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56 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYThe roadmap is stored as a graph whose vertices are points of S and whoseedges are semi-algebraic curves. Thus, the roadmap and the connecting subroutineenable us to decide whether or not two points x and y of S are in the same semi-algebraically connected component of S. Furthermore, if x and y are in the samesemi-algebraically connected component, we obtain a semi-algebraic path joiningthe two points which consists of certain branches of the roadmap and of the con-necting paths.The problem of deciding connectivity properties of semi-algebraic sets has at-tracted much attention. One motivation comes from robot motion planning (see[23]) where the free space of a robot (the subspace of the con�guration space ofthe robot consisting of those con�gurations where the robot is neither in con
ictwith its environment nor itself) can be modeled as a semi-algebraic set. In thiscontext it is important to know whether a robot can move from one con�gurationto another. This is equivalent to deciding whether the two corresponding points inthe free space are in the same connected component of the free space. This prob-lem was solved by Schwartz and Sharir [23] using Collins' method of cylindricalalgebraic decomposition [9]. The complexity of their solution is polynomial in dand s and doubly exponential in k. In 1987, John Canny [6] introduced the notionof a roadmap of a semi-algebraic set. He gave an algorithm [6, 7] constructinga roadmap for a semi-algebraic set whose complexity is sk(log s)dO(k4): Since thegiven semi-algebraic set might have (sd)k di�erent connected components, the partof the complexity depending on s in Canny's algorithm is nearly optimal. Furtherdevelopments can be found in [12, 15, 8, 16, 13, 2].In robot motion planning, the con�guration space of a robot is often a semi-algebraic subset con�ned to be a subset of an algebraic variety whose dimensionis signi�cantly smaller than the dimension of the real Euclidean space in which itis naturally embedded (see for example [17], page 65). In such a situation it is ofinterest to design algorithms which take advantage of this fact and whose complexityre
ects the dimension of this variety rather than the dimension of the ambient space.It is for this reason that we consider the problem of constructing a roadmap on asemi-algebraic subset of a variety Z(Q): We will present several algorithms andwhenever we mention their complexity it is the number of arithmetic operationsand comparisons in the ring generated by the coe�cients of the input polynomials.We present an algorithm for computing a roadmap of a semi-algebraic set S � Z(Q)de�ned by polynomials in P with complexity sk0+1dO(k2). Note that the complexityof the algorithm is separated into a combinatorial part depending on s and k0 andan algebraic part depending on d and k. We also present an algorithm which givena point of S de�ned by a polynomial of degree at most � constructs a path joiningthis point to the roadmap. The complexity of this algorithm is k0s�O(1)dO(k2): Inthe case of input polynomials with integer coe�cients of size bounded by b the bitcomplexity for computing the roadmap is b�sk0+1dO(k2) and the bit complexity forconnecting a point is b�k0s�O(1)dO(k2); where b� = b log b log log b. A preliminaryversion of the present paper appeared in [4].The rest of the paper is organized as follows. In section 2 we introduce thenotions of pseudo-critical values and special values, and present some results aboutthem that are crucial for our algorithms. In section 3 we give precise descriptionsof the input, output and complexity of several subroutines that we use in ouralgorithm. Next, in section 4, we develop some algorithmic tools that enable us



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 57to compute curves in a given algebraic set parametrized by the �rst coordinatesand to identify certain distinguished slices where our algorithm calls itself in onelower dimension. In section 5 we present an algorithm which given an algebraic setZ(Q) and a �nite subset M of Z(Q) constructs a roadmap of Z(Q) which containsM. In section 6 we introduce the notion of combinatorial level. It controls thecomplexity of an algorithm that constructs a uniform roadmap. In section 7 wepresent a roadmap algorithm for an arbitrary semi-algebraic set S de�ned by theset of polynomials P and lying in a bounded algebraic set Z(Q): The idea is toconstruct uniform roadmaps for a perturbed �nite set of polynomials on variousapproximating varieties close to Z(Q), for which the combinatorial level is k0 andto take the limit of the curves so constructed when the parameters of perturbationtend to 0. In order to ensure that the curve so constructed is connected in everyconnected component, we need to add curves connecting well chosen points to thevarious roadmaps on the approximating varieties. In section 8, we solve the sameproblem without the assumption that the variety Z(Q) is bounded.In order to assist the reader in section 3, we primarily cite the paper [1] for itsease of accessibility. 2. PreliminariesIf P is a �nite subset of R[X1; : : : ; Xk], then we write Z(P) for the set ofcommon zeroes in Rk of the polynomials in P. Note that, in a real closed �eld anyalgebraic set can be de�ned by a single equation by taking sums of squares. Thus,Z(P) = Z(PQ2P Q2). We use B(x; r) and S(x; r) to denote the open ball andsphere of center x and radius r respectively. Let Z(Q) � Rk be a smooth algebraichypersurface, i.e. an algebraic set de�ned by a polynomial Q such thatGrad(Q) = � @Q@X1 ; : : : ; @Q@Xk�is never 0 on Z(Q). A critical point of � on Z(Q) is a point of Z(Q) at whichthe gradient of Q is parallel to the X1-axis, and a critical value of � on Z(Q)is the projection on the X1-axis of a critical point of � on Z(Q). An immediateconsequence of the semi-algebraic implicit function theorem over a real closed �eld([5], page 56) is the following.Proposition 1. If x is not a critical point of � on Z(Q), then for r small enoughZ(Q) \B(x; r)<�(x) is semi-algebraically connected.The following property, well known over the �eld of real numbers R, is also trueover any real closed �eld R [11].Proposition 2. Let Z(Q) be a smooth algebraic hypersurface and let C be abounded semi-algebraically connected component of Z(Q)[a;b] on which � has nocritical value in [a; b]. Then, for every d 2 [a; b], Cd is semi-algebraically connected.Since the algebraic set Z(Q) may not be a smooth hypersurface we shall perturbthe polynomial Q in such a way that the zero set of the perturbed polynomial isa smooth hypersurface and the connectivity properties of Z(Q) will be controlledby pseudo-critical values which are the limits of critical values on the perturbedsmooth hypersurface. More precisely, we will perturb polynomials by in�nitesimalsas follows. We write Rh�i for the real closed �eld of algebraic Puiseux series in �with coe�cients in R ([5], pages 11 and 16). The sign of such an algebraic Puiseux



58 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYseries agrees with the sign of the coe�cient of its lowest degree term in �. This ordermakes � positive and in�nitesimal: its absolute value is smaller than any positiveelement ofR. The map lim� maps an element ofRh�i bounded overR, one that hasno negative powers of �, to its constant term. An element of Rh�i is in�nitesimalover R if it is mapped by lim� to 0. If S is a semi-algebraic subset of Rk, we denoteby SRh�i the subset of Rh�ik de�ned by the same equalities and inequalities thatde�ne S. An immediate consequence of the fact that a semi-algebraic subset of areal closed �eld is a �nite union of points and intervals is the following:Proposition 3. Let � be a �rst order sentence of the language of ordered �eldswith coe�cients in R[�], and let �(t) be the sentence obtained by substituting t 2 Rfor � in �. Then � is true in Rh�i if and only if there exists t0 in R such that forevery t 2 (0; t0), �(t) is true in R.Let S be a semi-algebraic subset of Rh�ik de�ned by polynomials in k variableswith coe�cients in R[�] which is non-empty, closed, and bounded over R: Let S0be the semi-algebraic subset of Rk+1 de�ned by substituting a new �rst variable Tfor � in the de�nition of S. The following is proved in [1] (see also [21]).Proposition 4. The set lim�(S) is the intersection of the closure of S0�0 with thehyperplane T = 0. If S is semi-algebraically connected, then lim�(S) is semi-algebraically connected.Given a bounded algebraic set Z(Q) � B(0;M ) � Rk de�ned by a polynomialQof degree � d, we adapt an idea of Gournay-Risler [13] and consider Z(Q1) � Rh�ikand Z(Q2) � Rh�ik+1 whereQ1 = (1� �)Q2 + �(X2d+21 + � � �+X2d+2k � kM2d+2);Q2 = (1� �)(Q2 +X2k+1) + �(X2d+21 + � � �+X2d+2k +X4k+1 � kM2d+2):The algebraic set Z(Q1) is a smooth algebraic hypersurface of Rh�ik bounded overR on which � has a �nite number of critical points [3].Similarly, the algebraic set Z(Q2) is a smooth algebraic hypersurface of Rh�ik+1bounded over R on which � has a �nite number of critical points. Note that acritical point of � on Z(Q2) must have its last coordinate 0 and thus its �rst kcoordinates de�ne a critical point of � on Z(Q1).Lemma 1. Let Z(Q) � B(0;M ) be a bounded algebraic set. Then, lim�(Z(Q1)) =lim� (Z(Q2)) = Z(Q).Proof. It is clear that lim�(Z(Q1)) � Z(Q). To show that Z(Q) � lim�(Z(Q1))we make the following observations. Given x 2 Z(Q), for every r > 0 in R thereis a y 2 B(x; r) such that Q(y) 6= 0. From this we conclude that Q1(x) < 0 andQ1(y) > 0. Hence there exists z 2 Rh�ik such that Q1(z) = 0 and lim� (z) = x:The proof for Z(Q2) is entirely similar.The algebraic set Z(Q2) has the following property which is not always enjoyedby Z(Q1).Lemma 2. Let Z(Q) � B(0;M ) be a bounded algebraic set. For every semi-algebraically connected component C of Z(Q)[a;b] there exists a semi-algebraicallyconnected component D of Z(Q2)[a;b] such that lim�(D) = C.



