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1. INTRODUCTION

Let R be a real closed field, Z(Q) a real algebraic variety defined as the zero set
of a polynomial @ € R[X, ..., X;] and S a semi-algebraic subset of Z(Q), defined
by a Boolean formula with atoms of the form P < 0, P > 0, P = 0 with P € P,
where P is a finite subset of R[X1,..., Xj].

A semi-algebraic set C'1s semi-algebraically connected if it is non-empty and is not
the union of two non-empty disjoint semi-algebraic sets which are closed and open
in C. A semi-algebraically connected component of S is a semi-algebraic subset of
S which 1s semi-algebraically connected, and closed and open in S . Semi-algebraic
sets have a finite number of semi-algebraically connected components ([5], page 34).
A roadmap of S, which we denote R(S), is a semi-algebraic set of dimension at most
one contained in .S which satisfies the roadmap conditions:

RM1 For every semi-algebraically connected component C' of S, C'N R(S) is semi-
algebraically connected.
RM2 For every x € R, and for every semi-algebraically connected component C’ of
Sy, C'"NR(S) # 0.
Here, and everywhere else in this paper, 7 is the projection on the first coordinate
and for X C R, Sx is SN 7~1(X). We also use the abbreviations S,, Sc., and
S<e for Sipy, S(—co,e), and S(_q ] respectively. Algorithms for the construction
of roadmaps are described in terms of the parameters k, k', s, d where k is the
dimension of the ambient space, k& is the dimension of Z(Q), s is the number of
polynomials in P and d is a bound on the degrees of the polynomials in P and the
polynomial Q.
Given a roadmap R(S) and a point p € S the connecting subroutine outputs
a semi-algebraic continuous path in Sr(,) connecting p to R(S). The connecting
subroutine is described in terms of the parameters k, k’, s, d as before and 7 which is
a bound on the degrees of the polynomials defining p (see section 4 for a discussion
of how points are described by polynomials).
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The roadmap is stored as a graph whose vertices are points of S and whose
edges are semi-algebraic curves. Thus, the roadmap and the connecting subroutine
enable us to decide whether or not two points  and y of .S are in the same semi-
algebraically connected component of 5. Furthermore, if z and y are in the same
semi-algebraically connected component, we obtain a semi-algebraic path joining
the two points which consists of certain branches of the roadmap and of the con-
necting paths.

The problem of deciding connectivity properties of semi-algebraic sets has at-
tracted much attention. One motivation comes from robot motion planning (see
[23]) where the free space of a robot (the subspace of the configuration space of
the robot consisting of those configurations where the robot is neither in conflict
with its environment nor itself) can be modeled as a semi-algebraic set. In this
context 1t 18 important to know whether a robot can move from one configuration
to another. This is equivalent to deciding whether the two corresponding points in
the free space are in the same connected component of the free space. This prob-
lem was solved by Schwartz and Sharir [23] using Collins” method of cylindrical
algebraic decomposition [9]. The complexity of their solution is polynomial in d
and s and doubly exponential in k. In 1987, John Canny [6] introduced the notion
of a roadmap of a semi-algebraic set. He gave an algorithm [6, 7] constructing
a roadmap for a semi-algebraic set whose complexity is s* (log s)do(k4). Since the
given semi-algebraic set might have (sd)* different connected components, the part
of the complexity depending on s in Canny’s algorithm is nearly optimal. Further
developments can be found in [12, 15, 8, 16, 13, 2].

In robot motion planning, the configuration space of a robot is often a semi-
algebraic subset confined to be a subset of an algebraic variety whose dimension
is significantly smaller than the dimension of the real Euclidean space in which it
is naturally embedded (see for example [17], page 65). In such a situation it is of
interest to design algorithms which take advantage of this fact and whose complexity
reflects the dimension of this variety rather than the dimension of the ambient space.
It 1s for this reason that we consider the problem of constructing a roadmap on a
semi-algebraic subset of a variety Z(Q). We will present several algorithms and
whenever we mention their complexity it is the number of arithmetic operations
and comparisons in the ring generated by the coefficients of the input polynomials.
We present an algorithm for computing a roadmap of a semi-algebraicset S C Z(Q)
defined by polynomials in P with complexity sk’ +14O(F*) Note that the complexity
of the algorithm is separated into a combinatorial part depending on s and &’ and
an algebraic part depending on d and k. We also present an algorithm which given
a point of S defined by a polynomial of degree at most 7 constructs a path joining
this point to the roadmap. The complexity of this algorithm is k'sTOML)gok*?) 1n
the case of input polynomials with integer coefficients of size bounded by b the bit
complexity for computing the roadmap is * sF'F1dOk*) and the bit complexity for
connecting a point is b*k’sro(l)do(k2), where 0* = blogbloglogb. A preliminary
version of the present paper appeared in [4].

The rest of the paper is organized as follows. In section 2 we introduce the
notions of pseudo-critical values and special values, and present some results about
them that are crucial for our algorithms. In section 3 we give precise descriptions
of the input, output and complexity of several subroutines that we use in our
algorithm. Next, in section 4, we develop some algorithmic tools that enable us
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to compute curves in a given algebraic set parametrized by the first coordinates
and to identify certain distinguished slices where our algorithm calls itself in one
lower dimension. In section 5 we present an algorithm which given an algebraic set
Z(Q) and a finite subset M of Z(Q) constructs a roadmap of Z(Q) which contains
M. In section 6 we introduce the notion of combinatorial level. It controls the
complexity of an algorithm that constructs a uwniform roadmap. In section 7 we
present a roadmap algorithm for an arbitrary semi-algebraic set S defined by the
set of polynomials P and lying in a bounded algebraic set Z(@). The idea is to
construct uniform roadmaps for a perturbed finite set of polynomials on various
approximating varieties close to Z(Q), for which the combinatorial level is &’ and
to take the limit of the curves so constructed when the parameters of perturbation
tend to 0. In order to ensure that the curve so constructed is connected in every
connected component, we need to add curves connecting well chosen points to the
various roadmaps on the approximating varieties. In section 8, we solve the same
problem without the assumption that the variety Z(@) is bounded.

In order to assist the reader in section 3, we primarily cite the paper [1] for its
ease of accessibility.

2. PRELIMINARIES

If P is a finite subset of R[Xy,...,X}], then we write Z(P) for the set of
common zeroes in R* of the polynomials in P. Note that, in a real closed field any
algebraic set can be defined by a single equation by taking sums of squares. Thus,
Z(P) = Z(3_qger Q?). We use B(z,r) and S(z,r) to denote the open ball and
sphere of center = and radius r respectively. Let Z(Q) C R* be a smooth algebraic
hypersurface, 1.e. an algebraic set defined by a polynomial ¢ such that

d d
Grad(Q) = (% %)

is never 0 on Z(Q). A critical point of 7 on Z(Q) is a point of Z(Q) at which
the gradient of @) is parallel to the Xj-axis, and a eritical value of ®# on Z(Q)
is the projection on the Xj-axis of a critical point of # on Z(Q). An immediate
consequence of the semi-algebraic implicit function theorem over a real closed field

([5], page 56) is the following.

Proposition 1. If  is not a critical point of m on Z(Q), then for v small enough
Z(Q) N B(%,7) <x(z) 15 semi-algebraically connected.

The following property, well known over the field of real numbers IR | is also true
over any real closed field R [11].

Proposition 2. Let Z(Q) be a smooth algebraic hypersurface and let C be a
bounded semi-algebraically connected component of Z(Q)ap) on which © has no
critical value in [a,b]. Then, for every d € [a,b], Cy4 is semi-algebraically connecled.

Since the algebraic set Z(Q) may not be a smooth hypersurface we shall perturb
the polynomial @ in such a way that the zero set of the perturbed polynomial is
a smooth hypersurface and the connectivity properties of Z(Q) will be controlled
by pseudo-critical values which are the limits of critical values on the perturbed
smooth hypersurface. More precisely, we will perturb polynomials by nfinitesimals
as follows. We write R(() for the real closed field of algebraic Puiseux series in ¢
with coefficients in R ([5], pages 11 and 16). The sign of such an algebraic Puiseux
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series agrees with the sign of the coefficient of its lowest degree term in ¢. This order
makes ¢ positive and infinitesimal: its absolute value is smaller than any positive
element of R. The map lim; maps an element of R{{) bounded over R, one that has
no negative powers of {, to its constant term. An element of R(() is infinitesimal
over R if it is mapped by lim, to 0. If S is a semi-algebraic subset of RF*, we denote
by Sr(¢) the subset of R(¢)* defined by the same equalities and inequalities that
define S. An immediate consequence of the fact that a semi-algebraic subset of a
real closed field is a finite union of points and intervals is the following:

Proposition 3. Let ® be a first order sentence of the language of ordered fields
with coefficients in R[], and let (t) be the sentence obtained by substitutingt € R
for ¢ in ®. Then ® is true in R{() if and only if there exists to in R such that for
every t € (0,tg), (1) is true in R.

Let S be a semi-algebraic subset of R{()* defined by polynomials in k variables
with coefficients in R[{] which is non-empty, closed, and bounded over R. Let 5’
be the semi-algebraic subset of RFt! defined by substituting a new first variable 7'
for ¢ in the definition of S. The following is proved in [1] (see also [21]).

Proposition 4. The set lim¢(S) is the intersection of the closure of S5 with the
hyperplane T = 0. If S is semi-algebraically connected, then lim(S) is semi-
algebraically connected.

Given a bounded algebraic set Z(Q) C B(0, M) C RF defined by a polynomial Q
of degree < d, we adapt an idea of Gournay-Risler [13] and consider Z(Q;) C R{()*
and Z(Q2) C R{¢)*+! where

Q1 =(1-@* +C(X12d+2 +. ..+X]?d+2 ESVELEN
Q2= (1= C)(Q% + X2, 1) + C(XZH2 4 X2H2 L Xf | fag2i+2),

The algebraic set Z(Q1) is a smooth algebraic hypersurface of R{()* bounded over
R on which 7 has a finite number of critical points [3].

