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Abstract

We generalize the Hadwiger theorem on line transversals to collections
of compact convex sets in the plane to the case where the sets are connected
and the transversals form an arrangement of pseudolines. The proof uses the
embeddability of pseudoline arrangements in topological affine planes.

In 1940 Santaló showed[12], by an example, that Vincensini’s proof[13] of
an extension of Helly’s theorem was incorrect. Vincensini claimed to have proven
that for any finite collectionS of at least three compact convex sets in the plane,
any three of which were met by a line, there must exist a line meeting all the sets.
This would have constituted an extension of the planar Hellytheorem[10], which
showed that the same assertion holds if “line” is replaced by“point.” The Santaló
example was later extended by Hadwiger and Debrunner[9] to show that even if
the convex sets are disjoint the conclusion still may not hold.

In 1957, however, Hadwiger showed that the conclusion of thetheoremis valid
if the hypothesis is strengthened by imposing a consistencycondition on the order
in which the triples of sets are met by transversals:�Supported in part by NSF grant CCR-0049070 and NSF Career Award 0133597.
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Theorem (Hadwiger[8]). If B1; : : : ;Bn is a family of disjoint compact convex sets
in the plane with the property that for any1� i < j < k� n there is a line meeting
each of Bi;B j ;Bk in that order, then there is a line meeting all the sets Bi.

In 1988, the second and fourth authors found a generalization of Hadwiger’s
theorem to the case of hyperplane transversals[4], and this in turn was subse-
quently extended in[11] and[14], culminating in the following result:

Theorem (Anderson-Wenger[1]). Let A be a finite collection of connected sets
in Rd . A has a hyperplane transversal if and only if for some k,0� k < d, there
exists a rank k+1 acyclic oriented matroid structure onA such that every k+2
members ofA are met by an oriented k-flat consistently with that orientedmatroid
structure.

Our purpose in this paper is to extend the original Hadwiger theorem in a dif-
ferent direction—replacing “lines” by “pseudolines.” Apseudolinein the affine
plane is simply the homeomorphic image of a line. If that wereall, the theorem
would be true trivially: for any finite collection of sets there is a pseudoline meet-
ing them in any prescribed order! (Of course this needs a suitable interpretation in
the case where the sets are not mutually disjoint; see below.) But to reflect more
accurately the properties of sets of lines in the plane, one insists that all the pseu-
dolines under consideration form anarrangement, which means that they are finite
in number, that any two meet exactly once, where they cross, and (for technical
reasons) that they do not all pass through the same point.1 (For examples of pseu-
doline arrangements that are not isomorphic, in a natural sense, to arrangements of
straight lines, see, e.g.,[3].) Furthermore, given a pseudoline arrangementA we
say that a pseudolinel extendsA if A [flg is also an arrangement of pseudolines.
Thus the theorem we are going to prove is the following:

Theorem 1. Suppose B1; : : : ;Bn is a family of connected compact sets in the plane
such that for each1 � i < j < k � n there is a pseudoline li jk meeting each of
Bi;B j ;Bk at points pi ; p j ; pk, not necessarily distinct, contained in Bi;B j ;Bk, re-
spectively, with pj lying between pi and pk on li jk . Suppose further that the pseu-
dolines li jk constitute anarrangementA . Then there exists a pseudoline l that
extends the arrangementA and meets each set Bi.

As in Wenger’s generalization[14], we do not assume the sets to be disjoint or
even convex, merely connected. And in fact we will prove Theorem 1 by general-
izing Wenger’s proof, and by using the following result on topological planes:

1This is actually the definition of a “pseudoline arrangement” in the projective plane, while in the
affine plane one allows pseudolines also to be “parallel”; ina finite arrangement, however, pseudo-
lines can always be perturbed slightly to meet “at finite distance,” and we will assume this whenever
convenient.
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Theorem (Goodman-Pollack-Wenger-Zamfirescu[7]). Any arrangement of pseu-
dolines in the projective plane can be extended to a topological projective plane.

