 4 [ 7o) M) ( )

Equations 1.13-1.14 may be thought of as a pair of
linear equations in the unknowns U, K. There are non-
trivial solutions if the determinant is zero. This condi-
tion may be written F'(y,) = 0, where

F(y)=—10) LI5
O = T o o) (412

Thus the equilibrium points are the stationary points of
F. It is easy to see that there is at least one such stationary
point. To show this, note that n' >8>0 (for some 0)
and that the domain of F is ymin =y =.% where M(ymin)
= 0. It then follows from egq. 1.15 that F (ymin) = F(®) = 0
and that F(y) is positive and bounded on ymin <y < .
Thus F has at least one maximum, at which F’' = 0 be-
cause F has a continuous derivative. This proof of the
existence of the equilibrium point uses only the sym-
metry of () about the imaginary axis and the fact that
n' is bounded away from zero.

In practice, the equilibrium point(s) can be found nu-
merically. (We worked with (log F)’' = 0 and used the
method of bisection.) Once my = m(y,) has been found,
we can expressK in terms of U by solving eithereq. 1.13 or
1.14. For example, from 1.13
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m(1 + mo®)
No

K=- U (1.16)
For a given free stream velocity, we determine in this way
an equilibrium position and strength for a point vortex
in the aortic sinus. The equilibrium position is inde-
pendent of the free stream velocity, and the equilibrium
strength is proportional to the free stream velocity. When
the flow is from left to right (U > 0), the vortex rotates
in the clockwise direction (K < 0). : '

Stability

The next natural question is whether the equilibrium
found above is stable or not. Only a partial answer to
this question can be given in the context of inviscid point
vortex dynamics. For example, the strength of the vortex
is always independent of time, and there is io mechanism
available for generating new vortices or destroying old
ones, so the only variable we can study is the position of
the vortex. By studying the vortex trajectories, we can
hope to learn how a vortex will behave if it is perturbed
away from the equilibrium position found above.

A useful tool in the study of vortex trajectories is
Routh’s stream function (7), which is defined, for the
present problem, as follows: -

S(e) = %{U(f(z) - 1) + = log [F T )

- %log [(f) - F@n (@ - f(Z))]} (1.17)

where f is the analytic function defined by f¢) = f(z).
It can then be checked that

S dz

2 —=u—1w=— 1.18
i r™ u =i = ( )
_Qia_‘?.=u+ =% (1.19)
0z
so that, along a vortex trajectory,
dS _ 9§ dz n S dz -0 (1.20)

A e At 8 odt

We conclude that Routh’s stream function is constant
along each vortex trajectory. The existence of such a
function means that vortex equilibriums are of only two
types. In the first case, Routh’s stream function has a
maximum or a minimum, and the vortex trajectories
form closed curves around the equilibrium point. Such
an equilibrium point is called stable because a sufficiently
small displacement of the vortex away from equilibrium
leaves it on a closed orbit around the equilibrium point.
In the second case, Routh’s stream function has a saddle
point. Such an equilibrium point is called unstable be-
cause a typical perturbation (however small) puts the
vortex on a trajectory that carries it arbitrarily far away
from equilibrium. This classification of equilibrium
points is invariant under a change of sign of the time, as is
appropriate for inviscid dynamics.

Stability may be investigated analytically, or it may be
studied by plotting the vortex trajectories with the aid of
Routh’s stream function. We have used the latter method
(Fig. 2). For the aortic sinus problem we find one
equilibrium point on the midline of the sinus which is
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stable for all positive sinus depths, although the region
of stability becomes smaller as the sinus becomes shal-
lower. (By region of stability, we mean the region that
is filled with closed vortex trajectories.) There are also
unstable equilibriums near the upstream and down-
stream borders of the sinus. The trajectories through
these points delimit the region of stability of the stable
equilibrium point. This stability analysis makes precise
the idea that the vortex is “trapped” in the aortic
sinus.

The mechanism of aortic valve closure

The role of the sinus vortex in aortic valve closure has
been much discussed, ever since Leonardo da Vinci pre-
dicted correctly that the valve would close under the
influence of the vortex while the flow is still in the for-
ward direction but decreasing.