Similarly, the algebraic set Z7(Q32) is a smooth algebraic hypersurface of R{(()
bounded over R on which 7 has a finite number of critical points. Note that a
critical point of 7 on Z(Q2) must have its last coordinate 0 and thus its first &
coordinates define a critical point of 7 on Z(Q1).

k+1

Lemma 1. Let Z(Q) C B(0, M) be a bounded algebraic set. Then, lim(Z(Q1)) =
lim¢ (Z(Q2)) = 2(Q)-

Proof. Tt is clear that lim:(Z(Q1)) C Z(Q). To show that Z(Q) C lim¢(Z(@Q1))
we make the following observations. Given z € Z(Q), for every r > 0 in R there
is a y € B(z,r) such that Q(y) # 0. From this we conclude that @(z) < 0 and
Q1(y) > 0. Hence there exists z € R{¢)* such that @;(2) = 0 and lim¢(z) = =.
The proof for Z(Q2) is entirely similar. O

The algebraic set Z(Q2) has the following property which is not always enjoyed
by Z(Q1).

Lemma 2. Let Z(Q) C B(0,M) be a bounded algebraic set. For every semi-
algebraically connected component C' of Z(Q)[ap) there exists a semi-algebraically
connected component D of Z(Q2)[a,p] such that lim¢ (D) = C.
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Proof. Let ®# = (x1,...,2;) be a point of Cr(sy. There exists a unique point
fx) = (w1, ..., 25, p41) in Z(Q2) for which #5411 > 0. The mapping f is semi-
algebraically continuous. Moreover if # = (21,...,2;) is in C, 2541 € R{() is

infinitesimal over R. Thus for every y in C, the point f(y) belongs to the con-
nected component D of Z(Q2)4 containing f(x). Since lim¢(D) is connected
(Proposition 4) and contained in Z(Q), lim; (D) = C. O

A pseudo-critical point of w on Z(Q) is the lim; of a critical point of 7 on Z(Q1).
Note that a pseudo-critical point of 7 on Z(Q) is also the lim, of a critical point of
mon Z(Q2). A pseudo-critical value of m on Z(Q) is the projection on the X;-axis
of a pseudo-critical point of m on Z(Q). Note that the set of pseudo-critical values
of m on Z(Q) is finite since the number of critical points of 7 on Z(Q) is finite.

Proposition 5. Let Z(Q) C B(0,M) be a bounded algebraic set with [a,b] C
[—M, M]. Let C be a semi-algebraically connected component of Z(Q)as- If Cla,n)
is not semi-algebraically connected, then b is a pseudo-critical value of Z(Q).

Proof. By Lemma 2 there exists D, a semi-algebraically connected component of
Z(Q2)[a,p], such that C' = lim¢ (D). According to Hardt’s triviality theorem, there
exists a’ € [a,b), such that for every d € [a’,b), C[4q is not semi-algebraically
connected. Hence, by Proposition 4, Dy,  is also not semi-algebraically connected
for every ¢ € R{() with lim,(¢) = d. Let ¢ € [d/, 8] C R{() be the smallest value so
that Dy ) is semi-algebraically connected; then ¢ is infinitesimally close to b and
according to Proposition 1, ¢ is a critical value of Z(Q32). Hence b is a pseudo-critical
value. O

The following result appears in [13] for the case of the reals. We prove it for an
arbitrary real closed field R.

Proposition 6. Let Z(Q) C B(0,M) be a bounded algebraic set with [a,b] C
[-M,M]. If C is a semi-algebraically connected component of Z(Q)ap and of
¢ € (a,b) and [a,b]\ {c} contains no pseudo-critical value of # on Z(Q), then C, is
semi-algebraically connected.

Proof. Let D be a semi-algebraically connected component of Z(Q2)(4,3) for which
C' = lim; (D). Note that, for every ¢’ € [a,b], D, is a union of semi-algebraically
connected components of Z(Q2)y. Clearly, there exists an infinitesimal £ such
that the critical values of the map = on Z(Q2) in the interval [a, b], if they exist,
lie in the interval [¢ — §3,¢ + B]. We claim that Dj._g .45 is semi-algebraically
connected. Let x,y be any two points in D._s .4 5. We will show that there exists
a semi-algebraic path connecting x, y lying inside D[._g .4g]. Since D itself is semi-
algebraically connected, there exists a semi-algebraic path v : [0,1] — D, with
(0) = x,7(1) =y, and y(t) € D,0 <t < 1. If y(t) € Dj._p,c4p5) for all t € [0,1], we
are done. Otherwise, the path v is the union of a finite number of closed connected
pieces v;, each lying either in Dy c_g] , Diets,] OF De—g,e45)- By Proposition 2
the connected components of D._g (resp. D.yg) are in 1-1 correspondence with
the connected components of Dy, ._g) (resp. Dj.4p)) containing them. Thus, we
can replace each of the v; lying in D, .—g] (resp. Di.4p ) with end points in D._g
(resp. D.1g), by another segment with the same end points but lying completely
in D._g (resp. D.1g). We thus obtain a new semi-algebraic path 7' connecting
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x,y and lying inside Dj._g .4g). It is clear that lim¢(Dj._g .45)) coincides with
C.. Since Dy._g 4] is bounded, C, is semi-algebraically connected by Proposition
4. O

According to Proposition 1, if Z(Q) is a smooth manifold, with x € Z(Q), n(z) =
¢ and for some r, Z(Q)N B(z,r)<. = 0, then ¢ is a critical value of Z(Q). Unfortu-
nately, and contrary to what we claimed in [2, 4], we do not know whether we can
conclude from the existence of some r, such that Z(Q) N B(z,r)<. = 0, that c is a
pseudo-critical value without the hypothesis that Z(Q) is a smooth hypersurface.
More precisely, we do not know whether or not Lemma 1 announced in [2, 4] is
correct. It is for this reason that we introduce the notion of a special value.

Definition 1. A special value of Z(Q) is a ¢ € R for which there exists y € Z(Q1)
with lim¢ (7 (y)) = ¢, g(y) infinitesimal and y a local minimum of ¢ on Z(Q1), where

Note that any pseudo-critical value of m on Z(Q)) is a special value of Z(@).

Proposition 7. If Z(Q) is bounded and x is a point of Z(Q). at which Z(Q) N
B, 7)< is empty for a positive r, then ¢ is a special value of 7(Q).

Proof. The proposition i1s an immediate consequence of the following two lemmas.

Lemma 3. Suppose that Z(Q) C B(0, M) and z is a point of Z(Q). at which
Z(Q) N B(x,r)<. is empty for some positive r. Then there is a point y € Z(Q1) N
B(x,r) at which lim¢ (7(y)) = ¢ and lim¢(g(y)) = 0.

Lemma 4. Ifyis a point of Z(Q1)NB(x,r) at whichlim¢(7(y)) = ¢ and lim, (g(y))
=0, then ¢ is a special value of 7(Q).

Proof of Lemma 3. Note that the statement of the lemma can be translated into
a first order formula of the language of ordered fields with parameters in K. This
becomes clear once we observe that by Proposition 4, the statement

“there exists a point y € Z(@)1) such that lim, (7 (y)) = ¢ and lim,(¢(y)) = 0,”
1s equivalent to the first order formula
Ve>036>0Vt0<t< 6Ty Qie(y) =0Ag(y)* + (7(y) — ) < e,

where ()1 ; and g; are the polynomials and rational functions obtained after re-
placing ¢ by ¢ in the definitions of @7 and ¢g. By the transfer principle, it suf-
fices to prove the proposition over the reals R, which is what we now proceed to
do. If there is a critical value of @ on Z(Q1) infinitesimally close to ¢, we are
done. Otherwise, suppose that there is no critical value of # on Z(Q1) in an in-
terval (¢ —d,c+ d)g(¢) with d € R. We can suppose without loss of generality
that » < d. We argue by contradiction and suppose that for every y at which
Q1(y) = 0 A lim¢ (7 (y)) = ¢, g(y) is not infinitesimal. Since Z(Q) N B(x,7)<. = 0,
we know that for any y € Z(Q1) N B(x,7)<., lim¢(7(y)) = ¢ and thus g(y) is
not infinitesimal. Let @ € R be a positive number smaller than any value of ¢ on
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Z(Q1) N B(x,r)<.. Let
U={teR|gi<aon Z(Qis)NB(x,r)<.}

Let U” be the set of ¢ € R such that Z(Q1 ) has no critical value on (¢ — d, ¢+ d)
and U = U’ NU". The set U is semi-algebraic and its extension to R({() contains
¢. Thus, it contains an interval (0,%y) by Proposition 3. For every ¢ € (0,1p), let
Yy be a point in Z(Q1,;) N B(x,7)<. whose last k — 1 coordinates coincide with the
last k — 1 coordinates of  (such a point must exist because )1 is negative at z and
positive at the point (¢ — r,za,... , 2)).

Consider the curve v, on Z(Q)1 ;) through y; which at each of its points is tangent
to the gradient of X7 on Z(Q1,:). The idea is to show that the direction of the
tangent to v, is always sufficiently close to the X; direction so that 7; intersects
the sphere S(x,r) at a point whose X3 co-ordinate is far from c.

