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Abstract. We study a system of N particles with logarithmic, Coulomb or Riesz pairwise
interactions, confined by an external potential. We examine a microscopic quantity, the
tagged empirical field, for which we prove a large deviation principle at speed N . The rate
function is the sum of an entropy term, the specific relative entropy, and an energy term,
the renormalized energy introduced in previous works, coupled by the temperature.

We deduce a variational property of the sine-beta processes which arise in random matrix
theory. We also give a next-to-leading order expansion of the free energy of the system,
proving the existence of the thermodynamic limit.
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1. Introduction

1.1. General setting. We consider a system of N points (or particles) in the Euclidean
space Rd (d ≥ 1) with logarithmic, Coulomb or Riesz pairwise interactions, confined by an
external potential V whose amplitude is chosen to be proportional to N . For any N -tuple of
positions ~XN = (x1, . . . , xN ) in (Rd)N we associate the energy given by

(1.1) HN ( ~XN ) :=
∑

1≤i 6=j≤N
g(xi − xj) +

N∑
i=1

NV (xi).
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The interaction kernel g is given by either
(Log1 case) g(x) = − log |x|, in dimension d = 1,
(Log2 case) g(x) = − log |x|, in dimension d = 2,
(Riesz case) g(x) = |x|−s, with max(0, d− 2) ≤ s < d, in dimension d ≥ 1.

Log1 (resp. Log2) corresponds to a one-dimensional (resp. two-dimensional) logarithmic
interaction, we will call Log1, Log2 the logarithmic cases. Log2 is also the Coulomb interaction
in dimension 2. For d ≥ 3, taking s = d − 2 in the Riesz cases corresponds to a Coulomb
interaction in higher dimension, while max(d − 2, 0) < s < d corresponds to more general
Riesz interactions. Whenever the parameter s appears, it will be with the convention that
s = 0 in the logarithmic cases. The potential V is a confining potential, growing fast enough
at infinity, on which we shall make assumptions later.

For any β > 0, we consider the canonical Gibbs measure at inverse temperature β, given
by the following density

(1.2) dPN,β( ~XN ) = 1
ZN,β

exp
(
−β2N

− s
dHN ( ~XN )

)
d ~XN ,

where d ~XN =
∏N
i=1 dxi is the Lebesgue measure on (Rd)N , and ZN,β is the normalizing

constant, called the partition function. In (1.2) the inverse temperature β appears with a
factor 1

2 in order to match existing convention in random matrix theory. In the Riesz cases,
the temperature scaling βN−s/d is chosen to obtain non-trivial results.

1.2. The macroscopic behavior: empirical measure. It is well-known since [Cho58] (see
e.g. [ST97] for the logarithmic cases, or [Ser15, Chap.2] for a simple proof in the general case)
that under suitable assumptions on V , we have

minHN = N2IV (µV ) + o(N2),
where IV is the mean-field energy functional defined on the set of Radon measures by

(1.3) IV (µ) :=
¨

Rd×Rd
g(x− y) dµ(x) dµ(y) +

ˆ
Rd
V (x) dµ(x).

There is a unique minimizer of IV on the space P(Rd) of probability measures on Rd, it is
called the equilibrium measure and we denote it by µV . We will always assume that µV is a
measure with a Hölder continuous density on its support, we abuse notation by denoting its
density µV (x) and we also assume that its support Σ is a compact set with a nice boundary.
We allow for several connected components of Σ (also called the multi-cut regime in the case
Log1). The precise assumptions are listed in Section 2.1.

A convenient macroscopic observable is given by the empirical measure of the particles: if
~XN is in (Rd)N we form

(1.4) µemp
N ( ~XN ) := 1

N

N∑
i=1

δxi ,

which is a probability measure on Rd. The minimisation of IV determines the macroscopic
(or global) behavior of the system in the following sense:

• Minimisers of HN are such that µemp
N ( ~XN ) converges to µV as N →∞.

• In fact µemp
N ( ~XN ) converges weakly to µV asN →∞ almost surely under the canonical

Gibbs measure PN,β.



LARGE DEVIATION PRINCIPLE FOR EMPIRICAL FIELDS OF LOG AND RIESZ GASES 3

In other words, not only the minimisers of the energy, but almost every (under the Gibbs
measure) sequence of particles is such that the empirical measure converges to the equilibrium
measure. Since µV does not depend on the temperature, the asymptotic macroscopic behavior
of the system is independent of β.

1.3. The microscopic behavior: empirical fields. In contrast, several observations (e.g.
by numerical simulation, see the figure below) suggest that the behavior of the system at
microscopic scale1 depends heavily on β. In order to investigate it, we choose a microscopic

Figure 1. Case Log2 with N = 100 and V (x) = |x|2, for β = 400 (left) and
β = 5 (right).

observable which encodes the averaged microscopic behavior of the system: the (tagged)
empirical field, that we will now define. In the following, Σ is the support of the equilibrium
measure, and Config denotes the space of point configurations.

Let ~XN = (x1, . . . , xN ) in (Rd)N be fixed.
• We define ~X ′N as the finite configuration rescaled by a factor N1/d

(1.5) ~X ′N :=
N∑
i=1

δN1/dxi
.

It is a point configuration (an element of Config), which represents the N -tuple of
particles ~XN seen at microscopic scale.
• We define the tagged empirical field2 EmpN ( ~XN ) as

(1.6) EmpN ( ~XN ) := 1
|Σ|

ˆ
Σ
δ(x, θ

N1/dx·
~X′N)dx,

where θx denotes the translation by −x. It is a probability measure on Σ× Config.
For any x in Σ, the term θN1/dx · ~X ′N is an element of Config which represents the N -tuple of
particles ~XN centered at x and seen at microscopic scale (or, equivalently, seen at microscopic
scale and then centered at N1/dx). In particular any information about this point configura-
tion in a given ball (around the origin) translates to an information about ~X ′N around x. We
may thus think of θN1/dx · ~X ′N as encoding the behavior of ~X ′N around x.

The empirical field is the measure

(1.7) 1
|Σ|

ˆ
Σ
δθ
N1/dx·

~X′N
dx,

1Since the N particles are typically confined in a set of order O(1), the microscopic, inter-particle scale is
O(N−1/d).

2Bars will always indicated tagged quantities
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it is a probability measure on Config which encodes the behaviour of ~X ′N around each point
x in Σ.

The tagged empirical field EmpN ( ~XN ) defined in (1.6) is a finer object, because for each x
in Σ we keep track of the centering point x as well as of the microscopic information θN1/dx · ~X ′N
around x. It yields a measure on Σ × Config whose first marginal is the Lebesgue measure
on Σ and whose second marginal is the (non-tagged) empirical field defined in (1.7). Keeping
track of this additional information allows one to test EmpN ( ~XN ) against functions F (x, C)
which may be of the form

F (x, C) = χ(x)F̃ (C),
where χ is a smooth function localized in a small neighborhood of a given point of Σ, and
C 7→ F̃ (C) is a bounded continuous function on the space of point configurations. Using such
test functions, we may thus study the microscopic behavior of the system after a small average
(on a small, macroscopic domain of Σ).

Our main goal in this paper is to characterize the typical behavior of the tagged empirical
field under PN,β.

1.4. Main result: large deviation principle and thermodynamic limit. We let again
Config be the space of point configurations in Rd, endowed with the topology of vague con-
vergence, and we consider the space P(Σ× Config) with the topology of weak convergence.

For any P̄ in P(Σ× Config) we will define two terms:
(1) The renormalized energy W(P̄ , µV ) of P̄ with background µV (see Section 2.7.4).
(2) The specific relative entropy ent[P̄ |Π1] of P̄ with respect to the Poisson point process

Π1 of intensity 1 (see Section 2.8).
For any β > 0, we define a free energy functional FµVβ as

(1.8) FµVβ (P̄ ) := β

2W(P̄ , µV ) + ent[P̄ |Π1].

For any N, β we let PN,β be the push-forward of the canonical Gibbs measure PN,β by the
tagged empirical field map EmpN as in (1.6) (in other words, PN,β is the law of the tagged
empirical field when the particles are distributed according to PN,β).

We may now state our main result, under some assumptions on V that will be given in
Section 2.

Theorem 1 (Large Deviation Principle for the tagged empirical fields). Assume that (H1)–
(H5) are satisfied. For any β > 0 the sequence {PN,β}N satisfies a large deviation principle
at speed N with good rate function FµVβ − inf FµVβ .

In particular, in the limit N → ∞, the law PN,β concentrates on minimizers of FµVβ .
One readily sees the effect of the temperature: in the minimization there is a competition
between the renormalized energy term W(·, µV ), which is expected to favor very ordered
configurations, and the entropy term which in contrast favors disorder (it is minimal for a
Poisson point process).

As a by-product of the large deviation principle we obtain the orderN term in the expansion
of the partition function.

Corollary 1.1 (Next-order expansion and thermodynamic limit). Under the same assump-
tions, we have, as N →∞:
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• In the logarithmic cases Log1 and Log2,

(1.9) logZN,β = −β2N
2IV (µV ) + β

2
N logN

d −N minFµVβ +N(|Σ| − 1) +NoN (1).

• In the Riesz cases

(1.10) logZN,β = −β2N
2− s

dIV (µV )−N minFµVβ +N(|Σ| − 1) +NoN (1).

The logarithmic cases enjoy a scaling property which allows to re-write the previous expansion
as

(1.11) logZN,β = −β2N
2IV (µV ) + β

2
N logN

d −NC(β, d)

−N
(

1− β

2d

) ˆ
Σ
µV (x) logµV (x) dx+NoN (1),

where C(β, d) is a constant depending only on β and the dimension, but independent of the
potential V .

In the Riesz cases, by a similar scaling argument, we get3

logZN,β = −β2N
2− s

dIV (µV )−N
ˆ

Σ
µV (x) minF1

βµV (x)s/d −N
ˆ

Σ
µV (x) logµV (x) dx

+NoN (1).
Here β and µV are coupled, and at each point x ∈ Σ there is an effective temperature depending
on the equilibrium density µV (x).

1.5. Variational property of the sine-beta process. In the particular case of Log1 with a
quadratic potential V (x) = x2, the equilibrium measure is known to be Wigner’s semi-circular
law whose density is given by

x 7→ 1
2π1[−2,2]

√
4− x2.

The limiting process at microscopic scale around a point x ∈ (−2, 2) (let us emphasize that
here there is no averaging) has been identified for any β > 0 in [VV09] and [KS09]. It is
called the sine-β point process and we denote it by Sineβ(x) (so that Sineβ(x) has intensity
1

2π
√

4− x2). For β > 0 fixed, the law of these processes do not depend on x up to rescaling
and we denote by Sineβ the corresponding process with intensity 1.

A corollary of our main result is a new variational property of Sineβ.
Corollary 1.2 (Sine-beta process). For any β > 0, the point process Sineβ minimizes

(1.12) F1
β(P ) := β

2 W̃(P, 1) + ent[P |Π1]

among stationary point processes of intensity 1 in R.

The objects W̃ and ent are defined in Sections 2.7.4 and 2.8 respectively. They are the
non-averaged versions of W and ent. Corollary 1.2 is proven in Section 4.4. The main interest
of this result is to give a one-parameter family of free energy functionals which are minimized
by Sineβ.

The main other setting in which the limiting Gibbsian point process is identified is the case
Log2 with quadratic external potential, which gives rise to the so-called Ginibre point process

3See (1.12) for the definition of F1
β .
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(see [Gin65, BS09]). We can also prove that this process minimizes a similar free energy
functional among stationary point processes of intensity 1 in R2. However, the Ginibre point
process does not come within a family indexed by β and its properties are already very
well-known, so we omit the proof here.

1.6. Motivation. The main motivation for studying such systems comes from statistical
physics and random matrix theory.

In all cases of interactions, the systems governed by the Gibbs measure PN,β are considered
as difficult systems in statistical mechanics because the interactions are truly long-range,
singular, and the points are not constrained to live on a lattice. The Log2 case is a two-
dimensional Coulomb gas or one-component plasma (see e.g. [AJ81], [JLM93], [SM76] for
a physical treatment). Two-dimensional Coulomb interactions are also at the core of the
fractional quantum Hall effects [Gir05,STG99], Ginzburg-Landau vortices [SS08] and vortices
in superfluids and Bose-Einstein condensates. The Riesz case with d = 3, s = d−2 corresponds
to higher-dimensional Coulomb gases, which can be seen as a toy (classical) model for matter
(see e.g. [PS72,JLM93,LL69,LN75]).

The Log1 case corresponds to a one-dimensional log-gas or β-ensemble, and is of particular
importance because of its connection to Hermitian random matrix theory (RMT), we refer to
[For10] for a comprehensive treatment. In the most studied cases β = 1, 2, 4 with V quadratic,
the canonical Gibbs measure PN,β coincides with the joint law of the N eigenvalues of the
so-called GOE, GUE, GSE ensembles. The connection between the law of the eigenvalues
of random matrices and Coulomb gases was first noticed in the foundational papers [Wig55,
Dys62].

The general Riesz case can be seen as a generalization of the Coulomb case, and motivations
for its study are numerous in the physics literature (in solid state physics, ferrofluids, elastic-
ity), see for instance [Maz11,BBDR05,CDR09,Tor16]. This case also corresponds to systems
with Coulomb interaction constrained to a lower-dimensional subspace. Another motivation
for studying such systems is the topic of approximation theory4, as varying s from 0 to∞ con-
nects Fekete points to best packing problems. We refer to the forthcoming monograph [BHS],
the review papers [SK97,BHS12] and references therein.

As always in statistical mechanics, one would like to understand if there are phase tran-
sitions for particular values of the (inverse) temperature β. For the systems studied here,
one may expect what physicists call a liquid for small β, and a crystal for large β. Such a
transition, occuring at finite β, has been conjectured in the physics literature for the Log2
case (see e.g. [BST66,CLWH82,CC83]) but its precise nature is still unclear (see e.g. [Sti98]
for a discussion). Recent progress in computational physics concerning such phenomenon in
two-dimensional systems (see e.g. [KK15]) suggests a possibly very subtle transition between
the liquid and solid phase.

1.7. Related works. The case Log1 has been most intensively studied, for general values
of β and general potentials. This culminated with very detailed results, including precise
asymptotic expansions of the partition function [BG13b,BG13a,Shc13], characterizations of
the point processes at the microscopic level [VV09, KS09], universality and rigidity results
[BEY14, BEY12, BFG13, Li16]. The case Log2 has been mostly studied for V quadratic or
analytic in the case β = 2, which is determinantal, see e.g. [Gin65, BS09, RV07, AHM11,
AHM15], however the general β case has recently attracted some attention, see [BBNY15,

4In that context, the systems are usually studied on a d-dimensional sphere or torus.
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BBNY16] and below. The Coulomb cases without temperature (formally β = ∞) are well
understood with rigidity results on the number of points in microscopic boxes [AOC12,NS14,
PRN16,LRY17].

In all cases, at the macroscopic scale, a large deviation principle for the law of the empirical
measure µemp

N ( ~XN ) holds under the Gibbs measure

1
ZN,β

exp
(
−β2HN ( ~XN )

)
d ~XN ,

i.e. (1.2) with a different temperature scaling in the Riesz cases. This LDP takes place at
speed N2 with rate function given by β

2 (IV − IV (µV )), and was proven in [HP00, AG97]
(for Log1), [AZ98, BG99] (for Log2), and [CGZ14] in a general setting including Riesz (see
also [Ser15, Chap.2]). Our main result, Theorem 1, can be understood as a next-order LDP
on a microscopic quantity, or “type-III" LDP. The idea of using large deviations methods for
such systems already appeared in [BBDR05] where results of the same flavor but at a more
formal level are presented.

The existence of a thermodynamic limit (as in Corollary 1.1) had been known for a long time
for the two and three dimensional Coulomb cases [LN75,SM76,PS72]. Our formula (1.11) is
to be compared with the results of [Shc13,BG13b,BG13a] in the Log1 case, where asymptotic
expansions of logZN,β are pushed much further, at the price of quite strong assumptions
on the regularity of the potential V . In the Log2 case, our result can be compared to the
formal result of [ZW06]. In both logarithmic cases, we recover in (1.11) the cancellation of
the order N term when β = 4 in dimension 2 and β = 2 in dimension 1, as was observed
in [Dys62, Part.II, Sec.II] and [ZW06].

Our approach is in line with the ones of [SS15a] for the case Log1, [SS15b] for the case
Log2, [RS16] for the general Coulomb cases and [PS14] for the general Riesz case, and we
borrow some tools from these papers. They focused on the analysis of the microscopic behavior
of minimizers, which formally corresponds to β = ∞, but the understanding of HN also
allowed to deduce information on PN,β for finite β, in terms of an asymptotic expansion the
partition function and a qualitative description of the limit of PN,β, which are sharp only as
β →∞. Our goal here is to obtain a complete LDP at speed N , valid for all β.

Several subsequent works by the authors rely strongly on the results of the present paper.
• In [Leb16], an alternative (more explicit) definition of the renormalized energy is
introduced and used to study the limit β → 0 of the minimisers of the free energy
functional (proving convergence to the Poisson point process). For Log1 and Riesz in
dimension d = 1, we also study the limit β → +∞ and prove a rigorous crystallization
result.
• In [Leb15], focusing on Log2, the result of Theorem 1 is pushed further to arbitrary
mesoscopic averaging scales. It yields (non-optimal) local laws and rigidity estimates
(see [BBNY15] for a similar, independent result with optimal rigidity).
• In [LS16], we prove a central limit theorem for the fluctuations of linear statistics in the

Log2 case, for β > 0 arbitrary, under mild regularity assumptions on the test functions
and the potential, see [BBNY16] for a similar, independent result. In [BLS17] the
approach is also implemented in the Log1 case, for possibly critical potentials. The
analysis of [LS16,BLS17] uses in a crucial way the expansion of the partition function
as given in (1.11).
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• The two-dimensional Coulomb system with particles of opposite signs, also called
classical Coulomb gas or two-component plasma is a fundamental model of statistical
mechanics, related to the sine-Gordon or XY models, and to the celebrated Kosterlitz-
Thouless phase transition. The approach of the present paper is extended and adapted
to that setting in [LSZ17].
• Finally, the case of hypersingular Riesz interactions s > d, which are essentially not
long-range, is treated in [HLSS17].

1.8. Outline of the proof, plan of the paper. The starting point of the analysis is the
following splitting formula, obtained in [PS14] for the greatest generality. For any ~XN =
(x1, . . . , xN ) we have

(Log1, Log2) HN ( ~XN ) = N2IV (µV )− N logN
d +NwN ( ~XN , µV ) + 2N

N∑
i=1

ζ(xi),(1.13)

(Riesz) HN ( ~XN ) = N2IV (µV ) +N1+s/dwN ( ~XN , µV ) + 2N
N∑
i=1

ζ(xi),(1.14)

where wN is a next-order energy which will be defined later, and ζ is an effective confining
term. In this paragraph, for simplicity, we will work as if ζ was 0 on Σ and +∞ on the
complement Σc.

Using (1.13), (1.14), one can factor out some constant terms from the energy and the
partition function, and reduce PN,β to

(1.15) dPN,β( ~XN ) = 1
KN,β

exp
(
−βN2 wN ( ~XN , µV )

)
1ΣN ( ~XN )d ~XN ,

where KN,β is a new partition function.
To prove a LDP, the standard method consists in evaluating the logarithm ofPN,β(B(P̄ , ε)),

where P̄ is a given element of P(Σ × Config) and B(P̄ , ε) is a ball of small radius ε around
it, for a distance that metrizes the weak topology.

We may write

PN,β(B(P̄ , ε)) ' 1
KN,β

ˆ
EmpN ( ~XN )∈B(P̄ ,ε)

exp
(
−βN2 wN ( ~XN , µV )

) N∏
i=1

1Σ(xi)dxi,

and thus we obtain formally

(1.16) lim
ε→0

logPN,β(B(P̄ , ε)) = − logKN,β −
βN

2 wN (P̄ , µV )

+ lim
ε→0

log
∣∣∣{ ~XN ∈ ΣN ,EmpN ( ~XN ) ∈ B(P̄ , ε)}

∣∣∣ .
Extracting this way the exponential of a function is the idea of Varadhan’s integral lemma
(cf. [DZ10, Theorem 4.3.1]), and works when the function (here wN (·, µV )) is continuous. In
similar contexts to ours, this idea is used e.g. in [Geo93,GZ93].