Precisely how does the vortex accomplish this trick?
To study this question, we consider what happens to the
equilibrium configuration of the point vortex with a free
stream if the free stream is suddenly turned off (but not
reversed). In the equilibrium configuration we assume
that the aortic valve leaflet, which is anchored to the
upstream border of the sinus, lies along the separating
streamline. After the free stream has been turned off,
we think of the valve leaflet as being moved by the fluid
towards closure without altering the fluid flow pattern.

When the free stream is suddenly turned off, the
resulting flow pattern is described by the same equa-
tions as before but with U = 0. This change has two

dramatic consequences. First, the character of the fluid
streamlines changes instantaneously. In the equilibrium
situation there were closed streamlines in the sinus and
streamlines connecting x = =% in the aorta. When the
free stream is shut off, the closed streamlines associated
with the vortex fill up the entire domain. In particular,
they cross the valve leaflet, which therefore acquires a
velocity that drives the leaflet towards its closed position.
(The familiar rule that streamlines run parallel to
boundaries is not correct for boundaries in motion. In-
deed, the only way that an immersed boundary can move,
other than tangent to itself, is for streamlines to cross
the boundary. This follows from the definition of a
streamline as a line tangent to the fluid velocity field.)

The second effect of setting U = 0 is that the vortex
position ceases to be an equilibrium point. It is easy to
see that the potential flow associated with U tended to
move the vortex to the right; in the equilibrium con-
figuration this was balanced by the self-velocity of the
vortex associated with the presence of boundaries. When
U is set equal to zero, the vortex starts to move to the left
(upstream) towards the aortic valve leaflet. Thus the vor-
tex, the streamlines of which are moving the valve
towards closure, moves itself in the same direction as
the valve is moving. The vortex actually chases the
leaflet towards the closed position!

Although these effects were derived under the highly
idealized conditions of point vortex dynamics in an in-
viscid fluid with sudden interruption of the main stream,
it is very likely that the events of aortic valve closure
actually occur as described here. Van Steenhoven et al.

Figure 2. Equilibrium streamlines (2,b) and vortex trajectories (c,d) for an isolated point vortex in the aortic sinus. The separating streamline
bulges out into the aorta, especially in a shallow sinus (b). This unrealistic feature is removed when fluid viscosity is included in the model (see Fig. 3).
The closed vortex trajectories in (¢,d) indicate that the vortex is trapped by the sinus. In (ac) @ =%, U =1, K = —3.01517. In (b,d) a = 0.8,

U=1K=-25130q.
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(10) have recently recorded the motion of the vortex as
described above in physical model experiments on aortic
valve dynamics, and they have given a physical explana-
tion of this effect in terms of the pressure gradient
developed during deceleration of the free stream. Our
own numerical work (section 2) also confirms that these
mechanisms of aortic valve closure are still applicable
with diffuse sinus vorticity and with nonzero fluid
viscosity.

Inadequacy of the point vortex model

Although inviscid point vortex dynamics give some in-
sight into questions of stability and the mechanism of
valve closure, the inviscid analysis tells us nothing about
the process of formation of the aortic sinus vortex. More-
over, the point vortex model gives a flow configuration
that approximates the true aortic sinus vortex only very
roughly. In particular, the separating streamline bulges
out into the aorta in the point vortex model; in reality
it is nearly flat. Also, the center of the vortex is on the
midline of the sinus in the model. The real vortex is
shifted downstream.

These difficulties are overcome by including fluid vis-
cosity in the model. The Navier-Stokes equations must
then be solved numerically. We shall use a method, how-
ever, that incorporates much of the mathematical struc-
ture associated with the point vortex analysis. In partic-
ular, the method combines the vortex method of A. J.
Chorin (2) with conformal mapping.