A straightforward computation proves that the gradient of X; on Z(Q1¢) at a
point of Z(Q1+) is proportional to

G (507 _00i0Q0 00 00,
T\& 0N, ON Xy 0N, Xy )

For every point of 74, the vector G thus belongs to the half-cone C of center z, based

on the k£ — 1-ball of radius — % and center (z1—1,29,...,2y) in the hyperplane

X7 =21 — 1. It follows that the curve v, is completely contained in C. Since there
is no critical value of m on Z(Q1,:) in (¢ — d, ¢ + d), the curve v, is defined over
(¢ —d, e+ d) and thus meets S(z,r) NC. Since CN S(x,r) N Z(Q1+) # B is true
for every ¢ € (0,tg) it follows from Proposition 3 that C N S(z,r) N Z(Q1) # 0.
Thus, taking lime of the point so obtained, B(z,r)<. N Z(Q) # 0, which is a
contradiction. O

Proof of Lemma 4. If ¢ is zero anywhere that the first coordinate is infinitesimally
close to ¢, then ¢ is a pseudo-critical value and we are done. Alternatively, we may
assume that g is non-zero in any slab of infinitesimal width containing X; = c.
Let y be given by our hypothesis, i.e. lim¢(7(y)) = ¢, lime(g(y)) = 0. We let C
be the semi-algebraically connected component of Z(Q;) containing y. Define v
by #(y) = v. Then g attains its minimum on C, at some point z € C,. Let ¢
be this minimum. Tt is clear that ¢ is infinitesimal. Consider the set A = {w |
ming, (g) < ¢}. This set A is closed, bounded, semi-algebraic, and thus a union of
closed intervals [aq1,b1]U. . . U[ap, by] with a; < b; < a;41. Let [a;,b;] = [a, b] be the
interval containing v. If @ and b are both infinitesimally close to v take u and w so
that b;_1 <u <a=ua; <b=1"b; <w < a;4; with v and w infinitesimally close to v.
The minimum of g on C[, 4] occurs in the interior of the slab since it is smaller at C,
than its minimum both on €\, and Cy,. It follows that ¢ is a special value of Z(Q).
Assume on the contrary that [a, b] is such that a or b is not infinitesimally close to
v. We are going to prove that this leads to a contradiction, namely, that in this
case Z(Q1) is not bounded over R. According to Hardt’s triviality theorem, there
exists a family ¢; of smooth semi-algebraic curves parametrized by open segments
(cj, ;) covering (a,b) (with the exception of a finite number of points) such that
g(¢;(x)) is smaller than ¢. If T;(2) = (Tj1(x), ..., Tjx(x)) is the tangent vector to
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¢; at (x,¢;(z)), we have

001 0@ 01
Tov—+Tio—+...+T; ;— =0
i1 Xl + 7,2 X2 + + ik Xk )
001 0@ 01
22t o 2l o 2l
iy 27X, + ...+ X,
[
T7) < EH(TJ,% Tl
T; kt
Thus, at every point on each of these curves, T]’l((x)) T3~ t' for some
jilx -
2 < ¢ < k. Hence, we can suppose — subdividing further if needed and producing
Ty ()

more curves — that on each of these curves, <t for some 2 < i < k.

T e
Let N be the number of the curves so obtained.yy\gVe) prove now that the interval
(v,v+2M Nt') contains w such that mingc,, (g) > t. Suppose on the contrary that at
every value w € (v,v + 2M Nt'), ming, (¢) <t. Then there is an interval of length
Bn()
Tj.i(x)
follows from the mean value theorem that the projection of this curve on the X;
axis is bigger than 2M, which contradicts the fact that ¢’ C B(0, M). Similarly,
the interval (v — 2M Nt’, v) contains u such that ming, (g) > ¢. Note that both u
and w are infinitesimally close to ¢. This contradicts the fact that a or b is not
infinitesimally close to v and concludes the argument. O

at least 2Mt' over which the curve ¢;(z) is smooth and is less than t'. It

Consider the algebraic set Z defined by the £ + 1 polynomial equations in &k + 1

variables (X1,..., X, A) which are obtained by removing the denominators from
the following equations: ¢1 = 0, g?{i = /\86)?1 e g?(; = /\aa)?k . The local min-

ima of ¢ on Z(Q1) are contained in the projection of Z to the first & coordinates.
A consequence of the proof of Lemma 4 is the following.

Corollary 1. If C' is a semi-algebraically connected component of 7 on which g
has an infinitesimal local minimum on Z(Q1), then limg(7(C")) is a single point.

Proof. Let x be a point of C' where ¢ has an infinitesimal local minimum on Z(Q)
and let v = g(x). Note that ¢ is constant on C”. The projection of C’ on the X;-axis,
7(C"), is contained in A = {w | ming,,(g) < v} where C' is the semi- algebraically
connected component of Z(Q1) containing x. Since 7(C") is semi-algebraically con-
nected, following the proof of Lemma 4 we see that w(C") is contained in an infini-
tesimal segment. O

Let S be a basic, closed, bounded semi-algebraic set defined as
S={xeR" VPP, P(x)>0}

where the polynomials P € P are such that Z(P) is bounded. A special value of S
is defined to be a special value of a Z(P’) where P’ C P. The following two lemmas
play a crucial role in the proof of the correctness of the Roadmap Algorithm. If B
is a semi-algebraic set, we denote by B its closure in the Euclidean topology.
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Lemma 5. Let C' be a semi-algebraically connected component of Sy, and let
Bi,...,Bp be the semi-algebraically connected components of Cly ). Then € =
CiU...CrUChy1 U...UCN where C; = B; for 1 <i<h and for j > h, Cj is a
semi-algebraically connected component of Z(P;) N C. where P; CP.

Proof. If 2 € C and z € Jycjen B;, then there is a positive 7 such that C'N
B(x,7)<. = 0. If P' is the set of polynomialsin P which vanish at z, then Z(P’) N
B(z,7)<. = 0. Hence, ¢ = w(z) is a special value of Z(P’) by Proposition 7. It is
clear that the semi-algebraically connected component of Z(P’) N C, containing &
is contained in C'. O

Using the same notation, we have:

Lemma 6. Ifthereisani,j € {1,... N} such that C;NC; # 0, then ¢ is a special
value of some Z(P') where Z(P'YNC; NCy #0 and P C P.

Proof. The statement is clearly true in the case ¢ > h or j > h by Lemma 5.
Suppose, without loss of generality, that C; = Bl,C’j =By, BiN...0NBr #0
and 1,...,7 is a maximal family with this property. Let 2 be a point of this
intersection. Clearly, # belongs to the boundary of S and the set, P’ C P, of
polynomials in P which vanish at « is not empty. According to Hardt’s triviality
theorem there is w € [a, ¢) such that Z(P’)[y ) is semi-algebraically homeomorphic
to Z(P')w x [w,c) and Cly ) is semi-algebraically homeomorphic to Cy, x [w,¢).
Let D be the connected component of Z(P’), ] containing x. We consider two
cases according to whether or not D,, is empty: If D, is empty, then c is a special
value of Z(P') by Proposition 7.

If Dy, is not empty, then some semi-algebraically connected component of Cfq )
intersects Z(P’) in every neighborhood of z. Suppose, without loss of general-
ity, that it is B;. Consider a maximal subset of P, say P”, such that Z(P")
intersects Bs in every neighborhood of x. The set P’ is non-empty and con-
tained in P’. According to Hardt’s triviality theorem there is a w’ > w such
that Z(P")[w ) is semi-algebraically homeomorphic to Z(P"), x [w’, ¢). Let Z be
the semi-algebraically connected component of Z(P”)p, . containing z. By the
maximality of Z(P”), there is a connected component Z; of Z}, ) contained in
Bay,ey. Since Z(P') C Z(P") and Z(P' )y o) meets By, Z(P")py ) is not semi-
algebraically connected. We conclude by Proposition 5 that ¢ is a pseudo-critical
value, and hence a special value, of Z(P"). O

3. ALGORITHMIC TOOLS

Sign Determination Subroutine. The input is a Grobner basis for a zero-
dimensional ideal I for which the quotient has dimension O(d)*, together with
a list of s polynomials P whose degrees are all at most d. The output is the list of
non-empty sign-conditions on the family P at the zeroes of I. The complexity of
this algorithm is sd®*) (see [1], section 3.1.4, page 1029).

Thom encoding. Let f € R[X] and ¢ € {0,1,—1}98); then R(c) = {z € R |
signf(i)(x) = o(i)} is either a point, or an open interval, or empty ([5], page 37).
If R(o) is not empty, o is the Thom encoding of the set R(c). If x is a root of
f, and o is the list of the signs of the derivatives of f at x (so that ¢(0) = 0),
R(c) = {x} and o distinguishes x from all the other roots of f. The ordering of the
roots can also be recovered from the Thom encodings [10]. The Thom encodings of
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the roots of a univariate polynomial f are computed using the Sign Determination
Subroutine with input f and its derivatives. The complexity of this computation
is 7901 where 7 is the degree of f.

Univariate representation. A k-univariale representation is a k + 2-tuple

u=(f(1),90(T), 1(T), ..., 9x (1)),

of elements of R[T] where deg(g;) < deg(f). The point p = (z1,z2,...,z) in R[i]*
is associated to u if there exists a root ¢t of f(T') in R[¢] such that z; = g;(t)/g0(2),
fori=1,... k.

Real univariate representation. A real k-univariate representation is a pair
(u,0) where u is a k-univariate representation

u=(f(T),90(T), 1(T), ..., gx(T))

and o € {—1,0,1}985) is the Thom encoding of a root t, of f(T) in R. The
point p = (z1,z2,...,7;) in R¥ is associated to (u,0) if z; = g;(ts)/g0(ts), for
i=1,...,k, and (u, o) represents p.

Projection Subroutine. The input is a univariate representation

U = (fagOa"' agk)

The output of the algebraic stage is a univariate polynomial h whose roots are
¢1(t)/go(t) for all t which are roots of f in R[¢]. The output of the sign determination
stage are the Thom encodings of the real roots of f and of the corresponding real
roots of h.

The resultant h(Y) of hi(YV,T) = f(T), and ha(Y,T) = Ygo(T) — ¢1(T) with
respect to T is a polynomial in ¥ whose roots are the values of ¢1(¢)/go(t) where
t is a root of f. The algebraic stage of the subroutine computes h.

In the sign determination stage of the subroutine, we first compute the Thom
encoding of the real roots of f. Then, for every Thom encoding ¢ of a root ¢, of
h, we compute the Thom encoding of the root of h which is equal to ¢1(¢,)/g0(ts)
using the Sign Determination Subroutine. If 7 is a bound on the degree of f, the
complexity of the Projection Subroutine is 7(1) .

Cell Representative Subroutine. The input is a polynomial ) of degree at most
d in k variables and the output is a set of k-univariate representations of degree
at most O(d)*. The points associated to these k-univariate representations meet
every semi-algebraically connected component (or cell) of Z(Q). The complexity
of this subroutine is d°®) ([1], section 3.1.2, page 1026).