In (1.16) the term in the second line is the logarithm of the volume of point configurations
whose associated tagged empirical field is close to P̄ . By classical large deviations theorems,
such a quantity is expected to be the entropy of P̄ . More precisely since we are dealing with
empirical fields, we need to use the specific relative entropy (as e.g. in [Geo93]), which is
a relative entropy per unit volume (as opposed to the usual relative entropy, which in this
context would only take the values 0 or +∞).



LARGE DEVIATION PRINCIPLE FOR EMPIRICAL FIELDS OF LOG AND RIESZ GASES 9

The most problematic term in (1.16) is the second one in the right-hand side, wN (P̄ , µV ),
which really makes no sense. The idea is that it should be close to W(P̄ , µV ) which is the
well-defined infinite-volume quantity appearing in the rate function (1.8). If we were dealing
with a continuous function of P̄ then the replacement of wN (P̄ , µV ) by W(P̄ , µV ) would be
fine. However there are three difficulties:

(1) wN (·, µV ) depends on N and we need to take the limit N →∞,
(2) this limit cannot be uniform because the interaction becomes infinite when two points

approach each other,
(3) wN is not adapted to our topology, which retains only local information on the point

configurations, while wN (·, µV ) contains long-range interactions and does not depend
only on the local arrangement of the points but on the global configuration.

Thus, the approach outlined above cannot work directly. Instead, we look again at the
ball B(P̄ , ε) and show that we can find therein a logarithmically large enough volume of
configurations for which we can replace wN ( ~XN , µV ) by W(P̄ , µV ). This will give a lower
bound on logPN,β(B(P̄ , ε)), while the upper bound is in fact much easier to deduce from the
previously known results of [PS14]. The second obstacle above, related to the discontinuity
of the energy near the diagonals of (Rd)N , is handled by truncating the interaction at small
distances and controlling the error, which is shown to be small often enough (namely, the
volume of the configurations where it is small is large enough at a logarithmic scale).

The third point above (the fact that the total energy is nonlocal in the data of the con-
figuration) is the most delicate one. The way we circumvent it is via the screening procedure
developed in [SS12, SS15b, SS15a, RS16, PS14]. Roughly speaking, we can always modify a
bit each configuration in order to make the energy that it generates additive (hence local)
in space, while not changing the empirical field too much nor losing too much logarithmic
volume in phase-space.

The paper is organized as follows:
• Section 2 contains our assumptions, the definitions of the renormalized energy and of
the specific relative entropy, as well as some notation.
• In Section 3 we present preliminary results on the renormalized energy, some borrowed
from previous works.
• Section 4 contains the proofs of the large deviation principle and its corollaries, as-
suming two intermediate results.
• In Section 5 we adapt the screening procedure of previous works to the present set-
ting, and we prove that it can be applied with high probability. We introduce the
regularization procedure which deals with the singularity of the interaction at short
distances.
• In Section 6 we complete the proof of the main technical result, by showing that given
a random point configuration we can often enough screen and regularize it to have
the right energy.
• In Section 7 we prove a second intermediate result, a large deviation principle for
empirical fields under a reference measure without interactions.
• In Section 8, we collect miscellaneous additional proofs.

1.9. Open questions. Let us conclude our introduction by gathering some open questions
related to the present work.

• Our result naturally raises two questions: the first is to better understand W(·, µV )
and its minimizers and the second is to better understand the specific relative entropy,
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about which not much is known in general. Identifying the minimizers of FµVβ or
identifying some of their properties seems to be a difficult problem.
• It easy to see that if β is finite, the minimizer of our free energy functional cannot be
a periodic point process and in particular it cannot be the point process associated
to some lattice (or crystal). Hence there is no crystallization in the strong sense at
finite temperature, i.e. the particles cannot concentrate on an exact lattice. However
some weaker crystallization could occur at finite β e.g. if the connected two-point
correlation function ρ2 − 1 of minimizers decays more slowly to 0 as β gets larger.
Hints towards such a behavior of ρ2 − 1 for Log1 may be found in [For93] where
an explicit formula for the two-point correlation function is computed for the limiting
point process associated to the β-Circular Ensemble (which according to [Nak14] turns
out to also be Sineβ).
• The uniqueness of minimizers of FµVβ is expected to hold for Log1, but the one-
dimensional Riesz case is unclear. In higher dimensions, it is natural to ask whether
the rotational invariance of FµVβ accounts for all the degeneracy.
• It is conjectured that the triangular (or Abrikosov) lattice has minimal energy in the

Log2 case (see [BL15] for a survey). Can we at least prove that any minimizer of the
renormalized energy has infinite specific relative entropy, which would be a first hint
towards their conjectural “ordered” nature?
• Is there a limit to the Gibbsian point process defined as the push-forward of PN,β
by ~XN 7→

∑N
i=1 δN1/dxi

? Convergence is only known for Log1 (the limit is the Sineβ
process mentioned above) and for Log2 in the β = 2 case.

Acknowledgements : We would like to thank Paul Bourgade, Percy Deift, Tamara Grava,
Jean-Christophe Mourrat, Nicolas Rougerie and Ofer Zeitouni for useful comments.

2. Assumptions and main definitions

2.1. The assumptions. Let us state our assumptions on V and the associated equilibrium
measure µV . Before doing so, we recall that a compact setK is said to have positive g-capacity
if there exists a probability measure µ on K such that

¨
g(x− y) dµ(x) dµ(y) < +∞,

if not it has zero g-capacity. A general set E has positive g-capacity if it contains a compact
set that does.
(H1) - Regularity of V : The potential V is lower semi-continuous and bounded below, and

the set
{x : V (x) <∞}

has positive g-capacity.
(H2) - Growth assumption: We have

(Log1, Log2) lim
|x|→∞

V (x)
2 − log |x| = +∞,

(Riesz) lim
|x|→∞

V (x) = +∞.
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Assumptions (H1), (H2) imply, by the results of [Fro35], that the functional IV defined in
(1.3) has a unique minimizer (denoted by µV ) among probability measures on Rd, which
furthermore has a compact support (denoted by Σ).

We make the following additional assumptions:
(H3) - Regularity of the equilibrium measure: µV has a density which is C0,κ(Σ) for

some 0 < κ ≤ 1. In particular, there exists m > 0 such that

µV (x) ≤ m on Σ.

(H4) - Regularity of the boundary: Let Σ̊ be the interior of Σ

Σ̊ := {x ∈ Rd, µV (x) > 0},

and let Γ := ∂Σ̊ be its boundary. We assume that there is a finite number of connected
components of Γ, and we enumerate them as

Γ :=
⋃
j∈J

Γ(j).

Each Γ(j) is a C1 submanifold of dimension `j ≤ d − 1. For any j ∈ J , there exist
constants c1, c2, αj ≥ 0 and a neighborhood Uj of Γ(j) in Σ such that

c1 dist(x,Γ(j))αj ≤ µV (x) ≤ c2 dist(x,Γ(j))αj on Uj(2.1)

µV ∈ C0,min(αj ,1)(Uj).(2.2)

Moreover, if αj ≥ 1, we impose that

(2.3) |∇µV (x)| ≤ c2dist(x,Γ(j))αj−1 in Uj .

These assumptions include the case of the Wigner’s semi-circle law arising for a quadratic
potential in the Log1 case. We also know that in the Coulomb cases, a quadratic potential
gives rise to an equilibrium measure which is a multiple of a characteristic function of a
ball, also covered by our assumptions with α = 0. Finally, in the Riesz case, it was noticed
in [CGZ14, Corollary 1.4] that any compactly supported radial profile can be obtained as the
equilibrium measure associated to some potential. Our assumptions are thus never empty.
They also allow to treat a variety of so-called critical cases, for instance those where µV
vanishes in the bulk of its support. We will also comment more on known regularity results
and sufficient conditions at the end of Section 2.2 below.

Our last assumption is an integrability condition, ensuring the existence of the partition
function.
(H5): Given β, for N large enough, we have

(Log1, Log2)
ˆ

exp
(
−βN1− s

d

(
V (x)

2 − log |x|
))

dx <∞

(Riesz)
ˆ

exp
(
−β2N

1− s
dV (x)

)
dx < +∞.

It is easy to see that (H5) is satisfied as soon as V grows fast enough at infinity.
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2.2. The effective confinement term. This paragraph is devoted to defining the effective
confinement term ζ appearing above. Under Assumptions (H1), (H2), the result of Frostman
cited above ensures that, introducing the g-potential generated by µV

(2.4) hµV (x) :=
ˆ
Rd

g(x− y)dµV (y),

and letting

(2.5) cV := IV (µV )− 1
2

ˆ
Rd
V (x)dµV (x),

we have5

hµV + V
2 ≥ cV quasi-everywhere (q.e.) on Rd,

hµV + V
2 = cV q.e. on Σ.

We may now define the function ζ that appeared before, as

(2.6) ζ := hµV + V
2 − cV .

We let ω be the zero set of ζ, we have the inclusion

(2.7) Σ ⊂ ω := {ζ = 0}.

In the Coulomb cases the function hµV can be viewed as the solution to an obstacle problem
(see for instance [Ser15, Sec. 2.5]) and in the Riesz and Log1 cases, as the solution to
a fractional obstacle problem (see [CSS08]). The set ω corresponds to the contact set or
coincidence set of the obstacle problem, and Σ is the set where the obstacle is active, sometimes
called the droplet. Thanks to this connection, the regularity of µV can be implied by that of
V . Let us summarize the known facts for the Coulomb case (see [CSS08] for the fractional
case):

• If V is C1,1 then the density of the equilibrium measure is given by

dµV (x) = 1
4π∆V (x)1Σ(x)dx.

In particular, if V ∈ C2,κ then µV has a C0,κ density on its support. If ∆V > 0 near
ω then Σ and ω coincide.
• The points of the boundary ∂ω of the coincidence set can be either regular, i.e. ∂ω
is locally the graph of a C1,κ function, or singular, i.e. ∂ω is locally cusp-like (this
classification was introduced in [Caf98]). Singular points are nongeneric and we im-
plicitly assume that they are absent by assuming (H4), for technical reasons which
might be bypassed.
• If V is C3,κ, then ∂ω is locally C2,κ around each regular point (see [CR76, Thm. I]).
• In the setting of a bounded domain with zero Dirichlet boundary condition, if V is
strictly convex (which implies that Σ and ω coincide) and of class Ck+1,κ on R2, it
was shown (see [Kin78, Section 4]) that Σ is connected and that ∂Σ is Ck,κ with no
singular points.

5Here it is only important to know that quasi-everywhere implies Lebesgue almost-everywhere.
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2.3. The extension representation for the fractional Laplacian. In general, the kernel
g is not the convolution kernel of a local operator, but rather of a fractional Laplacian. Here
we use the extension representation of [CS07]: by adding one space variable y ∈ R to the space
Rd, the nonlocal operator can be transformed into a local operator of the form div (|y|γ∇·).

In what follows, k will denote the dimension extension. We will take k = 0 in the Coulomb
cases (i.e. Log2 and Riesz with d ≥ 3, s = d − 2), for which g itself is the kernel of a local
operator. In all other cases, we will take k = 1. Points in the space Rd will be denoted by x,
and points in the extended space Rd+k by X, with X = (x, y), x ∈ Rd, y ∈ Rk. We will often
identify Rd × {0} and Rd.

If γ is chosen such that

(2.8) d− 2 + k + γ = s,

then, given a probability measure µ on Rd, the g-potential generated by µ, defined in Rd by

hmu(x) :=
ˆ
Rd

g(x− x̃) dµ(x̃)

can be extended to a function Hµ on Rd+k defined by

Hµ(X) :=
ˆ
Rd+k

g(X − X̃) dµ(X̃) =
ˆ
Rd

g(X − (x̃, 0)) dµ(x̃),

and this function satisfies

(2.9) − div (|y|γ∇Hµ) = cd,sµδRd

where by δRd we mean the uniform measure on Rd × {0}. The corresponding values of the
constants cd,s are given in [PS14, Section 1.2]. In particular, the potential g seen as a function
of Rd+k satisfies

(2.10) − div (|y|γ∇g) = cd,sδ0.

To summarize, we will take
• k = 0, γ = 0 in the Coulomb cases.
• k = 1, γ = 0 for Log1.
• k = 1, γ = s− d + 2− k in the remaining Riesz cases.

We may note that our assumption d− 2 ≤ s < d implies that γ is always in (−1, 1). We refer
to [PS14, Section 1.2] for details about this extension representation.

2.4. Truncating the interaction, spreading the charges. We briefly recall the procedure
used in [PS14], following [RS16], for truncating the interaction or, equivalently, spreading out
the point charges.

For any η ∈ (0, 1), we define

(2.11) gη := min(g, g(η)), fη := g − gη.

We also define

(2.12) δ
(η)
0 := − 1

cd,s
div (|y|γgη),

it is a positive measure supported on ∂B(0, η).
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2.5. The next-order energy: finite configurations. In this section, we define the quan-
tity wN appearing in the splitting formulas (1.13), (1.14).

Let N ≥ 1 and let ~XN be a N -tuple of points in Rd. We introduce the following blown-up
(or zoomed) quantities:

• For any i ∈ {1, . . . , N} we let x′i := N1/dxi.
• We define µ′V as µ′V (x) := µV (N−1/dx). In particular, µ′V is a positive, absolutely
continuous measure of total mass N , with support N1/dΣ.

We let H ′N be the g-potential (in the extended space Rd+k) generated by the N points
x′1, . . . , x

′
N and the measure µ′V seen as a negative density of charges

(2.13) H ′N (X) :=
ˆ
Rd

g (X − (x̃, 0))
(

N∑
i=1

δx′i − dµ
′
V

)
(x̃).

We will call ∇H ′N the local electric field. Let us observe that, from (2.10), we have

(2.14) − div
(
|y|γ∇H ′N

)
= cd,s

(
N∑
i=1

δx′i − µ
′
V δRd

)

Next, we define the truncated version of H ′N ,∇H ′N . We can equivalently let H ′N,η be

H ′N,η(X) :=
ˆ
Rd

g (X − Y )
(

N∑
i=1

δ
(η)
x′i
− µ′V δRd

)
(Y ),

or define it as

(2.15) H ′N,η(X) := H ′N (X)−
N∑
i=1

fη(X − x′i),

with the notation of (2.11). We observe that

(2.16) − div
(
|y|γ∇H ′N,η

)
= cd,s

(
N∑
i=1

δ
(η)
x′i
− µ′V δRd

)
,

with δ(η)
x as in (2.12).

Finally, we let the next-order energy wN be

(2.17) wN ( ~XN , µV ) := 1
Ncd,s

lim
η→0

(ˆ
Rd+k
|y|γ |∇H ′N,η|2 −Ncd,sg(η)

)
.

It is proven in [PS14] that the limit in (2.17) exists and that with this definition, the splitting
formulas (1.13), (1.14) hold. With the factor 1

N the quantity wN (·, µV ) is expected to be
typically of order 1.

Let us emphasize two aspects of (2.17). First, wN is defined as a single integral of a
quadratic quantity (the local electric field) instead of a double integral analogous to the
summation

∑
i 6=j g(xi − xj) appearing in the original energy. This is due to the fact that

(after extension of the space) the interaction g is the kernel of a local operator, and relies
on a simple integration by parts. Secondly, wN is defined through a truncation procedure,
letting the truncation parameter η to 0 and substracting a divergent quantity cd,sg(η) for each
particle, this is the renormalization feature (hence the name renormalized energy).
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2.6. Point configurations, point processes, electric fields. Before defining the rele-
vant limit objects (the energy and entropy terms appearing in the rate function of our large
deviation principle), we introduce the functional setting as well as some notation.

2.6.1. Generalities. If X is a Polish space and dX a compatible distance, we endow the space
P(X) of Borel probability measures on X with the distance:

(2.18) dP(X)(P1, P2) := sup
{∣∣∣∣ˆ

X
F (dP1 − dP2)

∣∣∣∣ , F ∈ Lip1(X)
}

where Lip1(X) denotes the set of functions F : X → R that are 1-Lipschitz with respect
to dX and such that ‖F‖∞ ≤ 1. It is well-known that this metrizes the topology of weak
convergence on P(X).

If P ∈ P(X) is a probability measure, we denote by EP [·] the expectation under P .
For any x ∈ Rd and R > 0 we denote �R(x) the hypercube of center x and sidelength R

(all the hypercubes will have their sides parallel to the axes of Rd). If x is not specified we
let �R = �R(0).

2.6.2. Configurations of points. Let us list some basic definitions.
If A is a Borel set of Rd we denote by Config(A) the set of locally finite point configurations

in A or equivalently the set of non-negative, purely atomic Radon measures on A giving an
integer mass to singletons (see [DVJ88]). The mass |C|(A) of C on A corresponds to the
number of points of the point configuration in A. We mostly use C for denoting a point
configuration and we will write C for

∑
p∈C δp.

We endow Config := Config(Rd) with the topology induced by the topology of weak conver-
gence of Radon measure (also known as vague convergence or convergence against compactly
supported continuous functions), and we define the following distance on Config

(2.19) dConfig(C, C′) :=
∑
k≥1

1
2k

sup
{∣∣∣´�k fdC − dC′∣∣∣ , f ∈ Lip1(Rd)

}
|C|(�k) + |C′|(�k)

.

The subsets Config(A) for A ⊂ Rd inherit the induced topology and distance.
We say that a function F : Config → R is local when there exists k ≥ 1 such that for any

C ∈ Config it holds
(2.20) F (C) = F (C ∩�k) .
We denote by Lock(Config) the set of functions that satisfies (2.20).

Lemma 2.1. The following properties hold:
• The topological space Config is Polish.
• The distance dConfig is compatible with the topology on Config.
• For any δ > 0 there exists an integer k such that

sup
F∈Lip1(Config)

sup
C∈Config

|F (C)− F (C ∩�k)| ≤ δ.

Lemma 2.1 is proven in Section 8.1.
The additive group Rd acts on Config by translations {θt}t∈Rd as follows:

C = {xi, i ∈ I} 7→ θt · C := {xi − t, i ∈ I}.
We will use the same notation for the action of Rd on Borel sets of Rd: if A is Borel and
t ∈ Rd, we denote by θt ·A the translation of A by the vector −t.
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For any finite configuration C with N points we consider the subset of (Rd)N of N -tuples
corresponding to C (by allowing all the point permutations). If A is a family of finite config-
urations with N points we denote by Leb⊗N (A) the Lebesgue measure of the corresponding
subset of (Rd)N .

2.6.3. Point processes. Strictly speaking, elements of Config are point processes and elements
of P(Config) are laws of point processes. However, in this paper, in order to lighten the
sentences, we make the following confusion: elements of Config are called point configurations
(as above), a point process is defined as an element of P(Config), and a tagged point process
is a probability measure on Λ × Config where Λ is some Borel set of Rd with non-empty
interior (usually Λ will be Σ, the support of the equilibrium measure).

We impose by definition that the first marginal of a tagged point process P̄ is the Lebesgue
measure on Λ, normalized so that the total mass is 1. As a consequence, we may consider
the disintegration measures6 {P̄ x}x∈Λ of P̄ . For any x ∈ Λ, P̄ x is a probability measure on
Config and we have, for any F ∈ C0 (Λ× Config)

EP̄ [F ] = 1
|Λ|

ˆ
Λ

EP̄x [F (x, ·)]dx.

We denote by Ps(Config) the set of translation-invariant (or stationary) point processes.
We also call stationary a tagged point process such that the disintegration measure P̄ x is
stationary for (Lebesgue-)a.e. x ∈ Λ and we denote by Ps(Λ × Config) the set of stationary
tagged point processes.

If P is stationary, we define its intensity as the quantity EP [Num1], where Num1(C) denotes
the number of points in the unit hypercube.

We will denote by Ps,1(Config) the set of stationary point processes of intensity 1 and by
Ps,1(Λ× Config) the set of stationary tagged point processes such thatˆ

x∈Λ
EP̄x [Num1]dx = 1.