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 59Proof. Let x = (x1; : : : ; xk) be a point of CRh�i. There exists a unique pointf(x) = (x1; : : : ; xk; xk+1) in Z(Q2) for which xk+1 > 0. The mapping f is semi-algebraically continuous. Moreover if x = (x1; : : : ; xk) is in C, xk+1 2 Rh�i isin�nitesimal over R. Thus for every y in C, the point f(y) belongs to the con-nected component D of Z(Q2)[a;b] containing f(x). Since lim�(D) is connected(Proposition 4) and contained in Z(Q), lim�(D) = C:A pseudo-critical point of � on Z(Q) is the lim� of a critical point of � on Z(Q1).Note that a pseudo-critical point of � on Z(Q) is also the lim� of a critical point of� on Z(Q2). A pseudo-critical value of � on Z(Q) is the projection on the X1-axisof a pseudo-critical point of � on Z(Q). Note that the set of pseudo-critical valuesof � on Z(Q) is �nite since the number of critical points of � on Z(Q1) is �nite.Proposition 5. Let Z(Q) � B(0;M ) be a bounded algebraic set with [a; b] �[�M;M ]. Let C be a semi-algebraically connected component of Z(Q)[a;b]: If C[a;b)is not semi-algebraically connected, then b is a pseudo-critical value of Z(Q).Proof. By Lemma 2 there exists D; a semi-algebraically connected component ofZ(Q2)[a;b], such that C = lim�(D): According to Hardt's triviality theorem, thereexists a0 2 [a; b), such that for every d 2 [a0; b), C[a;d] is not semi-algebraicallyconnected. Hence, by Proposition 4, D[a;c] is also not semi-algebraically connectedfor every c 2 Rh�i with lim�(c) = d. Let c 2 [a0; b] � Rh�i be the smallest value sothat D[a;c] is semi-algebraically connected; then c is in�nitesimally close to b andaccording to Proposition 1, c is a critical value of Z(Q2). Hence b is a pseudo-criticalvalue.The following result appears in [13] for the case of the reals. We prove it for anarbitrary real closed �eld R.Proposition 6. Let Z(Q) � B(0;M ) be a bounded algebraic set with [a; b] �[�M;M ]. If C is a semi-algebraically connected component of Z(Q)[a;b] and ifc 2 (a; b) and [a; b]nfcg contains no pseudo-critical value of � on Z(Q), then Cc issemi-algebraically connected.Proof. Let D be a semi-algebraically connected component of Z(Q2)[a;b] for whichC = lim�(D): Note that, for every c0 2 [a; b], Dc0 is a union of semi-algebraicallyconnected components of Z(Q2)c0 : Clearly, there exists an in�nitesimal � suchthat the critical values of the map � on Z(Q2) in the interval [a; b], if they exist,lie in the interval [c � �; c + �]: We claim that D[c��;c+�] is semi-algebraicallyconnected. Let x; y be any two points in D[c��;c+�]: We will show that there existsa semi-algebraic path connecting x; y lying inside D[c��;c+�]: Since D itself is semi-algebraically connected, there exists a semi-algebraic path 
 : [0; 1] ! D, with
(0) = x; 
(1) = y; and 
(t) 2 D; 0 � t � 1: If 
(t) 2 D[c��;c+�] for all t 2 [0; 1], weare done. Otherwise, the path 
 is the union of a �nite number of closed connectedpieces 
i, each lying either in D[a;c��] , D[c+�;b] or D[c��;c+�] . By Proposition 2the connected components of Dc�� (resp. Dc+�) are in 1-1 correspondence withthe connected components of D[a;c��] (resp. D[c+�;b]) containing them. Thus, wecan replace each of the 
i lying in D[a;c��] (resp. D[c+�;b]) with end points in Dc��(resp. Dc+�), by another segment with the same end points but lying completelyin Dc�� (resp. Dc+�). We thus obtain a new semi-algebraic path 
0 connecting



60 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYx; y and lying inside D[c��;c+�] : It is clear that lim�(D[c��;c+�]) coincides withCc. Since D[c��;c+�] is bounded, Cc is semi-algebraically connected by Proposition4. According to Proposition 1, if Z(Q) is a smooth manifold, with x 2 Z(Q); �(x) =c and for some r, Z(Q)\B(x; r)<c = ;, then c is a critical value of Z(Q): Unfortu-nately, and contrary to what we claimed in [2, 4], we do not know whether we canconclude from the existence of some r, such that Z(Q) \B(x; r)<c = ;, that c is apseudo-critical value without the hypothesis that Z(Q) is a smooth hypersurface.More precisely, we do not know whether or not Lemma 1 announced in [2, 4] iscorrect. It is for this reason that we introduce the notion of a special value.De�nition 1. A special value of Z(Q) is a c 2 R for which there exists y 2 Z(Q1)with lim�(�(y)) = c, g(y) in�nitesimal and y a local minimumof g on Z(Q1), whereg(X) = kXi=2 @Q1@Xi 2= kXi=1 @Q1@Xi 2:Note that any pseudo-critical value of � on Z(Q) is a special value of Z(Q).Proposition 7. If Z(Q) is bounded and x is a point of Z(Q)c at which Z(Q) \B(x; r)<c is empty for a positive r, then c is a special value of Z(Q).Proof. The proposition is an immediate consequence of the following two lemmas.Lemma 3. Suppose that Z(Q) � B(0;M ) and x is a point of Z(Q)c at whichZ(Q) \B(x; r)<c is empty for some positive r. Then there is a point y 2 Z(Q1) \B(x; r) at which lim�(�(y)) = c and lim�(g(y)) = 0:Lemma 4. If y is a point of Z(Q1)\B(x; r) at which lim�(�(y)) = c and lim�(g(y))= 0, then c is a special value of Z(Q).Proof of Lemma 3. Note that the statement of the lemma can be translated intoa �rst order formula of the language of ordered �elds with parameters in R. Thisbecomes clear once we observe that by Proposition 4, the statement\there exists a point y 2 Z(Q1) such that lim� (�(y)) = c and lim�(g(y)) = 0; "is equivalent to the �rst order formula8� > 0 9� > 0 8t 0 < t < � 9 y Q1;t(y) = 0 ^ gt(y)2 + (�(y) � c)2 < �;where Q1;t and gt are the polynomials and rational functions obtained after re-placing � by t in the de�nitions of Q1 and g. By the transfer principle, it suf-�ces to prove the proposition over the reals R, which is what we now proceed todo. If there is a critical value of � on Z(Q1) in�nitesimally close to c, we aredone. Otherwise, suppose that there is no critical value of � on Z(Q1) in an in-terval (c � d; c + d)Rh�i with d 2 R. We can suppose without loss of generalitythat r < d. We argue by contradiction and suppose that for every y at whichQ1(y) = 0 ^ lim�(�(y)) = c, g(y) is not in�nitesimal. Since Z(Q) \ B(x; r)<c = ;,we know that for any y 2 Z(Q1) \ B(x; r)�c, lim�(�(y)) = c and thus g(y) isnot in�nitesimal. Let a 2 R be a positive number smaller than any value of g on



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 61Z(Q1) \B(x; r)�c. LetU 0 = ft 2 R j gt < a on Z(Q1;t) \B(x; r)�cg:Let U 00 be the set of t 2 R such that Z(Q1;t) has no critical value on (c� d; c+ d)and U = U 0 \ U 00. The set U is semi-algebraic and its extension to Rh�i contains�. Thus, it contains an interval (0; t0) by Proposition 3. For every t 2 (0; t0), letyt be a point in Z(Q1;t)\B(x; r)�c whose last k� 1 coordinates coincide with thelast k�1 coordinates of x (such a point must exist because Q1 is negative at x andpositive at the point (c� r; x2; : : : ; xk)).Consider the curve 
t on Z(Q1;t) through yt which at each of its points is tangentto the gradient of X1 on Z(Q1;t). The idea is to show that the direction of thetangent to 
t is always su�ciently close to the X1 direction so that 
t intersectsthe sphere S(x; r) at a point whose X1 co-ordinate is far from c:A straightforward computation proves that the gradient of X1 on Z(Q1;t) at apoint of Z(Q1;t) is proportional toG =  kXi=2 @Q1@Xi 2;�@Q1@X1 @Q1@X2 ; : : : ;�@Q1@X1 @Q1@Xk! :For every point of 
t, the vector G thus belongs to the half-cone C of center x, basedon the k�1-ball of radiusr1� aa and center (x1�1; x2; : : : ; xk) in the hyperplaneX1 = x1 � 1: It follows that the curve 
t is completely contained in C: Since thereis no critical value of � on Z(Q1;t) in (c � d; c + d), the curve 
t is de�ned over(c � d; c + d) and thus meets S(x; r) \ C. Since C \ S(x; r) \ Z(Q1;t) 6= ; is truefor every t 2 (0; t0) it follows from Proposition 3 that C \ S(x; r) \ Z(Q1) 6= ;.Thus, taking lim� of the point so obtained, B(x; r)<c \ Z(Q) 6= ;, which is acontradiction.Proof of Lemma 4. If g is zero anywhere that the �rst coordinate is in�nitesimallyclose to c, then c is a pseudo-critical value and we are done. Alternatively, we mayassume that g is non-zero in any slab of in�nitesimal width containing X1 = c.Let y be given by our hypothesis, i.e. lim�(�(y)) = c, lim�(g(y)) = 0: We let Cbe the semi-algebraically connected component of Z(Q1) containing y. De�ne vby �(y) = v. Then g attains its minimum on Cv at some point z 2 Cv: Let tbe this minimum. It is clear that t is in�nitesimal. Consider the set A = fw jminCw(g) � tg. This set A is closed, bounded, semi-algebraic, and thus a union ofclosed intervals [a1; b1][ : : :[ [ah; bh] with ai � bi < ai+1. Let [ai; bi] = [a; b] be theinterval containing v. If a and b are both in�nitesimally close to v take u and w sothat bi�1 < u < a = ai � b = bi < w < ai+1 with u and w in�nitesimally close to v.The minimumof g on C[u;w] occurs in the interior of the slab since it is smaller at Cvthan its minimum both on Cu and Cw. It follows that c is a special value of Z(Q).Assume on the contrary that [a; b] is such that a or b is not in�nitesimally close tov. We are going to prove that this leads to a contradiction, namely, that in thiscase Z(Q1) is not bounded over R: According to Hardt's triviality theorem, thereexists a family �j of smooth semi-algebraic curves parametrized by open segments(�j; �j) covering (a; b) (with the exception of a �nite number of points) such thatg(�j(x)) is smaller than t. If Tj(x) = (Tj;1(x); : : : ; Tj;k(x)) is the tangent vector to