Special Values Subroutine. The input is a polynomial @ in R[X,..., Xi] of
degree at most d and the output of the algebraic stage i1s a set of univariate polyno-
mials of degree at most d°*) whose roots in R contain the special values of Z(Q).
In the sign determination phase we compute the Thom encoding of the roots in R
of the polynomials output by the algebraic stage. The description of the subrou-
tine follows: the set 7 C Z(Q1) x R{() is the algebraic set defined by the £ + 1

polynomial equations in k + 1 variables (X1,..., X%, A) obtained by removing the
denominators from the following equations:
0 0 0 0
01 =0 Ql_/\g Ql_/\ 9

’6)(1 o 6X1""’8Xk a an
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We use the Cell Representative Subroutine to find a set of k-univariate representa-
tions with associated real points meeting every connected component of Z. In the
algebraic stage of the subroutine, we compute the polynomial A having as zeroes
the lim¢ of the first coordinates of these points (using the algebraic stage of the
Projection Subroutine and the algebraic lim,; process in [20]). In the sign determi-
nation stage of the subroutine, we compute the Thom encodings of the zeroes of h.
The complexity of this routine is d°*).

Sample Points on a Variety Subroutine. The input is a set of s polynomials,
P C R[Xy,...,Xg], each of degree at most d and @ € R[X1, ..., X;] of degree
at most d, with the variety Z(Q) of real dimension k’. The output is a set of
sklO(d)k k-univariate representations such that the set of points associated to these
k-univariate representations meet every semi-algebraically connected component of

every non-empty sign condition of P on Z(Q). This subroutine has complexity
sF'+1q0(k) [3]

Parametrized univariate representations. A parametrized k-univariate repre-
sentation with parameter Y is a k + 2-tuple

u = (f(Y’T)agO(Y’T)agl(YaT)a ce ,gk(Y,T)),

of polynomials in R[Y,T] where the degrees of the g; in T are not greater than the
degree of fin T.

Parametrized Cell Representatives Subroutine. The input is a polynomial
Q(Y, X1,...,X) of degree d with coefficients in R and the output is a set of
parametrized k-univariate representations if. For each specialization y, of the pa-
rameter Y, the set of points associated with the k-univariate representations u(y) for
u € U is a subset of the algebraic set defined by Q(y, X1, ..., X;) = 0 and meets ev-
ery semi-algebraically connected component of Z(Q),. There are dO) f-univariate
representations output and the degree of each polynomial in these representations
is O(d)*. The subroutine is a special case of the Parametrized Cell Representatives
Subroutine in [1] (section 5.1.2, page 1035) in which £ = 1, i.e. there is only one
parameter Y . The complexity of the subroutine is d°(*).

Real univariate representations over an interval (a,b). A real k-univariate
representation over (a,b) is specified by (A4, «, B, 3, u, o) where
e a and b are roots of the univariate polynomials A and B with Thom encodings
a and 3,
e u=(fV,T),90(Y,T), n(Y,T),...,95(Y,T)) is a parametrized k-univariate
representation,
e o € {—1,0,1}98) is a sign condition such that for every y € (a,b) there
exists a real root t,(y) of f(y,T) with Thom encoding o.

To a real k-univariate representation over (a,b) is associated a curve segment
parametrized along the Y axis, i.e. a continuous semi-algebraic function from (a, b)
to R*: to each point y of (a,b) is associated the point of R* with coordinates

(gl(y,ta(y)) gk(y,ta(y))).

go(y, 1. ()" go(y, 15 (y))
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Real univariate representations over a point c. A real k-univariate repre-
sentation of (A,u) where A is a univariate polynomial and u is a parametrized
univariate representation with parameter ¥ is specified by (A, o, u, o) where

e « is the Thom encoding of a root ¢ of the univariate polynomial A,
o o€ {—1,0,1}%e) is a sign condition such that there exists a real root ¢, of
f(e,T) with Thom encoding o.

To the real univariate representation over ¢ (A, o, u, o), is associated the point
of RF+1 with coordinates

(C g1(c, 1) gk(c,tg)) .

’ go(cato') B go(cato')

Intersection of a real univariate representation over (a,b) with a hyper-
plane Y = c. Given a real univariate representation (u, o) over (a,b) and a point
¢ of (a,b) described by a univariate polynomial A(Y) the Thom encoding o of
the root ¢ of A, the intersection of (u, o) with the hyperplane ¥ = ¢ is the real
univariate representation over ¢ given by (A4, «, u, o).

Partition of the Y-axis associated to a family A of univariate polynomials.
The partition of the Y-axis associated to A is the ordered list y; < ... < y, of the
roots of the polynomials of A each y; being specified by a couple (A4;, «;) where
A € A Ai(yi) = 0 and «; is the Thom encoding of y;. The computation of the
partition associated to a family A of at most s polynomials of degree at most d is
done using the Sign Determination Subroutine in time slog sd®(1).

Parametrized Real Roots Subroutine. The input is a parametrized k-uni-
variate representation with parameter Y
u= (f(Y’T)agO(Y’T)agl(YaT)a ce ,gk(Y,T))

and the output is a family .4, C R[Y], with the property that for each y the
signs of the polynomials in A, at y determine the number of complex roots of
f(y, T), the number of real roots of f(y,T), the Thom encodings of the real roots
of f(y,T), as well as the degrees of f(y,T) and of ged(f(y,T), f'(y,T)). The
family A, consists of the principal subresultant coefficients of f(Y,7T) and each
of its successive derivatives with respect to 7', defining a partition of the Y-axis
and a finite set of real k-univariate representations over intervals and points of this
partition. The union of the curve segments and points associated are the points
¢:(t,y)/go(t,y) for y and ¢ in R with f(y,t) = 0.

Algebraic Stage: Compute the finite set .4, C R[Y] consisting of the principal
subresultant coefficients of f(V,7T) and each of its successive derivatives with
respect to T'.

Sign Determination Stage: The input is the family .4, and the output is the
partition of the Y-axis associated to A,. Over each open interval and point
of this partition compute the signs of the polynomials A,,. Then compute for
each interval and point of the partition the list of Thom encodings of the
real roots of the polynomial f(Y,T), outputting real univariate representa-
tions over segments and points of the partition. This is done using the Sign
Determination Subroutine.

If the parametrized univariate representation is given by polynomials of degree

bounded by D, the complexity of the Real Parametrized Univariate Representation
Subroutine is DO,



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 67

Limit of a Curve Segment Subroutine. The input is a real k-univariate rep-
resentation over (a, b) with coefficients in R[], v(¢) = (A(e), 04, B(¢), op, u(e), o),
such that the curve segment associated is bounded over R. Its output is the “limit
of the curve segment when ¢ tends to 07, i.e.: a partition of [lim,(a), lim.(b)] into a
finite number of open intervals and points, and a real k-univariate representation
over these intervals and points such that the union of the curve segments and points
associated is the image under lim, of the original curve segment.

The subroutine is a parametrized version of the Detect Bounded Roots Algorithm
in [20]. If the input polynomials have degrees at most D, the complexity of this
subroutine is DO,

4. CURVE SEGMENTS SUBROUTINE

The Curve Segments Subroutine is the basic building block in our algorithms.
Its input is
1. a polynomial @ € R[Y, X1,..., X}], for which Z(Q) is bounded and whose
degree 1s at most d,

2. aset M of m k+1-univariate representations u with deg u < 7, with associated
points in Z(Q).

The output is

1. a finite set Uy of parametrized univariate representations with parameter Y,

2. a family of univariate polynomials £;. The real zeroes of the polynomials in
L1 are the distinguished values,

3. a finite set of real univariate representations over the intervals and points of
the partition associated to £y,

4. a finite set M of pairs (L,u) with L € £; and u a parametrized univariate
representation with parameter Y and their real univariate representations.

The curve segments and points associated to the real univariate representations
output are contained in 7 (@) and satisfy the following properties.

CSq: For every y € R the set of curve segments and points intersect every
semi-algebraically connected component of Z(6Q),.

(CSs: For each curve segment over an interval of the partition, there exists a
point over each extremity of the interval which belongs to the closure of the curve
segment.

CS3: The real zeroes of £y contain the special values of Z(@) and the first
coordinates of the real points associated to M.

The adjacency relations between curve segments and points are also output in
the subroutine.

Curve Segments Subroutine.

Algebraic Stage:

1. Call the Parametrized Cell Representatives Subroutine, with input
QY,X1,...,Xk] to obtain U;.

2. For each parametrized k-univariate representation in Uy, call the algebraic
stage of the Parametrized Real Roots Subroutine. Call the algebraic
stage of the Special Values Subroutine to obtain a univariate polynomial
whose zeroes contain the Special Values. Call the algebraic stage of the
Projection Subroutine to obtain the polynomials having as zeroes the
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first coordinates of the points associated to M. Collect all the univariate
polynomials so obtained in £;.

3. Place the pairs (L, u) with L € £1 and v € Uy in a set M;. Add to My
the pairs (h, (f,90,92,-..,9%)) for w = (f,90,91,92,...,9%) in M and h
the projection of u.

Sign Determination Stage:

1. Call the sign determination stage of the Parametrized Real Roots Sub-
routine.

2. Compute the partition associated to £, and intersect the real univariate
representation over intervals already obtained by hyperplanes Y = ¢ with
¢ a zero of L.

3. Determine adjacencies between curves and points, by using the Thom
encodings of the real univariate representations over intervals and points.

4. Sort the set of distinguished values in increasing order.

5. Compute the real univariate representions of the elements of M. The
real points associated are called the distinguished points.

4.1. Correctness of the Curve Segments Subroutine. To verify Property
(CS1, we use the properties of the the output of the Parametrized Cell Representa-
tive Subroutine. By the correctness of the Parametrized Cell Representative Sub-
routine, we have that for every y € R the union of the set of points associated to
the real univariate representations u, over the interval containing y, intersects every
semi-algebraically connected component of the algebraic set Z(Q(y, X)). To verify
Property CSs, note that the algorithm outputs a set of real univariate representa-
tions over all the intervals and points of the partition. Consider any open interval
(ai,a;41) of the partition, as well as a curve segment represented by (u, o) over
this interval, where u = (f(Y, 7)), 90(Y, T), ..., gx(Y,T)). Now, over the point a; of
the partition, the subroutine outputs all points represented by (u,¢’) for every o’
corresponding to real roots of the polynomial f(a;,T'). Since the curve segment rep-
a; + ajy1 1),

it is clear that one of the points represented by (u, ') belongs to the closure of this
curve.

resented by (u, o) is bounded and corresponds to some real root of f(

4.2. Complexity of the Curve Segments Subroutine. The total complexity
of the subroutine is mlog mr®Md%*) uging the complexities of the various sub-
routines involved.