Here, atopological projective planemeansP2, together with a distinguished
collectionL of pseudolines, one for each pair of points, varying continuously with
the points, any two meeting (and crossing) exactly once. If we call a topological
projective plane with one of its distinguished pseudolinesremoved atopological
affine plane(TAP), the theorem above can trivially be modified to read:Any ar-
rangement of pseudolines in the affine plane can be extended to a TAP. We will use
it in this form.

For background on pseudoline arrangements as well as on geometric transver-
sal theory, the interested reader may consult the followingsurveys:[2, 3, 5, 6, 15,
16].

We now introduce some notions that will be used in the proof ofthe theorem.
SinceP2 can be modeled by a closed circular disk∆ with antipodal points on

the boundary∂∆ identified, we will model our TAP by using int∆, the interior of
∆, and call two pseudolines “parallel” if they meet on∂∆. (From now on, whenever
we speak of “pseudolines” in the TAP, we will mean members of the distinguished
family of pseudolines constituting its “lines.”) Anarrangementof pseudolines is
thus a finite set of Jordan arcs, each joining a pair of antipodal points of∂∆, any two
meeting (and crossing) exactly once, or possibly at their endpoints (the “parallel”
case).

We will also speak ofdirectedpseudolines, which corresponds to specifying
one of the antipodal points where the pseudoline meets∂∆. Thus it will make
sense to say: letp be a point on∂∆ and let lp be a pseudoline in the direction
p. Further, when we direct a pseudoline, we specify a positiveand negative open
“pseudohalfspace” bounded by that line, determined with respect to a fixed orien-
tation of ∆. We denote these halfspaces byH+(lp) andH�(lp), respectively; see
Figure 1.

Now let A andB be two connected compact sets in our TAP and letp 2 ∂∆.
If there is a pseudoline in the direction ofp that contains pointsa2 A andb2 B,
with eithera = b or a precedingb on the pseudoline, we say thatp is an(AB)-
transversal direction. If there is a pseudolinelp that strictly separatesA andB such
thatA� H+(lp) andB� H�(lp), we say thatp is a(AB)-separating direction.

Notice that a given direction can be both an(AB)-transversal direction and a(BA)-transversal direction; even the same pseudoline, in fact,can meetA beforeB
andB beforeA in this sense.

Notice also that given a pairA;B, each directionp is either a transversal direc-
tion or a separating direction forA;B; this follows by a simple continuity argument,
sweeping a pseudoline in directionp across the TAP.
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H+(lp) lp

H�(lp)
∂∆

p

Figure 1

Finally, notice that if there is an(AB)-separating directionp, then no direction
q can be both an(AB)-transversal direction and a(BA)-transversal direction. This
follows from the fact that if two pseudolines have the same directionq, they must
cross a given pseudolinel in directionp the same way: both fromH+(l) to H�(l),
or both fromH�(l) to H+(l).

It then follows from the definition of a TAP and the compactness of our sets
that the setTAB of (AB)-transversal directions is a closed arc of∂∆: If A and B
have a point in common then clearlyTAB = ∂∆. If not, consider any two distinct
directionsp1; p22 TAB. For i = 1;2 choose pointsai 2A; bi 2B along a pseudoline
l i in direction pi , with ai precedingbi , as well as parametrized arcsa(t) � A and
b(t)� B from a1 to a2 (resp.b1 to b2). By continuity, the set of directions

����!
a(t)b(t)

must contain one of the two arcs on∂∆ joining p1 and p2. It follows that the set
TAB is itself an arc (possibly all of∂∆), and this must be closed by the compactness
of the setsA andB.

We have thus proved the following:

Lemma 2. Let A and B be connected compact sets in the plane. Then

∂∆ = TAB[SAB[TBA[SBA;
where TAB = �TBA is the closed arc corresponding to the(AB)-transversal direc-
tions, and SAB=�SBA is the open arc corresponding to the(AB)-separating direc-
tions. (Note that SAB can be empty.)