62 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROY�j at (x; �j(x)), we haveTj;1 @Q1X1 + Tj;2 @Q1X2 + : : :+ Tj;k @Q1Xk = 0;�Tj;1 @Q1X1 = Tj;2@Q1X2 + : : :+ Tj;k @Q1Xk ;T 2j;1 � t1� tk(Tj;2; : : : ; Tj;k)k2:Thus, at every point on each of these curves, ����Tj;1(x)Tj;i(x) ���� <r kt1� t = t0 for some2 � i � k. Hence, we can suppose { subdividing further if needed and producingmore curves { that on each of these curves, ����Tj;1(x)Tj;i(x) ���� < t0 for some 2 � i � k.Let N be the number of the curves so obtained. We prove now that the interval(v; v+2MNt0) contains w such that minCw(g) > t: Suppose on the contrary that atevery value w 2 (v; v + 2MNt0);minCw(g) � t. Then there is an interval of lengthat least 2Mt0 over which the curve �j(x) is smooth and ����Tj;1(x)Tj;i(x) ���� is less than t0. Itfollows from the mean value theorem that the projection of this curve on the Xiaxis is bigger than 2M , which contradicts the fact that C � B(0;M ). Similarly,the interval (v � 2MNt0; v) contains u such that minCu(g) > t. Note that both uand w are in�nitesimally close to c. This contradicts the fact that a or b is notin�nitesimally close to v and concludes the argument.Consider the algebraic set Z de�ned by the k+ 1 polynomial equations in k+ 1variables (X1; : : : ; Xk; �) which are obtained by removing the denominators fromthe following equations: Q1 = 0; @Q1@X1 = � @g@X1 ; : : : ; @Q1@Xk = � @g@Xk : The local min-ima of g on Z(Q1) are contained in the projection of Z to the �rst k coordinates.A consequence of the proof of Lemma 4 is the following.Corollary 1. If C 0 is a semi-algebraically connected component of Z on which ghas an in�nitesimal local minimum on Z(Q1), then lim�(�(C 0)) is a single point.Proof. Let x be a point of C 0 where g has an in�nitesimal local minimum on Z(Q1)and let v = g(x). Note that g is constant on C 0: The projection ofC 0 on theX1-axis,�(C 0); is contained in A = fw j minCw(g) � vg where C is the semi- algebraicallyconnected component of Z(Q1) containing x: Since �(C 0) is semi-algebraically con-nected, following the proof of Lemma 4 we see that �(C 0) is contained in an in�ni-tesimal segment.Let S be a basic, closed, bounded semi-algebraic set de�ned asS = fx 2 Rk j 8P 2 P; P (x) � 0g;where the polynomials P 2 P are such that Z(P ) is bounded. A special value of Sis de�ned to be a special value of a Z(P 0) where P 0 � P: The following two lemmasplay a crucial role in the proof of the correctness of the Roadmap Algorithm. If Bis a semi-algebraic set, we denote by �B its closure in the Euclidean topology.



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 63Lemma 5. Let C be a semi-algebraically connected component of S[a;c], and letB1; : : : ; Bh be the semi-algebraically connected components of C[a;c): Then C =C1 [ : : :Ch [Ch+1 [ : : :[ CN where Ci = �Bi for 1 � i � h and for j > h, Cj is asemi-algebraically connected component of Z(Pj) \Cc where Pj � P:Proof. If x 2 C and x 62 S1�i�h �Bi, then there is a positive r such that C \B(x; r)<c = ;: If P 0 is the set of polynomials in P which vanish at x, then Z(P 0)\B(x; r)<c = ;. Hence, c = �(x) is a special value of Z(P 0) by Proposition 7. It isclear that the semi-algebraically connected component of Z(P 0) \Cc containing xis contained in C.Using the same notation, we have:Lemma 6. If there is an i; j 2 f1; : : : ; Ng such that Ci\Cj 6= ;, then c is a specialvalue of some Z(P 0) where Z(P 0) \Ci \Cj 6= ; and P 0 � P:Proof. The statement is clearly true in the case i > h or j > h by Lemma 5.Suppose, without loss of generality, that Ci = �B1; Cj = �B2, �B1 \ : : : \ �BI 6= ;and 1; : : : ; I is a maximal family with this property. Let x be a point of thisintersection. Clearly, x belongs to the boundary of S and the set, P 0 � P; ofpolynomials in P which vanish at x is not empty. According to Hardt's trivialitytheorem there is w 2 [a; c) such that Z(P 0)[w;c) is semi-algebraically homeomorphicto Z(P 0)w � [w; c) and C[w;c) is semi-algebraically homeomorphic to Cw � [w; c).Let D be the connected component of Z(P 0)[w;c] containing x. We consider twocases according to whether or not Dw is empty: If Dw is empty, then c is a specialvalue of Z(P 0) by Proposition 7.If Dw is not empty, then some semi-algebraically connected component of C[a;c)intersects Z(P 0) in every neighborhood of x. Suppose, without loss of general-ity, that it is B1. Consider a maximal subset of P, say P 00, such that Z(P 00)intersects B2 in every neighborhood of x. The set P 00 is non-empty and con-tained in P 0. According to Hardt's triviality theorem there is a w0 � w suchthat Z(P 00)[w0 ;c) is semi-algebraically homeomorphic to Z(P 00)w0 � [w0; c): Let Z bethe semi-algebraically connected component of Z(P 00)[w0;c] containing x. By themaximality of Z(P 00); there is a connected component Z1 of Z[w0;c) contained inB2[w0;c): Since Z(P 0) � Z(P 00) and Z(P 0)[w0 ;c) meets B1, Z(P 00)[w0 ;c) is not semi-algebraically connected. We conclude by Proposition 5 that c is a pseudo-criticalvalue, and hence a special value, of Z(P 00):3. Algorithmic toolsSign Determination Subroutine. The input is a Gr�obner basis for a zero-dimensional ideal I for which the quotient has dimension O(d)k, together witha list of s polynomials P whose degrees are all at most d. The output is the list ofnon-empty sign-conditions on the family P at the zeroes of I: The complexity ofthis algorithm is sdO(k) (see [1], section 3.1.4, page 1029).Thom encoding. Let f 2 R[X] and � 2 f0; 1;�1gdeg(f); then R(�) = fx 2 R jsignf (i)(x) = �(i)g is either a point, or an open interval, or empty ([5], page 37).If R(�) is not empty, � is the Thom encoding of the set R(�). If x is a root off , and � is the list of the signs of the derivatives of f at x (so that �(0) = 0),R(�) = fxg and � distinguishes x from all the other roots of f . The ordering of theroots can also be recovered from the Thom encodings [10]. The Thom encodings of



64 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYthe roots of a univariate polynomial f are computed using the Sign DeterminationSubroutine with input f and its derivatives. The complexity of this computationis �O(1) where � is the degree of f .Univariate representation. A k-univariate representation is a k + 2-tupleu = (f(T ); g0(T ); g1(T ); : : : ; gk(T ));of elements of R[T ] where deg(gi) � deg(f): The point p = (x1; x2; : : : ; xk) in R[i]kis associated to u if there exists a root t of f(T ) in R[i] such that xi = gi(t)=g0(t),for i = 1; : : : ; k.Real univariate representation. A real k-univariate representation is a pair(u; �) where u is a k-univariate representationu = (f(T ); g0(T ); g1(T ); : : : ; gk(T ))and � 2 f�1; 0; 1gdeg(f) is the Thom encoding of a root t� of f(T ) in R. Thepoint p = (x1; x2; : : : ; xk) in Rk is associated to (u; �) if xi = gi(t�)=g0(t�), fori = 1; : : : ; k, and (u; �) represents p:Projection Subroutine. The input is a univariate representationu = (f; g0; : : : ; gk):The output of the algebraic stage is a univariate polynomial h whose roots areg1(t)=g0(t) for all t which are roots of f inR[i]:The output of the sign determinationstage are the Thom encodings of the real roots of f and of the corresponding realroots of h.The resultant h(Y ) of h1(Y; T ) = f(T ); and h2(Y; T ) = Y g0(T ) � g1(T ) withrespect to T; is a polynomial in Y whose roots are the values of g1(t)=g0(t) wheret is a root of f . The algebraic stage of the subroutine computes h.In the sign determination stage of the subroutine, we �rst compute the Thomencoding of the real roots of f . Then, for every Thom encoding � of a root t� ofh, we compute the Thom encoding of the root of h which is equal to g1(t�)=g0(t�)using the Sign Determination Subroutine. If � is a bound on the degree of f , thecomplexity of the Projection Subroutine is �O(1) .Cell Representative Subroutine. The input is a polynomialQ of degree at mostd in k variables and the output is a set of k-univariate representations of degreeat most O(d)k. The points associated to these k-univariate representations meetevery semi-algebraically connected component (or cell) of Z(Q). The complexityof this subroutine is dO(k) ([1], section 3.1.2, page 1026).Special Values Subroutine. The input is a polynomial Q in R[X1; : : : ; Xk] ofdegree at most d and the output of the algebraic stage is a set of univariate polyno-mials of degree at most dO(k) whose roots in R contain the special values of Z(Q).In the sign determination phase we compute the Thom encoding of the roots in Rof the polynomials output by the algebraic stage. The description of the subrou-tine follows: the set Z � Z(Q1) � Rh�i is the algebraic set de�ned by the k + 1polynomial equations in k + 1 variables (X1; : : : ; Xk; �) obtained by removing thedenominators from the following equations:Q1 = 0; @Q1@X1 = � @g@X1 ; : : : ; @Q1@Xk = � @g@Xk :