5. ROADMAP ALGORITHM FOR AN ALGEBRAIC SET

We construct a roadmap of an algebraic set, but for technical reasons (in order to
ensure the connectivity of the roadmap obtained) we shall construct the roadmap
of an algebraic set passing through a finite number of input points.

5.1. Roadmap algorithm for a bounded algebraic set. We first describe an
algorithm for the case of a bounded algebraic set. The input is
1. a polynomial @ € R[X1, ..., X}] whose total degree is at most d for which
Z(Q) is bounded,
2. a set M consisting of m k-univariate representations defined by polynomials
of degree at most 7.



COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY 69

The algorithm is as follows. Call the Curve Segments Subroutine with X; as
parameter. In every hyperplane defined by X; = @ where a is a distinguished
value, make a recursive call to the algorithm in R¥~ = 77 !(a), with the following
input: the polynomial Q(a, Xs, ..., X)), and the pairs (A4, u) € M; with associated
real points belonging to the fiber 7=1(a).

The output, denoted R(Z(Q), M), is a roadmap which contains the points as-
sociated to M.

Remark 1. Note that a is a root in R of a polynomial A whose degree is ei-
ther 7 or d°®). The polynomial Q(a, Xa, ..., Xt) has its coefficients in the ring
Dl[a] = D[Y]/A(Y) rather than in D which is the ring generated by the coefficients
of @) and of the polynomials defining the m real k-univariate representations in
M. Thus, the computations in the next recursive call take place over the ring
DJa] rather than in D. The algebraic part of the computation depends only on A
while the sign determinations process takes into account the Thom encoding « of
a. Since the complexity of our algorithms is defined as the number of arithmetic
operations (including comparisons) in the ring D, we take into account the extra
cost of doing arithmetic operations in rings of the form DJ[a4],... ,Dlay, ..., ap_1]
when analyzing the complexity.

5.1.1. Correctness of the algorithm. Abusing terminology we shall from now on use
a geometric language to describe the output of our algorithms, keeping in mind the
specific form of their description.

Let R(Z(Q), M) be the semi-algebraic set computed by our algorithm in the
bounded case. We prove that R(Z(Q), M) satisfies the two roadmap conditions
RM1 and RM2. The proof is by induction on dimension. In the case of dimension
one, the roadmap properties are obviously true for the set we compute. Now assume
that the algorithm computes a correct roadmap for all dimensions less than k.
That R(Z(Q), M) satisfies condition RM2 follows from property CS; of the Curve
Segments Subroutine. That R(Z(Q), M) satisfies condition RM1 is the content of
the following two lemmas.

Lemma 7. If ¢ € (a,b) is a distinguished value such that [a,b]\ {c} contains no
distinguished value of m on Z(Q) and C is a semi-algebraically connected component

of Z(Q)[ap), then R(Z(Q), M) N C' is semi-algebraically connected.

Proof. Since [a, b]\ {¢} contains no pseudo-critical value of the algebraic set Z(Q),
we know, by Proposition 6, that C', is semi-algebraically connected. Moreover, by
property CS; of the output of the Curve Segment Subroutine we know that any
curve segment in R(Z(Q), M) N C has an end point in R(Z(Q), M).. All these
end points are in the same semi-algebraically connected component of C., since
C. is semi-algebraically connected. The algorithm makes a recursive call at every
distinguished value and hence at ¢. The input to the recursive call is the algebraic
set Z(Q). and the k-univariate representations of all distinguished points which
include the end points of the curves in R(Z(Q), M) N C. Hence, by the inductive
hypothesis they are connected by the roadmap algorithm in the slice. Therefore,
R(Z(Q), M) N C' is semi-algebraically connected. O

Lemma 8. If C' is a semi-algebraically connected component of 7(Q), then
R(Z(Q), M) N C is semi-algebraically connected.
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Proof. Let x,y be two points of R(Z(Q), M)NC, and let ¥ be a semi-algebraic path
in C from x to y. We shall use y to construct a path from # to y in R(Z(Q), M)NC.
Let {v; <ws < -+ < v,} be the set of distinguished values and choose u; such that
U < v < Uy < wp < - < Uy < Uy < Upy1. There exists a finite number of points

of v, # = xo,21,...,2Nn41 = y, and semi-algebraic paths v; from #; to x;41 such
that:

Ly= UogigN Vi

2.7 C C[Uz(,)yuz(,)ﬂ]'

Let C; be the semi-algebraically connected component of C[W(,),u[(,)Jrl] contain-
ing ;. Since C; N Cj41 is a finite union of semi-algebraically connected compo-
nents of Cr(z.,,), R(Z(Q), M) NC;NCiyq is not empty. Choose yo = =,...,y; €
R(Z(Q),M)NC;NCiyr, ... ,yny1 = y. Then y; and y; 41 are in the same semi-

algebraically connected component of R(Z(Q), M) N C by Lemma 7. O

Remark 2. Note that it is unimportant here that the set of distinguished values
contains special values, we only need it to contain pseudo-critical values. So if
we are interested only in the roadmap of an algebraic set we can simplify slightly
the Curve Segments Subroutine and compute only pseudo-critical values in Step
4. The special values are important in section 6 for the correctness of the Uniform
Roadmap Algorithm.

5.1.2. Complexity analysis. The cost of a call to the Curve Segments Subroutine
is mlog mr?1d°%*) arithmetic operations in the ring D. We make recursive calls
at m + d°*) distinguished values. Note that in a recursive call at depth ¢ the
computations are performed over a ring D[ay, ..., as], and a single arithmetic op-
eration in Dfay, ..., as] costs OGO operations in D. Thus, the total number
of arithmetic operations made in the ring D during the algorithm for the bounded
case i1s bounded by mlog mrO) o),

5.2. Roadmap algorithm in the unbounded case. Next we show how to mod-
ify the algorithm presented above to handle the case when the input algebraic set
Z(Q) is not bounded. If Z(Q) is not bounded, we first introduce a new variable
Xp+1 and a new variable  and replace () by the polynomial

Qa=0Q"+ (X7 + -+ X7, — Q)

We identify the real k-univariate representations of M with real k& 4+ l-univariate
representations of M by setting the last coordinate equal to O.

Note that the algebraic set Z(Qgq) is bounded in R¥*+1(1/Q). The roadmap
algorithm outputs a roadmap R(Z(Qgq), M), composed of points and curves whose
descriptions involve £2. Let £ be the set of all polynomials in D[] whose signs
were determined in the various calls to the Sign Determination Subroutine inside
the algorithm. We recall from [1] (section 2.6) the following definition.

Definition 2. Given a polynomial P = ¢, X9+ - -+ ¢, XP, ¢ > p,cq, cp £ 0,

CP) = (3 (),

p<i<q ¢

o(P)= (Y ()7

p<i<q P
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Given a set of polynomials £, we define C(£) = maxpee C(P), and ¢(L) =
minpeg ¢(P).

We have the following lemma [1] (section 2.6, page 1020).

Lemma 9. Guwen a polynomial P with coefficients in an ordered domain D, con-
tained in a real closed field R, the greatest absolute value of the roots of P is smaller
than C(P), while the smallest absolute value of the non-zero roots of Q is greater
than ¢(P).

Replace © in the polynomial Qqu by A = C(L) to obtain a polynomial @ 4.
Replace €2 in the output roadmap by A to obtain a roadmap R(Z(®Q4), M). When
projected on R, this roadmap gives a roadmap R(Z(Q), M) N B(0, A). We next
collect all the points (yi,...,ys) in the roadmap which satisfy y? + ...+ y; = A.
Each such point is described by a univariate representation involving 2. We add
the curve obtained by treating £ as a parameter and letting §2 vary over [A, co], to
get a roadmap R(Z(Q), M).

The correctness of the algorithm in the unbounded case follows easily from the
correctness of the algorithm in the bounded case. The complexity of the algo-
rithm in the unbounded case coincides with the complexity of the algorithm in the
bounded case.

In the case that M is empty or a singleton, we have proven the following.

Theorem 1. Lelt Q € R[X1, ..., Xk] be a polynomial whose total degree is al most
d. There is an algorithm whose output is a roadmap R(Z(Q)) of Z(Q). The number
of arithmetic operations used by the algorithm in the ring generated by the cocffi-
cients of () is bounded by dOF*) Letx € Z(Q) be a point which is represented by «a
real k-univariate representation (u, o) of degree t. There is an algorithm whose out-
put C(x, Z(Q)) is a semi-algebraic path connecting x to R(Z(Q)). The number of
arithmetic operations used by the algorithm in the ring generated by the coefficients
of @ and the coefficients of the polynomials in u is bounded by FO(1) gO(k*)

Proof. The complexity of the roadmap algorithm (with M = ) is clear after the
last complexity analysis. The connecting algorithm is as follows: if the first coor-
dinate x; of x is not one of the distinguished values of R(Z(Q)) on the X;-axis,
compute the finite set M of real k-univariate representations whose associated
points are the intersections of the hyperplane X; = #; with R(Z(Q)) and construct
R(Z(Q)z,, MU{x}). Otherwise, go on with the second coordinate. Its complexity
is clear after the preceding complexity analysis. O

6. UNIFORM ALGORITHMS

6.1. Combinatorial level. Given a polynomial () and a set of polynomials P we
define the combinatorial level of the system (Q,P) to be the minimum number £
satisfying:
1. No more than ¢ of the polynomials in P have a real zero in common with @.
2. Any real zero common to () and to £ polynomials of P is 1solated.
If the combinatorial level of (@, P) is £, then for every P € P the combinatorial level
of (Q*+ P2, P\ {P}) is at most £ — 1. Note also that the value of the combinatorial
level can be found with complexity s*t1d°®*) using Theorems 1.3.2 and 4.2.1 of [1].
We say that a finite set of polynomials P is in general position over Z(Q) of
dimension k' if no k' + 1 polynomials of this set have a real zero in common with
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and if the only real zeroes common to k' polynomials of the set and () are isolated.
Thus, if the set of polynomials P is in general position over Z(Q) of dimension &',
then the combinatorial level of the system (Q,P) is at most k’.