Remark 2.2. We endow P(Config) with the topology of weak convergence of probability
measures. Another natural topology on P(Config) is convergence of the finite distributions
[DVJ08, Section 11.1], sometimes also called convergence with respect to vague topology for
the counting measure of the point process. These topologies coincide as stated in [DVJ08, The-
orem 11.1.VII].

2.6.4. Electric fields. Let p ∈ (1, 2) be fixed, with

(2.21) p < pmax := min
(

2, 2
γ + 1 ,

d + k
s + 1

)
.

We define the class of electric fields as follows: let C be a point configuration and m ≥ 0,
let E be a vector field in Lp

loc(Rd+k,Rd+k), we say that E is an electric field compatible with
(C,m) if7

(2.22) − div (|y|γE) = cd,s (C −mδRd) .
We denote by Elec(C,m) the set of such vector fields, by Elecm the union over all configurations
for fixed m, and by Elec the union over m ≥ 0.

6We refer e.g. to [AGS05, Section 5.3] for a definition.
7Compare with (2.14).
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For any E ∈ Elecm, there exists a unique underlying configuration C such that E is com-
patible with (C,m), we denote it by Confm(C).

We define an electric field process as an element of P(Lp
loc(Rd+k,Rd+k)) concentrated on

Elec, usually denoted by P elec. We say that P elec is stationary when it is invariant under the
(push-forward by) translations θx · E := E(· − x) for any x ∈ Rd ⊂ Rd × {0}k. We say that
P elec is compatible with (P,m), where P is a point process, provided P elec is concentrated on
Elecm and the push-forward of P elec by the map Confm coincides with P .

Finally, we define a tagged electric field process as an element of P(Σ × Lp
loc(Rd+k,Rd+k))

concentrated on Σ × Elec, usually denoted by P̄ elec, whose first marginal is the normalized
Lebesgue measure on Σ. We say that P̄ elec is stationary if for a.e. x ∈ Σ, the disintegration
measure P̄ elec,x is stationary (in the previous sense).

2.7. The renormalized energy: definition for infinite objects.

2.7.1. For an electric field. Let C be a point configuration, m ≥ 0 and let E be in Elec(C,m).
We define the renormalized energy of E, following [PS14], as follows.

For any η ∈ (0, 1) we define the truncation of E as

(2.23) Eη(X) := E(X)−
∑
x∈C
∇fη(X − (x, 0)),

where fη is as in (2.11).
The renormalized energy of E with background m is obtained by first defining

(2.24) Wη(E,m) := lim sup
R→∞

1
Rd

ˆ
�R×Rk

|y|γ |Eη|2 −mcd,sg(η),

and finally8

(2.25) W(E,m) := lim
η→0
Wη(E,m).

The name renormalized energy (originating from [BBH94] in the context of two-dimensional
Ginzburg-Landau vortices) reflects the fact that the integral of |y|γ |E|2 is infinite, and is com-
puted in a renormalized way by first applying a truncation and then removing the appropriate
divergent part cd,sg(η).

2.7.2. For an electric field process. If P elec ∈ P(Elec), and m ≥ 0 we define

(2.26) W̃η(P elec,m) := EP elec [Wη(·,m)] W̃(P elec,m) := EP elec [W(·,m)] .

Let P̄ elec ∈ P(Σ × Elec) be a tagged electric field process such that for a.e. x ∈ Σ, the
disintegration measure P̄ elec,x is concentrated on ElecµV (x). We define

(2.27) W(P̄ elec, µV ) :=
ˆ

Σ
W̃(P̄ elec,x, µV (x))dx.

8The existence of the limit as η → 0 is proven in [PS14].
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2.7.3. For a point configuration. Let C be a point configuration and m ≥ 0. We define the
renormalized energy of C with background m as

W(C,m) := 1
cd,s

inf{W(E,m) | E ∈ Elec(C,m)}

with the convention inf(∅) = +∞.
In Section 8.2, we prove the following:

Lemma 2.3. Let C,m be fixed. If k = 0, two elements of Elec(C,m) with finite energy differ
by a constant vector field, and if k = 1, there is at most one element in Elec(C,m) with finite
energy. In all cases, the inf in the definition of W(C,m) is a uniquely achieved minimum.

2.7.4. For a point process. Let P be in P(Config) and m ≥ 0. We define its renormalized
energy with background m as

W̃(P,m) := EP [W(·,m)] .
Finally, if P̄ ∈ P(Σ× Config) is a tagged point process, we define its renormalized energy

with background measure µV as

W(P̄ , µV ) :=
ˆ

Σ
W̃(P̄ x, µV (x))dx.

2.8. The specific relative entropy. We conclude by defining the second term appearing
in the rate function FµVβ (see (1.8)), namely the specific relative entropy.

For any m ≥ 0, we denote by Πm the (law of the) Poisson point process of intensity m in
Rd, which is an element of Ps(Config). Let P be in Ps(Config). The specific relative entropy
of P with respect to Π1 is defined as

(2.28) ent[P |Π1] := lim
R→∞

1
Rd ent[P�R |Π1

�R ],

where P�R ,Π1
�R denote the restriction of the processes to the hypercube �R. Here, ent[·|·]

denotes the usual relative entropy of two probability measures defined on the same probability
space, namely

ent[µ|ν] :=
ˆ
dµ

dν
log

(
dµ

dν

)
dν,

if µ is absolutely continuous with respect to ν, and +∞ otherwise.

Lemma 2.4. The following properties are known:
• The limit in (2.28) exists for P stationary.
• The map P 7→ ent[P |Π1] is affine and lower semi-continuous on Ps(Config).
• The sub-level sets of ent[·|Π1] are compact in Ps(Config) (it is a good rate function).
• We have ent[P |Π1] ≥ 0 and it vanishes only for P = Π1.

Proof. We refer to [RAS09, Chapter 6] for a proof. The first point follows from sub-additivity,
the thrid and fourth ones from usual properties of the relative entropy. The fact that ent[·|Π1]
is an affine map, whereas the classical relative entropy is strictly convex, is due to the infinite-
volume limit taken in (2.28). �

Now, if P̄ is in Ps(Σ× Config), we define the tagged relative specific entropy as

(2.29) ent[P̄ |Π1] :=
ˆ

Σ
ent[P̄ x|Π1]dx.
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3. Preliminaries on the energy

3.1. Connection between next-order and renormalized energy. The renormalized en-
ergy, defined in Section 2.7 for infinite objects, was derived in previous works as a certain limit
of the next-order energy wN (defined for finite N) which appears in the splitting identities
(1.13), (1.14). In particular, we have the following lower bound.

Proposition 3.1. Let { ~XN}N be a sequence of N -tuples of points in Rd, and assume that
{wN ( ~XN , µV )}N is bounded. Then, up to extraction, the sequence {EmpN ( ~XN )}N converges
to some P̄ in Ps(Σ× Config), and we have

(3.1) lim inf
N→∞

wN ( ~XN , µV ) ≥W(P̄ , µV ).

Proof. This follows from [PS14, Proposition 5.2] and our definitions. �

3.2. Discrepancy estimates. In this section we give estimates to control the discrepancy
between the number of points in a domain and the expected number of points according to the
background intensity, in terms of the energy. These estimates show that local non-neutrality
of the configurations has an energy cost, which in turn implies that stationary point processes
of finite energy must have small discrepancies. For simplicity we only consider processes of
intensity 1, but the results extend readily to the general case of intensity m > 0.

For a given point configuration C, we denote by NumR(x) the number of points of a con-
figuration in �R(x) and by DisR(x) the discrepancy in �(x,R), defined as

NumR(x)(C) := |C|(�R(x))(3.2)
DisR(x)(C) := NumR(x)(C)−Rd.(3.3)

If x is not specified, we let NumR(C) = NumR(0)(C),DisR(C) := DisR(0)(C).

Lemma 3.2. Let P be in Ps(Config). If W̃(P, 1) is finite, then P has intensity 1. Moreover,
we have
(3.4) EP

[
Dis2

R

]
≤ C(C + W̃(P, 1))Rd+s,

where C depends only on d, s.

Proof. We postpone the proof of Lemma 3.2 to Section 8.5. �

In particular, in the Log2 case, (3.4) yields

EP

[
Dis2

R

]
= O(R2),

hence the variance of the number of points for a process of finite energy is comparable to that
of a Poisson point process. It is unclear to us whether this estimate is sharp or not.

In the Log1 case, the same argument can be used (see again Section 8.5 for a proof) to get
the following.

Remark 3.3. Let P be in Ps,1(Config) such that W̃(P, 1) is finite, in the Log1 case. Then
we have

(3.5) lim inf
R→∞

1
R

EP [Dis2
R] = 0.

In particular the Poisson point process Π1 has infinite renormalized energy for d = 1, s = 0.
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3.3. Almost monotonicity of the energy and truncation error. The following lemma,
taken from [PS14], expresses the fact that the limit η → 0 defining wN as in (2.17) is almost
monotonous. It also provides an estimate on the truncation error.

Lemma 3.4. Let ~XN be a N -tuple in Rd and let H ′N be as in (2.13). For any 0 < τ < η < 1
2 ,

we have

−CN‖µV ‖L∞η
d−s
2 ≤

(ˆ
Rd+k
|y|γ |∇H ′N,τ |2 −Ncd,sg(τ)

)
−
(ˆ

Rd+k
|y|γ |∇H ′N,η|2 −Ncd,sg(η)

)
≤ CN‖µV ‖L∞η

d−s
2 + cd,s

∑
i 6=j,|xi−xj |≤2η

g(xi − xj).

for some constant C depending only on d and s.
In particular, sending τ → 0 we get

(3.6) oη(1) ≤ wN ( ~XN , µV )−
(

1
cd,sN

ˆ
Rd+k
|y|γ |∇H ′N,η|2 − g(η)

)

≤ oη(1) + 1
N

∑
i 6=j,|xi−xj |≤2η

g(xi − xj).

where the error term oη(1) is independent of the configuration.

Proof. This follows from [PS14, Lemma 2.3]. �

We will also need a lower bound on the truncation error, as follows.

Lemma 3.5. Let P̄ be in Ps(Σ × Config), such that W(P̄ , µV ) is finite. For any η ∈ (0, 1)
and τ ∈ (0, η2/2) we have

(3.7) Wτ (P̄ , µV )−Wη(P̄ , µV ) ≥ C g(2τ)
τd EP̄ [(Num2

τ − 1)+]

+ CEP̄

 ∑
p 6=q∈C∩�1,|p−q|≤η2/2

g(p− q)

− oη(1),

with a C > 0 and oη depending only on d, s.

Proof. We postpone the proof to Section 8.3. �

3.4. Compactness results for electric fields.

Lemma 3.6. Let K be some hyperrectangle in Rd, let {E(n)}n be a sequence of vector fields in
Lp

loc(K,Rd+k), let {Cn}n be a sequence of point configurations in K and {µn}n be a sequence
of bounded measures in K, such that {Cn}n converges to some C in Config(K) and that {µn}n
converges to some µ (in L∞(K)).

Assume that for any n ≥ 1, we have

(3.8) − div (|y|γE(n)) = cd,s (Cn − µnδRd) in K × Rk,

Moreover, let η ∈ (0, 1), and assume that {
´
K×Rk |y|

γ |E(n)
η |2}n is bounded.

Then there exists a vector field E satisfying
(3.9) − div (|y|γE) = cd,s (C − µδRd) in K × Rk,
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and such that for any z ∈ [0,+∞]

(3.10)
ˆ
K×[−z,z]k

|y|γ |Eη|2 ≤ lim inf
n+∞

ˆ
K×[−z,z]k

|y|γ |E(n)
η |2.

Moreover, if k = 1, for any z ≥ 1 we have9

(3.11)
ˆ
K×(Rd\(−z,z))

|y|γ |E|2 ≤ lim inf
n+∞

ˆ
K×(R\(−z,z))

|y|γ |E(n)|2.

Proof. By Hölder’s inequality the space L2
|y|γ embeds locally into Lp for p ≤ pmax defined in

(2.21), and thus for any electric field we have

‖Eη‖2Lp(�R×Rk) ≤ CR
ˆ
�R×Rk

|y|γ |Eη|2.

In addition, using (2.23), we have

(3.12) ‖E‖Lp(�R×Rk) ≤ ‖Eη‖Lp(�R×Rk) + CηNumR+1.

Since the sequence {E(n)
η }n is bounded in L2

|y|γ (K×Rk,Rd+k), and since the number of points
in each cube �R is uniformly bounded by convergence of Cn, we deduce that ‖E(n)‖Lp(�R) is
bounded for each R > 1, hence we may find a weak limit point E in Lp

loc which will satisfy
(3.9) by taking the limit as n→∞ in (3.8) in the distributional sense. Lower semi-continuity
as in (3.10) and (3.11) is then a consequence of the weak convergence. �

We also state a compactness result for stationary electric processes with bounded energy.

Lemma 3.7. Let {P elec
n }n be a sequence of stationary electric processes concentrated on Elec1

such that {W̃(P elec
n , 1)}n is bounded. Then, up to extraction, the sequence {P elec

n }n converges
to a stationary electric process P elec concentrated on Elec1 and such that

(3.13) W̃(P elec, 1) ≤ lim inf
n→∞

W̃(P elec
n , 1).

Proof. By stationarity we have for any R > 0

(3.14) W̃η(P elec
n , 1) = EP elec

n

[
1
Rd

ˆ
�R×Rk

|y|γ |Eη|2
]
− cd,sg(η),

and thus by boundedness of the energy and the monotonicity of Lemma 3.4, for any η < 1
fixed and for every R we have

EP elec
n

[ˆ
�R×Rk

|y|γ |Eη|2
]
≤ CR.

Using (3.12) and the fact that NumR+1 is bounded by a constant depending only on R in
view of Lemma 3.2, we deduce that

EP elec
n

[
‖E‖2Lp(�R×Rk)

]
≤ CR,η.

9We are looking at the field on the additional axis away from Rd × {0}, and Eη coincides with E there.



22 THOMAS LEBLÉ AND SYLVIA SERFATY

This immediately implies the tightness of P elec for the Lp
loc topology, and the existence of a

limit point supported in Elec. The function E 7→
´
�R×Rk |y|γ |Eη|2 is lower semi-continuous,

thus if P elec is a limit point we have, for any η > 0

lim inf
n→∞

W̃η(P elec
n , 1) ≥ W̃η(P elec, 1).

Sending η to 0 yields (3.13). �

3.5. Some properties of the renormalized energy. We begin by the following technical
lemma.

Lemma 3.8. Let P be in Ps(Config) such that W̃(P, 1) is finite. We have

(3.15) W̃(P, 1) = min
{
EP elec

[
W̃(·, 1)

]
| P elec stationary and compatible with (P, 1)

}
.

The proof of Lemma 3.8 is given in Section 8.4.
We now study the regularity properties of the renormalized energy at the level of stationary

point processes.

Lemma 3.9. The map P 7→ W̃(P, 1) is lower semi-continuous on the space Ps(Config), and
its sub-level sets are compact.

Proof. Let P be in Ps(Config) and let {Pn}n be a sequence of stationary point processes
converging to P . We want to show that

lim inf
n→∞

W̃(Pn, 1) ≥ W̃(P, 1).

We may assume that the left-hand side is finite (otherwise there is nothing to prove), and up
to extraction we may also assume that the lim inf is a lim.

By Lemma 3.8, for each n ≥ 1 we may find a stationary electric process P elec
n compatible

with (Pn, 1) and such that

EP elec
n

[
W̃(·, 1)

]
= W̃(Pn, 1).

The sequence {W̃(P elec
n , 1)} is bounded, which together with Lemma 3.7 implies that up

to extraction we have P elec
n → P elec for some electric process P elec which is stationary and

compatible with (P, 1).
Moreover, combining (3.13) with the fact that W̃(P elec

n , 1) = W̃(Pn, 1) for each n, and that
W̃(P, 1) ≤ W̃(P elec, 1) (by definition), we get

lim inf
n→∞

W̃(Pn, 1) ≥ W̃(P, 1),

which proves that W̃(·, 1) is lower semi-continuous on Ps(Config). Also, we know from [PS14]
that W(·, 1) is bounded below hence so is W̃(·, 1).

Compactness of the sub-level sets is elementary, indeed from Lemma 3.2 we know that if
W̃(P, 1) is finite then P has intensity 1, but a family of stationary point processes with fixed
intensity is tight in P(Config). �
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3.6. Minimality of the local energy. For any N ≥ 1, and any ~XN in (Rd)N , we have
introduced in (2.13) the potential H ′N and its gradient was called the local electric field.
Adding a solution of −div (|y|γE) = 0 to this local electric field yields another vector field
such that

(3.16) − div (|y|γEN ) = cd,s

(
N∑
i=1

δx′i − µ
′
V δRd

)
.

The following lemma shows that among all EN satisfying (3.16), the local electric field ∇H ′N
has a smaller energy than any screened electric field (in a sense made precise). The reason
is that ∇H ′N is an L2

|y|γ -orthogonal projection of any generic compatible EN onto gradients,
and that the projection decreases the L2

|y|γ -norm.

Lemma 3.10. Let K be a compact subset of Rd with piecewise C1 boundary, let N ≥ 1, let
~XN be in (Rd)N . We assume that all the points of ~XN belong to K and that Σ ⊂ K.
Let E be a vector field in Lp

loc(Rd+k,Rd+k) such that

(3.17)
{
−div (|y|γE) = cd,s

(∑N
i=1 δx′i − µ

′
V δRd

)
in K × Rk

E · ~ν = 0 on ∂K × Rk.

We let also H ′N be as in (2.13). Then, for any η ∈ (0, 1) we have

(3.18)
ˆ
Rd+k
|y|γ |∇H ′N,η|2 ≤

ˆ
K×Rk

|y|γ |Eη|2.

Proof. First we note that we may extend E by 0 outside of K, and since E · ~ν is continuous
across ∂K, no divergence is created there, so that the vector field E satisfies

(3.19) − div (|y|γE) = −div (|y|γ∇H ′N ) in Rd+k.

Let us also observe that since the electric system ~XN with background µV is globally
neutral, the field H ′N decays as |x|−s−1 as |x| → ∞ in Rd+k and ∇H ′N decays like |x|−s−2

(still with the convention s = 0 in the logarithmic cases).
If the right-hand side of (3.18) is infinite, then there is nothing to prove. If it is finite, given

M > 1, and letting χM be a smooth nonnegative function equal to 1 in �M × [−M,M ]k and
0 at distance ≥ 1 from �M × [−M,M ]k, we may write

(3.20)
ˆ
Rd+k

χM |y|γ |Eη|2 =
ˆ
Rd+k

χM |y|γ |Eη −∇H ′N,η|2 +
ˆ
Rd+k

χM |y|γ |∇H ′N,η|2

+ 2
ˆ
Rd+k

χM |y|γ(Eη −∇H ′N,η) · ∇H ′N,η

≥
ˆ
Rd+k

χM |y|γ |∇H ′N,η|2 + 2
ˆ
Rd+k

χM |y|γ(Eη −∇H ′N,η) · ∇H ′N,η

=
ˆ
Rd+k

χM |y|γ |∇H ′N,η|2 + 2
ˆ
Rd+k

H ′N,η|y|γ(Eη −∇H ′N,η) · ∇χM ,

where we integrated by parts and used (3.19) to remove one of the terms. Letting M → ∞,
the last term tends to 0 by finiteness of the right-hand side of (3.18) and decay properties of
H ′N,η and its gradient, and we obtain the result. �
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4. Proof of the main results

4.1. Statement of two intermediate results. Our main theorem is a consequence of two
intermediate results.

4.1.1. Empirical fields without interaction. The first one is a large deviation principle for the
tagged empirical field, when the points are distributed according to a reference measure on
(Rd)N where there is no interaction.

For any N ≥ 1 we define QN,β as

(4.1) dQN,β( ~XN ) :=
N∏
i=1

exp
(
−N1− s

dβζ(xi)
)
dxi´

Rd exp
(
−N1− s

dβζ(x)
)
dx
,

and we let Q̄N,β be the push-forward of QN,β by the map EmpN , as defined in (1.6). Let us
point out that in view of (2.6) and since µV is a compactly supported probability measure, ζ
is asymptotic to g + V

2 − cV at infinity, so by assumption (H5) the integral in (4.1) converges.
We also introduce the following constant:

(4.2) cω,Σ := log |ω| − |Σ|+ 1,

where ω as in (2.7).
We may now state the LDP associated to Q̄N,β (the notation is as in Section 2.6).