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 65We use the Cell Representative Subroutine to �nd a set of k-univariate representa-tions with associated real points meeting every connected component of Z. In thealgebraic stage of the subroutine, we compute the polynomial h having as zeroesthe lim� of the �rst coordinates of these points (using the algebraic stage of theProjection Subroutine and the algebraic lim� process in [20]). In the sign determi-nation stage of the subroutine, we compute the Thom encodings of the zeroes of h.The complexity of this routine is dO(k).Sample Points on a Variety Subroutine. The input is a set of s polynomials,P � R[X1; : : : ; Xk], each of degree at most d and Q 2 R[X1; : : : ; Xk] of degreeat most d, with the variety Z(Q) of real dimension k0. The output is a set ofsk0O(d)k k-univariate representations such that the set of points associated to thesek-univariate representations meet every semi-algebraically connected component ofevery non-empty sign condition of P on Z(Q). This subroutine has complexitysk0+1dO(k) [3].Parametrized univariate representations. A parametrized k-univariate repre-sentation with parameter Y is a k + 2-tupleu = (f(Y; T ); g0(Y; T ); g1(Y; T ); : : : ; gk(Y; T ));of polynomials in R[Y; T ] where the degrees of the gi in T are not greater than thedegree of f in T .Parametrized Cell Representatives Subroutine. The input is a polynomialQ(Y;X1; : : : ; Xk) of degree d with coe�cients in R and the output is a set ofparametrized k-univariate representations U . For each specialization y; of the pa-rameter Y , the set of points associated with the k-univariate representations u(y) foru 2 U is a subset of the algebraic set de�ned by Q(y;X1; : : : ; Xk) = 0 and meets ev-ery semi-algebraically connected component of Z(Q)y . There are dO(k) k-univariaterepresentations output and the degree of each polynomial in these representationsis O(d)k: The subroutine is a special case of the Parametrized Cell RepresentativesSubroutine in [1] (section 5.1.2, page 1035) in which ` = 1, i.e. there is only oneparameter Y . The complexity of the subroutine is dO(k).Real univariate representations over an interval (a; b). A real k-univariaterepresentation over (a; b) is speci�ed by (A;�;B; �; u; �) where� a and b are roots of the univariate polynomialsA and B with Thom encodings� and �,� u = (f(Y; T ); g0(Y; T ); g1(Y; T ); : : : ; gk(Y; T )) is a parametrized k-univariaterepresentation,� � 2 f�1; 0; 1gdeg(f) is a sign condition such that for every y 2 (a; b) thereexists a real root t�(y) of f(y; T ) with Thom encoding �.To a real k-univariate representation over (a; b) is associated a curve segmentparametrized along the Y axis, i.e. a continuous semi-algebraic function from (a; b)to Rk: to each point y of (a; b) is associated the point of Rk with coordinates�g1(y; t�(y))g0(y; t�(y)) ; : : : ; gk(y; t�(y))g0(y; t�(y))� :



66 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYReal univariate representations over a point c. A real k-univariate repre-sentation of (A; u) where A is a univariate polynomial and u is a parametrizedunivariate representation with parameter Y is speci�ed by (A;�; u; �) where� � is the Thom encoding of a root c of the univariate polynomial A,� � 2 f�1; 0; 1gdeg(f) is a sign condition such that there exists a real root t� off(c; T ) with Thom encoding �.To the real univariate representation over c (A;�; u; �), is associated the pointof Rk+1 with coordinates �c; g1(c; t�)g0(c; t�) ; : : : ; gk(c; t�)g0(c; t�)� :Intersection of a real univariate representation over (a; b) with a hyper-plane Y = c. Given a real univariate representation (u; �) over (a; b) and a pointc of (a; b) described by a univariate polynomial A(Y ) the Thom encoding � ofthe root c of A, the intersection of (u; �) with the hyperplane Y = c is the realunivariate representation over c given by (A;�; u; �).Partition of the Y -axis associated to a familyA of univariate polynomials.The partition of the Y -axis associated to A is the ordered list y1 < : : : < yn of theroots of the polynomials of A each yi being speci�ed by a couple (Ai; �i) whereAi 2 A, Ai(yi) = 0 and �i is the Thom encoding of yi. The computation of thepartition associated to a family A of at most s polynomials of degree at most d isdone using the Sign Determination Subroutine in time s log sdO(1).Parametrized Real Roots Subroutine. The input is a parametrized k-uni-variate representation with parameter Yu = (f(Y; T ); g0(Y; T ); g1(Y; T ); : : : ; gk(Y; T ))and the output is a family Au � R[Y ], with the property that for each y thesigns of the polynomials in Au at y determine the number of complex roots off(y; T ), the number of real roots of f(y; T ); the Thom encodings of the real rootsof f(y; T ), as well as the degrees of f(y; T ) and of gcd(f(y; T ); f 0(y; T )). Thefamily Au consists of the principal subresultant coe�cients of f(Y; T ) and eachof its successive derivatives with respect to T , de�ning a partition of the Y -axisand a �nite set of real k-univariate representations over intervals and points of thispartition. The union of the curve segments and points associated are the pointsgi(t; y)=g0(t; y) for y and t in R with f(y; t) = 0.Algebraic Stage: Compute the �nite set Au � R[Y ] consisting of the principalsubresultant coe�cients of f(Y; T ) and each of its successive derivatives withrespect to T .Sign Determination Stage: The input is the familyAu and the output is thepartition of the Y -axis associated to Au: Over each open interval and pointof this partition compute the signs of the polynomials Au: Then compute foreach interval and point of the partition the list of Thom encodings of thereal roots of the polynomial f(Y; T ), outputting real univariate representa-tions over segments and points of the partition. This is done using the SignDetermination Subroutine.If the parametrized univariate representation is given by polynomials of degreebounded by D, the complexity of the Real Parametrized Univariate RepresentationSubroutine is DO(1).



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 67Limit of a Curve Segment Subroutine. The input is a real k-univariate rep-resentation over (a; b) with coe�cients in R["], v(") = (A("); �a; B("); �b; u("); �),such that the curve segment associated is bounded over R. Its output is the \limitof the curve segment when � tends to 0", i.e.: a partition of [lim�(a); lim�(b)] into a�nite number of open intervals and points, and a real k-univariate representationover these intervals and points such that the union of the curve segments and pointsassociated is the image under lim� of the original curve segment.The subroutine is a parametrized version of the Detect Bounded Roots Algorithmin [20]. If the input polynomials have degrees at most D; the complexity of thissubroutine is DO(1): 4. Curve Segments SubroutineThe Curve Segments Subroutine is the basic building block in our algorithms.Its input is1. a polynomial Q 2 R[Y;X1; : : : ; Xk]; for which Z(Q) is bounded and whosedegree is at most d;2. a setM ofm k+1-univariate representations u with deg u � �;with associatedpoints in Z(Q).The output is1. a �nite set U1 of parametrized univariate representations with parameter Y ,2. a family of univariate polynomials L1. The real zeroes of the polynomials inL1 are the distinguished values,3. a �nite set of real univariate representations over the intervals and points ofthe partition associated to L1,4. a �nite set M1 of pairs (L; u) with L 2 L1 and u a parametrized univariaterepresentation with parameter Y and their real univariate representations.The curve segments and points associated to the real univariate representationsoutput are contained in Z(Q) and satisfy the following properties.CS1: For every y 2 R the set of curve segments and points intersect everysemi-algebraically connected component of Z(Q)y:CS2: For each curve segment over an interval of the partition, there exists apoint over each extremity of the interval which belongs to the closure of the curvesegment.CS3: The real zeroes of L1 contain the special values of Z(Q) and the �rstcoordinates of the real points associated to M.The adjacency relations between curve segments and points are also output inthe subroutine.Curve Segments Subroutine.Algebraic Stage:1. Call the Parametrized Cell Representatives Subroutine, with inputQ[Y;X1; : : : ; Xk] to obtain U1.2. For each parametrized k-univariate representation in U1, call the algebraicstage of the Parametrized Real Roots Subroutine. Call the algebraicstage of the Special Values Subroutine to obtain a univariate polynomialwhose zeroes contain the Special Values. Call the algebraic stage of theProjection Subroutine to obtain the polynomials having as zeroes the



68 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROY�rst coordinates of the points associated toM. Collect all the univariatepolynomials so obtained in L1.3. Place the pairs (L; u) with L 2 L1 and u 2 U1 in a set M1. Add to M1the pairs (h; (f; g0; g2; : : : ; gk)) for u = (f; g0; g1; g2; : : : ; gk) in M and hthe projection of u.Sign Determination Stage:1. Call the sign determination stage of the Parametrized Real Roots Sub-routine.2. Compute the partition associated to L1, and intersect the real univariaterepresentation over intervals already obtained by hyperplanes Y = c withc a zero of L1.3. Determine adjacencies between curves and points, by using the Thomencodings of the real univariate representations over intervals and points.4. Sort the set of distinguished values in increasing order.5. Compute the real univariate representions of the elements of M1. Thereal points associated are called the distinguished points.4.1. Correctness of the Curve Segments Subroutine. To verify PropertyCS1; we use the properties of the the output of the Parametrized Cell Representa-tive Subroutine. By the correctness of the Parametrized Cell Representative Sub-routine, we have that for every y 2 R the union of the set of points associated tothe real univariate representations u; over the interval containing y; intersects everysemi-algebraically connected component of the algebraic set Z(Q(y;X)): To verifyProperty CS2; note that the algorithm outputs a set of real univariate representa-tions over all the intervals and points of the partition. Consider any open interval(ai; ai+1) of the partition, as well as a curve segment represented by (u; �) overthis interval, where u = (f(Y; T ); g0(Y; T ); : : : ; gk(Y; T )). Now, over the point ai ofthe partition, the subroutine outputs all points represented by (u; �0) for every �0corresponding to real roots of the polynomial f(ai; T ): Since the curve segment rep-resented by (u; �) is bounded and corresponds to some real root of f(ai + ai+12 ; T ),it is clear that one of the points represented by (u; �0) belongs to the closure of thiscurve.4.2. Complexity of the Curve Segments Subroutine. The total complexityof the subroutine is m logm�O(1)dO(k), using the complexities of the various sub-routines involved.5. Roadmap algorithm for an algebraic setWe construct a roadmap of an algebraic set, but for technical reasons (in order toensure the connectivity of the roadmap obtained) we shall construct the roadmapof an algebraic set passing through a �nite number of input points.5.1. Roadmap algorithm for a bounded algebraic set. We �rst describe analgorithm for the case of a bounded algebraic set. The input is1. a polynomial Q 2 R[X1; : : : ; Xk] whose total degree is at most d for whichZ(Q) is bounded,2. a set M consisting of m k-univariate representations de�ned by polynomialsof degree at most � .