2. THE AORTIC SINUS PROBLEM
WITH FLUID VISCOSITY

The vortex method of A. J. Chorin (2)

This is a grid-free numerical method for the incompres-
sible Navier-Stokes equations in two space dimensions.
The equations to be solved are as follows. In the do-
main Q:

o+ u Vo =rvAew (2.1)
curlu = 0z (2.2)
diva=0 (2.3)

On the boundary 0{}:
u=0 (2.4)

In the foregoing, u is the fluid velocity,  is the (scalar)
vorticity, v is the kinematic viscosity, and Z is a unit vector
normal to the plane of the flow.

In Chorin’s vortex method, the fluid is described by a
collection of modified point vortices. A modified point
vortex of unit strength at the origin has the velocity field

1 ZXx

Ua(x) = 27 Max (le,ro) |x|

(2.5)

The constant 7, is called to cut-off length. For |x| =7y,
this velocity field corresponds exactly to that of a point
vortex. For |x| = r,, the streamlines are still circular, but
[u0| = Yemrry, independent of x. Thus the velocity of a
modified point vortex is bounded, but it is discontinuous
at the origin. In the formulas that follow, we adopt the
convention u,(0) = 0.
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Now suppose we have a collection of modified point
vortices at positions x; with strengths K;. In an un-
bounded fluid the velocity field would be

u(x) = ¥ Kjug(x — x;) (2.6)
i

In the presence of boundaries, uy violates both the nor-
mal and the tangential components of the boundary
condition u = 0. The normal boundary condition can be
satisfied (without changing the vorticity) by adding a po-
tential flow. Thus, set ' o

u(x) = ug(x) + Vo (2.7)

where :
Ap =0 in Q (2.8)

n-V¢ = —n-uy on 9Q (2.9)

The velocity field u(x) given by eq. 2.7 still violates the
tangential boundary conditionu -7 = 0. This is remedied
by a device that appears to be purely formal, which
has important consequences. We declare that eq. 2.7 de-
fines u(x) only for x in the interior of . At the boundary,
we set u(x) = 0 by definition. This implies that we have a
d-function layer of vorticity along the boundary. The
circulation per unit length of this vortex layer is —u-7,
where u is the limiting velocity as the boundary is ap-
proached from the interior and 7 is the unit tangent to
the boundary oriented so that the domain is to the left
of 7. This vortex layer can be represented by modified
point vortices in the following (approximate) way. In-
troduce modified vortices at intervals of length % along
the boundary with circulation equal to the local value of

_Q(KZ"),-\ M - (2.10)

The factor 2 can be explained by noting that half the
vorticity of the modified vortices falls outside the domain
and therefore has no effect on the flow. (Another ex-
planation of the factor 2 will appear below.) It is impor-
tant to notice that the modified vortices give a much
better representation of the vortex layer than a cor-
responding array of point vortices. This is the principal
reason for the introduction of the cut-off length.

The vortex method may now be described as fol-
lows. After n time steps, we have a collection of vortices
with positions x% and strengths K. This vortex con-
figuration is updated in two steps. First, new vortices are
created along the boundary to satisfy u-7 =0, as de-
scribed above. Then, all of the vortices are moved
according to

XpT = X+ ALY Kuo(xf — x}) + (Vo) (xp)] + (dvAe)2df, (2.11)
E)

where the df are independent Gaussian random vari-
ables in the plane with £[d}] = 0 and E[|d}|?] = 1. The
term involving these random variables in ¢q. 2.11 cor-
responds to the viscous (diffusion) term in the vorticity
transport equation.

Those vortices that leave the domain during the imple-
mentation of ¢q. 2.11 are dropped from the computation.
This includes roughly half the newly created vortices and
compensates for the factor 2 inegq. 2.10. This explanation
of the factor 2 is complementary to the previous ex-
planation, since those vortices that diffuse into the do-
main now have all of their vorticity within ().
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This completes the description of one time step. Note
that the vortex strengths have not changed except that
some vortices have been created and some vortices have
been dropped from the calculation.