Proposition 4.1. For any A ⊂ Ps(Σ× Config), we have

(4.3) − inf
P̄∈Å∩Ps,1

ent[P̄ |Π1]− cω,Σ ≤ lim inf
N→∞

1
N

log Q̄N,β(A)

≤ lim sup
N→∞

1
N

log Q̄N,β(A) ≤ − inf
P̄∈Ā

ent[P̄ |Π1]− cω,Σ.

Proof. The proof is given in Section 7.2.4. �

LDP’s for empirical fields can be found in [Var88], [Föl88], the relative specific entropy
is formalized in [FO88] (for the non-interacting discrete case), [Geo93] (for the interacting
discrete case) and [GZ93] (for the interacting continuous case). In light of these results,
Proposition 4.1 is not surprising, but there are some technical differences. In our case, the
reference measureQN,β is not the restriction of a Poisson point process to a hypercube but only
approximates a Bernoulli point process on some domain - which is not a hypercube - with
the possibility of some points falling outside. Moreover we want to study large deviations
for tagged point processes (let us emphasize that our tags are not the same as the marks
in [GZ93]) which requires an additional argument. These adaptations, leading to the proof of
Proposition 4.1, occupy Section 7.

4.1.2. Quasi-continuity. The second technical result is the quasi-continuity10 of the interac-
tion, in the following sense.

For any integer N , and δ > 0 and any P̄ ∈ Ps(Σ× Config), let us define

(4.4) TN (P̄ , δ) := { ~XN ∈ (Rd)N , wN ( ~XN , µV ) ≤W(P̄ , µV ) + δ}.

10We use the terminology of [BG99], which was a source of inspiration.
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Proposition 4.2. Let P̄ ∈ Ps,1(Σ× Config). For all δ1, δ2 > 0 we have

(4.5) lim inf
N→∞

1
N

logQN,β

(
{EmpN ∈ B(P̄ , δ1)} ∩ TN (P̄ , δ2)

)
≥ −ent[P̄ |Π1]− cω,Σ.

Let us compare with Proposition 4.1. The first inequality of (4.3) implies (taking A =
B(P̄ , δ1) and using the definition of Q̄N,β as the push-forward of QN,β by EmpN ) that

lim inf
N→∞

1
N

logQN,β

(
{EmpN ∈ B(P̄ , δ1)}

)
≥ −ent[P̄ |Π1]− cω,Σ.

To obtain Proposition 4.2, which is the hard part of the proof, we thus need to show that the
event TN (P̄ , δ2) has enough volume in phase-space near P̄ . This relies on taking arbitrary
configurations in the ball B(P̄ , δ1) and arguing that a large enough fraction of them (in the
sense of volume at logarithmic scale) can be modified in order to have well-controlled energy.

The proof of Proposition 4.2 occupies Section 6.

4.2. The large deviation principle: proof of Theorem 1. With Propositions 4.1 and
4.2 at hand, the proof of Theorem 1 is standard.

Proof. Step 1. Weak large deviation principle.
Let P̄ be in Ps(Σ×Config). Using the splitting formulas (1.13), (1.14), and the definition of
PN,β we have, for any δ1 > 0

PN,β

(
B(P̄ , δ1)

)
= 1
KN,β

ˆ
(Rd)N∩{EmpN ( ~XN )∈B(P̄ ,δ1)}

exp
(
−β2NwN ( ~XN , µV )

)

exp
(
−βN1− s

d

N∑
i=1

ζ(xi)
)

N∏
i=1

dxi,

where KN,β is the new partition function defined by

(4.6) KN,β =

ZN,βe
β
2 (N2IV (µV )−N logN

d ) in the cases Log1, Log2
ZN,βe

β
2N

2− s
d IV (µV ) in the case Riesz.

In view of our definition of QN,β as in (4.1) we may write

exp
(
−βN1− s

d

N∑
i=1

ζ(xi)
)

N∏
i=1

dxi =
(ˆ

Rd
exp

(
−N1− s

dβζ(x)
)
dx

)N
dQN,β( ~XN ).

Also, we have of course for any δ2 > 0

(Rd)N ∩ {EmpN ( ~XN ) ∈ B(P̄ , δ1)} ⊃ (Rd)N ∩ {EmpN ( ~XN ) ∈ B(P̄ , δ1)} ∩ TN (P̄ , δ2),

where TN (P̄ , δ2) is as in (4.4). Using the definition of TN (P̄ , δ2), we get

PN,β

(
B(P̄ , δ1)

)
≥ 1
KN,β

(ˆ
Rd

exp
(
−N1− s

dβζ(x)
)
dx

)N
exp

(
−β2 (W(P̄ , µV ) + δ2)

)
×QN,β

(
{EmpN ∈ B(P̄ , δ1)} ∩ TN (P̄ , δ2)

)
.



26 THOMAS LEBLÉ AND SYLVIA SERFATY

Using Proposition 4.2, we get

(4.7) 1
N

logPN,β

(
B(P̄ , δ1)

)
+ 1
N

logKN,β

≥ log
(ˆ

Rd
exp

(
−N1− s

dβζ(x)
)
dx

)
− ent[P̄ |Π1]− cω,Σ −

β

2
(
W(P̄ , µV ) + δ2

)
+ oN (1).

On the other hand, by the monotone convergence theorem, since ζ = 0 on ω and is > 0
outside ω, we have

(4.8) log
(ˆ

Rd
exp

(
−N1− s

dβζ(x)
)
dx

)
= log |ω|+ oN (1).

Thus, sending N →∞, δ1 → 0 and δ2 → 0 in (4.7) and using (4.2) we obtain

(4.9) lim inf
δ→0

lim inf
N→∞

( 1
N

logPN,β

(
B(P̄ , δ)

)
+ 1
N

logKN,β

)
≥ −FµVβ (P̄ ) + |Σ| − 1.

Conversely, Proposition 3.1 together with Proposition 4.1 and (4.8) imply that

(4.10) lim sup
δ→0

lim
N→∞

1
N

logPN,β

(
B(P̄ , δ)

)
+ 1
N

logKN,β ≤ −F
µV
β (P̄ ) + |Σ| − 1.

Step 2. Strong large deviation principle. Exponential tightness of PN,β is an easy
consequence of the fact that the total number of points in N1/dΣ is bounded by N . It allows
one to pass from a weak LDP as in (4.9), (4.10) to a strong large deviation inequality: for
any A ⊂ P(Σ× Config), we get

(4.11) |Σ| − 1− inf
P̄∈Å
FµVβ (P̄ )

≤ lim inf
N→∞

1
N

(
logPN,β(A) + logKN,β

)
≤ lim sup

N→∞

1
N

(
logPN,β(A) + logKN,β

)
≤ |Σ| − 1− inf

P̄∈Ā
−FµVβ (P̄ ).

Step 3. Conclusion. Applying this relation to the whole space, we deduce the thermody-
namic limit, namely

(4.12) lim
N→∞

1
N

logKN,β = − inf
Ps,1(Σ×Config)

FµVβ + |Σ| − 1.

Inserting (4.12) into (4.11) yields Theorem 1, up to the fact that FµVβ is indeed a good rate
function, which follows from Lemmas 2.4 and 3.9. �

Remark 4.3. One can observe that the result does not depend on the exact relation between
µV and the ζ associated to V , but rather holds for all sufficiently regular probability densities
µV and nonnegative functions ζ growing fast enough at infinity, as soon as the zero set of ζ
contains the support of µV . In particular KN,β can be seen as a function of the couple (µV , ζ)
rather than of V , and the expansion proven below still holds.

4.3. Expansion of the partition function: proof of Corollary 1.1.

Proof. The first part of the corollary (the expansions (1.9), (1.10)) follows immediately from
(4.12) and (4.6). For (1.11) we use the following scaling results:
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Lemma 4.4. For any m > 0 and P in Ps(Config) of intensity m we define σmP as the
push-forward of P by the map

C 7→ m1/dC,

so that σm maps bijectively processes of intensity m onto processes of intensity 1.
We have

W̃(P,m) = m

(
W̃(σmP, 1)− 1

d logm
)
, in the cases Log1, Log2(4.13)

ent[P |Π1] = m ent[(σmP )|Π1] + 1−m+m logm.(4.14)

Proof. The scaling relation (4.13) was proven in [SS15a], [SS15b] at the level of electric fields,
and the extension to point processes is immediate. We now prove (4.14).

First, by a simple change of variables we observe that

(4.15) ent[σmP |Π1] = 1
m

ent[P |Πm].

Next, we may write

ent[P |Πm] = ent[P |Π1] + lim
R→∞

1
Rd EP�R

[
log

dΠ1
�R

dΠm
�R

]
.

The Radon-Nikodym derivative
dΠ1

�R
dΠm

�R

only depends on the number of points in �R and we
have (since P has intensity m)

EP�R

[
log

dΠ1
�R

dΠm
�R

]
= EP�R

[
(m− 1)Rd −NumR logm

]
= (m− 1)Rd −mRd logm.

Finally, we get

(4.16) ent[P |Πm] = ent[P |Π1]−m logm+ (m− 1),

and (4.14) follows from combining (4.15) and (4.16). �

Now, in the logarithmic cases, if P̄ ∈ Ps(Σ × Config) is such that W(P̄ , µV ) is finite, we
can apply σµV (x) to P̄ x (for a.e. x in Σ) and we get from Lemma 4.4

FµVβ (P̄ ) :=
ˆ

Σ
µV (x)

(
β

2 W̃
(
σµV (x)P̄

x, 1
)

+ ent[σµV (x)P̄
x|Π1]

)
dx

+
ˆ

Σ

(
1− β

2d

)
µV (x) logµV (x) + |Σ| − 1.

In particular, we observe that
(4.17)

inf
P̄∈Ps(Σ×Config)

FµVβ (P̄ )− (|Σ| − 1) = inf
P∈Ps,1(Config)

F1
β(P ) +

(
1− β

2d

) ˆ
Σ
µV (x) logµV (x),

and we obtain (1.11) by combining the expansion (1.9) with the scaling relation (4.17). �



28 THOMAS LEBLÉ AND SYLVIA SERFATY

4.4. Application to the sine-beta process: proof of Corollary 1.2. Our large deviation
principle deals with the tagged empirical fields, defined by averaging the point configurations
over translations in Σ. It is natural to ask about the behavior of the Gibbsian point process
itself, that is the push-forward of PN,β by the map

(4.18) ~XN 7→
N∑
i=1

δx′i .

In the general case, the mere existence of limit points for the law of this quantity is unknown.
In the Log1 case, however, it was proven in [VV09] (see also [KS09]) that the limit in law
exists and is given by the so-called sine-β process (named by analogy with the previously
known sine-kernel, or Dyson sine process, which corresponds to β = 2).

For x ∈ (−2, 2) and any β > 0, we denote by Sineβ(x) the Sine-β process of [VV09]
rescaled to have intensity µWig(x) = 1

2π
√

4− x2. For any β > 0, we define PN,β as the push-
forward of PN,β (Log1 case, V (x) = x2) by the map (4.18). The following is a rephrasing11

of [VV09, Theorem1]:

(4.19) For any x ∈ (−2, 2), for any β > 0, we have θNx ·PN,β =⇒ Sineβ(x).

We may now prove the variational property of Sineβ(x) as stated in Corollary 1.2.

Proof. Let F : [−2, 2]×Config→ C be a bounded continuous function. By definition we have

EPN,β

[ˆ
F (x, C) dP (x, C)

]
= EPN,β

[ˆ
[−2,2]

F (x, θNx · C)dx
]

=
ˆ

[−2,2]
EPN,β [F (x, θNx · C)] dx

From (4.19) we know that the sequence of functions {x 7→ EPN,β [F (x, θNx · C)]}N converges
almost-everywhere on [−2, 2] to x 7→ ESineβ(x)[F (x, C)] as N → ∞. Since F is bounded the
dominated convergence theorem implies that

(4.20) lim
N→∞

EPN,β

[ˆ
F (x, C) dP (x, C)

]
=
ˆ

[−2,2]
ESineβ(x)[F (x, C)]dx = ESineβ [F (x, C)],

where Sineβ is the associated tagged point process. Since this is true for any bounded contin-
uous function on [−2, 2]×Config, the sequence of tagged point processes {PN,β}N converges
to Sineβ, and then the large deviation principle implies that Sineβ is be a minimizer of F̄µ

Wig

β .
The fact that the point process Sineβ itself minimizes F1

β (as defined in the statement)
among stationary point processes of intensity 1 follows by scaling. �

5. Screening and regularization

In this section, we introduce the main ingredients of the proof of Proposition 4.2. We define
two operations on point configurations (say, in a given hypercube �R) which can be roughly
described this way:

11The convergence =⇒ is proven in [VV09] “in law with respect to vague topology for the counting measure
of the point process”. As explained in Remark 2.2, this topology coincides with the one used here.
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(1) The screening procedure Φscr takes “good” (called here screenable) configurations and
replaces them by “better” configurations which are neutral (the number of points
matches the integral of the equilibrium measure times N) and for which there is a
compatible electric field supported in �R whose energy is well-controlled.

(2) The regularization procedure Φreg takes a configuration and separates pairs of points
which are “too close” from each other.

If a “bad” (non-screenable) configuration is encountered, it replaces it by a “standard” con-
figuration (at the cost of a loss of information).

5.1. The screening result. When we get to the Section 6 (which contains the proof of
Proposition 4.2), we will want to construct point configurations by elementary blocks (hyper-
rectangles) and compute their energy additively in these blocks. One of the technical tricks
borrowed from the original works above is that this may be done by gluing together electric
fields whose normal components agree on the boundaries. More precisely, assume that space
is partitioned into a family of hyperrectangles K. We would like to construct a vector field
E(K) in each K such that

(5.1)
{
−div (|y|γE(K)) = cd,s (CK − µ′V δRd) in K × Rk

E(K) · ~ν = 0 on ∂(K × Rk)

(where ~ν is the outer unit normal to K) for some discrete set of points CK ⊂ K, and withˆ
K×Rk

|y|γ |E(K)
η |2

well-controlled. Integrating the relation (5.1), we see that for this equation to be solvable, we
need the following compatibility condition

(5.2)
ˆ
K
dC =

ˆ
K
dµ′V ,

in particular the partition must be made so that
´
K dµ

′
V are integers.

When solving (5.1), we could take E(K) to be a gradient, but we do not require it. Once
the relations (5.1) are satisfied on each K, we may paste together the vector fields E(K) into
a unique vector field Etot, and the discrete sets of points CK into a configuration Ctot. By
(5.2) the cardinality of Ctot will be equal to

´
Rd dµ

′
V , which is exactly N .

We will thus have obtained a configuration of N points, whose energy we may try to
evaluate. The important fact is that the enforcement of the boundary condition E(K) · ~ν = 0
on each boundary ensures that

(5.3) − div (|y|γEtot) = cd,s
(
Ctot − µ′V δRd

)
in Rd+k

holds globally. Indeed, a vector field which is discontinuous across an interface has a distri-
butional divergence concentrated on the interface equal to the jump of the normal derivative,
but here by construction the normal components coincide hence there is no divergence created
across these interfaces.

Even if the E(K)’s were gradients, the global Etot is in general no longer a gradient. This
does not matter however, since the energy of the local electric field ∇H ′N generated by the
finite configuration Ctot (and the background µ′V ) is always smaller, as stated in Lemma 3.10.
We thus have ˆ

Rd+k
|y|γ |∇H ′N,η|2 ≤

∑
K

ˆ
K×Rk

|y|γ |E(K)
η |2,
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and the energy, which originally was a sum of pairwise interactions, has indeed become addi-
tive over the cells.

Starting from a given point configuration in a cellK, assume that there exists E compatible
with the configuration and the background in K (i.e. the first equation of (5.1) is satisfied
but not necessarily the second one) whose energy is not too large. Using the screening tool
developed in [SS15b,SS15a,RS16,PS14], we may modify the configuration in a thin layer near
∂K, and modify the vector field E a little bit as well, so that (5.1) is satisfied, and so that
the energy has not been increased too much. This is the object of Section 5.1.2.

If, on the other hand, there exists no such E of reasonable energy in the cell K, we will
completely discard the configuration and replace it by an artificial one for which there exists
a screened electric field whose energy is well controlled. This will be described in Section 5.4.

5.1.1. Compatible and screened electric fields. Let us introduce some notation. Let K be a
compact subset of Rd with piecewise C1 boundary (typically, K will be an hyperrectangle or
the support Σ), C be a finite point configuration in K, µ be a positive measure in L∞(K),
and E be a vector field in Lp

loc(K × Rk,Rd × Rk).
• We say that E is compatible with (C,m) in K and we write

E ∈ Comp(C, µ,K)
provided

(5.4) − div (|y|γE) = cd,s (C − µδRd) in K × Rk.

• We say that E is compatible with (C, µ) and screened in K and we write
E ∈ Screen(C, µ,K)

when (5.4) holds and moreover
(5.5) E · ~ν = 0 on ∂(K × Rk),

where ~ν is the outer unit normal vector.
If E is in Comp(C, µ,K), for any η ∈ (0, 1) we define the truncation of E as

(5.6) Eη(X) := E −
∑

p∈C∩K
∇fη(X − (p, 0)).

5.1.2. Screening. We now rephrase the screening result from [PS14], with two modifications:
we have to deal with a non-constant background measure, and we also need a volume esti-
mate. Roughly speaking, with the notation as in Section 5.1.1, we start from (C, µ) in some
hyperrectangle K, and E ∈ Comp(C, µ,K), and we slightly modify C, E into Cscr, Escr such
that in the end Escr belongs to Screen(Cscr, µ,K). We call this screening because when (5.5)
holds the configuration has no influence outside the cell (as far as upper bound estimates on
the energy are concerned, see below). The configuration12 and the field are modified in a thin
layer near the boundary, and remain unchanged in an interior set denoted Old.

A new feature, compared to the previous screening results, is that we need the positions
of the new points (those added “by hand” in the layer near the boundary), denoted by New,
to be flexible enough to create a positive volume of associated point configurations in phase
space. We will let the points move in small balls, which creates some volume without altering
the energy estimates.

12To be accurate, we do not really need the original configuration to be defined in the whole K, but only
in a subcube �R ⊂ K, the configuration is then completed by hand.
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Proposition 5.1 (Screening). Let m,m > 0 be fixed.
There exists R0, η0 > 0 depending only on d and m, and a constant C depending on

d, s,m,m such that the following holds.
Let R > 0,M > 1, and ε ∈ (0, 1) be such that the following inequalities are satisfied

(5.7) R > max
(
R0
ε2 ,

CR0M

ε3

)
, R >

CR0M
1/2ε−d−3/2 if k = 0

max
(
CR0M

1/(1−γ)ε
−1−2d+γ

1−γ , R0ε
2γ

1−γ

)
if k = 1

.

Let C be a point configuration in �R, let K be a hyperrectangle such that �R ⊂ K ⊂ �R+εR,
and let µ ∈ C0,κ(K) satisfying

m ≤ µ ≤ m on K,
ˆ
K
µ is an integer.

Let η be in (0, η0), let E be in Comp(C, µ,�R), and let Eη be as in (5.6). Assume that

(5.8) 1
Rd

ˆ
�R×[−R,R]k

|y|γ |Eη|2 ≤M

and in the case k = 1 assume that

(5.9) 1
ε4Rd

ˆ
�R×(R\(− 1

2 ε
2R, 12 ε

2R))
|y|γ |E|2 ≤ 1.

Then there exists a (measurable) family Φscr
ε,η,R(C, µ) of point configurations in K and a

partition of K as Old tNew with
(5.10) Intε := {x ∈ �R, dist(x, ∂�R)} ≥ 2εR} ⊂ Old
such that for any Cscr in Φscr

ε,η,R(C, µ) we have
The configurations C and Cscr coincide on Old,(5.11)
min
x∈Cscr

dist(x, ∂K) ≥ η0, and min
x∈Cscr∩New, y∈Cscr

|x− y| ≥ η0,(5.12) ∑
xi 6=xj∈Cscr,|xi−xj |≤2η

g(xi − xj) =
∑

xi 6=xj∈C,|xi−xj |≤2η
g(xi − xj).(5.13)

For any Cscr, there exists13 a vector field Escr ∈ Screen(Cscr, µ,K) such that

(5.14)
ˆ
K×Rk

|y|γ |Escr
η |2 ≤ I + II + III

with, for some constant C depending only on s, d,m,m

I =
(ˆ

�R×[−R,R]k
|y|γ |Eη|2

)
+ Cg(η)MεRd

II = CRd+3−γ‖µ‖2C0,κ(K)

III =
√
I · II.

