The Hadwiger transversal theorem for pseudolines
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Abstract

We generalize the Hadwiger theorem on line transversalslteations
of compact convex sets in the plane to the case where thersatsrenected
and the transversals form an arrangement of pseudolinesprblof uses the
embeddability of pseudoline arrangements in topologitfedeaplanes.

In 1940 Santal6 showed?2], by an example, that Vincensini's proff3] of
an extension of Helly’s theorem was incorrect. Vincensiairoed to have proven
that for any finite collectior of at least three compact convex sets in the plane,
any three of which were met by a line, there must exist a linetmg all the sets.
This would have constituted an extension of the planar Halprem[10], which
showed that the same assertion holds if “line” is replacetpoynt.” The Santalo
example was later extended by Hadwiger and Debruf@jeto show that even if
the convex sets are disjoint the conclusion still may notihol

In 1957, however, Hadwiger showed that the conclusion offteeremis valid
if the hypothesis is strengthened by imposing a consisteangition on the order
in which the triples of sets are met by transversals:
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Theorem (Hadwiger[8]). If By,..., By is a family of disjoint compact convex sets
in the plane with the property that for ady< i < j < k < n there is a line meeting
each of B, Bj, Bk in that order, then there is a line meeting all the sets B

In 1988, the second and fourth authors found a generalizatidiadwiger’s
theorem to the case of hyperplane transverpdlsand this in turn was subse-
guently extended ifil1]] and[14], culminating in the following result:

Theorem (Anderson-Wengef1l]). Let 4 be a finite collection of connected sets
in RY. 4 has a hyperplane transversal if and only if for som®k; k < d, there
exists a rank k- 1 acyclic oriented matroid structure oA such that every k 2
members off are met by an oriented k-flat consistently with that orientestroid
structure.

Our purpose in this paper is to extend the original Hadwibeotem in a dif-
ferent direction—replacing “lines” by “pseudolines.” gseudolinein the affine
plane is simply the homeomorphic image of a line. If that watethe theorem
would be true trivially: for any finite collection of sets tleeis a pseudoline meet-
ing them in any prescribed order! (Of course this needs alsgiinterpretation in
the case where the sets are not mutually disjoint; see heBut. to reflect more
accurately the properties of sets of lines in the plane, nsists that all the pseu-
dolines under consideration form arrangementwhich means that they are finite
in number, that any two meet exactly once, where they crass,(far technical
reasons) that they do not all pass through the same pgkar examples of pseu-
doline arrangements that are not isomorphic, in a natureleseo arrangements of
straight lines, see, e.d3].) Furthermore, given a pseudoline arrangemante
say that a pseudolineextendsZ if 42U {l} is also an arrangement of pseudolines.
Thus the theorem we are going to prove is the following:

Theorem 1. Suppose B..., B, is a family of connected compact sets in the plane
such that for eacll <i < j < k < n there is a pseudolingjl meeting each of
Bi,Bj,Bk at points p, pj, pk, not necessarily distinct, contained in, Bj, By, re-
spectively, with plying between pand p on lijx. Suppose further that the pseu-
dolines Jjx constitute anarrangement4. Then there exists a pseudoline | that
extends the arrangemest and meets each set.B

As in Wenger’s generalizatiofi4], we do not assume the sets to be disjoint or
even convex, merely connected. And in fact we will prove Teaol by general-
izing Wenger’s proof, and by using the following result opatogical planes:

1This is actually the definition of a “pseudoline arrangerhé@nthe projective plane, while in the
affine plane one allows pseudolines also to be “parallelg fmite arrangement, however, pseudo-
lines can always be perturbed slightly to meet “at finiteatise,” and we will assume this whenever
convenient.



Theorem (Goodman-Pollack-Wenger-Zamfiresgd]). Any arrangement of pseu-
dolines in the projective plane can be extended to a topcédgirojective plane.

Here, atopological projective planeneansP?, together with a distinguished
collection £ of pseudolines, one for each pair of points, varying comtiraly with
the points, any two meeting (and crossing) exactly once.elfcall a topological
projective plane with one of its distinguished pseudoliresaoved aopological
affine plane(TAP), the theorem above can trivially be modified to reaAdy ar-
rangement of pseudolines in the affine plane can be extended@APR. We will use
it in this form.

For background on pseudoline arrangements as well as onggeomnansver-
sal theory, the interested reader may consult the followingeys:[2, 3, 5, 6, 15,
16).

We now introduce some notions that will be used in the prodheftheorem.

SinceP? can be modeled by a closed circular diSkvith antipodal points on
the boundarydA identified, we will model our TAP by using i, the interior of
A, and call two pseudolines “parallel” if they meet@h. (From now on, whenever
we speak of “pseudolines” in the TAP, we will mean member$efdistinguished
family of pseudolines constituting its “lines.”) Aarrangemeniof pseudolines is
thus a finite set of Jordan arcs, each joining a pair of anéippdints ofdA, any two
meeting (and crossing) exactly once, or possibly at thalpemts (the “parallel”
case).

We will also speak oflirected pseudolines, which corresponds to specifying
one of the antipodal points where the pseudoline méats Thus it will make
sense to say: lep be a point ondA and letl, be a pseudoline in the direction
p. Further, when we direct a pseudoline, we specify a poséiwt negative open
“pseudohalfspace” bounded by that line, determined wispeet to a fixed orien-
tation of A. We denote these halfspaces By (lp) andH_(lp), respectively; see
Figure 1.

Now let A andB be two connected compact sets in our TAP andolet 0A.