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 69The algorithm is as follows. Call the Curve Segments Subroutine with X1 asparameter. In every hyperplane de�ned by X1 = a where a is a distinguishedvalue, make a recursive call to the algorithm in Rk�1 = ��1(a), with the followinginput: the polynomialQ(a;X2; : : : ; Xk); and the pairs (A; u) 2M1 with associatedreal points belonging to the �ber ��1(a).The output, denoted R(Z(Q);M); is a roadmap which contains the points as-sociated to M.Remark 1. Note that a is a root in R of a polynomial A whose degree is ei-ther � or dO(k). The polynomial Q(a;X2; : : : ; Xk) has its coe�cients in the ringD[a] = D[Y ]=A(Y ) rather than in D which is the ring generated by the coe�cientsof Q and of the polynomials de�ning the m real k-univariate representations inM. Thus, the computations in the next recursive call take place over the ringD[a] rather than in D: The algebraic part of the computation depends only on Awhile the sign determinations process takes into account the Thom encoding � ofa. Since the complexity of our algorithms is de�ned as the number of arithmeticoperations (including comparisons) in the ring D, we take into account the extracost of doing arithmetic operations in rings of the form D[a1]; : : : ;D[a1; : : : ; ak�1]when analyzing the complexity.5.1.1. Correctness of the algorithm. Abusing terminology we shall from now on usea geometric language to describe the output of our algorithms, keeping in mind thespeci�c form of their description.Let R(Z(Q);M) be the semi-algebraic set computed by our algorithm in thebounded case. We prove that R(Z(Q);M) satis�es the two roadmap conditionsRM1 and RM2. The proof is by induction on dimension. In the case of dimensionone, the roadmap properties are obviously true for the set we compute. Now assumethat the algorithm computes a correct roadmap for all dimensions less than k:That R(Z(Q);M) satis�es condition RM2 follows from property CS1 of the CurveSegments Subroutine. That R(Z(Q);M) satis�es condition RM1 is the content ofthe following two lemmas.Lemma 7. If c 2 (a; b) is a distinguished value such that [a; b] n fcg contains nodistinguished value of � on Z(Q) and C is a semi-algebraically connected componentof Z(Q)[a;b]; then R(Z(Q);M) \C is semi-algebraically connected.Proof. Since [a; b]n fcg contains no pseudo-critical value of the algebraic set Z(Q);we know, by Proposition 6, that Cc is semi-algebraically connected. Moreover, byproperty CS2 of the output of the Curve Segment Subroutine we know that anycurve segment in R(Z(Q);M) \ C has an end point in R(Z(Q);M)c. All theseend points are in the same semi-algebraically connected component of Cc; sinceCc is semi-algebraically connected. The algorithm makes a recursive call at everydistinguished value and hence at c: The input to the recursive call is the algebraicset Z(Q)c and the k-univariate representations of all distinguished points whichinclude the end points of the curves in R(Z(Q);M) \ C: Hence, by the inductivehypothesis they are connected by the roadmap algorithm in the slice. Therefore,R(Z(Q);M) \C is semi-algebraically connected.Lemma 8. If C is a semi-algebraically connected component of Z(Q); thenR(Z(Q);M) \C is semi-algebraically connected.



70 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYProof. Let x; y be two points of R(Z(Q);M)\C, and let 
 be a semi-algebraic pathin C from x to y. We shall use 
 to construct a path from x to y in R(Z(Q);M)\C.Let fv1 < v2 < � � �< vng be the set of distinguished values and choose ui such thatu1 < v1 < u2 < v2 < � � � < un < vn < un+1. There exists a �nite number of pointsof 
, x = x0; x1; : : : ; xN+1 = y, and semi-algebraic paths 
i from xi to xi+1 suchthat:1. 
 = S0�i�N 
i.2. 
i � C[u`(i) ;u`(i)+1 ].Let Ci be the semi-algebraically connected component of C[u`(i);u`(i)+1 ] contain-ing 
i. Since Ci \ Ci+1 is a �nite union of semi-algebraically connected compo-nents of C�(xi+1), R(Z(Q);M) \Ci \Ci+1 is not empty. Choose y0 = x; : : : ; yi 2R(Z(Q);M) \ Ci \ Ci+1; : : : ; yN+1 = y. Then yi and yi+1 are in the same semi-algebraically connected component of R(Z(Q);M) \C by Lemma 7.Remark 2. Note that it is unimportant here that the set of distinguished valuescontains special values, we only need it to contain pseudo-critical values. So ifwe are interested only in the roadmap of an algebraic set we can simplify slightlythe Curve Segments Subroutine and compute only pseudo-critical values in Step4. The special values are important in section 6 for the correctness of the UniformRoadmap Algorithm.5.1.2. Complexity analysis. The cost of a call to the Curve Segments Subroutineis m logm�O(1)dO(k) arithmetic operations in the ring D: We make recursive callsat m + dO(k) distinguished values. Note that in a recursive call at depth ` thecomputations are performed over a ring D[a1; : : : ; a`]; and a single arithmetic op-eration in D[a1; : : : ; a`] costs �O(1)dO(k`) operations in D: Thus, the total numberof arithmetic operations made in the ring D during the algorithm for the boundedcase is bounded by m logm�O(1)dO(k2):5.2. Roadmap algorithm in the unbounded case. Next we show how to mod-ify the algorithm presented above to handle the case when the input algebraic setZ(Q) is not bounded. If Z(Q) is not bounded, we �rst introduce a new variableXk+1 and a new variable 
 and replace Q by the polynomialQ
 = Q2 + (X21 + � � �+X2k+1 � 
2)2:We identify the real k-univariate representations of M with real k + 1-univariaterepresentations of M by setting the last coordinate equal to O.Note that the algebraic set Z(Q
) is bounded in Rk+1h1=
i. The roadmapalgorithm outputs a roadmap R(Z(Q
);M), composed of points and curves whosedescriptions involve 
. Let L be the set of all polynomials in D[
] whose signswere determined in the various calls to the Sign Determination Subroutine insidethe algorithm. We recall from [1] (section 2.6) the following de�nition.De�nition 2. Given a polynomial P = cqXq + � � �+ cpXp; q > p; cq; cp 6= 0;C(P ) = ( Xp�i�q( cicq )2)1=2;c(P ) = ( Xp�i�q( cicp )2)�1=2:



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 71Given a set of polynomials L, we de�ne C(L) = maxP2L C(P ); and c(L) =minP2L c(P ):We have the following lemma [1] (section 2.6, page 1020).Lemma 9. Given a polynomial P with coe�cients in an ordered domain D, con-tained in a real closed �eld R, the greatest absolute value of the roots of P is smallerthan C(P ); while the smallest absolute value of the non-zero roots of Q is greaterthan c(P ).Replace 
 in the polynomial Q
 by A = C(L) to obtain a polynomial QA.Replace 
 in the output roadmap by A to obtain a roadmap R(Z(QA);M):Whenprojected on Rk, this roadmap gives a roadmap R(Z(Q);M) \B(0; A). We nextcollect all the points (y1; : : : ; yk) in the roadmap which satisfy y21 + : : :+ y2k = A:Each such point is described by a univariate representation involving 
: We addthe curve obtained by treating 
 as a parameter and letting 
 vary over [A;1]; toget a roadmap R(Z(Q);M):The correctness of the algorithm in the unbounded case follows easily from thecorrectness of the algorithm in the bounded case. The complexity of the algo-rithm in the unbounded case coincides with the complexity of the algorithm in thebounded case.In the case that M is empty or a singleton, we have proven the following.Theorem 1. Let Q 2 R[X1; : : : ; Xk] be a polynomial whose total degree is at mostd: There is an algorithm whose output is a roadmap R(Z(Q)) of Z(Q). The numberof arithmetic operations used by the algorithm in the ring generated by the coe�-cients of Q is bounded by dO(k2). Let x 2 Z(Q) be a point which is represented by areal k-univariate representation (u; �) of degree t: There is an algorithm whose out-put C(x; Z(Q)) is a semi-algebraic path connecting x to R(Z(Q)). The number ofarithmetic operations used by the algorithm in the ring generated by the coe�cientsof Q and the coe�cients of the polynomials in u is bounded by �O(1)dO(k2).Proof. The complexity of the roadmap algorithm (with M = ;) is clear after thelast complexity analysis. The connecting algorithm is as follows: if the �rst coor-dinate x1 of x is not one of the distinguished values of R(Z(Q)) on the X1-axis,compute the �nite set M of real k-univariate representations whose associatedpoints are the intersections of the hyperplane X1 = x1 with R(Z(Q)) and constructR(Z(Q)x1 ;M[fxg): Otherwise, go on with the second coordinate. Its complexityis clear after the preceding complexity analysis.6. Uniform algorithms6.1. Combinatorial level. Given a polynomial Q and a set of polynomials P wede�ne the combinatorial level of the system (Q;P) to be the minimum number `satisfying:1. No more than ` of the polynomials in P have a real zero in common with Q:2. Any real zero common to Q and to ` polynomials of P is isolated.If the combinatorial level of (Q;P) is `, then for every P 2 P the combinatorial levelof (Q2+P 2;P nfPg) is at most `�1: Note also that the value of the combinatoriallevel can be found with complexity s`+1dO(k) using Theorems 1.3.2 and 4.2.1 of [1].We say that a �nite set of polynomials P is in general position over Z(Q) ofdimension k0 if no k0+1 polynomials of this set have a real zero in common with Q