Proof. The statement is based on a re-writing of [PS14, Proposition 6.1.] provided by an
examination of its proof.

First, let us assume that µ ≡ 1, in that case we may apply directly [PS14, Proposition 6.1]
and we will sketch the proof here.

13In particular the configuration Cscr has exactly
´
K
µ points in K.
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The first step uses a mean-value argument and the assumption (5.8) in order to find a
good boundary, that is the boundary of an hypercube Old included in �R and containing
Intε, such that

´
∂Old×Rk |y|γ |Eη|2 is not too large. In the case where k = 1, we need to do

the same “vertically”, using assumption (5.9), in order to find a good height z such that´
Old×{−z,z} |y|

γ |Eη|2 is controlled.
The configuration C and the field E are kept unchanged inside Old, hence (5.11) is satisfied.

Next, we tile New := K\Old by small hypercubes of sidelength O(1) (and uniformly bounded
below) and place one point near the center of each of these hypercubes. By construction, the
new points are well-separated: the distances between two points in New or between a point in
New and a point in Old, or between a point in New and the boundary of K, are all bounded
below by 2η0 (which ensures (5.12)). In particular if η < η0 no new 2η-close pair has been
created and (5.13) holds. Figure 5.1.2 is meant to illustrate the construction.

K

CR

Intϵ

Old

New

Figure 2. The original configuration (on the left) and the screened config-
uration (on the right). The dashed line corresponds to the good boundary.
Proportions are distorted and Intε really contains most of the set �R, which
itself contains most of K.

Then, we construct a global electric field on New by pasting together vector fields defined
on each small hypercube of the tiling. In order to ensure the global compatibility, i.e. no
extra divergence to be added, we need the normal components to agree with that of E on
∂Old and to be 0 on ∂K. The resulting vector field is thus in Screen(Cscr, µ,K). It is proven
that we can construct it such that (with a constant C depending only on d, s)

(5.15)
ˆ
K×Rk

|y|γ |Escr
η |2 ≤

(ˆ
�R×Rk

|y|γ |Eη|2
)

+ Cg(η)MεRd.

There remains to handle the fact that the background measure µ, in our setting, is not
constant equal to 1 but may vary between m and m. The case where µ ≡ m is a constant
function (with m ∈ (m,m)) follows by a simple scaling argument, provided that the constant
C in (5.7) is chosen large enough (depending onm,m, d, s). The bounds below on the distances
(as e.g. in (5.12)) become worse when m is large, which explains why η0 has to be chosen
small enough depending on m. If µ is not constant, we approximate it by its average and use



LARGE DEVIATION PRINCIPLE FOR EMPIRICAL FIELDS OF LOG AND RIESZ GASES 33

its Hölder continuity to control the error, as described in Lemma 8.1. This is what creates
the error term II.

Finally, for each small hypercube in the tiling of K\Old, we may move the point placed
therein by a small distance η0

4 without affecting the conclusions, as explained e.g. in [PS14,
Remark 6.7]. This creates a family of configurations (with their associated screened vector
field). �

Let us now estimate how this procedure changes the volume of a set of configurations in
phase-space. Let R, ε, µ be as in Proposition 5.1. Let Intε be as defined in (5.10) and let
Extε := �R\Intε.

We define v0 as the volume of a ball of radius η0
4 in Rd

(5.16) v0(d,m) :=
∣∣∣∣B (0, η0

4

)∣∣∣∣ .
Lemma 5.2. Let N ,N int be two integers, let NK :=

´
K µ(x)dx. Let v be such that v ≤ v0

and

(5.17) NK −N int ≤ |Extε|
2v .

Let A be a measurable family of point configurations in Config(�R), and let assume that each
element of A has N points in �R and N int points in Intε. Let us also assume that (C, µ)
satisfies the conditions of Proposition 5.1 for all C in A. Then we have

(5.18) log Leb⊗NK
( ⋃
C∈A

Φscr
ε,η,R(C, µ)

)
≥ log Leb⊗N (A)

+ log
((
NK −N int

)
!
(

v

|Extε|

)NK−N int)
+ (NK −N ) log |Extε|.

Proof. We may partition A as A = ∪NKnNew=0(A|nNew) according to the number of points nNew
that are created in New (we denote by A|nNew the subset of A consisting of configurations for
which nNew points are created). By construction, the number of points in Old (points which
remain unchanged) is thus given by NK − nNew. Moreover, again by construction, we have
Intε ⊂ Old, hence

(5.19) N int ≤ NK − nNew.

Thus for each configuration in A|nNew, at least NK −nNew points are left untouched while
the other ones, all belonging to Extε, are deleted and replaced by nNew points, each one being
allowed to move in a small ball of radius η0

4 , which creates a volume v0 ≥ v. We may thus
write

Leb⊗NK
 ⋃
C∈(A|nNew)

Φscr
ε,η,R(C, µ)

 ≥ Leb⊗N (A|nNew)(nNew)!vnNew

|Extε|N−(NK−nNew)

One may check that the map

x 7→ x!
(

v

|Extε|

)x
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is decreasing as long as x ≤ |Extε|
2v . Since (5.19) holds, we deduce that

Leb⊗NK
 ⋃
C∈A|nNew

Φscr
ε,η,R(C, µ)


≥ Leb⊗N (A|nNew)|Extε|NK−N

(
(NK −N int)!

(
v

|Extε|

))NK−N int

.

Summing over nNew and taking the log yields the result. �

5.2. Screenability. We introduce the notion of screenability, whose main purpose is to
ensure that the conditions (5.7) of Proposition 5.1 hold. We then prove the upper semi-
continuity of the screening procedure. From now on, when we write lima→a0,b→b0 we mean
lima→a0 limb→b0 , and the same inductively in case of more than two consecutive limits. This
means in particular that each parameter is chosen depending on those on its left.

5.2.1. Screenability. First, we introduce a class of electric fields which are compatible with a
given (C, µ) in some hypercube, with additional conditions on the energy.

Definition 5.3 (Screenability). Let 0 < m,m < +∞ be fixed, let R0, η0 (depending only on
d,m) and C (depending on d, s,m,m) be as in Proposition 5.1.

Let R > 0,M > 1 and ε ∈ (0, 1) be such that the following inequalities are satisfied

(5.20) R > max
(
R0
ε2 ,

CR0M

ε3

)
, R >

CR0M
1/2ε−d−3/2 if k = 0

max
(
CR0M

1/(1−γ)ε
−1−2d+γ

1−γ , R0ε
2γ

1−γ

)
if k = 1

.

Let C be a point configuration in �R, let µ ∈ L∞(�R), and let η ∈ (0, η0) be fixed.
We define OM,ε

R,η (C, µ) as the set of vector fields E in Comp(C, µ,�R) such that the following
conditions hold:

• We have

(5.21) 1
Rd

ˆ
�R×[−R,R]k

|y|γ |Eη|2 < M.

• In the case k = 1,

(5.22) 1
ε4Rd

ˆ
�R×(R\(− 1

2 ε
2R, 12 ε

2R))
|y|γ |E|2 < 1.

• We also require that

(5.23) NumR(C) < MRd.

Although (5.23) is really an assumption on C, it can easily be translated into an as-
sumption on E (for E ∈ Comp(C, µ,R)) and it will be convenient for us to consider
it as such.

Finally, we say that (C, µ) is screenable and we write (C, µ) ∈ SM,ε
R,η if OM,ε

R,η (C, µ) is not
empty.
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5.2.2. Best screenable energy.

Definition 5.4. For any (C, µ) as above we define FM,ε
R,η to be the best screenable energy

(5.24) FM,ε
R,η (C, µ) := inf

{
1
Rd

ˆ
�R×[−R,R]k

|y|γ |Eη|2, E ∈ OM,ε
R,η (C, µ)

}
∧M,

where ∧ denotes the min.

The inf in (5.24) can be +∞ e.g. if the set is empty14, but by definition we always have
the upper bound FM,ε

R,η (C, µ) ≤M .
The following lemma will be used for studying the regularity of FM,ε

R,η .

Lemma 5.5. Let R > 0 and let C, C′ be two configurations in �R and µ, µ′ be in L∞(�R).
Let Ẽ be the electric field

(5.25) Ẽ := ∇g ∗
(
(C − C′)− (µ− µ′)δRd

)
.

Then for any η > 0, we have, as (C′, µ′) converges to (C, µ) in Config(�R)× L∞(�R)

lim
(C′,µ′)→(C,µ)

ˆ
�R×Rk

|y|γ |Ẽη|2 = 0.

Proof. Let gη := min(g, g(η)) as in (2.11). We have by definition

Ẽη = ∇gη ∗ (C − C′)−∇g ∗ ((µ− µ′)δRd).

To prove the lemma it is enough to show that, letting

H1 := gη ∗ (C − C′), H2 := g ∗ ((µ− µ′)δRd),

both quantities ˆ
�R×[−R,R]k

|y|γ |∇H1|2,
ˆ
�R×[−R,R]k

|y|γ |∇H2|2

tend to 0 as (C′, µ′) converges to (C, µ).
The number of points in �R is locally constant on Config(�R), so we may assume that the

signed measure C −C′ has total mass 0 in �R. Therefore H1 (resp. ∇H1) decays like |X|−s−1

(resp. like |X|−s−2) as |X| → ∞ in Rd+k (as noticed e.g. in the proof of Lemma 3.10). We
may thus write, using an integration by partsˆ

Rd+k
|y|γ |∇H1|2 =

¨
gη(x− y)(C − C′)(x)(C − C′)(y)

and the desired result for H1 follows by continuity of gη.
ConcerningH2, since the kernel g is always integrable with respect to the Lebesgue measure

on Rd we have

(5.26) |H2| ≤ C‖µ− µ′‖L∞(�R),

where the constant C depends on R. Moreover, by assumption we have

−div (|y|γ∇H2) = cd,s(µ− µ′)δRd .

14Although it is not needed here, we may observe that if the set is not empty, then the infimum is attained.
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Let then χ be a smooth compactly supported positive function equal to 1 in �R× [−R,R]k,
and such that |∇χ| ≤ 1. Integrating by parts, we haveˆ

Rd+k
χ2|y|γ |∇H2|2 = −

ˆ
Rd+k

χ2div (|y|γ∇H2)H2 − 2
ˆ
Rd+k

χ∇χ · ∇H2|y|γH2

≤ cd,s

∣∣∣∣ˆ
Rd+k

χ2H2(µ− µ′)δRd

∣∣∣∣+ ˆ
Rd+k

χ|∇χ||y|γ |H2||∇H2|.

Using (5.26) and the Cauchy-Schwarz inequality, we may thus write
ˆ
Rd+k

χ2|y|γ |∇H2|2 ≤ C‖µ− µ′‖L∞
(ˆ

Rd+k
χ2|y|γ |∇H2|2

) 1
2
(ˆ

Rd+k
|∇χ|2|y|γ

) 1
2

+ C‖µ− µ′‖2L∞ ,
therefore, for some constant C depending on R, we haveˆ

�R×[−R,R]k
|y|γ |∇H2|2 ≤

ˆ
Rd+k

χ2|y|γ |∇H2|2 ≤ C(‖µ− µ′‖2L∞ + ‖µ− µ′‖4L∞),

which completes the proof. �

We deduce the following:

Lemma 5.6. The set SM,ε
R,η is open in Config(�R)× L∞(�R).

Proof. If (C, µ) ∈ SM,ε
R,η we may find E in OM,ε

R,η (C, µ). If (C′, µ′) is close enough to (C, µ), by
adding the field Ẽ (as in (5.25)) to E, we get a vector field in Comp(C′, µ′) whose energy is
bounded by that of E plus an error term going to zero as (C′, µ′) goes to (C, µ), in particular
the vector field Ẽ satisfies the (open) conditions (5.21), (5.22) for (C′, µ′) close enough to
(C, µ). �

We also easily deduce:

Lemma 5.7. The function FM,ε
R,η is upper semi-continuous on Config(�R)× L∞(�R).

Proof. Let (C, µ) be in SM,ε
R,η (otherwise there is nothing to prove), we may consider E in

OM,ε
R,η (C, µ) such that

FM,ε
R,η (C, µ) = 1

Rd

ˆ
�R×[−R,R]k

|y|γ |Eη|2.

The infimum is indeed achieved as mentioned in the previous footnote. Using Lemma 5.5 we
see that if (C′, µ′) is close enough to (C, µ), by adding the field Ẽ (as in (5.25)) to E, we get
a vector field in Comp(C′, µ′) whose energy is bounded by that of E plus an error term going
to zero as (C′, µ′) goes to (C, µ). It implies

lim sup
(C′,µ′)→(C,µ)

FM,ε
R,η (C′, µ′) ≤ FM,ε

R,η (C, µ),

which proves the upper semi-continuity. �

The next lemma shows that tagged point processes P̄ of finite energy have good properties:
most configurations under P̄ are screenable and the average best screenable energy is close to
the energy of P̄ . These controls are then extended to point processes in small balls B(P̄ , ν)
around P̄ .
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For a given couple (x, C) we may sometimes abuse notation and write “(x, C) ∈ SM,ε
R,η ”

instead of (C, µV (x)) ∈ SM,ε
R,η .

Lemma 5.8. Let P̄ be a tagged point process in Ps(Σ×Config) such that W(P̄ , µV ) is finite.
We have

• For η > 0 small enough and any ε > 0,
(5.27) lim inf

M→∞,R→∞,ν→0
inf

Q̄∈B(P̄ ,ν)
Q̄(SM,ε

R,η ) = 1.

• For any ε > 0,

(5.28) lim sup
η→0,M→∞,R→∞,ν→0

sup
Q̄∈B(P̄ ,ν)

EQ̄

[
FM,ε
R,η (C, µV (x))

]
− cd,sg(η) ≤W(P̄ , µV ).

Proof. Screenability.
From Lemma 3.8, since W(P̄ , µV ) is finite, we know that there exists a stationary P̄ elec which
is compatible with (P̄ , µV ) and such that

W(P̄ elec, µV ) = W(P̄ , µV ).
Using stationarity we see that for any R > 0

(5.29) W(P̄ elec, µV ) = EP̄ elec

[
1
Rd

ˆ
�R×Rk

|y|γ |Eη|2
]
− cd,sg(η).

Markov’s inequality implies that for any M,R > 0 and η ∈ (0, 1) we have

(5.30) P̄ elec
(

1
Rd

ˆ
�R×Rk

|y|γ |Eη|2 ≥M
)
≤ W(P̄ , µV ) + cd,sg(η)

M
.

In the case k = 1, we have P̄ elec-a.s., for any ε > 0 fixed

lim
R→∞

ˆ
�1×(R\(−ε2R,ε2R))k

|y|γ |Eη|2 = 0,

which in turn implies (using again the stationarity) that for any ε > 0

(5.31) lim
R→∞

P̄ elec
(

1
Rd

ˆ
�R×(R\(−ε2R,ε2R))k

|y|γ |Eη|2 ≥ 1
)

= 0.

Lemma 3.2 implies that EP̄

[
Num2

R

]
≤ CR2d with a constant C depending only on P̄ , there-

fore we have

(5.32) P̄
(
NumR ≥MRd

)
≤ C

M2 .

Combining (5.30), (5.31) and (5.32) we obtain

(5.33) lim
M→∞

lim
R→∞

P̄ (SM,ε
R,η ) = 1.

Since SM,ε
R,η is open, we may extend (5.33) to Q̄ ∈ B(P̄ , ν) as ν → 0, and we obtain (5.27).

Best screenable energy.
Since FM,ε

R,η is bounded by M , we have

EP̄ [FM,ε
R,η ] ≤ EP̄ elec

[
1
Rd

ˆ
�R×[−R,R]k

|y|γ |Eη|2
]

+M
(
1− P̄ (SM,ε

R,η )
)
.
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The monotonicity as in Lemma 3.4 yields

EP̄ [FM,ε
R,η ]− cd,sg(η) ≤W(P̄ , µV ) +M

(
1− P̄ (SM,ε

R,η )
)

+ oη(1),

with a oη depending only on d, s, ‖µV ‖L∞ .
We claim that

(5.34) lim sup
M→∞,R→∞

M
(
1− P̄ (SM,ε

R,η )
)

= 0.

We may decompose 1− P̄ (SM,ε
R,η ) as

1− P̄ (SM,ε
R,η ) ≤ P̄

(
NumR ≥MRd

)
+ P̄ elec

(
1
Rd

ˆ
�R×(R\(−ε2R,ε2R))k

|y|γ |Eη|2 ≥ 1
)

+ P̄ elec
(

1
Rd

ˆ
�R×Rk

|y|γ |Eη|2 ≥M
)
.

The first term in the right-hand side is O
(

1
M2

)
from (5.32), and the second one tends to 0

as R→∞ independently of M (see (5.31). To prove (5.34) it remains to prove that

lim sup
M→∞,R→∞

MP̄ elec
(

1
Rd

ˆ
�R×Rk

|y|γ |Eη|2 ≥M
)

= 0.

Using Markov’s inequality we may bound the left-hand side by the tail of the expectation

EP̄ elec

 1
Rd

ˆ
�R×Rk

|y|γ |Eη|21{ 1
Rd
´
�R×Rk |y|γ |Eη |2≥M

} ,
which tends to 0 as M →∞ by dominated convergence. Thus (5.34) holds and, using (5.33),
we obtain

lim sup
M→∞,R→∞

(
EP̄ [FM,ε

R,η ]− cd,sg(η)
)
≤W(P̄ , µV ) + oη(1),

and letting η → 0 yields

(5.35) lim sup
η→0,M→∞,R→∞

(
EP̄ [FM,ε

R,η ]− cd,sg(η)
)
≤W(P̄ , µV ).

We may again extend (5.35) to Q̄ ∈ B(P̄ , ν) as ν → 0 using the upper-semi continuity of
FM,ε
R,η as stated in Lemma 5.7, and we obtain (5.28). �

5.3. Regularization of point configurations. The singularity of the interaction kernel has
been dealt with by truncating the short distance interactions. For any configuration ~XN , the
truncated energy converges as η → 0 to the next-order “renormalized” energy wN ( ~XN , µV )
(see (2.17)), but in order to prove our LDP we need a control on the truncation error which
is somehow uniform in ~XN (at least with high probability).
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5.3.1. The regularization procedure. The purpose of the following lemma is to regularize a
point configuration by spacing out the points that are too close to each other, while ensuring
that the new configuration remains close to the original one. This operation generates a
family of configurations Creg (“reg” as “regularized”) for which we control the contribution of
the energy due to pairs of close points.

In this section, if l > 0 is fixed, for any ~i ∈ lZd, we define “the hypercube of center ~i” as
the closed hypercube of sidelength l of center~i (in other words, �l(~i)), and we identify it with
its center. Let us recall that Numr(~i) denotes the number of points in �l(~i).

Lemma 5.9. Let τ ∈ (0, 1), R > 1 be fixed, and let K be an hyperrectangle such that
�R ⊂ K ⊂ �2R.

There exists a measurable multivalued function Φreg
τ,R which associates to any finite configura-

tion C a subset of Config, such that
(1) Any configuration Creg in Φreg

τ,R(C) has the same number of points as C in K.
(2) For any fixed R > 0, the distance to the original configuration goes to zero as τ → 0,

uniformly on C ∈ Config(K) and Creg ∈ Φreg
τ,R(C)

(5.36) lim
τ→0

sup
C∈Config(K)

sup
Creg∈Φreg

τ,R(C)
dConfig(C, Creg) = 0.