To complete the proof of Theorem 1, we extend the arrangementA to a topo-
logical affine plane. We want to show first that there is a direction p2 ∂∆ that is a
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transversal direction for every pairBi;B j . For each pairBi;B j , let Si j be the open
arc of(BiB j)-separating directions. Now define the following antipodalsets:

S+ =[
i< j

Si j ; S� =[
i< j

Sji :
If there is no pointp2 ∂∆ that is a transversal direction for every pairBi;B j then
we must have∂∆ = S+[S�. But sinceS+ andS� are open sets that cover∂∆ there
must be a pointp2 S+\S�. But then we would have pseudolinesl1 and l2, both
directed towardp, and setsBi;B j ;Bk;Bl with i < j andk< l , such thatBi � h+(l1),
B j � h�(l1), Bk� h�(l2), andBl � h+(l2). It is then easy to check that there would
always be some triple that violates the transversal assumption; see Figure 2 for a
typical case.
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l1 l2

p

Figure 2: If i < k, 6 9 l ikl ; if k< i, 6 9 lki j

This means that there is a directionq 2 ∂∆ that is a transversal direction for
every pairBi;B j . It follows thatq is not a separating direction for any pairBi;B j ,
so that a pseudoline in directionq sweeping through the TAP must pass simultane-
ously through all the setsBi at some point. This completes the proof.

Remarks:

1. It is not hard to see that Theorem 1 is equivalent to the following.

Theorem 3. SupposeL is an arrangement of pseudolines in the affine plane. For
each triple i< j < k in [1;n℄, select three (not necessarily distinct) points belonging
to the same pseudoline ofL , and label them i; j;k, with the point labeled j between
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the other two (or possibly equal to one or both). Then there isa pseudoline l
extending the arrangementL such that for each i2 [1;n℄ there are points labeled i
in both (closed) halfspaces bounded by l.

2. As in the original Hadwiger theorem, one cannot strengthen the conclusion of
Theorem 1 to include the assertion that the common transversal meets the sets in
the order 1;2; : : : ;n (see[14] for an example). But it is easily seen that, as in[14],
that stronger assertion follows if we are willing to assume that everysixof the sets
are met in a consistent order; the argument is the same,mutatis mutandis.

Theorem 4. Suppose B1; : : : ;Bn is a family of at least six connected compact sets
in the plane such that for each1� f < g< h< i < j < k� n there is a pseudo-
line l fghijk meeting each of Bf ;Bg;Bh;Bi;B j ;Bk at points pf ; pg; ph; pi ; p j ; pk, not
necessarily distinct, contained in Bf ;Bg;Bh;Bi ;B j ;Bk, respectively, and occurring
in that order on lfghijk. Suppose further that the pseudolines lfghijk constitute an
arrangementA . Then there exists a pseudoline l that extends the arrangement A

and meets each all the sets B1; : : : ;Bn in that order.

The example in[14] showing that the number 6 in the corresponding result for
straight lines and convex sets is tight does not seem correct. Here is an example,
however, showing that the result would fail for a collectionB1; : : : ;B6 of convex
sets if we assumed only that every five were met in a consistentorder; here every
five sets have a transversal meeting them in numerical order,but all six do not:

5

1
2

3
4

6

Figure 3
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3. In the process of proving Theorem 1, we have actually proven the following
(stronger) theorem about TAPs:

Theorem 5. If B1; : : : ;Bn is a family of connected compact sets in a topological
affine planeP with the property that for any1� i < j < k� n there is a pseudoline
of P meeting each of Bi;B j ;Bk in that order, then there is a pseudolineline ofP

meeting all the sets Bi .

This raises the question: What other transversal theorems extend to TAPs?

4. Finally, what about higher dimensions? The notion of ‘topological plane’ ex-
tends only trivially to dimension� 3, since, as is well-known, Desargues’s theorem
holds automatically in higher dimensions and anyd-dimensional “topological pro-
jective space” is consequently isomorphic to the usual projective spacePd. Never-
theless, one may ask: Does Theorem 1 extend in some way, in dimension> 2, to a
result about (finite) arrangements of pseudohyperplane transversals?

References

[1] L. Anderson and R. Wenger. Oriented matroids and hyperplane transversals.Adv. in
Math.119 (1996), 117–125.
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