6.2. The connecting subroutine. We suppose that the combinatorial level of
the system (@, P) is at most £ < k.

Given a sign condition ¢ € {0,1,—1}” on P, the corresponding weak sign con-
dition (P) is > 0 if o(P) = 1,18 < 0 if ¢(P) = —1 and is = 0 if o(P) = 0.
Denote by R(c) = {x € R*¥ | VP € P,sign(P(z)) = o,Q(z) = 0} and by
R(@) = {x € R* | VP € P,P(z) = 5(P),Q(z) = 0} which are the realizations
of ¢ and 7 on Z(Q). For p € Z(Q) we denote the sign condition on P at p by o,
and say that 7, is the weak sign condition defined at p. We denote by P, the set
of polynomials of P vanishing at p.

The connecting subroutine takes as input a point p € Z(Q), described by poly-
nomials of degree at most 7. The output is a semi-algebraic path I'; C R(Tp)x(p)
which connects p to some roadmap R(Z(Q,P’)) where P’ is a subset of P. The
path I', consists of a sequence of semi-algebraic paths v, 1 joining p = py to p1, Yp 2
Jjoining p; to pa, up to 7, ; joining p;_1 to p; with j < ¢. Each 7, ; is contained in
Z(Q,Pp,_,), and no polynomial of P \ Pp,_, vanishes on 7, ;. These properties of
I', make clear that T'p is contained in R(7,).

The algorithm proceeds as follows: First construct a roadmap R(Z(Q,Pp)).
Compute the set M, » which consists of the real k-univariate representations rep-
resenting the points in R(Z(Q,Pp))x(p). Next, construct the roadmap

R(Z(Q, Pp)ﬂ(p)a rtu Mpﬂ’)'

If p is connected to R(Z(Q,Pp)) by a path I' where no polynomial of P\ P,
vanishes, the connection is done and the algorithm terminates. Otherwise, suppose
that I' C R(Z(Pp)r(p), 1p}) connects p to R(Z(P,)) and a polynomial of P \ P,
vanishes on I'. Given p’ € T', denote by T,/ the connected subset of I' connecting p
to p’. Let p; be the point of T’ such that

e P, strictly contains P,
e no P\ P, vanishes on 'y, \ {p1}.

Replace p by p; and iterate. Since the combinatorial level of (@, P) is bounded by
£, the algorithm terminates after ¢/ < ¢ iterations. The degrees of the univariate
representations representing p1, ..., pe are bounded by 7d®*) Thus the complex-
ity of the connecting subroutine is clearly 2579 O The number of different
curve segments in the connecting path is at most 04O,

6.3. Uniform roadmap. In subsection 6.5 we describe an algorithm with input,

1. a polynomial @ for which Z(Q) is bounded,
2. a set of at most s polynomials P such that the combinatorial level of the
system (@, P) is at most £.

We further assume that d is a bound on the degree of @) as well as on all the
polynomials in P. The algorithm outputs a one-dimensional semi-algebraic set
R(Q,P) which is contained in Z(Q) and is called a uniform roadmap of (Q,P). A

uniform roadmap of (@, P) is a union of open curve segments and points satisfying
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the following two conditions:

URM1 The signs of the polynomials P € P are constant on each curve segment.
URM?2 The intersection of this set with any basic closed semi-algebraic set S,
defined by @ = 0 and a weak sign condition ¢ on P, is a roadmap R(R(o)).

The basic idea behind the algorithm is simple. First, for each at most £ element
subset P’ of P we construct a roadmap for the algebraic set defined by both @ and
P’ ie. Z({Q}UP’). We next recurse at each pair (v, P’), where v is a distinguished
value and Z(P’) is its associated algebraic set. In the recursion, @ is replaced by

the algebraic set Z({Q@} UP’).

6.4. Finger Subroutine. We describe a subroutine which, given a polynomial
@, a set of polynomials P and a point p in Z(Q) with w(p) = v, constructs a
finite number of semi-algebraic paths starting at p so that every semi-algebraically
connected component of every realizable sign condition of P in Z(Q) sufficiently
near and to the left of p contains one of these paths without the point p. The
subroutine takes as input a polynomial () and a finite set of polynomials P for
which the combinatorial level of the system (@Q,P) is bounded by ¢ and a point
p € Z(Q) defined by polynomials of degree at most d°*F) We consider the set
Y, of sign conditions ¢ such that R(o) N Z(Q) N B(p, )<, is non-empty for some
sufficiently small . The output is a set of semi-algebraic paths starting at p with
the property that for some sufficiently small » and for every o in X, every semi-
algebraically connected component of R(6)NZ(Q)NB(p, r) <y contains one of these
paths without the end point p. Let the set of polynomials in P (possibly empty)
that are zero at p be Py, and let B(p,€) be a ball of radius € and center p, where
€ 1s an infinitesimal. Using the Sample Points on a Variety Subroutine with the
polynomials defining B(p, €)<, along with the polynomials P, as input, we find a
point p;(€) in every semi-algebraically connected component of every non-empty
sign condition of the polynomials in P, in B(p, €)<,. Moreover, lim.(p;) = p. For
a small enough ty, replacing € by ¢t where 0 < ¢t < t; gives for each p;(¢) semi-
algebraic paths p;(t), which join p to points in every semi-algebraically connected
component of the non-empty sign conditions of P intersected with Z(Q)NB(p, €)<y.
The complexity of this subroutine is easily seen to be the cost of calling the Sample
Points Subroutine, with O(f) polynomials, in & variables, X;,..., X}. Since at
most ¢ polynomials can be zero at p, we have at most 3¢ conditions to consider at
p. Using the proof of the complexity bound of the Sample Points Subroutine in [1],
we conclude that the complexity of the Finger Subroutine is 36qOk).

6.5. The Uniform Roadmap Algorithm. Note that if the combinatorial level of
the system (@, P) is 0, then the roadmap R(Z(Q)) is a uniform roadmap for (Q, P)
since on every semi-algebraically connected component of Z(Q) the signs of the
polynomials in P are fixed and not zero. Moreover, this algorithm has complexity
sdO) If | = 1, then we can sort the roots of the univariate polynomial ). The
roadmap consists of the zeroes of () together with the signs of the polynomialsin P
at these points. The algorithm has complexity sd°(!). The algorithm will call itself
recursively and in each recursive call either the combinatorial level or the number
of variables will strictly decrease. The two base cases, when the combinatorial level
is zero or when the number of variables is one, have been discussed above.
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A polynomial @ of degree at most d for which Z(Q) is bounded, a set of
polynomials P whose degrees are bounded by d for which the combinatorial
level of the system (Q,P) is bounded by ¢.

A semi-algebraic set R(Q,P) satisfying conditions URM1 and URM2 of
section 6.3.

If ¢=0orif k=1, compute R(Q,P) and stop.

Use the Curve Segment Subroutine for the sets Z(Q) and Z(Q,P') =
Z(Q* + ZpeP’ P?) for each P’ C P of cardinality at most £. We label
each curve segment constructed on Z(Q, P’) by that algebraic set. The end
points of these curve segments are also labeled by the algebraic set Z(Q, P’)
and are placed in a set of distinguished points. Their first coordinates are
placed in a set of distinguished values.

Compute the intersection of each of these curve segments, with Z(P) for
each P € P. Note that the intersection of a curve segment with the zero set
of a polynomial is either the segment itself, or a finite set of points (possibly
empty), and we check this by substituting the univariate representation of
the curve segment into each polynomial in P and checking whether the
resulting univariate polynomial vanishes identically or not. If the intersec-
tion is the curve segment itself, we ignore this intersection. Otherwise, the
points of intersection yield a partition of the curve segment. We add these
points to our set of distinguished points. If Z(Q,P’) is the algebraic set
labeling a given curve segment, and P is a polynomial which vanishes at
one of these new end points, then Z(Q, P’ U{P}) is the algebraic set that
labels this new end point. The signs of the polynomials of P do not change
on any segment of this partition. Moreover, we store the sign vector of the
set of polynomials P on each curve segment and point computed above.
The X7 coordinates of all distinguished points are computed and appended
to the set of distinguished values.

For every distinguished point p and algebraic set Z(Q,P’) which labels p
compute the set M, p which consists of the real k-univariate representa-
tions representing the points of intersection of the curves constructed on
Z(Q,P’) in Step 1, and the slice 771 (v) where v = 7(p). Call the algorithm
recursively to construct a uniform roadmap, connect the points associated
to My pr to R(Q+ Y peps P?,P\P’) using the preceding connecting sub-
routine. Note that the combinatorial level of the system passed to the
recursive call is at most £ — [, and the number of variables is & — 1.

For each distinguished point p and the corresponding distinguished slice,
use the Finger Subroutine to construct curves joining p to points in every
semi-algebraically connected component of every realizable sign condition
of the set of polynomials P intersected with Z(Q) N B(p, rp) <x(p), for some
small enough r,. Let the other end points of these curves be py,...,p;.
For each p;,1 < ¢ < j, in the previous step we compute a roadmap, I'y,, for
the algebraic set Z(Q) in the slice X; = 7(p;), which passes through p; as
well as the set of points M, = R(Q)x(p,)- Compute the intersections of the
points and curve segments defining I'p, with Z(P) for each P € P. Note
that I'p, is represented as a set of disjoint curve segments and points each
labeled by a real univariate representation over an interval along with a
list of adjacencies between the points and curve segments. We construct a
graph whose vertices are the points in the above representation and whose
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edges are pairs of vertices which are adjacent to a common curve. We call
this graph the graph of I';,. Retain the connected component of the graph
of I'y, which contains p; and is contained in S(p;). We call this set I, .

Step 6 For each p; in the previous step, either F;,l NM,, #0, or F;n intersects
Z(P) at a point ¢; for some P € P. In the former case, repeat Step 4 with
the next p; in the list. In the latter case, repeat Step 4 with p; replaced by
q; and replace the algebraic set Z(Q) by Z(Q? + P?).

Step 7 We output all the curve segments and distinguished points computed in
Steps 2 to 6, with each labeled by the sign condition it satisfies. This is
the set R(Q,P).

6.6. Proof of correctness of the Uniform Roadmap Algorithm. Note that
Steps 2, 4, and 6 of the algorithm make it evident that R(Q,P) satisfies condition
URM1. We proceed to show that it satisfies condition URM2. Without loss of
generality, let S be the semi-algebraic set defined by @ = 0,P > 0,V P € P and
let R(S) =SNR(Q,P).