(3) For any Creg ∈ Φreg
τ,R(C), for any η ≥ 8τ , we have, for some constant C depending only

on d, s

(5.37)
∑

p 6=q∈Creg,|p−q|≤η
g(p− q)

≤ Cg(τ)
∑

~i∈6τZd

(
Num12τ [~i]2(C)− 1

)
+

+
∑

p 6=q∈C,τ≤|p−q|≤2η
g(p− q).

(4) For any integer NK and any family A of configurations with NK points in K, we
have, for some constant C depending only on d

(5.38) log Leb⊗NK
( ⋃
C∈A

Φreg
τ,R(C)

)
≥ log Leb⊗NK (A)− C

ˆ
C∈A

∑
~i∈6τZd

Num6τ [~i](C) log Num6τ [~i](C) dLeb⊗NK (C).

Proof. Definition of the regularization procedure.
For any τ > 0 and C ∈ Config(K) we consider two categories of hypercubes in 6τZd :

• Sτ (C) is the set of hypercubes ~i ∈ 6τZd such that C has at most one point in ~i and no
point in the adjacent hypercubes.
• Tτ (C) is the set of the hypercubes that are not in Sτ (C) and that contain at least one
point of C.

We define ϕτ (C) to be the following configuration:
• For any ~i in Sτ (C), the configuration C ∩~i is left unchanged.
• For any~i ∈ Tτ (C), the configuration C∩~i is replaced by a well-separated configuration
in a smaller hypercube. More precisely we consider the lattice 3Num6τ [~i]−1/dτZd
translated so that the origin coincides with the point ~i ∈ 6τZd and place Num6τ [~i]
points on this lattice in such a way that they are all contained in the hypercube
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of sidelength 3τ and center ~i (a simple volume argument shows that this is indeed
possible, the precise way of arranging the points is not important - it is easy to see
that one may do it in a measurable fashion).

It defines a measurable function ϕτ,R : Config(K)→ Config(K) (illustrated in Figure 3).

b
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b
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b

C ϕ(C)

6τ

Figure 3. Effect of the regularization. On the right are shown the smaller
hypercubes in which the new configurations are created for ~i ∈ Tτ (C).

Then, we define Φreg
τ,R(C) as the set of configurations that are obtained from C the following

way: we replace C by ϕτ,R(C) and for any ~i ∈ Tτ (C) we allow the points (of the new config-
uration) to move arbitrarily and independently within a ball of radius Num6τ [~i]−1/dτ . We
claim that Φreg

τ,R has the desired properties.
Number of points.

By construction, the number of points is kept the same in each hypercube of the tiling, hence
the global number of points is conserved.
Distance estimate.

By construction, for any Creg ∈ Φreg
τ,R(C) the configurations C and Creg have the same number of

points in every hypercube of 6τZd. It implies that every point of C is displaced by a distance
O(τ) (depending only on the dimension). By the definition (2.19) of the distance, it yields

sup
C∈Config(K)

sup
Creg∈Φreg

τ,R(C)
dConfig(C, Creg) ≤ Cτ,

with C depending only on d.
Truncation estimate.

Let us distinguish three types of pairs of points p, q ∈ Creg which might satisfy |p− q| ≤ η:
(1) The pairs of points p, q belonging to some hypercube of Tτ (C).
(2) The pairs of points p, q belonging to two adjacent hypercubes of Tτ (C).
(3) The pairs of points p, q such that |p − q| ≤ η but neither of the two previous cases

holds.
To bound the contributions of the first type of pairs, we observe that in any hypercube

~i ∈ Tτ (C) the sum of pairwise interactions is bounded above by

(5.39)
∑

p 6=s∈Creg∩~i

g(p− q) ≤ Cg(τ)(Num6τ [~i]2(C)− 1)+.
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Indeed by construction in a hypercube~i ∈ Tτ (C) the points of Creg are separated by a distance
at least 2Num6τ [~i]−1/dτ , and it is elementary (see e.g. [Ser15, (2.44), (2.45)] to check that their
interaction energy is then bounded above by Cg(τ)Numb6τ [~i]2, with a constant depending
only on d, s. In particular (5.39) holds, because the left-hand side is obviously zero when
Num6τ [~i] = 1.

Since the distance between the points in Creg which belong to different hypercubes is
bounded below by 6τ , we easily find that the total contribution of the second type of pairs is
bounded by

Cg(τ)
∑

~i∈6τZd

(
Num12τ [~i]2(C)− 1

)
+
.

Finally the contribution of the third type of pairs is easily bounded by∑
p,s∈C,τ≤|p−q|≤η+8τ

g(p− q),

indeed any such two points were at distance at least 12τ in C and their distance is reduced
by at most 8τ during the regularization (then one discusses according to the expression of g).
Volume loss estimate.

The pre-images by Φreg
τ,R have a simple description15: we have Φreg

τ,R(C) = Φreg
τ,R(C′) only if

C′∩~i = C ∩~i for~i ∈ Sτ (C) and Num6τ [~i](C′) = Num6τ [~i](C) for~i ∈ Tτ (C) (these conditions are
sufficient once symmetrized with respect to the roles of C and C′). The volume of a pre-image
is bounded by

(5.40)

 ∑
~i∈Tτ (C)

Num6τ [~i]

!
(
τd
)∑

~i∈Tτ (C) Num6τ [~i]

whereas the volume of Φreg
τ,R(C) (with respect to the Lebesgue measure) is given by ∑

~i∈Tτ (C)

Num6τ [~i]

!
∏

~i∈Tτ (C)

(
τ

Num6τ [~i]1/d

)Num6τ [~i]d

Taking the logarithm and integrating and integrating over C ∈ A yields (5.38). �

The truncation error after regularization is usually small for point processes of finite energy,
as expressed in the next lemma.

Lemma 5.10. Let P̄ be in Ps(Σ × Config) such that W(P̄ , µV ) is finite. Let η, τ be fixed,
with 0 < τ < η2/2 < 1. We have

sup
x∈Rd

lim sup
η→0,τ→0

g(2τ)
τd

EP̄ [(Numτ (x)2 − 1)+] = 0(5.41)

lim sup
η→0,τ→0,R→∞

1
Rd EP̄

 ∑
p 6=q∈C∩�R,τ≤|p−q|≤η2/2

g(p− q)

 = 0.(5.42)

15For a given configuration C in K with NK points this defines a submanifold of (Rd)NK of co-dimension
#Sτ (C).
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Proof. For η ∈ (0, 1) and 0 < τ < η2/2, we have by Lemma 3.5

Wτ (P̄ , µV )−Wη(P̄ , µV ) ≥ C g(2τ)
τd EP̄ [(Num2

τ − 1)+]

+ CEP̄

 ∑
p 6=q∈C∩�1,|p−q|≤η2/2

g(p− q)

− oη(1)

for C, oη depending only on d, s. Letting η → 0 and then τ → 0, it yields

lim sup
η→0

lim sup
τ→0

g(2τ)
τd

EP̄ [(Num2
τ − 1)+] = 0

lim sup
η→0

lim sup
τ→0

EP̄

 ∑
p 6=q∈C∩�1,τ≤|p−q|≤η2/2

g(p− q)

 = 0.

By stationarity we may replace Numτ by Numτ (x) in the first lign, and we may write the
sum over �1 by an average over �R for any R > 1 in the second line. This yields (5.41),
(5.42). �

5.3.2. Effect on the energy. We argue that the regularization procedure at scale τ has a
negligible influence on the screened energy e.g. for configurations obtained by the screening
procedure of Proposition 5.1.
Lemma 5.11. Let R > 0,M > 1, ε > 0 be fixed, satisfying the conditions (5.20), let K be an
hyperrectangle and let (C, µ) satisfying the assumptions of Proposition 5.1. Let η < 1

2η0 (with
η0 as in Proposition 5.1), and let 0 < τ < 1

2η
2.

Let Φscr
ε,η,R(C, µ) be the set of configurations generated by the screening procedure, and for

any Cscr in Φscr
ε,η,R(C, µ) let Escr be the corresponding screened vector field, finally let Φreg

τ,R(Cscr)
be the set of configurations generated by the regularization procedure applied to Cscr.

Then for any Creg in Φreg
τ,R(Cscr) there exists a vector field Ereg ∈ Screen(Creg, µ,K), such

that

(5.43) lim sup
τ→0

sup
C∈SM,εR,η

sup
Cscr∈Φscr

ε,η,R(C,µ)
sup

Creg∈Φreg
τ,R(Cscr)

ˆ
K×Rk

|y|γ |Ereg
η |2 ≤

ˆ
K×Rk

|y|γ |Escr
η |2.

Proof. Let gNeu be the unique solution with mean zero to{
−div (|y|γ∇gNeu) = cd,s

(
δ0 − 1

|K|δRd

)
in K × Rk

∇gNeu · ~ν = 0 on ∂K × Rk,

and let gNeu
η be the truncated kernel at scale η as above. For any Cscr in Φscr

ε,η,R(C, µ) and any
Creg in Φreg

τ,R(Cscr) let us consider the vector field Ẽ generated by the difference Creg−Cscr with
Neumann boundary conditions on ∂K

Ẽ(x) :=
ˆ
∇gNeu(x− y)(dCreg − dCscr)(y).

Since the regularization procedure preserves the number of points, it is clear that, letting
Ereg := Escr + Ẽ, the vector field Ereg is in Screen(Creg, µ,K). To bound its energy, we
integrate by parts, and we claim that¨

gNeu
η (x− y)(dCreg − dCscr)(x)(dCreg − dCscr)(y) ≤ CRdτ,
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with a constant C depending on d, η,m (where m is a bound on the equilibrium density) but
not on C, Creg, Cscr.

Indeed, by construction the number of points of Cscr in K is bounded by CRd with C
depending only on m. Moreover, again by construction, there is no point of Cscr or Creg closer
than some constant η0 > 0 (depending only on d,m) from the boundary ∂K. The kernel
gNeu
η is continuous at any point x such that dist(x, ∂K) ≥ η0, uniformly with respect to x
and to η < 1

2η0. Finally, still by construction there is the same number of points in Creg and
Cscr, and the minimal connection distance between the points of Cscr and Creg is bounded by
CRdτ . We may then write

(5.44)
¨

gNeu
η (x− y)(dCreg − dCscr)(x)(dCreg − dCscr)(y) ≤ CRdτ,

with C depending only on d,m, η, and not on C, Creg or Cscr. �

5.4. Artificial configurations. Finally, we state a result concerning the construction of
families of “artificial” configurations whose energy is well controlled. This will be used to
replace non-screenable configurations.

Lemma 5.12. Let 0 < m ≤ m be fixed. There exists η0 > 0 depending only on d,m such
that the following holds.

Let R > 0, let K be a hyperrectangle with sidelengths in [R, 2R], and let µ be in C0,κ(K)
such that m ≤ µ ≤ m. We assume that

NK :=
ˆ
K
µ is an integer.

Then there exists a family Φgen(K,µ) of configurations with NK points in K such that for
any Cgen in Φgen(K,µ), the following holds:

(5.45) min
x∈Cgen

dist(x, ∂K) ≥ η0, min
x 6=x′∈Cgen

|x− x′| ≥ η0.

Moreover, there exists Egen in Screen(Cgen, µ,K) such that for any 0 < η < η0,

(5.46)
ˆ
K×Rk

|y|γ |Egen
η |2 − cd,sNKg(η) ≤ CNK + CRd+3−γ‖µ‖2C0,κ(K)

with a constant C depending only on d, s,m,m.
There exists some constant v1 > 0 depending only on d,m,m such that the volume of

Φgen(K,µ) is bounded below by

(5.47) Leb⊗NK (Φgen(K,µ)) ≥ NK !vNK1 .

Proof. We postpone the proof of Lemma 5.12 to Section 8.6. �

5.5. Conclusion. We may now combine the previous ingredients to accomplish the program
stated at the beginning of the section.

Definition 5.13. Let R,M, ε satisfying (5.20), let η < 1
2η0 and let 0 < τ < 1

2η
2. For C, µ,K

we define a family Φmod(C, µ,K) (depending on all the other parameters η, ε,M,R, τ) of point
configurations which are contained in K and have NK points, in the following way :

(1) If (C, µ) is screenable:
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(a) We consider E ∈ OM,ε
R,η (C, µ) such that

(5.48) 1
Rd

ˆ
�R×[−R,R]k

|y|γ |Eη|2 = FM,ε
R,η (C, µ).

(b) We let Φscr
ε,η,R(C, µ) be the family of point configurations in K obtained by applying

Proposition 5.1.
(c) We let Φmod(C, µ) be the image by Φreg

τ,R of the family Φscr
ε,η,R(C, µ).

(2) If (C, µ) is not screenable, we let Φmod(C, µ,K) be the family Φgen(K,µ) defined in
Lemma 5.12.

In both cases, we end up with a family of point configuration in K and associated screened
electric fields whose energy is well-controlled.

We may compare the volume of a certain set of configurations in �R with the volume of
the resulting configurations after applying Φmod. We distinguish between the cases of a set
of screenable configurations and a set of non-screenable configurations.

Lemma 5.14. Let A be a family of point configurations in Config(�R) such that each con-
figuration of A has N points in �R and N int points in Intε. Let v ≤ v0, as in (5.16), and
assume, as in (5.17),

(5.49) NK −N int ≤ |Extε|
2v .

(1) If for all C ∈ A, (C, µ) is in SM,ε
R,η and (5.17) holds then there exists C > 0 depending

only on d,m such that

(5.50) log Leb⊗NK
( ⋃
C∈A

Φmod(C, µ)
)
≥ log Leb⊗N (A)

+ log
(

(NK −N int)!
(

v

|Extε|

)NK−N int)
+ (NK −N ) log |Extε|

− C
ˆ
C∈A

∑
~i∈6τZd

Num6τ [~i] log Num6τ [~i]dLeb⊗N (C).

(2) If for all C ∈ A, (C, µ) is not in SM,ε
R,η then there exists v1 > 0 depending only on

d,m,m such that

(5.51) log Leb⊗NK
( ⋃
C∈A

Φmod(C, µ,K)
)
≥ log

(
NK !vNK1

)
.

Proof. The bound (5.50) follows from combining (5.18) with (5.38) whereas (5.51) follows
from (5.47). �

Let us observe that we have
log Leb⊗N (A) ≤ logRdN ,

hence in particular we may re-write (5.51) as

(5.52) log Leb⊗NK
( ⋃
C∈A

Φmod(C, µ,K)
)
≥ log Leb⊗N (A) + log

(
NK !vNK1 R−dN

)
.
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6. Construction of configurations

This section is devoted to the proof of Proposition 4.2, by exhibiting a set of configurations
satisfying the conclusions with a large enough asymptotic (logarithmic) volume.

To do so, we first partition (some subset of) Rd into hyperrectangles K such that
´
K µ
′
V

is an integer. Each hyperrectangle K will contain a translate of �R such that |K| − |�R| is
small (with respect to the total volume) and each hypercube will receive a point configuration.
Since we want the global configurations to approximate (after averaging over translations)
a given tagged point process P̄ , we will draw the point configuration in each hypercube
jointly at random according to a Poisson point process, and standard large deviations results
imply that enough of the averages ressemble P̄ . These configurations drawn “abstractly”
at random are then modified by the screening-then-regularizing procedure of the previous
section. We eventually obtain a global configuration with N points whose energy can be
computed additively with respect to the hyperrectangles.

At each step we need to check that the transformations imposed to the configurations do
not alter much their phase-space volume, their energy, and keep them close to the given
tagged process P̄ .

One of the additional technical difficulties is that the density of the equilibrium measure
µV is in general not bounded from below (see the assumptions (H4)) and that the support
Σ cannot be exactly tiled by hyperrectangles. Thus, we first remove a thin layer near the
boundary and near the zero set of µV , where some artificial point configurations will be placed
at the end, with negligible contributions to the energy and to the volume. This will require to
adapt the corresponding argument from [PS14], since we are working under the more general
Assumption (H4).

In this section, P̄ denotes a stationary tagged point process such that W(P̄ , µV ) is finite,
otherwise Proposition 4.2 reduces to Proposition 4.1.

6.1. Subdividing the domain. In what follows, m is some fixed number in (0, 1), which
will be sent to 0 at the end of the construction. Until the end of Section 6, c1 and c2 will
denote positive constants depending only on µV .

6.1.1. Interior and boundary. We start the construction by dividing the domain between a
neighborhood of Γ (see (H4)), where the density might not be bounded below and which must
be treated “by hand”, and a large interior. We recall that Σ is the support of the equilibrium
measure µV , that for N ≥ 1 we let Σ′ := N1/dΣ and µ′V (x′) := µV (N−1/dx′). We also recall
that, by Assumption (H3), the density of µ′V is bounded above by some m.

Let us recall that {Γ(j)}j∈J are the connected components from the boundary of {µV > 0}
and we let Γ′(j) := N1/dΓ(j). From Assumption (H4), each Γ(j) is a C1 manifold of dimension
0 ≤ `j ≤ d− 1 and there exists αj ≥ 0 such that

c1N
−αj/d dist(x,Γ′(j))αj ≤ µ′V (x) ≤ c2N

−αj/d dist(x,Γ′(j))αj ,(6.1)

‖µ′V ‖C0,min(αj,1) ≤ CN−min(αj ,1)/d(6.2)

in a neighborhood of Γ′(j). In the case αj ≥ 1, we also have

|∇µ′V (x)| ≤ CN−αj/ddist(x,Γ′(j))αj−1

in a neighborhood of Γ′(j).
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Lemma 6.1. For any m > 0, there exists a constant c(m) > 0 such that for N ≥ 1 and each
j ∈ J , we may find Tj satisfying

(6.3) Tj ∈
[
N1/d

c
1/αj
1

m1/αj ,
N1/d

c
1/αj
1

m1/αj + c(m)
]

and such that, letting

(6.4) Σ′T := {x ∈ Σ′,dist(x,Γ′(j)) ≥ Tj for j ∈ J},
we have ˆ

Σ′T
dµ′V is an integer,

and the equilibrium density is bounded below as
(6.5) µ′V ≥ m on Σ′T .

Proof. Taking any Tj ≥ N1/d

c
1/αj
1

m1/αj ensures, by (6.1), that (6.5) will be satisfied, and in

particular the constraint that the total mass (for µ′V ) is an integer can be ensured on each
Γ′(j) by an mean value argument applied on an interval of constant length (depending on µ)16

as in (6.3). �

We see that ∂Σ′T is formed of disjoint C1 connected components

Γ
′(j)
Tj

:= {x ∈ Σ′,dist(x,Γ′(j)) = Tj}.

Moreover, by C1 regularity of the Γ(j) we have

(6.6) c1N
`j/d ≤ H`j (Γ

′(j)
Tj

) ≤ c2N
`j/d,

where H`j denotes the Hausdorff measure of integer dimension `j .
Finally, by (6.3), each number TjN−1/d converges to a constant value as N → ∞, so the

rescaling N−1/dΣ′T converges (in Hausdorff distance) as N → ∞ to a set Σm with piecewise
C1 boundary. We also let Σ′m := N1/dΣm.

6.1.2. Tiling the interior. We now tile Σ′T by hypercubes whose size is large but independent
of N .

Lemma 6.2 (Tiling the interior of the domain). There exists a constant C0 > 0 (depending
on m,m) such that, for any R > 1 and any N ≥ 1, there exists a family KN of closed
hyperrectangles such that

• For all K ∈ KN , K ⊂ Σ′T .
• The sidelengths of K are between R and R + C0/R, and the sides are parallel to the
axes of Rd.
• They have pairwise disjoint interiors.
• They fill up Σ′T up to some boundary region

(6.7)
{
x ∈ Σ′T : dist(x, ∂Σ′T ) ≥ C0R

}
⊂

⋃
K∈KN

K.

16The boundary of Γ
′(j) has a length of order N `j/d. If `j ≥ 1 we could take an even smaller interval for

(6.3).
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• For all K ∈ KN , we have

(6.8)
ˆ
K
µ′V ∈ N.

Proof. It is a straightforward modification of [SS15b, Lemma 6.5]. �

With the notation of Lemma 6.2, for any R > 1 and N ≥ 1, we define Σ′til as

(6.9) Σ′til :=
⋃

K∈KN

K,

and we let Ntil be the integer defined as
(6.10) Ntil := µ′V (Σ′til).