We have not yet specified, however, how the potential
flow associated with a vortex configuration is actually
computed. In simple cases this flow can be found by
introducing a finite system of images for each vortex.
An important domain for which this procedure works is
the exterior of a circle. In the general case, one has to
use a numerical method such as an integral equation
method as in ref. 2 or the capacitance matrix method
(9). There is, however, a class of problems in which a
finite system of images will not suffice but where an
explicit formula for the vortex velocity can still be ob-
tained by conformal mapping. Aside from the conveni-
ence of having an explicit formula, the conformal map-
ping approach also has substantial advantages when the
domain has corners.

The vortex method combined with conformal mapping

As in section 1, suppose that we have available a con-
formal mapping { = f(z) that takes the domain Q onto the
upper half plane. The generalization of eq. 1.2 for a col-
lection of point vortices in ) is

@) = Ut + 3 [ 5 log (ft) — f) — At 1og (1) —M>} (2.12)

271
If we focus attention on the kth vortex, we can separate
its singular, symmetrical part, and write

O(z) = Ei.log (z — zx) + Du(z) (2.13)
2
where

®,(z) = Uf@E) + ;(_,,’; log f(zz—:fii) - %log (f&) = )
+3 {ﬁlog () — £5)) — 22 log (f(z) —m} (2.149)

ik | 2m 271

By the same reasoning as in section 1, this gives a formula
for the velocity of the kth vortex

U — Wy = d;:k (zx)
=Uf'(z) + ﬁ[ ) _ f'(z")_]
2mi| 28" (zx)  f(zx) — £(zx)
K 1 1
f! = - 2.15
e 2 2m‘{f(zk) —f@) T - f(zf)] @15

Thus, we have used the conformal mapping to get an
explicit formula for the velocity of each point vortex in
the presence of all of the others. This formula includes
the effects of the normal boundary condition u-n = 0.

The conformal mapping is also helpful in the imple-
mentation of the vorticity creation algorithm. The funda-
mental reason for this is that the vorticity created along
some arc of the boundary depends on an integral of the
form

r (u-7)ds = ¢y — ¢q (2.16)

a

which is invariant under a conformal mapping. Ac-
cordingly, we can implement the vorticity creation

MATHEMATICAL MODELING AND COMPUTATION IN PHYSIOLOGY

algorithm in the { plane. This has several advantages.
First, the boundary is simply the real axis and it is very
easy to specify a set of points for vorticity creation and
to compute the slip velocity in the { plane at these points.
The formula for this slip velocity is derived from eg. 2.12
after making the change of variables { = f(z), {; = f(z;).
The result is

K[ 1 1
O=Urz 2171'{6 -4 - &]
- K Im (&)
"0 S i el

The most important advantage of implementing the
vorticity creation process in the { plane, however, is that
we completely avoid the singularities associated with the
corners of the domain in the z plane. When the interior
angle at a corner is greater than r, the slip velocity in the
z plane is infinite at the corner for almost every dis-
tribution of vorticity. This singularity is removed by the
mapping to the { plane. By spacing the points for
vorticity creation uniformly along the ¢ axis of the {
plane, we automatically concentrate their images in the z
plane near those corners of the domain where the viscous
fluid can be expected to develop boundary layer sepa-
ration and vortex shedding. This is precisely where high
resolution is needed.

We are now ready to give a statement of the vortex
method with conformal mapping. Let there be M sites
for vorticity creation along the ¢ axis of the { plane. Call
these &, m =1,2,..., M. Let €pyg — En = h, with &
= —(M + 1)h/2. After n time steps, the number of
vortices will be nM, their strengths will be given by
Ky, k=1,2,...,nM, and their corresponding positions
will be ;" = f(z,"). This vortex configuration is updated
as follows. First, create M new vortices with labels
given by

(2.17)

k=nM+m, m=1,2...,M. (2.18)
The positions of these vortices are given by
£ = f@k) = én (2.19)

and their strengths are

Ky = M-Qsh/gm)l—, (2.20)

where s™ is given by the form of ¢q. 2.17 that is appropri-
ate for modified point vortices. This form is

ey = U+ 5 K Im (")

O S e TMax (e 0w
which reduces to e¢q. 2.17 when p, = 0. The constant
po is the cut-off length of the modified point vortex. Note
that we implement this cut-off in the {-plane.