Proposition 8. The set R(S) is a roadmap of the set S.

Proof. We first show that R(S) satisfies RM2. For any ¢ € R such that S, is non-
empty, and for any semi-algebraically connected component C of S,, there exists a
semi-algebraically connected component C” of a non-empty algebraic set, Z(Q,P’).,
such that € C C (see Proposition 2 in [1]). Since in the algorithm we construct
curves using the Curves Segment Subroutine on all non-empty algebraic sets of the
form Z(Q,P'), it is clear that R(S) intersects C. Thus R(S) satisfies RM2. We
next show that R(S) satisfies condition RM1 as well. This is the content of the
following two lemmas. Let v1,... v, be the set of distinguished values computed
by the algorithm.

Lemma 10. For 1 < i < n, if R(S)<y, satisfies condition RM1 for the set S<,,
then R(S)<v,,, satisfies condition RMI for the set Sc,

i+l

Proof. Let C be a semi-algebraically connected component of S¢y,,,, and let I' be
a semi-algebraically connected component of R(S)NCly, v,,,). The set Ty, # 0 since
there is no distinguished value in (v;, v;41). It is then clear that R(S) N C<,, UT
is semi-algebraically connected. Since R(S) N C<,, is semi-algebraically connected,
the conclusion follows. O

Lemma 11. For 1 < i < n, if R(S)<y, satisfies condition RMI for the set Scy,,
then R(S)<y, satisfies condition RMI for the set S<,,.

Proof. Let C' be a semi-algebraically connected component of S<,,. We prove that
R(S)NC is semi-algebraically connected. Let By, ..., By be the_semi—algebraically
connected components of SNC'«,,,. Then, by Lemmab, C' = C1U- - UCRLUCL41U- - -U
Cy where C; = B; for 1 < i < h and for j > h, C; is a semi-algebraically connected
component of Z(P;)N.S,, where P’ C P, and v; is a special value of Z(Q,P’). Let
I' =R(S)NC and I'(i) = R(S)NC; for 1 < i < N; then T = |, T'(¢). First, we
claim that each T'(j) is semi-algebraically connected. If C; is a semi-algebraically
connected component of Z(Q,P')NS,,, for some P’ C P, then, since v; is a special
value for this algebraic set, T'(j) is semi-algebraically connected by Step 3 of the
algorithm. Otherwise, by the hypothesis of the lemma, we know that T'(j)<,, is
semi-algebraically connected. Thus, T'(j) can have at most one semi-algebraically
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connected component whose intersection with 7#=1(—o0,v;) is non-empty, and all
the other semi-algebraically connected components of I'(j) must lie in 77 1(v;), and
hence each of these must contain a distinguished point. But, by Steps 4 | 5 and 6 of
our algorithm, the distinguished points get connected to I'(j)«y,. Thus, T'(j) can
have only one semi-algebraically connected component. Moreover, if C; N C']/» + 0,
then T'(j) and T'(j’) are connected in R(S). This is so since according to Lemma 6,
C; ﬂC]’» intersects an algebraic set which has v; as a special value, and thus contains
a distinguished point which gets linked to both T'(j) and T'(j’). Tt follows easily that
I’ is semi-algebraically connected. This proves the lemma. O

The proposition now follows by induction on 3. O

6.7. Complexity. When ¢ = 0, it follows from the analysis of the algebraic case
that the complexity is sd®*) When k = 1, the complexity is sd®M). In Step 1, the
total number of calls to the Curve Segments Subroutine is Elgjd (]s), and each call
costs d°). Thus, the total cost of the calls to the Curve Segments Subroutine is
bounded by s‘=1d°%*) arithmetic operations in D. In Step 2, the cost of computing
the intersection of the curves computed with the zero sets of the polynomials in P
is bounded by s'd°*) and the total cost of Step 2 is s*d®®). In Step 4 the total
cost of the calls to the Finger Subroutine and linking is bounded by 3¢s‘+1q9(*).
We next count the recursive calls. For each 7, 0 < j < £, we make (Ogs))do(k)
recursive calls to the algorithm with the system having combinatorial level £ — j
and geometric dimension k — 1. Let T'(s,d, {, k) denote the number of arithmetic
operations needed for the problem with these parameters. Since at any depth of the
recursion the cost of a single arithmetic operation is bounded by dOF*) arithmetic
operations in D, we ignore the fact that the ring changes as we go down in the
recursion. Thus, we have the following recurrence:

T(s,d, (k)< Y (O(.S)) O (s,d 0 — j k— 1)+ O340 0> 0k > 1,
0<j<e

T(s,d,0,k) = sd®*") k> 1,

T(s,d, 0,1) = sd®WM).

This recurrence solves to T'(s,d, £, k) = 30stH1gOR*) Tt follows immediately that

the total cost is still bounded by 3stH1gO0%") If g € Z(Q) is a point represented by

a real k-univariate representation (u, o) of degree 7, the complexity of connecting #

to some R(Q,P’) is (57O gOk?) by the complexity of the connecting subroutine.
Thus we have proven the following theorem.

Theorem 2. Given @ € R[Xy, ..., Xi] with Z(Q) bounded, a set of at most s
polynomials P C R[Xy,...,Xk] such that the combinatorial level of the system
(Q,P) is at most £, and for which the degrees of the polynomials in P and Q are
bounded by d. There is an algorithm which computes a uniform roadmap R(Q,P)
using 31O grithmetic operations wn the ring generated by the coefficients
of Q and the coefficients of the elements of P. Given p € Z(Q) represented by a
real k-univariate representation (u, o) of degree T there is an algorithm which con-

structs a semi-algebraic path from p to R(Q,P). This algorithm uses £570(1) gO(k")
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arithmetic operations in the ring generated by the coefficients of QQ, the coefficients
of the elements of P as well as the coefficients of the polynomials wn the real k-
univariate representation (u, o).

7. ROADMAP ALGORITHM FOR THE BOUNDED CASE

7.1. Basic idea. We give a roadmap algorithm for an arbitrary semi-algebraic
set S, defined by the finite set of polynomials P which is contained in a bounded
algebraic variety Z(Q) of real dimension &’. We remove the boundedness restriction
in section 8. The i1dea is to construct uniform roadmaps for a perturbed finite set
of polynomials which are in general position over approximating varieties which
are close to Z(Q) and of dimension k’. Thus the combinatorial level is &'. We
then take the limits of the curves obtained when the parameter of deformation
tends to 0, 1.e. the images of the curves so constructed under a lim map, using a
subroutine described at the end of this section. In order to ensure that the union of
the curves so constructed is semi-algebraically connected in every semi-algebraically
connected component, we need to add curves connecting well chosen points to the
various roadmaps on approximating varieties. These points are of three kinds:

1. linking points which ensure that roadmaps coming from different approximat-
ing varieties whose images under the lim map intersect get connected,

2. touching triples ensuring that if the union of two semi-algebraically connected
components of two different sign conditions is semi-algebraically connected,
the union of the curves constructed in the two semi-algebraically connected
components is semi-algebraically connected and

3. added points that we add on every approximating variety to ensure that the
linking points and the touching triples will be part of the final roadmap.

The approximating varieties are constructed as follows in [22] (see also [3]). Let
7Z(Q) be a real algebraic variety of dimension &’. Suppose that Z(Q) C B(0, M).
We assume that @ has degree at most d and is non-negative. This assumption
causes no loss of generality as we can replace @ with Q2 at the cost of doubling the
degree of ). For any index set I = {ig:41,...,ix} C [1, 4] and an infinitesimal é,
let

a=(k— k)M~
Qr=(1-6)Q— 5(Xi2k(lci::1) 4ot Xizk(d+1> —a),

Qrr=(1-T)Q—T(X, ' 4.4 X)) _g),

el4a

_ Q1 Q1
QI — {QIa aXikl+2a"' ) 3sz }a
Vi = Z(Qy),

W = U Vr.

IC[1,k],card(I)=k—k'
With these notations, the following key result appears in [22].

Proposition 9. The real dimension of Vi is at most k'. For every x € Z(Q) there
exists y € W such that lims(y) = x.
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7.2. Linking points. Now we describe the construction of the set L of linking
points. Note that, by Proposition 4

lims (V7) = closure({(X,T) € R* x Rso | Qr.r(X) = 0}) n{T = 0}.

If S is a semi-algebraic subset of R* described by a quantifier-free formula, ¢(X),
then the closure of S is described by the following quantified formula:

Y(X) =V ZIAY || X -Y|P<Z?Ag(Y).

Note that ¢(X) is a first-order formula with two blocks of quantifiers, the first with
one variable and the second with k variables. Denote by R the set of polynomials
in k 4+ 1 variables obtained after two steps of the Block Elimination Subroutine
in [1] applied to the polynomials appearing in the first order formula describing
closure({(X,T) € R* x Rso | Qr+(x) = 0}) in order to eliminate Z and Y. These
polynomials have the property that closure({(X,T) € R* x Rso | Qr7(X) = 0})
is the union of semi-algebraically connected components of sets defined by sign
conditions over R; (note that we do not say that closure({(X,7) € R* x Ry |
Qrr(X) = 0}) can be described by polynomials in Ry). According to section 5.2
of [1] the set Ry has d°*) polynomials and each of these polynomials has degree
at most d°(®). Denote by P the set of polynomials in k variables obtained by
substituting 0 for 7" in R;. Next, for each pair of multi-indices I, J we apply the
Sample Point on a Variety Subroutine, with input Z(Q), P UPrUP; to obtain the
set L7 . The set Ly ; consists of sk’ qOk") points defined by polynomials of degree
at most d°*"). The complexity of the algorithm just described is st +1gO%)  The
set L is the union of the Ly ;. Thus, for every I and J, L meets every semi-
algebraically connected component of every non-empty weak sign condition of P
on hmg(V]) N hm&(VJ)