We let mN,R be the number of hyperrectangles in KN and we enumerate the elements of
KN as K1, . . . ,KmN,R . For any i ∈ {1, . . . ,mN,R}

• We let xi be the center of Ki.
• We let �i be the hypercube of sidelength R with center xi, and in particular �i ⊂ Ki.
• We define Intε,i,Extε,i as

(6.11) Intε,i := {x ∈ �i | dist(x, ∂�i) ≥ 2εR}, Extε,i := �i\Intε,i.
• We let Ni :=

´
Ki
µ′V , which is by construction an integer.

• We denote by Ni (resp. N int
i ) the number of points of a configuration in �i (resp. in

Intε,i).
We now gather some estimates about quantities related to the tiling.

Lemma 6.3. We have:

lim
R→∞

lim
N→∞

Rd

N
mN,R = |Σm|,(6.12)

|Ki| = Rd +Rd−2OR(1),(6.13)
C1R

d ≤ Ni ≤ C2R
d,(6.14)

Ni = Rdµ′V (xi) +Rd+κN−κ/d‖µV ‖C0,κ(Σ)OR(1) +Rd−2OR(1),(6.15)
|Extε,i| = 2dεRd + ε2Oε(1)Rd.(6.16)

The terms OR(1), ON (1) and the positive constants C1, C2 depend only on m,m, d. The term
Oε(1) depends only on d.

Proof. The asymptotics (6.12) are implied by the more precise estimate

(6.17) Rd

N
mN,R = |Σm|(1 +N−1/dRON (1))(1 +R−2OR(1)),

so let us prove the latter. By construction the mN,R hyperrectangles partition Σ′til and have
sidelengths in [R,R+ C0/R], with C0 depending only on m,m, hence the following holds

mN,RR
d ≤ |Σ′til| ≤ mN,R

(
R+ C0

R

)d
,

and in particular

(6.18) mN,RR
d = |Σ′til|

(
1 +R−2OR(1)

)
.
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On the other hand, from (6.7) we see that
|Σ′T − Σ′til| ≤

∣∣{x ∈ Σ′T ,dist(x, ∂Σ′T ) ≤ C0R}
∣∣ ,

whereas from (6.6) we deduce
|{x ∈ Σ′T , dist(x, ∂Σ′T ) ≤ C0R}| = RN1−1/dON (1),

with a ON (1) depending only on m. We thus get
(6.19) |Σ′T | = |Σ′til|+N1−1/dRON (1).
Moreover, by definition of Σm and regularity of ∂Σ we have

(6.20) |Σ′T | = |Σ′m|+N1−1/dON (1).
Combining (6.18), (6.19) and (6.20) yields (6.17).

Since the sidelengths of Ki are in [R,R+C0/R] with a constant C0 depending only on m,
we get (6.13).

Since µ′V is bounded above and below on Σ′m, (6.14) holds with constants depending on
m,m.

To get (6.15) we combine (6.13) with the Assumption (H3) on the Hölder regularity of the
equilibrium measure, which yields

‖µ′V (x)− µ′V (xi)‖L∞(Ki) ≤ ‖µV ‖C0,κRκN−κ/d

The bound (6.16) follows from the definition (6.11) and elementary estimates. �

From now on, and until Section 6.4 we work only in Σ′til defined in (6.7). We recall that
it can be written as a disjoint union of hyperrectangles (see Figure 4, where the grey region
corresponds to Σ′til).

Σ′
Σ′

m

Σ′
T Ki

Ci ≈R ∝N1/d

Figure 4. The tiling of Σ′.

6.2. Generating approximating microstates. We now state a result, in the spirit of
Sanov’s theorem, in order to generate abstractly a whole family of point configurations in Σ′til
whose continuous and discrete averages over translations are close to some fixed tagged point
process. We call these configurations approximating microstates.

For any P̄ in Ps(Σ×Config) we let P̄m be the tagged point process induced by restricting
the “tag” coordinates to Σm ⊂ Σ i.e.

P̄m := 1
|Σm|

ˆ
Σm

P̄ xdx.
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The specific relative entropy of P̄m will be taken by restricting the tags accordingly

ent[P̄m|Π1] :=
ˆ

Σm
ent[P̄ x|Π] dx.

Lemma 6.4. The tagged point process and its restriction are uniformly close as m→ 0

(6.21) lim
m→0

sup
P̄∈Ps(Σ×Config)

distP(Σ×Config)
(
P̄m, P̄

)
= 0

In particular, for r > 0, for m small enough depending on r, we have

B(P̄m, r/2) ⊂ B(P̄ , r) ⊂ B(P̄m, 2r).

Proof. This follows from the fact that |Σ− Σm| → 0 as m→ 0. �

For R > 0, we also denote by P̄m,R the restriction of P̄m to the hypercube �R (the push-
forward of P̄m by the map (x, C) 7→ (x, C ∩�R)).

Finally, we introduce a constant:

(6.22) rµV ,m := µV (Σm) log
µV (Σm)
|Σ| − µV (Σm) + |Σm|.

We recall that we have a family of mN,R hypercubes �i of sidelength R, with centers xi and
that the total mass of µ′V on Σ′til is an integer Ntil, as defined in (6.10). The following lemma
says that the discrete space average as well as the continuum space average of randomly
chosen configurations in �i occupy a volume around P̄ which is given by the specific relative
entropy of P̄ .

Lemma 6.5. Let (C1, . . . , CmN,R) be mN,R independent Poisson point processes of intensity 1
in each hypercube �i. Letting Numi be the number of points in �i, we condition on the
following event

mN,R∑
i=1

Numi = Ntil,(6.23)

i.e. in (6.25), (6.26) below we consider the intersection with that event, without conditioning.
We let C be the point process obtained as the union of the configurations Ci, namely

C :=
mN,R∑
i=1
Ci.

We define ṀN,R as the law of the following random variable with values in Σ′til × Config:

(6.24) DiscrAv(C) := 1
mN,R

mN,R∑
i=1

δ(N−1/dxi,θxi ·Ci)
.

It is the discrete average of the point configurations contained in the hypercubes �i, translated
by xi ∈ �i.

We also define M̂N,R as the law of the random variable in Σ′m × Config

ContAv(C) := 1
N |Σm|

ˆ
Σ′m

δ(N−1/dx,θx·C) dx.
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It is the continuous average of point configurations contained in the hypercubes �i, translated
by x ∈ Σ′m.

Then for any P̄ ∈ Ps,1(Σ× Config) the following inequality holds :

(6.25) lim inf
R→∞

1
Rd lim

ν→0
lim inf
N→∞

1
mN,R

log ṀN,R(B(P̄m,R, ν)) ≥ −ent[P̄m|Π1]− rµV ,m,

and moreover, for any δ > 0 we have

(6.26) lim inf
R→∞

1
Rd lim

ν→0
lim inf
N→∞

1
mN,R

log(ṀN,R, M̂N,R)
(
B(P̄m,R, ν)×B(P̄m, δ)

)
≥ −ent[P̄m|Π1]− rµV ,m

where (ṀN,R, M̂N,R) denotes the joint law of ṀN and M̂N , with the natural coupling.

In contrast to the LDP stated in Proposition 4.1, in the previous lemma we only care
about the lim inf because we will only use lower bounds to provide us with some family of
configurations.

Proof. The proof is given in Section 7.3. �

6.3. Regularizing and screening microstates. Taking the approximating microstates
from the previous Lemma 6.5, we apply to them the screening-then-regularization procedure
described in Section 5.5. We obtain the following:

Lemma 6.6. Let P̄ ∈ Ps,1(Σ× Config) of finite energy, and
• Let M > 1, R > 0, ε > 0 satisfying the conditions (5.20).
• Let 0 < η < 1

2η0, with η0 depending only on d,m as in Proposition 5.1.
• Let 0 < τ < 1

2η
2.

• Let δ1 > 0 and ν > 0.
• Let N ≥ 1.

There exists a family Amod (depending on all the previous parameters) of point configurations
in Σ′til, such that each configuration Cmod ∈ Amod can be decomposed as

Cmod =
mN,R∑
i=1
Cmod
i ,

where Cmod
i is a configuration in Ki, and satisfies the following properties.
• The continuous average ContAv(Cmod), defined as

ContAv(Cmod) := 1
|Σ′m|

ˆ
Σ′m

δ(N−1/dx,θx·Cmod) dx,

is asymptotically close to P̄m for the distance on P(Σm × Config)

(6.27) lim sup
ε→0,M→∞,R→∞,τ→0,ν→0,N→∞

sup
Cmod∈Amod

dP(Σm×Config)
(
ContAv(Cmod), P̄m

)
≤ δ1.

• The truncation error is asymptotically small

(6.28) lim sup
η→0,M→∞,R→∞,τ→0,ν→0,N→∞

sup
Cmod∈Amod

1
N

∑
p 6=q∈Cmod,|p−q|≤η

g(p− q) = 0.
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• For any Cmod ∈ Amod there exists Emod in Screen(Cmod, µ′V ,Σ′til) satisfying

(6.29) lim sup
ε→0,M→∞,R→∞,τ→0,ν→0,N→∞

(
1
|Σ′til|

ˆ
Σ′til×Rk

|y|γ |Emod
η |2 −EP̄m

[
FM,ε
R,η

])
≤ 0.

• There is a good volume of such microstates

(6.30) lim inf
ε→0,M→∞,R→∞,τ→0,ν→0,N→∞

1
|Σ′til|

log LebNtil

|Σ′til|Ntil

(
Amod

)
≥ −ent[P̄m|Π1]− rµV ,m.

Proof. If a point configuration C can be decomposed as

C :=
mN,R∑
i=1
Ci,

where Ci is a point configuration in Ki, we will write as above

DiscrAv(C) := 1
mN,R

mN,R∑
i=1

δ(N−1/dxi,θxi ·Ci)
, ContAv(C) := 1

|Σ′m|

ˆ
Σ′m

δ(N−1/dx,θx·C) dx.

6.3.1. The family Aabs. For any δ, ν,N,R positive, by Lemma 6.5 we know that there exists
a family17 Aabsof configurations which can be decomposed as

(6.31) Cabs =
mN,R∑
i=1
Cabs
i ,

where Cabs
i is a point configuration in the hypercube �i, and with Ntil total points, such that

(6.32) DiscrAv(Cabs) ∈ B(P̄m,R, ν), ContAv(Cabs) ∈ B(P̄m, δ).
According to (6.26), the logarithmic volume of this family can be bounded below asymptoti-
cally as

(6.33) lim inf
R→∞,ν→0,N→∞

1
mN,RRd log LebNtil

(mN,RRd)Ntil

(
Aabs

)
≥ −ent[P̄m|Π1]− rµV ,m.

6.3.2. From Aabs to Amod. We let Amod be the set of configurations obtained after applying
the procedure described in Section 5. For each Cabs in Aabs we decompose Cabs as in (6.31)
and for any i = 1, . . . ,mN,R we let Φmod

i (Cabs) be the set of configurations obtained after
applying the map Φmod. In the following, for good definition, we have to conjugate by the
translation of vector xi, so that Φmod

i is eventually a family of configurations in Ki.

Φmod
i (Cabs) := θ−xi · Φmod(θxi · Cabs

i , µ′V (xi + ·), θxi ·Ki).

We then let Φmod(Cabs) be the Cartesian product

Φmod(Cabs) :=
mN,R∏
i=1

Φmod
i (Cabs)

and Amod (“mod” as “modified”) is defined as the set of configurations

Cmod :=
mN,R∑
i=1
Cmod
i ,

17“abs” as “abstract” because we generate them abstractly using Sanov’s theorem
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where (Cmod
1 , . . . , Cmod

mN,R
) belongs to Φmod(Cabs).

For any Cabs in Aabs, with Cabs =
∑mN,R
i=1 Cabs

i , we denote by I1 the set of indices such that
(Cabs
i , µ′V ) is screenable. The following fact will be used repeatedly.

Claim 6.7.

(6.34) lim
M→∞,R→∞,ν→0,N→∞

inf
Cabs∈Aabs

#I1
mN,R

= 1.

Proof. Combining (5.27) with the fact that DiscrAv(Cabs) ∈ B(P̄m,R, ν) (see (6.32)), we see
that (6.34) holds when asking whether (Cabs

i , µ′V (xi)) is screenable instead of (Cabs
i , µ′V ) (with

a varying background). To deal with the variation of µV , we use the following Hölder bound
(with a OR(1) depending only on m, d)

‖µ′V (x)− µ′V (xi)‖L∞(Ki) ≤ ‖µ‖C0,κ(Σ)R
κN−κ/dOR(1),

together with the fact that SM,ε
R,η is open as stated in Lemma 5.6. �

Let us now check that the family Amod satisfies the desired properties.

6.3.3. Distance. We want to show that the continuous average satisfies (6.27). We thus
claim that the screening-then-regularizing procedure preserves the closeness of the continuous
average to P̄m (however in general it does not preserve that of the discrete average). To
prove that claim, we have to distinguish between hyperrectangles where the configuration is
screenable (where the configuration is only modified in a thin layer or by moving points by
a distance at most τ) and hyperrectangles where it is not (where the configuration is then
completely modified).

Let Cmod =
∑mN,R
i=1 Cmod

i be in Amod (where Cmod
i is the point configuration in the hyper-

rectangle Ki), we may find Cabs =
∑mN,R
i=1 Cabs

i in Aabs such that Cmod has been obtained from
Cabs by screening-then-regularizing.

Claim 6.8. We may evaluate the distance between the continuous averages of Cabs and Cmod

in terms of the distance between the configurations in each hypercube Ki.

(6.35) lim sup
m→0,ε→0,R→∞,N→∞

sup
Cabs,Cmod

dP(Σm×Config)
(
ContAv(Cabs),ContAv(Cmod)

)

− 1
mN,R

mN,R∑
i=1

dConfig(θxiCabs
i , θxiCmod

i ) = 0.

Proof. For δ > 0 fixed, by Lemma 2.1 we may find k ≥ 1 such that for any C ∈ Config
dConfig(C, C ∩�k) ≤ δ.

For any i = 1, . . . ,mN,R, for any x ∈ Ki such that dist(x,Ki\�i) ≥ k, we have
(θx · C) ∩�k = (θx · Ci) ∩�k,

and also there exists C depending only on d such that, for F ∈ Lip1(Σm,Config),∣∣∣F (N−1/dx, θx · Ci
)
− F

(
N−1/dxi, θxi · Ci

)∣∣∣ ≤ CRN−1/d.

In particular, the distance between the continuous average over translates on points x ∈ Ki

such that dist(x,Ki\�i) ≥ k and a Dirac mass at
(
N−1/dxi, θxi · Ci

)
is bounded by CRN−1/d.

This allows us to compare a continuous average with a discrete one.
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In the continuous average ContAv(Cmod) or ContAv(Cabs) we may omit the points x ∈ Σm

such that x ∈ Σm\Σ′til, or that x ∈ Σ′til but dist(x,Ki\�i) ≥ k (for i such that x ∈ Ki), up to
an error which is negligible as N →∞, R→∞, ε→ 0,m→ 0 because such points represent
a negligible volume of translates.

We thus have, for any fixed δ > 0

lim sup
m→0,ε→0,R→∞,N→∞

sup
C=
∑
Ci
dP(Σm×Config)

(
ContAv(C), 1

mN,R

mN,R∑
i=1

δ(N−1/dxi,θxi ·Ci)

)
≤ δ.

On the other hand, we have of course∣∣∣F (N−1/dxi, θxi · Cabs
i

)
− F

(
N−1/dxi, θxi · Cmod

i

)∣∣∣ ≤ dConfig(θxiCabs
i , θxiCmod

i ).

By the triangle inequality, we obtain (6.35). �

Next, for any i = 1, . . . ,mN,R we want to evaluate dConfig
(
Cabs
i , Cmod

i

)
. Let us recall that

I1 denotes the set of indices i = 1, . . . ,mN,R such that (Cabs
i , µ′V ) is in SM,ε

R,η and I2 the set of
indices such that (Cabs

i , µ′V ) is not in SM,ε
R,η .

Claim 6.9. We have

(6.36) lim sup
τ→0,R→∞

1
mN,R

mN,R∑
i=1

dConfig(θxiCabs
i , θxiCmod

i )− #I2
mN,R

= 0

Proof. The distance dConfig is bounded by 1, hence we may write

(6.37)
∑
i∈I2

dConfig
(
θxiCabs

i , θxiCmod
i

)
≤ #I2.

On the other hand, we have

(6.38) lim sup
τ→0,R→∞

sup
Cabs,Cmod

dConfig
(
θxiCabs

i , θxiCmod
i

)
= 0.

Indeed, the screening procedure does not affect the points in θxiIntε,i which contains an
hypercube �R/2, hence as R→∞ the distance between θxiCabs

i and any associated screened
configuration tends to 0 (uniformly with respect to all the other parameters). Then the
regularization procedure has a negligible effect on the distance as τ → 0 (also uniformly with
respect to all the other parameters) as stated in (5.36). �

Finally, combining Claim 6.7, Claim 6.8 and Claim 6.9, we obtain (6.27).

6.3.4. Truncation. Let Cmod =
∑mN,R
i=1 Cmod

i be in Amod and let Cabs such that Cmod has been
obtained from Cabs by screening-then-regularizing.

By construction (see (5.12) for i ∈ I1 and (5.45) for i ∈ I2, if η is small enough (depending
only on d,m,m) the only pairs of points in Cmod at distance less than η are included in �i

for some i ∈ I1.
For i ∈ I1, we may apply (5.37) and write, with C depending only on d, s:∑
p 6=q∈Cmod

i ,|p−q|≤η

g(p− q)

≤ Cg(τ)
∑

~i∈6τZd

(
Num12τ [~i]2(Cabs

i )− 1
)

+
+

∑
p 6=q∈Cabs

i ,τ≤|p−q|≤2η

g(p− q).
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The condition (5.23) of screenability implies that Cabs
i has at most MRd points hence we

could write the previous equation as

(6.39)
∑

p 6=q∈Cmod
i ,|p−q|≤η

g(p− q) ≤ Cg(τ)
∑
~i∈τZd

(Num12τ [~i]2(Cabs
i )− 1)+ ∧M2R2d)

+
∑

p 6=q∈Cabs
i ,τ≤|p−q|≤2η

g(p− q) ∧MRdg(τ).

This re-writing is mostly technical, indeed we need to use bounded functions in order to test
them against the weak convergence of point processes.

By a Fubini-like argument we get

1
mN,R

mN,R∑
i=1

∑
~i∈τZd

(Num12τ [~i]2(Cabs
i )− 1)+ ≤

C

τd EDiscrAv(Cabs)

[(
Num12τ (x)2 − 1

)
+

]
,

and on the other hand we have

1
mN,R

mN,R∑
i=1

∑
p 6=q∈Cabs

i ,τ≤|p−q|≤2η

g(p− q) ≤ EDiscrAv(Cabs)

 ∑
p 6=q∈C∩�R,τ≤|p−q|≤2η

g(p− q)

 ,
and the same expressions hold with the bounded functions of (6.39).

We now combine (5.41), (5.42) with the assumption that DiscrAv(Cabs) is close to P̄ (see
(6.32)), and we get (6.28).

6.3.5. Energy. By construction, for any i = 1, . . . ,mN,R we have a vector field Emod
i in

Screen(Cmod
i , µ′V ,Ki). Setting

Emod :=
mN,R∑
i=1

Emod
i 1Ki×Rk

provides a vector field in Screen(Cmod, µ′V ,Σ′til), whose energy we now have to bound.
For i ∈ I1 the energy is bounded after screening as in (5.14) and after regularization as

in (5.43) (see also (5.44)). It yields, for some constant C1 depending only on s, d,m,m and
some constant C2 depending only on R, d,m, η

(6.40)
ˆ
K×Rk

|y|γ |Emod
i,η |2 ≤ F

M,ε
R,η (Cmod

i , µ′V )

+ C1

(
g(η)MεRd +Rd+3−γN−2/d +

(
g(η)MεR2d+3−γN−2/d

) 1
2
)

+ C2R
dτ.

For i ∈ I2, the energy is bounded as in (5.46). It yields, for some constant C1 depending only
on s, d,m,m, ‖µV ‖C0,κ(Σ)

(6.41)
ˆ
K×Rk

|y|γ |Egen
η |2 ≤ −cd,sNig(η) + C1R

d + C1R
d+3−γN−2/d.