The next step is to move all of the vortices one
random step. It is important that this random step be
implemented in the z (physical) plane. Otherwise the
viscosity will be effectively a function of position de-
termined by the mapping. Thus, for £ =1,2,...,
(n + )M, let

(2.21)

z* =z + (dvA)V2d (2.22)

where the d," are independent, Gaussian, random vari-
ables in the complex plane with E[d;"] = 0 and E [|dk" | 2]
= 1. Those vortices that leave the domain during the
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random step are dropped from the calculation by setting
their strengths to zero. Vortices with zero strength are
ignored in all subsequent calculations. They may also be
overwritten to save storage.

Finally, the vortices are moved at the velocity given
byeg. 2.15. This formula has to be modified, however, to
take into account the cut-off length p,. The result is

2" = 7, + Atwy* (2.23)
where
— Ky | £"(*) f'(zx*)
* = Uf'(2,%) + —F - - + £ (z*
wy (z*) 277i[2f’ @) Pn expliben) (z1*)
(n+1)M R
x fi[ LU ] (2.24)
=1 2mi| ps exp@fsx) P €xp(16;x)
J#k
pi = Max (|£z*) — £z*)|, po) (2.25)
pse = Max (]f(lk*) —1(z*)], po) (2.26)
05 = arg (f(zx) — £(zs)) (2.27)
éjk = arg (f(zx) — £(zy)) (2.28)

This completes the description of one time step.

In the vortex method combined with conformal map-
ping, a substantial part of the computation is done in
the ¢ plane. It should be emphasized, therefore, that we
do not simply compute a solution in the { plane and then
map the results into the z plane afterwards. Such a pro-
cedure would be completely incorrect, since the Navier-
Stokes equations are not invariant under a conformal
mapping.

The shape of the domain in the z plane influences the
computation in three important ways. First, the random
walk is implemented directly in the z plane. Second, the
vortex has a self velocity term involving f"(z) which would
not be present if the physical domain were the upper
half ¢ plane. Third, quite apart from this self-velocity,
the motions of fluid particles in the z-plane are not what
one would expect by computing these motions in the
¢ plane and then mapping the result back into the z-
plane. That is, the time dependence of the motion is
different. To see this, consider just the flow given by the
complex velocity potential ® = Uf(z) = U{. Fluid
particles in the z plane move according to dz/dt = d®/dz
= Ut’(z). Therefore, the image in the { plane of a fluid
particle in the z plane satisfies d{/dt = {'(z) dz/dt = U | f'(z) I 2,
If we regard @ as the complex velocity potential of a
physical flow in the { plane, however, the fluid particles
all have velocity U. For all of these reasons it is essential
that the shape of the domain in the z-plane should
influence the computation.

Results

We have used the vortex method with conformal map-
ping to study the aortic sinus vortex. In these numerical
experiments the fluid is at rest until ¢ = 0. The free
stream velocity is suddenly turned on at ¢ = 0, held
constant until ¢ =T, and then set equal to zero for
t > T. This rectangular pulse is not intended to be re-
alistic, but it gives us the opportunity to study the effects
of the sudden onset and termination of flow. We choose
our unit of length so that the corners of the aortic sinus
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are atz = *1, and we choose our unit of time so that the
parameter U = 1. (The free stream velocity is U/a.) The
Reynolds number was set equal to 1,000 or 5,000; the
results are essentially independent of Reynolds number
in this range. The parameter a, which determines the
sinus depth, was set to various values between %3 and 1.
When a = % the boundary of the sinus is a semicircle;
when a = 1 the boundary is flat so there is no sinus at
all. It was checked that the results are independent of
the numerical parameters by varying the time step and
the distance between the sites of vortex creation. Agree-
ment of the flow patterns was satisfactory as judged by
the streamline plots; it was especially good during the
early part of the run where the dramatic changes of the
configuration of the flow occur.