72 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYand if the only real zeroes common to k0 polynomials of the set and Q are isolated.Thus, if the set of polynomials P is in general position over Z(Q) of dimension k0,then the combinatorial level of the system (Q;P) is at most k0:6.2. The connecting subroutine. We suppose that the combinatorial level ofthe system (Q;P) is at most ` � k:Given a sign condition � 2 f0; 1;�1gP on P, the corresponding weak sign con-dition �(P ) is � 0 if �(P ) = 1, is � 0 if �(P ) = �1 and is = 0 if �(P ) = 0.Denote by R(�) = fx 2 Rk j 8P 2 P; sign(P (x)) = �;Q(x) = 0g and byR(�) = fx 2 Rk j 8P 2 P; P (x) = �(P ); Q(x) = 0g which are the realizationsof � and � on Z(Q). For p 2 Z(Q) we denote the sign condition on P at p by �pand say that �p is the weak sign condition de�ned at p. We denote by Pp the setof polynomials of P vanishing at p.The connecting subroutine takes as input a point p 2 Z(Q), described by poly-nomials of degree at most � . The output is a semi-algebraic path �p � R(�p)�(p)which connects p to some roadmap R(Z(Q;P 0)) where P 0 is a subset of P: Thepath �p consists of a sequence of semi-algebraic paths 
p;1 joining p = p0 to p1, 
p;2joining p1 to p2; up to 
p;j joining pj�1 to pj with j � `. Each 
p;i is contained inZ(Q;Ppi�1), and no polynomial of P n Ppi�1 vanishes on 
p;i: These properties of�p make clear that �p is contained in R(�p).The algorithm proceeds as follows: First construct a roadmap R(Z(Q;Pp)).Compute the set Mp;P which consists of the real k-univariate representations rep-resenting the points in R(Z(Q;Pp))�(p). Next, construct the roadmapR(Z(Q;Pp)�(p); fpg [Mp;P):If p is connected to R(Z(Q;Pp)) by a path � where no polynomial of P n Ppvanishes, the connection is done and the algorithm terminates. Otherwise, supposethat � � R(Z(Pp)�(p); fpg) connects p to R(Z(Pp)) and a polynomial of P n Ppvanishes on �. Given p0 2 �; denote by �p0 the connected subset of � connecting pto p0. Let p1 be the point of � such that� Pp1 strictly contains Pp,� no P n Pp vanishes on �p1 n fp1g.Replace p by p1 and iterate. Since the combinatorial level of (Q;P) is bounded by`, the algorithm terminates after `0 � ` iterations. The degrees of the univariaterepresentations representing p1; : : : ; p`0 are bounded by �dO(k2): Thus the complex-ity of the connecting subroutine is clearly `s�O(1)dO(k2): The number of di�erentcurve segments in the connecting path is at most `dO(k2):6.3. Uniform roadmap. In subsection 6.5 we describe an algorithm with input,1. a polynomial Q for which Z(Q) is bounded,2. a set of at most s polynomials P such that the combinatorial level of thesystem (Q;P) is at most `.We further assume that d is a bound on the degree of Q as well as on all thepolynomials in P. The algorithm outputs a one-dimensional semi-algebraic setR(Q;P) which is contained in Z(Q) and is called a uniform roadmap of (Q;P). Auniform roadmap of (Q;P) is a union of open curve segments and points satisfying



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 73the following two conditions:URM1 The signs of the polynomials P 2 P are constant on each curve segment.URM2 The intersection of this set with any basic closed semi-algebraic set S� ;de�ned by Q = 0 and a weak sign condition � on P; is a roadmap R(R(�)):The basic idea behind the algorithm is simple. First, for each at most ` elementsubset P 0 of P we construct a roadmap for the algebraic set de�ned by both Q andP0, i.e. Z(fQg[P 0). We next recurse at each pair (v;P 0), where v is a distinguishedvalue and Z(P 0) is its associated algebraic set. In the recursion, Q is replaced bythe algebraic set Z(fQg [ P 0).6.4. Finger Subroutine. We describe a subroutine which, given a polynomialQ; a set of polynomials P and a point p in Z(Q) with �(p) = v; constructs a�nite number of semi-algebraic paths starting at p so that every semi-algebraicallyconnected component of every realizable sign condition of P in Z(Q) su�cientlynear and to the left of p contains one of these paths without the point p: Thesubroutine takes as input a polynomial Q and a �nite set of polynomials P forwhich the combinatorial level of the system (Q;P) is bounded by ` and a pointp 2 Z(Q) de�ned by polynomials of degree at most dO(k): We consider the set�p of sign conditions � such that R(�) \ Z(Q) \B(p; r)<v is non-empty for somesu�ciently small r. The output is a set of semi-algebraic paths starting at p withthe property that for some su�ciently small r and for every � in �p every semi-algebraically connected component of R(�)\Z(Q)\B(p; r)<v contains one of thesepaths without the end point p: Let the set of polynomials in P (possibly empty)that are zero at p be Pp, and let B(p; �) be a ball of radius � and center p; where� is an in�nitesimal. Using the Sample Points on a Variety Subroutine with thepolynomials de�ning B(p; �)<v along with the polynomials Pp as input, we �nd apoint pi(�) in every semi-algebraically connected component of every non-emptysign condition of the polynomials in Pp in B(p; �)<v: Moreover, lim�(pi) = p. Fora small enough t0, replacing � by t where 0 � t � t0 gives for each pi(�) semi-algebraic paths pi(t); which join p to points in every semi-algebraically connectedcomponent of the non-empty sign conditions of P intersected with Z(Q)\B(p; �)<v:The complexity of this subroutine is easily seen to be the cost of calling the SamplePoints Subroutine, with O(`) polynomials, in k variables, X1; : : : ; Xk: Since atmost ` polynomials can be zero at p, we have at most 3` conditions to consider atp. Using the proof of the complexity bound of the Sample Points Subroutine in [1],we conclude that the complexity of the Finger Subroutine is 3`dO(k):6.5. The Uniform Roadmap Algorithm. Note that if the combinatorial level ofthe system (Q;P) is 0, then the roadmapR(Z(Q)) is a uniform roadmap for (Q;P)since on every semi-algebraically connected component of Z(Q) the signs of thepolynomials in P are �xed and not zero. Moreover, this algorithm has complexitysdO(k2): If k = 1, then we can sort the roots of the univariate polynomial Q: Theroadmap consists of the zeroes of Q together with the signs of the polynomials in Pat these points. The algorithm has complexity sdO(1): The algorithm will call itselfrecursively and in each recursive call either the combinatorial level or the numberof variables will strictly decrease. The two base cases, when the combinatorial levelis zero or when the number of variables is one, have been discussed above.



74 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYInput A polynomial Q of degree at most d for which Z(Q) is bounded, a set ofpolynomialsP whose degrees are bounded by d for which the combinatoriallevel of the system (Q;P) is bounded by `.Output A semi-algebraic set R(Q;P) satisfying conditions URM1 and URM2 ofsection 6.3.Step 0 If ` = 0 or if k = 1; compute R(Q;P) and stop.Step 1 Use the Curve Segment Subroutine for the sets Z(Q) and Z(Q;P 0) =Z(Q2 +Pp2P0 P 2) for each P 0 � P of cardinality at most `. We labeleach curve segment constructed on Z(Q;P 0) by that algebraic set. The endpoints of these curve segments are also labeled by the algebraic set Z(Q;P 0)and are placed in a set of distinguished points. Their �rst coordinates areplaced in a set of distinguished values.Step 2 Compute the intersection of each of these curve segments, with Z(P ) foreach P 2 P: Note that the intersection of a curve segment with the zero setof a polynomial is either the segment itself, or a �nite set of points (possiblyempty), and we check this by substituting the univariate representation ofthe curve segment into each polynomial in P and checking whether theresulting univariate polynomial vanishes identically or not. If the intersec-tion is the curve segment itself, we ignore this intersection. Otherwise, thepoints of intersection yield a partition of the curve segment. We add thesepoints to our set of distinguished points. If Z(Q;P 0) is the algebraic setlabeling a given curve segment, and P is a polynomial which vanishes atone of these new end points, then Z(Q;P 0 [ fPg) is the algebraic set thatlabels this new end point. The signs of the polynomials of P do not changeon any segment of this partition. Moreover, we store the sign vector of theset of polynomials P on each curve segment and point computed above.The X1 coordinates of all distinguished points are computed and appendedto the set of distinguished values.Step 3 For every distinguished point p and algebraic set Z(Q;P 0) which labels pcompute the set Mp;P0 which consists of the real k-univariate representa-tions representing the points of intersection of the curves constructed onZ(Q;P 0) in Step 1, and the slice ��1(v) where v = �(p): Call the algorithmrecursively to construct a uniform roadmap, connect the points associatedto Mp;P0 to R(Q+PP2P0 P 2;P nP 0) using the preceding connecting sub-routine. Note that the combinatorial level of the system passed to therecursive call is at most ` � l; and the number of variables is k � 1:Step 4 For each distinguished point p and the corresponding distinguished slice,use the Finger Subroutine to construct curves joining p to points in everysemi-algebraically connected component of every realizable sign conditionof the set of polynomials P intersected with Z(Q)\B(p; rp)<�(p); for somesmall enough rp: Let the other end points of these curves be p1; : : : ; pj:Step 5 For each pi; 1 � i � j; in the previous step we compute a roadmap, �pi ; forthe algebraic set Z(Q) in the slice X1 = �(pi), which passes through pi aswell as the set of pointsMpi = R(Q)�(pi): Compute the intersections of thepoints and curve segments de�ning �pi with Z(P ) for each P 2 P: Notethat �pi is represented as a set of disjoint curve segments and points eachlabeled by a real univariate representation over an interval along with alist of adjacencies between the points and curve segments. We construct agraph whose vertices are the points in the above representation and whose