If there is a pseudoline in the direction pfthat contains pointa € A andb € B,
with eithera = b or a precedingb on the pseudoline, we say thatis an (AB)-
transversal directionlf there is a pseudolink, that strictly separates andB such
thatA C H(lp) andB C H_(Ip), we say thap is a (AB)-separating direction

Notice that a given direction can be both @B)-transversal direction and a
(BA)-transversal direction; even the same pseudoline, indactmeei beforeB
andB beforeA in this sense.

Notice also that given a pa#, B, each directiorp is either a transversal direc-
tion or a separating direction fé, B; this follows by a simple continuity argument,
sweeping a pseudoline in directigracross the TAP.



Figure 1

Finally, notice that if there is afAB)-separating directiop, then no direction
g can be both afAB)-transversal direction and(8A)-transversal direction. This
follows from the fact that if two pseudolines have the samedtionq, they must
cross a given pseudoliden direction p the same way: both from (1) to H_(1),
or both fromH_(1) to H ().

It then follows from the definition of a TAP and the compactes$ our sets
that the seffag of (AB)-transversal directions is a closed arcodf. If A andB
have a point in common then clearTyg = 0A. If not, consider any two distinct
directionspy, p2 € Tag. Fori = 1,2 choose pointg; € A, b; € B along a pseudoline
l; in direction p;, with & precedingb;, as well as parametrized ara&) C A and
b(t) C B from a; to ap (resp.b; to bp). By continuity, the set of directiore(t)b(t
must contain one of the two arcs 04 joining p; and py. It follows that the set
Tagis itself an arc (possibly all alA), and this must be closed by the compactness
of the setsA andB.

We have thus proved the following:

Lemma 2. Let A and B be connected compact sets in the plane. Then

0A = TapU SigU TeaU Sgas

where g = —Tga is the closed arc corresponding to tf&B)-transversal direc-
tions, and ®s = —Sga is the open arc corresponding to th&B)-separating direc-
tions. (Note that £ can be empty.)

To complete the proof of Theorem 1, we extend the arrangerfi¢ata topo-
logical affine plane. We want to show first that there is a dioacp € dA that is a



transversal direction for every pds, Bj. For each paiB;,Bj, let §; be the open
arc of (BjB;)-separating directions. Now define the following antipaskzts:

S:=USi . s =USi
i<]j i<j

If there is no pointp € 0A that is a transversal direction for every pBjrB; then
we must haveA = §; US_. But sinceS; and.S_ are open sets that covéh there
must be a poinp € 5, NS_. But then we would have pseudolingsandl,, both
directed toward, and set$;, B, By, B with i < j andk < I, such thaB; C h;.(l1),
Bj C h_(I1), Bk C h_(l2), andB; C h(l2). Itis then easy to check that there would
always be some triple that violates the transversal assommsee Figure 2 for a
typical case.

Figure 2: Ifi <Kk, ﬁlikl; if k<i, ﬂlkij

This means that there is a directigre 0A that is a transversal direction for
every pairB;, B;. It follows thatq is not a separating direction for any p&i;, Bj,
so that a pseudoline in directigrsweeping through the TAP must pass simultane-
ously through all the sef®; at some point. This completes the proof.

Remarks:

1. Itis not hard to see that Theorem 1 is equivalent to theviatig.

Theorem 3. SupposeL is an arrangement of pseudolines in the affine plane. For
each triple i< j <k in[1, n], select three (not necessarily distinct) points belonging
to the same pseudoline 6f and label them,ij, k, with the point labeled j between
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the other two (or possibly equal to one or both). Then thera gseudoline |
extending the arrangement such that for each & [1,n] there are points labeled i
in both (closed) halfspaces bounded by I.

2. As in the original Hadwiger theorem, one cannot strengthe conclusion of
Theorem 1 to include the assertion that the common traraversets the sets in
the order 12,...,n (see[14] for an example). But it is easily seen that, a$ld],
that stronger assertion follows if we are willing to assuimet everysix of the sets
are met in a consistent order; the argument is the sematgtis mutandis

Theorem 4. Suppose B...,B, is a family of at least six connected compact sets
in the plane such that for each< f < g< h<i < j <k <nthereis a pseudo-
line ltgnijk meeting each of BBy, By, Bj, Bj, Bk at points @, pg, Pn, Pi, Pj, Pk, Not
necessarily distinct, contained iry B3q, By, Bj, Bj, Bk, respectively, and occurring
in that order on fgnijk. Suppose further that the pseudolinggij constitute an
arrangemen#d. Then there exists a pseudoline | that extends the arrangerme
and meets each all the setg,B ., B, in that order.

The example iff14] showing that the number 6 in the corresponding result for
straight lines and convex sets is tight does not seem corrtmre is an example,
however, showing that the result would fail for a collectBq ..., Bg of convex
sets if we assumed only that every five were met in a consistelet; here every
five sets have a transversal meeting them in numerical dsdeall six do not:

Figure 3
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3. In the process of proving Theorem 1, we have actually prdkie following
(stronger) theorem about TAPs:

Theorem 5. If By,...,B, is a family of connected compact sets in a topological
affine plane? with the property that for an§ <i < j < k < nthere is a pseudoline
of ¢ meeting each of BBj, By in that order, then there is a pseudolineline Bf
meeting all the sets;B

This raises the question: What other transversal theoreteaeéto TAPs?

4. Finally, what about higher dimensions? The notion of dlogical plane’ ex-
tends only trivially to dimensior 3, since, as is well-known, Desargues’s theorem
holds automatically in higher dimensions and angimensional “topological pro-
jective space” is consequently isomorphic to the usuakgptije spac@d. Never-
theless, one may ask: Does Theorem 1 extend in some way, andion> 2, to a
result about (finite) arrangements of pseudohyperplamsveasals?
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