The principal results are as follows (Fig. 3). At¢t = 0"
the flow is potential flow and the streamlines go from
x = — tox = +%. The streamlines that are close to the
boundary follow the contours of the sinus and it is only
at large values of y that the streamlines become es-
sentially straight. This point is emphasized because there
is a common misconception that the initial flow pattern
in this situation consists of a uniform flow in the aorta
with a state of rest in the sinus. Although such a flow
pattern is, in fact, a solution of the steady inviscid equa-
tions of motion, there is no way to reach it instantane-
ously from a state of rest by the application of an
impulsive pressure gradient. _

When the flow is started abruptly, streamline sepa-
ration occurs essentially instantaneously at the upstream
and downstream borders of the sinus. The streamline
that separates from the upstream border reattaches
along the wall of the sinus. At first, the point of re-
attachment is near the point of separation, but the re-
attachment point moves rapidly downstream along the
wall of the sinus until it encounters the downstream
corner. The flow pattern then stabilizes with a vortex in
the aortic sinus and a separating streamline that di-
vides the sinus from the aorta. This streamline is nearly
flat; it marks the open position of the aortic valve
leaflet. After the flow pattern stabilizes in this way, less
dramatic changes still occur. In particular, the sinus
vortex becomes more diffuse and its center shifts away
from the midline of the sinus in the downstream direc-
tion. Cinefilms of the motions of the point vortices on
which the computations are based also reveal that the late
flow pattern is not quite steady. Instead, puffs of vorticity
are periodically carried away downstream in the aorta.
Most of these phenomenons were also seen in the nu-
merical computations of Gillani and Swanson (4).

When the flow is abruptly stopped, the sinus vortex
begins to move in the upstream direction and sweeps
out of the sinus into the aorta near the upstream corner.
This result was clearly seen in the cinefilms showing the
motion of the point vortices. This is precisely the effect
predicted at the end of section 1; it has also been ob-
served in the physical experiments of van Steenhoven
et al. (10).

3. SUMMARY, CONCLUSIONS, AND FURTHER WORK

In this paper the aortic sinus vortex has been studied
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Figure 3. Vortex dynamics in the aortic sinus with fluid viscosity. The parameters are « = %, R = 1,000, Az = 0.1, h = po = 0.1. The fluid is initially
atrest. Then U(f) = 1 for 0 <t < 5.0and U(#) = 0 fort > 5.0. Vortex positions are indicated by + or — according to the sign of K. Vortex formation
occurs during 0 < ¢ < 8.0. The flow pattern is fairly steady during 3.0 <¢ < 5.0 with a flat separating streamline that marks the position that would
be assumed by the open valve leaflet. When the main flow is abruptly shut off at ¢ = 5.0 the streamlines change so that the valve would be driven
towards closure. During ¢ > 5.0, the vortex migrates upstream and out of the sinus.
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within the framework of point vortex dynamics. An iso-
lated point vortex is a useful model of the aortic sinus
vortex in several respects. We have used it to compute the
equilibrium configuration of the sinus vortex with a free
stream, to study the stability of this equilibrium con-
figuration, and to make predictions about the mecha-
nism of aortic valve closure. The point vortex model has
severe limitations, however. It fails to predict that the
separating streamline is essentially flat and that the
sinus vortex is shifted downstream away from the mid-
line of the sinus. Moreover, the model is inherently in-
capable of describing the process of formation of the
aortic sinus vortex. All of these difficulties are related
to the absence of viscosity in the point vortex model.

Fortunately, a numerical method is available which
makes it- possible to include viscosity in the study of
vortex dynamics. This is the vortex method of A. J.
Chorin (2). In this paper, we present a new variant of
this method in which an explicit formula for the vortex
velocities is derived by conformal mapping. This avoids
the numerical solution of Laplace’s equation at every
time step. Our variant of the method is especially useful
when the domain has corners, a situation that arises in
many applications. The numerical results show that the
deficiencies of the point vortex model have been over-
come, and they confirm the qualitative predictions of that
model with respect to the dynamics of aortic valve
closure.

Two major difficulties remain. First, this work has been
done entirely within the context of two-dimensional fluid
dynamics. This approach may be questioned on the
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