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 75edges are pairs of vertices which are adjacent to a common curve. We callthis graph the graph of �pi : Retain the connected component of the graphof �pi which contains pi and is contained in S(pi). We call this set �0pi :Step 6 For each pi in the previous step, either �0pi \Mpi 6= ;; or �0pi intersectsZ(P ) at a point qi for some P 2 P: In the former case, repeat Step 4 withthe next pi in the list. In the latter case, repeat Step 4 with pi replaced byqi and replace the algebraic set Z(Q) by Z(Q2 + P 2):Step 7 We output all the curve segments and distinguished points computed inSteps 2 to 6, with each labeled by the sign condition it satis�es. This isthe set R(Q;P):6.6. Proof of correctness of the Uniform Roadmap Algorithm. Note thatSteps 2, 4, and 6 of the algorithm make it evident that R(Q;P) satis�es conditionURM1. We proceed to show that it satis�es condition URM2. Without loss ofgenerality, let S be the semi-algebraic set de�ned by Q = 0; P � 0; 8 P 2 P andlet R(S) = S \R(Q;P):Proposition 8. The set R(S) is a roadmap of the set S.Proof. We �rst show that R(S) satis�es RM2. For any c 2 R such that Sc is non-empty, and for any semi-algebraically connected component C of Sc; there exists asemi-algebraically connected componentC 0 of a non-empty algebraic set, Z(Q;P 0)c;such that C 0 � C (see Proposition 2 in [1]). Since in the algorithm we constructcurves using the Curves Segment Subroutine on all non-empty algebraic sets of theform Z(Q;P 0); it is clear that R(S) intersects C: Thus R(S) satis�es RM2. Wenext show that R(S) satis�es condition RM1 as well. This is the content of thefollowing two lemmas. Let v1; : : : ; vn be the set of distinguished values computedby the algorithm.Lemma 10. For 1 � i � n; if R(S)�vi satis�es condition RM1 for the set S�vi ,then R(S)<vi+1 satis�es condition RM1 for the set S<vi+1 :Proof. Let C be a semi-algebraically connected component of S<vi+1 , and let � bea semi-algebraically connected component of R(S)\C[vi;vi+1): The set �vi 6= ; sincethere is no distinguished value in (vi; vi+1). It is then clear that R(S) \ C�vi [ �is semi-algebraically connected. Since R(S) \C�vi is semi-algebraically connected,the conclusion follows.Lemma 11. For 1 � i � n; if R(S)<vi satis�es condition RM1 for the set S<vi ,then R(S)�vi satis�es condition RM1 for the set S�vi :Proof. Let C be a semi-algebraically connected component of S�vi : We prove thatR(S)\C is semi-algebraically connected. Let B1; : : : ; Bh be the semi-algebraicallyconnected components of S\C<vi:Then, by Lemma5, C = C1[� � �[Ch[Ch+1[� � �[CN where Ci = �Bi for 1 � i � h and for j > h, Cj is a semi-algebraically connectedcomponent of Z(Pj)\ Svi where P 0 � P; and vi is a special value of Z(Q;P 0): Let� = R(S) \ C and �(i) = R(S) \ Ci for 1 � i � N ; then � = Si �(i): First, weclaim that each �(j) is semi-algebraically connected. If Cj is a semi-algebraicallyconnected component of Z(Q;P 0)\Svi ; for some P 0 � P, then, since vi is a specialvalue for this algebraic set, �(j) is semi-algebraically connected by Step 3 of thealgorithm. Otherwise, by the hypothesis of the lemma, we know that �(j)<vi issemi-algebraically connected. Thus, �(j) can have at most one semi-algebraically



76 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYconnected component whose intersection with ��1(�1; vi) is non-empty, and allthe other semi-algebraically connected components of �(j) must lie in ��1(vi); andhence each of these must contain a distinguished point. But, by Steps 4 , 5 and 6 ofour algorithm, the distinguished points get connected to �(j)<vi . Thus, �(j) canhave only one semi-algebraically connected component. Moreover, if Cj \C 0j 6= ;;then �(j) and �(j0) are connected in R(S). This is so since according to Lemma 6,Cj\C 0j intersects an algebraic set which has vi as a special value, and thus containsa distinguished point which gets linked to both �(j) and �(j0): It follows easily that� is semi-algebraically connected. This proves the lemma.The proposition now follows by induction on i.6.7. Complexity. When ` = 0; it follows from the analysis of the algebraic casethat the complexity is sdO(k2):When k = 1; the complexity is sdO(1): In Step 1, thetotal number of calls to the Curve Segments Subroutine isP1�j<` �sj�; and each callcosts dO(k): Thus, the total cost of the calls to the Curve Segments Subroutine isbounded by s`�1dO(k) arithmetic operations in D: In Step 2, the cost of computingthe intersection of the curves computed with the zero sets of the polynomials in Pis bounded by s`dO(k); and the total cost of Step 2 is s`dO(k): In Step 4 the totalcost of the calls to the Finger Subroutine and linking is bounded by 3`s`+1dO(k):We next count the recursive calls. For each j; 0 � j < `, we make �O(s)j �dO(k)recursive calls to the algorithm with the system having combinatorial level ` � jand geometric dimension k � 1: Let T (s; d; `; k) denote the number of arithmeticoperations needed for the problem with these parameters. Since at any depth of therecursion the cost of a single arithmetic operation is bounded by dO(k2) arithmeticoperations in D; we ignore the fact that the ring changes as we go down in therecursion. Thus, we have the following recurrence:T (s; d; `; k) � X0�j�`�O(s)j �dO(k)T (s; d; `� j; k � 1) + O(3`s`+1dO(k)); ` > 0; k > 1;T (s; d; 0; k) = sdO(k2); k > 1;T (s; d; `; 1) = sdO(1):This recurrence solves to T (s; d; `; k) = 3`s`+1dO(k2): It follows immediately thatthe total cost is still bounded by 3`s`+1dO(k2): If x 2 Z(Q) is a point represented bya real k-univariate representation (u; �) of degree �; the complexity of connecting xto some R(Q;P 0) is `s�O(1)dO(k2) by the complexity of the connecting subroutine.Thus we have proven the following theorem.Theorem 2. Given Q 2 R[X1; : : : ; Xk] with Z(Q) bounded, a set of at most spolynomials P � R[X1; : : : ; Xk] such that the combinatorial level of the system(Q;P) is at most `; and for which the degrees of the polynomials in P and Q arebounded by d: There is an algorithm which computes a uniform roadmap R(Q;P)using 3`s`+1dO(k2) arithmetic operations in the ring generated by the coe�cientsof Q and the coe�cients of the elements of P. Given p 2 Z(Q) represented by areal k-univariate representation (u; �) of degree � there is an algorithm which con-structs a semi-algebraic path from p to R(Q;P). This algorithm uses `s�O(1)dO(k2)



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 77arithmetic operations in the ring generated by the coe�cients of Q, the coe�cientsof the elements of P as well as the coe�cients of the polynomials in the real k-univariate representation (u; �).7. Roadmap algorithm for the bounded case7.1. Basic idea. We give a roadmap algorithm for an arbitrary semi-algebraicset S, de�ned by the �nite set of polynomials P which is contained in a boundedalgebraic variety Z(Q) of real dimension k0:We remove the boundedness restrictionin section 8. The idea is to construct uniform roadmaps for a perturbed �nite setof polynomials which are in general position over approximating varieties whichare close to Z(Q) and of dimension k0. Thus the combinatorial level is k0. Wethen take the limits of the curves obtained when the parameter of deformationtends to 0, i.e. the images of the curves so constructed under a lim map, using asubroutine described at the end of this section. In order to ensure that the union ofthe curves so constructed is semi-algebraically connected in every semi-algebraicallyconnected component, we need to add curves connecting well chosen points to thevarious roadmaps on approximating varieties. These points are of three kinds:1. linking points which ensure that roadmaps coming from di�erent approximat-ing varieties whose images under the lim map intersect get connected,2. touching triples ensuring that if the union of two semi-algebraically connectedcomponents of two di�erent sign conditions is semi-algebraically connected,the union of the curves constructed in the two semi-algebraically connectedcomponents is semi-algebraically connected and3. added points that we add on every approximating variety to ensure that thelinking points and the touching triples will be part of the �nal roadmap.The approximating varieties are constructed as follows in [22] (see also [3]). LetZ(Q) be a real algebraic variety of dimension k0. Suppose that Z(Q) � B(0;M ).We assume that Q has degree at most d and is non-negative. This assumptioncauses no loss of generality as we can replace Q with Q2 at the cost of doubling thedegree of Q. For any index set I = fik0+1; : : : ; ikg � [1; k] and an in�nitesimal �,let a = (k � k0)M�2(d+1);QI = (1� �)Q � �(X2(d+1)ik0+1 + � � �+X2(d+1)ik � a);QI;T = (1� T )Q � T (X2(d+1)ik0+1 + � � �+X2(d+1)ik � a);QI = fQI ; @QI@Xik0+2 ; : : : ; @QI@Xik g;VI = Z(QI);W = [I�[1;k];card(I)=k�k0 VI :With these notations, the following key result appears in [22].Proposition 9. The real dimension of VI is at most k0. For every x 2 Z(Q) thereexists y 2W such that lim�(y) = x.