7.3. Touching triples. The reason for constructing the touching triples is the
following. Consider two connected components C; and Cy of two distinct sign
conditions of the family P, which are contained in the set S. Though €7 and C5 are
clearly disjoint, C'; U C5 might be connected. If C7 U5 is connected, then we want
the intersection of the roadmap, R(S), with C7; U Cs to be connected as well. We
will use the touching triples in the construction of R(S) to insure this property. We
compute a set N of touching triples (p1, p2,v1,2), where p1,ps € Z(Q), and y1 2 1s a
semi-algebraic path joining p; to ps in Z(@). The set N has the property that for
any two semi-algebraically connected components, C; and Cl, of sets R(o1) and
R(o2), where 1,09 are strict sign conditions on P, for which CiNCsy # 0, there
exists (p1,p2,71,2) € N, such that py € C1, ps € Cy and v1 2\ {p2} € Cs. Thus,
if €1 and C'y are two semi-algebraically connected components of two distinct sign
conditions which are included in S and whose union is semi-algebraically connected,
then there exists (pi1,p2,71,2) € N such that v; » connects the point p; € C; with
the point ps € Cy by a semi-algebraic path lying in C; UC5. To compute the set N
we introduce two infinitesimals n’ < n (where ' <  means that »’ is infinitesimal
over R(n)) and let P' = Upcp 1P, P £ 0, P £n}. We call the Sample Points on
a Variety Subroutine with input Z(Q), P’ to obtain a set of points in R({n,n')*
which intersects every semi-algebraically connected component of a set defined by
a sign condition on P’. For each point p; constructed above, we construct the point
p2 = limy/ (p1). The point p; is represented as a real k-univariate representation
(u, o) with coefficients in D[, n']. Replacing ' in u by a new variable ¢, and letting
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t vary over the interval [0, 7] we get a semi-algebraic path ¥4 » joining p1 to ps. We
include the triple (p1, p2, 71,2) in the set N. We now show that the triples computed
above satisfy the property stated at the beginning of this subsection.

Lemma 12. Let P = {Py,... P} be a finile sel of polynomials, and suppose that
Cy and Cy are two semi-algebraically connected components of R(o1) and R(o2)
respectively, with 01,05 two strict sign conditions, o1 # o9 and C; N Cy # 0.
Reordering the polynomaials in P if needed there exists £ and m with £ < m such
that the sign condition o1 1s P, = 0,1 < i< /{, and P, > 0,m < ¢ < s, while 02
is P, =0,1 <i<m, and P, > 0,m < 1 < s. Taking infinilesimals, n' < 7,
there is a semi-algebraically connected component C| of the set defined by the sign
condition P; = 0,1 < i< L, 0< Pi<ny t<i<m, P,>n m<i<s, such that
e ClR(UVU')’ and hmn/(C’) C CQR(UWI).

Proof. Choose a point p € C;NCs. Since p € Cs, P must satisfy the sign condition
o5 at p. Since p € O, any infinitesimal neighborhood (infinitesimal with respect to
R{n,n")) of p must intersect €. Consider the ball B(p, €) centered at p, with radius
¢, where € is any infinitesimal over R(n, ). Then, there exists a point ¢ € B(p,€) N
(7 and hence P must satisfy the sign condition o1 at ¢. That is, , =0,1 <i </,
and P; > 0,m < i < s, at ¢. Since lim¢(q) = p, if a polynomial is zero at ¢ it must
also be zero at p, and if a polynomial is positive at ¢, it must be non-negative at
p. This proves that ¢ has the form announced. It is clear that ¢ € (R(n, 7', €))*
satisfies the inequalities P, = 0,1 <i <L 0< P <pL<i<m, P,>n m<
i<s,Pr=- =P =0,0<Pp1 <n,...,0< Py, <, Ppy1>mn,...,P >n.
Consider the semi-algebraically connected component C' of the set defined by these
inequalities that contains ¢. It is clear that C' C Cy. Moreover, lim,, (C) satisfies
the sign condition o3 and contains p € C. Since lim,y maps semi-algebraically
connected sets to semi-algebraically connected sets, we see that lim,(C) C Cy. O

It is clear that if p is a point in C, if ¢ = lim,(p), and if v is the path obtained
by replacing 1’ by a variable as in the algorithm described earlier, then p € C1,
g € (5 and 7 is a path joining p and ¢ contained in C except at the end point gq.

7.4. Added points. For every p € L UN and every I such that V; is infinitesi-
mally close to p, we construct a point py in V; infinitesimally close to p as follows.
The point p is given by a real univariate representation, v = (f, go,...,gx) and
a Thom encoding ¢ of a real root ¢, of f. Let € 3> é be an infinitesimal, and let
Py( X1, Xy to) = 90(t0) D2 (90(t0) X — 9:(t5))? — go(ts)?€?. We call the Sam-
ple Point on a Variety Subroutine with input F,, V7 and perform the computations
over the extended ring DJ[{,]. At each point obtained we keep all those points at
which the sign of P, is negative and discard the rest. We denote by A; the points
of Vr so obtained. The set A = |J; Ar is our set of added points. The complexity
of computing the set of added points A = J; Ay is s% dO*) This follows from the
complexity of the Sample Points on a Variety Subroutine used repeatedly during
the algorithm.

7.5. The Roadmap Algorithm. We now describe the roadmap algorithm in the
general case. Take an infinitesimal § and compute the set of added points A. Make
a perturbation of the polynomials in P as follows. Take two more infinitesimals ¢
and ¢ with 6 € ¢ < ¢ and replace the set P by the set P* which consists of 4s
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polynomials:

P = |J {(1—¢)Pie—eHys, (1— )P+ cHyis,

i=1,...,s

(1—€VP —'eHyq, (1 — )P + €'eHu; },
where H; = (1 +lejgk i xfl) and d is an even number greater than the degree of
any P;. We have the following two lemmas, which are very similar to Propositions
5 and 6 in [3]. They show that the set P* is in general position over each Vi,
and that there exists a correspondence between the semi-algebraically connected

components of realizable sign conditions of P and P~*.
Lemma 13. The combinatorial level of (Qr, P*) is at most k'

Lemma 14. Let o be a realizable strict sign condition on the set of polynomials
P on Z(Q) given by Py = ... = P, = 0,Pi41 > 0,...,P; > 0, and let C be «
semi-algebraically connected component of the intersection of the realization R(o)
of o with Z(Q). Let o' be the weak sign condition on P* given by

—e'Hyy < (1 =€ YP < €eHy_1,1 <i <,

(1= €)P; > €Ha;is,

and let R(c’) be its realization. Then, for every I such that limg (Vi) NR (o) # 0,
there exists a unique semi-algebraically connected component C' of R(o')NVr such
that lime/ (C') C Cryey. Moreover, if x € RF is in C, then x € C".

Now use the algorithm for constructing uniform roadmaps with input (Qr, P*).
Connect the points of A to the uniform roadmap of (Qr, P*) using the connecting
subroutine. Then compute the image of the roadmap constructed above under
the lim, map, using the Limit of a Curve Segment Subroutine and retain only
those portions which are in the given set S. In order to connect a point x to the
roadmap, an I such that « € limg (V7) is chosen and a point z7 infinitesimally close
to # in V7 is constructed using the Sample Points Subroutine [1]. This point x
is connected to the uniform roadmap R(Qr, P*) using the connecting subroutine.
Then we compute the image of the connecting curves using the Limit of a Curve
Segment Subroutine.

The proof of correctness follows from the proof of correctness of the uniform
algorithm and Lemmas 13 and 14. The complexity of computing the set of added
points A is st d9* ) The combinatorial level of (Qr,P*) is bounded by k’. Using
the complexity bound of the uniform algorithm, we see that the complexity is
bounded by sh'+1gO(k?) Similarly, using the complexity bounds for the connecting
subroutine, the complexity of connecting a point = described by polynomials of
degree at most 7 to the roadmap is k' sTOL) gO*k),

8. ROADMAP ALGORITHM IN THE UNBOUNDED CASE

In this section we show how to modify the algorithm presented in section 7
to handle the case when the input variety Z(Q) is not bounded. If Z(Q) is not
bounded, we first introduce a new variable X1 and a new variable  and replace
@ by the polynomial Qq = Q% + (X7 + -+ X,?_I_l — Q%2 Let Sq € R(1/Q)*+!
be the set defined by the same formula as S but with @ replaced by @q. The
roadmap algorithm outputs a road map of R(Sp), composed of points and curves
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whose description involves Q. Let £ be the set of all polynomials in D[] whose
signs were determined in the various calls to the Multi-variate Sign Determination
Subroutine inside the algorithm. We replace Q by A = C(L) (see Definition 2)
in the output roadmap to obtain a roadmap R(S4), which, when projected on
R*, gives a roadmap R(S) N B(0, A). We next collect all the points (yi, ..., y)
in the roadmap which satisfy y7 4+ ...+ y7 = A. Each such point is described by
a univariate representation involving Q. We add the curve obtained by treating
{1 as a parameter and letting Q@ vary over [A, 0], to get a roadmap R(S). The
complexity of the algorithm in the unbounded case coincides with the complexity
of the algorithm in the bounded case. Thus we have proven the following theorem.

Theorem 3. Lel @ € R[X1,...,X;] and P C R[Xy, ..., X}] be a sel of at most
s polynomials each of degree less than d. Let k' be the real dimension of 7(Q).
Given a semi-algebraic S C Z(Q) defined by P, there is an algorithm outpulting
a roadmap R(S) of S which uses sH'+1OR) arithmetic operations in the ring D
generated by the coefficients of Q@ and the elements of P. Let x € Z(Q) be a point
which is represented by a real k-univariate representation (u, o) of degree t. There is
an algorithm whose output is a semi-algebraic connected path connecting x to R(S).
The number of arithmetic operations used by the algorithm in the ring D generated
by the coefficients of ), the coefficients of the elements of P and the coefficients of

the polynomials tn u is bounded by k! sTOL) gOR?),

Corollary 2. Let @ € R[Xy,...,X] and P C R[X1,..., Xi] be a sel of at most s
polynomials each of degree less than d. Let k' be the real dimension of Z(Q). Given
a semi-algebraic S C Z(Q) defined by P, there is an algorithm outputting exactly
one point in each semi-algebraically connected component of S whose complexity is
st HLIOC™) grithmetic operations i the ring D generated by the coefficients of @QQ
and the coefficients of the elements of P.

Note that we do not know how to compute the dimension &’ of Z(Q) in less than
dO*) arithmetic operations [22].
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