78 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROY7.2. Linking points. Now we describe the construction of the set L of linkingpoints. Note that, by Proposition 4lim�(VI ) = closure(f(X;T ) 2 Rk �R>0 j QI;T (X) = 0g) \ fT = 0g:If S is a semi-algebraic subset of Rk described by a quanti�er-free formula, �(X);then the closure of S is described by the following quanti�ed formula: (X) := 8 Z 9 Y kX � Y k2 < Z2 ^ �(Y ):Note that  (X) is a �rst-order formula with two blocks of quanti�ers, the �rst withone variable and the second with k variables. Denote by RI the set of polynomialsin k + 1 variables obtained after two steps of the Block Elimination Subroutinein [1] applied to the polynomials appearing in the �rst order formula describingclosure(f(X;T ) 2 Rk �R>0 j QI;t(x) = 0g) in order to eliminate Z and Y . Thesepolynomials have the property that closure(f(X;T ) 2 Rk �R>0 j QI;T (X) = 0g)is the union of semi-algebraically connected components of sets de�ned by signconditions over RI (note that we do not say that closure(f(X;T ) 2 Rk � R>0 jQI;T (X) = 0g) can be described by polynomials in RI ). According to section 5.2of [1] the set RI has dO(k) polynomials and each of these polynomials has degreeat most dO(k). Denote by PI the set of polynomials in k variables obtained bysubstituting 0 for T in RI . Next, for each pair of multi-indices I; J we apply theSample Point on a Variety Subroutine, with input Z(Q), P [PI [PJ to obtain theset LI;J : The set LI;J consists of sk0dO(k2) points de�ned by polynomials of degreeat most dO(k2). The complexity of the algorithm just described is sk0+1dO(k2): Theset L is the union of the LI;J . Thus, for every I and J , L meets every semi-algebraically connected component of every non-empty weak sign condition of Pon lim�(VI ) \ lim�(VJ ):7.3. Touching triples. The reason for constructing the touching triples is thefollowing. Consider two connected components C1 and C2 of two distinct signconditions of the familyP; which are contained in the set S: Though C1 and C2 areclearly disjoint, C1[C2 might be connected. If C1[C2 is connected, then we wantthe intersection of the roadmap, R(S), with C1 [C2 to be connected as well. Wewill use the touching triples in the construction of R(S) to insure this property. Wecompute a set N of touching triples (p1; p2; 
1;2); where p1; p2 2 Z(Q); and 
1;2 is asemi-algebraic path joining p1 to p2 in Z(Q). The set N has the property that forany two semi-algebraically connected components, C1 and C2; of sets R(�1) andR(�2); where �1; �2 are strict sign conditions on P, for which �C1 \C2 6= ;; thereexists (p1; p2; 
1;2) 2 N; such that p1 2 C1, p2 2 C2 and 
1;2 n fp2g 2 C2: Thus,if C1 and C2 are two semi-algebraically connected components of two distinct signconditions which are included in S and whose union is semi-algebraically connected,then there exists (p1; p2; 
1;2) 2 N such that 
1;2 connects the point p1 2 C1 withthe point p2 2 C2 by a semi-algebraic path lying in C1 [C2: To compute the set Nwe introduce two in�nitesimals �0 � � (where �0 � � means that �0 is in�nitesimalover Rh�i) and let P 0 = SP2PfP; P � �0; P � �g: We call the Sample Points ona Variety Subroutine with input Z(Q), P 0 to obtain a set of points in Rh�; �0ikwhich intersects every semi-algebraically connected component of a set de�ned bya sign condition on P 0: For each point p1 constructed above, we construct the pointp2 = lim�0 (p1): The point p1 is represented as a real k-univariate representation(u; �) with coe�cients in D[�; �0]: Replacing �0 in u by a new variable t; and letting



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 79t vary over the interval [0; �0] we get a semi-algebraic path 
1;2 joining p1 to p2:Weinclude the triple (p1; p2; 
1;2) in the set N:We now show that the triples computedabove satisfy the property stated at the beginning of this subsection.Lemma 12. Let P = fP1; : : : ; Psg be a �nite set of polynomials, and suppose thatC1 and C2 are two semi-algebraically connected components of R(�1) and R(�2)respectively, with �1; �2 two strict sign conditions, �1 6= �2 and �C1 \ C2 6= ;:Reordering the polynomials in P if needed there exists ` and m with ` < m suchthat the sign condition �1 is Pi = 0; 1 � i � `, and Pi > 0;m < i � s, while �2is Pi = 0; 1 � i � m, and Pi > 0;m < i � s. Taking in�nitesimals, �0 � �,there is a semi-algebraically connected component C; of the set de�ned by the signcondition Pi = 0; 1 � i � `, 0 < Pi < �0; ` < i � m, Pi > �, m < i � s; such thatC � C1Rh�;�0i; and lim�0(C) � C2Rh�;�0i:Proof. Choose a point p 2 �C1\C2: Since p 2 C2, P must satisfy the sign condition�2 at p: Since p 2 �C1, any in�nitesimal neighborhood (in�nitesimal with respect toRh�; �0i) of p must intersect C1. Consider the ball B(p; �) centered at p; with radius�; where � is any in�nitesimal over Rh�; �0i: Then, there exists a point q 2 B(p; �)\C1 and hence P must satisfy the sign condition �1 at q. That is, Pi = 0; 1 � i � `,and Pi > 0;m < i � s; at q: Since lim�(q) = p; if a polynomial is zero at q it mustalso be zero at p; and if a polynomial is positive at q; it must be non-negative atp: This proves that �2 has the form announced. It is clear that q 2 (Rh�; �0; �i)ksatis�es the inequalities Pi = 0; 1 � i � `, 0 < Pi < �0; ` < i � m, Pi > �; m <i � s, P1 = � � � = P` = 0; 0 < P`+1 < �0; : : : ; 0 < Pm < �0; Pm+1 > �; : : : ; Ps > �:Consider the semi-algebraically connected component C of the set de�ned by theseinequalities that contains q: It is clear that C � C1: Moreover, lim�0 (C) satis�esthe sign condition �2 and contains p 2 C2: Since lim�0 maps semi-algebraicallyconnected sets to semi-algebraically connected sets, we see that lim�0(C) � C2:It is clear that if p is a point in C; if q = lim�0 (p); and if 
 is the path obtainedby replacing �0 by a variable as in the algorithm described earlier, then p 2 C1,q 2 C2 and 
 is a path joining p and q contained in C1 except at the end point q:7.4. Added points. For every p 2 L [ N and every I such that VI is in�nitesi-mally close to p, we construct a point pI in VI in�nitesimally close to p as follows.The point p is given by a real univariate representation, u = (f; g0; : : : ; gk) anda Thom encoding � of a real root t� of f: Let � � � be an in�nitesimal, and letPp(X1; : : : ; Xk; t�) = g0(t�)2Pi(g0(t�)Xi � gi(t�))2 � g0(t�)2�2: We call the Sam-ple Point on a Variety Subroutine with input Pp, VI and perform the computationsover the extended ring D[t�]: At each point obtained we keep all those points atwhich the sign of Pp is negative and discard the rest. We denote by AI the pointsof VI so obtained. The set A = SI AI is our set of added points. The complexityof computing the set of added points A = SI AI is sk0dO(k2): This follows from thecomplexity of the Sample Points on a Variety Subroutine used repeatedly duringthe algorithm.7.5. The Roadmap Algorithm. We now describe the roadmap algorithm in thegeneral case. Take an in�nitesimal � and compute the set of added points A. Makea perturbation of the polynomials in P as follows. Take two more in�nitesimals �and �0 with � � �0 � � and replace the set P by the set P� which consists of 4s



80 SAUGATA BASU, RICHARD POLLACK, AND MARIE-FRANC�OISE ROYpolynomials: P� = [i=1;::: ;sf(1� �0)Pi�� �H4i�3; (1� �0)Pi + �H4i�2;(1� �0)Pi � �0�H4i�1; (1� �0)Pi + �0�H4ig;where Hi = (1+P1�j�k ijxd0j ) and d0 is an even number greater than the degree ofany Pi: We have the following two lemmas, which are very similar to Propositions5 and 6 in [3]. They show that the set P� is in general position over each VI ,and that there exists a correspondence between the semi-algebraically connectedcomponents of realizable sign conditions of P and P�:Lemma 13. The combinatorial level of (QI ;P�) is at most k0:Lemma 14. Let � be a realizable strict sign condition on the set of polynomialsP on Z(Q) given by P1 = : : : = P` = 0; P`+1 > 0; : : : ; Ps > 0; and let C be asemi-algebraically connected component of the intersection of the realization R(�)of � with Z(Q). Let �0 be the weak sign condition on P� given by���0H4i � (1� �0)Pi � �0�H4i�1; 1 � i � `;(1� �0)Pi � �H4i�3;and let R(�0) be its realization. Then, for every I such that lim�0(VI) \R(�) 6= ;,there exists a unique semi-algebraically connected component C 0 of R(�0)\VI suchthat lim�0(C 0) � CRh�i: Moreover, if x 2 Rk is in C, then x 2 C 0:Now use the algorithm for constructing uniform roadmaps with input (QI ;P�).Connect the points of AI to the uniform roadmap of (QI ;P�) using the connectingsubroutine. Then compute the image of the roadmap constructed above underthe lim�0 map, using the Limit of a Curve Segment Subroutine and retain onlythose portions which are in the given set S: In order to connect a point x to theroadmap, an I such that x 2 lim�0(VI) is chosen and a point xI in�nitesimally closeto x in VI is constructed using the Sample Points Subroutine [1]. This point xIis connected to the uniform roadmap R(QI ;P�) using the connecting subroutine.Then we compute the image of the connecting curves using the Limit of a CurveSegment Subroutine.The proof of correctness follows from the proof of correctness of the uniformalgorithm and Lemmas 13 and 14. The complexity of computing the set of addedpoints A is sk0dO(k2). The combinatorial level of (QI ;P�) is bounded by k0. Usingthe complexity bound of the uniform algorithm, we see that the complexity isbounded by sk0+1dO(k2): Similarly, using the complexity bounds for the connectingsubroutine, the complexity of connecting a point x described by polynomials ofdegree at most � to the roadmap is k0s�O(1)dO(k2):8. Roadmap algorithm in the unbounded caseIn this section we show how to modify the algorithm presented in section 7to handle the case when the input variety Z(Q) is not bounded. If Z(Q) is notbounded, we �rst introduce a new variable Xk+1 and a new variable 
 and replaceQ by the polynomial Q
 = Q2 + (X21 + � � �+ X2k+1 � 
2)2: Let S
 2 Rh1=
ik+1be the set de�ned by the same formula as S but with Q replaced by Q
: Theroadmap algorithm outputs a road map of R(S
), composed of points and curves
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. Let L be the set of all polynomials in D[
] whosesigns were determined in the various calls to the Multi-variate Sign DeterminationSubroutine inside the algorithm. We replace 
 by A = C(L) (see De�nition 2)in the output roadmap to obtain a roadmap R(SA); which, when projected onRk, gives a roadmap R(S) \ B(0; A). We next collect all the points (y1; : : : ; yk)in the roadmap which satisfy y21 + : : :+ y2k = A: Each such point is described bya univariate representation involving 
: We add the curve obtained by treating
 as a parameter and letting 
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