In (6.40), (6.41) we have used the fact that the Hölder norm of µ′V on Ki is bounded by
‖µV ‖C0,κN−1/d.
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We thus have, combining (6.40), (6.41) and summing the contributions of each Ki,

(6.42)
ˆ

Σ′til×Rk
|y|γ |Emod

η |2 + cd,sNtilg(η) ≤
∑
i∈I1

(
FM,ε
R,η (Cmod

i , µ′V ) + cd,sNig(η)
)

+ #I2C1R
d + #I1C1

(
g(η)MεRd +Rd+3−γN−2/d +

(
g(η)MεR2d+3−γN−2/d

) 1
2
)

+ #I1C2R
dτ + #I2C1R

d+3−γN−2/d.

Using (5.28) and (6.32) we get

(6.43) lim sup
η→0,M→∞,R→∞,ν→0

1
mN,R

∑
i∈I1

(
FM,ε
R,η (Cmod

i , µ′V ) + cd,sNig(η)
)
≤W(P̄m, µV ).

On the other hand, the error terms are seen to be negligible with respect to N when taking
the limits in the correct order. Indeed, using (6.34) we get

lim sup
M→∞,R→∞,ν→0,N→∞

1
N
C1#I2R

d = 0.

We also have, by a direct computation

lim sup
η→0,ε→0,M→∞,R→∞,N→∞

mN,R

N
g(η)MεRd +Rd+3−γN−2/d = 0

lim sup
η→0,ε→0,M→∞,R→∞,N→∞

mN,R

N

(
g(η)MεR2d+3−γN−2/d

) 1
2 = 0,

lim sup
R→∞,τ→0,N→∞

mN,R

N
C2R

dτ = 0.

We thus finally obtain (6.29).

6.3.6. Volume. We will use the notation of Section 6.1.2 and the results of Lemma 6.3.
In order to apply Lemma 5.14, where the volume estimates have been summarized, we find

v such that v ≤ v0 (as in (5.16)) and that for any i ∈ I1

(6.44) Ni −N int
i ≤ |Extε|

2v .

Claim 6.10. There exists C depending only on d,m,m such that, setting

(6.45) v(d,m,m, ε) := min(v0, Cε),

the condition (6.44) is satisfied.

Proof. By Lemma 6.3 we know that Ni ≤ CRd, and |Extε| ≥ dεRd (for ε small enough
depending only on d), hence taking v smaller than some multiple of ε ensures (6.44). �
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Applying the conclusions of Lemma 5.14 for i ∈ I1 and i ∈ I2 separately, we obtain, for
some C, v1 depending only on d,m,m.

(6.46) log Leb⊗Ntil
(
Amod

)
− log Leb⊗Ntil

(
Aabs

)
≥
ˆ
Aabs

∑
i∈I1

log
(

(Ni −N int
i )!

(
v

|Extε|

)Ni−N int
i

)
+ (Ni −Ni) log |Extε|

− C1
∑
i∈I1

∑
~i∈6τZd

Num(~i, 6τ) log Num(~i, 6τ) +
∑
i∈I2

log
(
Ni!vNi1 R−dNi

)
dLeb⊗Ntil(Cabs).

In (6.46), for i ∈ I1 fixed, the sum
∑
~i∈6τZd Num(~i, 6τ) log Num(~i, 6τ) is implicitely applied to

the configuration Cabs
i .

First, we control the terms concerning i ∈ I1. The successive estimates are split into several
claims.

Claim 6.11. For any Cabs we have

(6.47)
∑
i∈I1

log
(

(Ni −N int
i )!

(
v

|Extε|

)Ni−N int
i

)
+ (Ni −Ni) log |Extε|

≥ #I1|Extε|

 1
#I1

∑
i∈I1

Ni −N int
i

|Extε|

 log

 1
#I1

∑
i∈I1

Ni −N int
i

|Extε|


+
∑
i∈I1

(
N int
i −Ni

)
log |Extε|+

∑
i∈I1

(
Ni −N int

i

)
(log v − 1).

Proof. First, we use Stirling’s estimate and get

∑
i∈I1

log
(

(Ni −N int
i )!

(
v

|Extε|

)Ni−N int
i

)
+ (Ni −Ni) log |Extε|

≥
∑
i∈I1

(Ni −N int
i ) log(Ni −N int

i )− (Ni −N int
i )− (Ni −N int

i ) log |Extε|

+ (Ni −Ni) log |Extε|+ (Ni −N int
i ) log v.

We may re-write this as

#I1|Extε|

 1
#I1

∑
i∈I1

Ni −N int
i

|Extε|
log Ni −N int

i

|Extε|


+
∑
i∈I1

(Ni −Ni) log |Extε|+ (Ni −N int
i )(log v − 1).

and we get (6.47) by applying Jensen’s inequality to the convex map x 7→ x log x. �

Claim 6.12.

(6.48)
∑
i∈I1

Ni −N int
i = #I1|Extε|+

∑
i∈I1

(
µ′V (xi)|Intε| − N int

i

)

+ #I1|Extε|
(
mN,R

#I1

µ′V (Σ′til)
|Σ′til|

(1 +OR(R−2))− 1
)

+N
(
RκN−κ/dOR(1) +R−2OR(1)

)
.
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Proof. We start by the following decomposition

(6.49)
∑
i∈I1

Ni −N int
i =

∑
i∈I1

(
µ′V (xi)Rd −N int

i

)
+
∑
i∈I1

(
Ni − µ′V (xi)Rd

)
=
∑
i∈I1

(
µ′V (xi)|Intε| − N int

i

)
+
∑
i∈I1

µ′V (xi)|Extε|+N
(
RκN−κ/dOR(1) +R−2OR(1)

)
.

We have used the fact that |Intε|+ |Extε| = Rd, and we have used (6.15) to control the error
Ni − µ′V (xi)Rd. Using again (6.15) together with (6.12) we find

(6.50)
∑
i∈I1

µ′V (xi)|Extε| = #I1|Extε|
(
mN,R

#I1

µ′V (Σ′til)
|Σ′til|

(1 +OR(R−2))
)

+N
(
RκN−κ/dOR(1) +R−2OR(1)

)
.

Combining (6.49) and (6.50) yields (6.48). �

Claim 6.13. We have:

lim sup
R→∞,ν→0,N→∞

1
N

∑
i∈I1

∣∣∣N int
i − µ′V (xi)|Intε|

∣∣∣ = 0,(6.51)

lim sup
R→∞,ν→0,N→∞

1
N

∑
i∈I1

∣∣∣Ni − µ′V (xi)Rd
∣∣∣ = 0.(6.52)

Proof. Let Dint(x, C) be the discrepancy18

Dint(x, C) := (NumR(C)− µV (x)|Intε|) ∧MRd

We may observe that

(6.53) 1
mN,R

∑
i∈I1

∣∣∣N int
i − µ′V (xi)|Intε|

∣∣∣ ≤ EDiscrAv(Cabs)

[∣∣∣Dint(x, C)
∣∣∣] ,

On the other hand, the discrepancy estimate of Lemma 3.2 implies that

EP̄m

[(
Dint(x, C)

)2
]

= Rd+sOR(1)

with a OR(1) depending only on d, s, P̄ . Using Cauchy-Schwarz inequality and the fact that
s < d we thus obtain

(6.54) EP̄m

[∣∣∣Dint(x, C)
∣∣∣] = RdoR(1),

a oR(1) depending only on d, s, P̄ .
Since (6.32) holds, combining (6.53) and (6.54), we get (6.51), and (6.52) follows by a

similar argument. �

Combining Claim 6.11, Claim 6.12 and Claim 6.13, we can settle the first terms concerning
i ∈ I1.

18We add a truncation ∧MRd in order to get a bounded function. We may do it because (5.23) holds.
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Claim 6.14.

(6.55) lim inf
m→0,ε→0,R→∞,ν→0,N→∞

1
N

∑
i∈I1

log
(

(Ni −N int
i )!

(
v

|Extε|

)Ni−N int
i

)

+ 1
N

∑
i∈I1

(Ni −Ni) log |Extε| = 0.

Proof. It remains to check that the following quantity from (6.47) tends to 0
1
N

∑
i∈I1

(
Ni −N int

i

)
(log v − 1).

We decompose Ni −N int
i as

Ni −N int
i =

(
Ni − µ′V (xi)Rd

)
+
(
µ′V (xi)|Intε| − N int

i

)
+ µ′V (xi)|Extε|.

The contribution of the first two terms in the right-hand side are small as R → ∞, ν →
0, N →∞ (for fixed ε) according to Claim 6.13. The last term gives a contribution∑

i∈I1
µ′V (xi)|Extε|,

which was proven to be of order N
Rd |Extε| (see (6.50)), with |Extε| of order εRd. On the other

hand, from the choice of v as in (6.45) we see that log v − 1 is of order log ε. We thus have
1
N

∑
i∈I1

µ′V (xi)|Extε|(log v − 1) = O (ε log ε) ,

and thus goes to zero as ε→ 0 (depending only on m, d, s). �

Concerning the terms i ∈ I1, we are left to bound the volume loss due to the regularization.

Claim 6.15.

(6.56) lim
R→∞,τ→0,ν→0,N→∞

1
N

∑
i∈I1

∑
~i∈6τZd

Num6τ [~i] log Num6τ [~i] = 0

Proof. We argue as in Section 6.3.4, together with the trivial bound n logn ≤ (n2 − 1)+. �

Finally, we turn to the terms concerning i ∈ I2.

Claim 6.16.

(6.57) lim inf
R→∞,ν→0,N→∞

1
N

∑
i∈I2

log
(
Ni!vNi1 R−dNi

)
= 0.

Proof. Stirling’s formula and elementary manipulations yield

log
(
Ni!vNi1 R−dNi

)
≥ (Ni −Ni) logRd +Ni log Ni

Rd −Ni(1− log v1).

Using (6.15) we obtain, with C depending only on d,m,m∑
i∈I2

log
(
Ni!vNi1 R−dNi

)
≥ logRd ∑

i∈I2
(Ni −Ni)− C#I2R

d log ε.
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Discrepancy estimates as in Claim 6.13 yield that
1

mN,R

∑
i∈I2
|Ni −Ni|

is small with respect to Rd, and in fact it is of order R
1
2 (d+s), with s < d. In particular,

lim sup
R→∞,ν→0,N→∞

logRd 1
N

∑
i∈I2
|Ni −Ni| = 0.

On the other hand, we know that #I2R
d is negligible with respect to N , hence for any ε fixed

lim sup
R→∞,ν→0,N→∞

1
N

#I2R
d log ε = 0.

This proves the claim. �

Combining all the previous estimates, we see that the volume loss is negligible with respect
to N , and thus (6.30) holds. �

This concludes the proof of Lemma 6.6.

6.4. Completing the construction and conclusion. There remains to complete the con-
struction in the thin layer Σ′\Σ′til.

Lemma 6.17. Let N,R be fixed and η ∈ (0, 1). Let m > 0.
There exists a family Aext of point configurations with N −Ntil points in Σ′\Σ′til and which

satisfy the following.
(1) For any Cext in Aext, we have

min
p 6=q∈Cext

|p− q| ≥ η0, min
p∈Cext

dist
(
p, ∂

(
Σ′\Σ′til

))
≥ η0.

(2) For any Cext in Aext, there exists a vector field Eext ∈ Screen
(
Cext, µ′V ,Σ′\Σ′til

)
, and

it satisfies

(6.58)
ˆ

(Σ′\Σ′til)×Rk
|y|γ |Eext

η |2 ≤ C(|Σ′| − |Σ′til|),

for some C depending only on d, s,m.
(3) The volume of Aext is bounded below

(6.59) Leb⊗(N−Ntil)
(
Aext

)
≥ C(N−Ntil)(N −Ntil)! ,

for some C depending only on d, s and m.

Proof. This was performed in [PS14, Proposition 7.3, Step 3] with a more restrictive assump-
tion concerning the behavior of the equilibrium density near the boundary, namely that

c1dist(x, ∂Σ)α ≤ µV (x) ≤ c2dist(x, ∂Σ)α,
with the constraint

0 < κ ≤ 1, 0 ≤ α ≤ 2κd
2d− s .

This assumption includes the case of the semi-circular law in d = 1, of the circular law in
d = 2, and all the cases where the density does not vanish on Σ (hence, most of the interesting
Log2 cases). However, we would like to cover critical cases in Log1 where the density may
vanish faster than a square root at the edges, or somewhere in the bulk, and they require a
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more general assumption near the boundary, as in (H4). In Section 8.7, we explain how to
generalize the construction of [PS14] to Assumption (H4). �

To complete the proof of Proposition 4.2 we need to connect the preceding construction
with a large enough volume under QN,β. The probability that QN,β has all its points in Σ is
bounded below as follows

(6.60) lim inf
N→∞

1
N

logQN,β

({
~XN ∈ ΣN

})
≥ log |Σ|

|ω|
.

This is an easy consequence from the definition (4.1) of QN,β, of Σ and ω as in (2.7), and of
(4.8). Combining the constant log |Σ||ω| with the one of (6.22), which converges to |Σ|−1−log |Σ|
as m→ 0, yields the result.

7. Large deviations for the reference measure

In this section, we prove Proposition 4.1, as well as Lemma 6.5. Proposition 4.1 is a
process-level (or type 3 ) large deviation principle, whereas Lemma 6.5 is rather Sanov-like (or
type 2 ). The proof of Proposition 4.1 relies on a similar result from [GZ93] where the Poisson
process Π1 is used as the reference measure instead of QN,β (as defined in Section 4.1.1). On
the other hand, Lemma 6.5 relies on the classical Sanov theorem with some adaption to our
setting. We believe that at least parts of these (mostly technical) variations around classical
results belong to folklore knowledge within the community of Gibbs point processes, but we
provide a proof for the sake of completeness.

First, let us say a word about the topology. Large deviation principles for empirical fields
(in the non-interacting case) hold with a stronger topology on Config, called the τ -topology
(it can be described as the initial topology associated to the maps C 7→ f(C) for all bounded
measurable functions f which are local in the sense of (2.20)), see e.g. [Geo93] or [RAS09].
Although we expect both the intermediate result of Proposition 4.1 and our main LDP to
hold for the τ -topology, with essentially the same proof, we do not pursue this generality here.

7.1. Two comparison lemmas. We start by introducing a notion that allows to replace
point processes by equivalent ones (as far as LDP’s are concerned).

Definition 7.1. Let (X, dX) be a metric space and let {RN}N and {R′N}N be two cou-
pled sequences of random variables with values in X, defined on some probability spaces
{(ΩN ,BN , πN )}N . For any δ > 0 we say that {RN}N and {R′N}N are eventually almost
surely (e.a.s.) δ-close when for N large enough we have

dX(RN , R′N ) ≤ δ, πN -a.s.
It two sequences are e.a.s. δ-close for any δ > 0 we say that they are eventually almost surely
equivalent (e.a.s.e.).

Let us emphasize that being eventually almost surely equivalent is much stronger than
the usual convergence in probability. It is also easily seen to be strictly stronger than the
classical notion of exponential equivalence (see [DZ10, Section 4.2.2]) and thanks to that, large
deviation principles may be transfered from one sequence to the other.

Lemma 7.2. If the sequences {RN}N and {R′N}N are eventually almost surely equivalent
and an LDP with good rate function holds for the law of {RN}N , then the same LDP holds
for the law {R′N}N .
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Proof. It is a straightforward consequence of [DZ10, Theorem 4.2.13]. �

A first example is given by the averages of a configuration over (translations in) two close
sequences of sets. In what follows, 4 denotes the symmetric difference.

Lemma 7.3. Let {VN}N , {WN}N be two sequences of Borel sets in Rd of bounded Lebesgue
measure, such that

lim
N→∞

|WN4VN |
|WN |

= 0.

Let f be a bounded measurable function on Config and let P be in P(Config). Then the
random variables obtained as the push-forward of P by the (“empirical fields”-like) maps

C 7→ 1
|WN |

ˆ
WN

δθx·C dx and C 7→ 1
|VN |

ˆ
VN

δθx·C dx

are eventually almost surely equivalent in the sense of Definition 7.1.

Proof. For any C ∈ Config we have

(7.1) 1
|WN |

∣∣∣∣∣
ˆ
WN

f(θx · C)dx−
ˆ
VN

f(θx · C)dx
∣∣∣∣∣ ≤ |WN4VN |

|WN |
‖f‖∞.

For any δ > 0, to get e.a.s. δ-closeness it suffices to recall that the distance between point
processes is defined by testing against functions in Lip1(Config) (which are in particular
bounded in sup-norm). �

The following lemma shows that when considering “empirical fields”-like random variables,
obtained by averaging a configuration over translations in some large domain, we may restrict
the configuration to this domain.

Lemma 7.4. Let {ΛN}N be a sequence of Borel sets of Rd of finite Lebesgue measure, such
that

(7.2) ∀k ∈ N, lim
N→∞

1
|ΛN |

|{x ∈ ΛN , d(x, ∂ΛN ) ≥ k}| = 0.

Let P be in P(Config) and let us denote by RN , resp. R′N the push-forward of P by the maps

C 7→ 1
|ΛN |

ˆ
ΛN

δθx·Cdx, resp. C 7→ 1
|ΛN |

ˆ
ΛN

δθx·(C∩ΛN )dx.

Then the sequences {RN}N and {R′N}N are e.a.s.e. in the sense of Definition 7.1.

We may observe that (7.2) holds in particular when ΛN is taken to be N1/dΛ for some
compact Λ with piecewise C1 boundary.

Proof. For any k ≥ 1, we have
(θx · C) ∩�k = (θx · (C ∩ ΛN ))) ∩�k for all x such that d(x, ∂ΛN ) ≥ k1/d.

Thus if f is in Lock(Config) (as defined in (2.20)) we have

EP

[
1
|ΛN |

ˆ
ΛN

f(θx · C)dx
]
−EP

[
1
|ΛN |

ˆ
ΛN

δθx·(C∩ΛN )dx

]

≤ ‖f‖L∞
(

1− 1
|ΛN |

∣∣∣{x ∈ ΛN , d(x, ∂ΛN ) ≥ k1/d}
∣∣∣) .
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Using the assumption (7.2) we see that the right-hand side goes to 0 as N → ∞, uniformly
for f ∈ Lock(Config) such that ‖f‖L∞ ≤ 2.

Combining the uniform approximation of functions in Lip1(Config) by bounded local func-
tions (as in Lemma 2.1) and the definition of dP(Config) as testing against Lip1(Config), we
obtain that for any δ > 0 there exists k ≥ 1 such that P -a.s.

(7.3) dP(Config)(RN , R′N ) ≤ δ + oN,k(1),

where oN,k(1) goes to 0 as N →∞ (for fixed k). Hence RN , R′N are e.a.s. 2δ-close, and this
holds for any δ > 0, hence {RN}N and {R′N}N are e.a.s.e. in the sense of Definition 7.1. �

7.2. Continuous average: proof of Proposition 4.1. Our starting point is the following
known large deviation principle for empirical fields.

Proposition 7.5 (Georgii-Zessin). Let {ΛN}N be a fixed sequence of cubes increasing to Rd

and let RN be the push-forward of Π1 by the map

C 7→ 1
|ΛN |

ˆ
ΛN

δθx·Cdx.

Then {RN}N satisfies a large deviation principle at speed |ΛN | with rate function ent[·|Π1].

Proof. It is a consequence of [GZ93, Theorem 3.1] together with [GZ93, Remark 2.4] to get rid
of the periodization used in their definition of RN (see also [FO88]). One could also use the
method of [RAS09, Chapter 6], where the Gärtner-Ellis theorem is used through proving the
existence of a pressure and studying its Legendre-Fenchel transform, by adapting the proof
from the discrete case (point processes on Zd) to the case of point processes on Rd. �

7.2.1. Extension to general shapes. In this first step we extend the LDP of Proposition 7.5 to
more general shapes of {ΛN}N .

Lemma 7.6. Let Λ be a compact set of Rd with a non-empty interior and a Lipschitz bound-
ary, and let ΛN := N1/dΛ. Let RN be the push-forward of Π1 by the map

C 7→ 1
|ΛN |

ˆ
ΛN

δθx·C dx.

Then {RN}N satisfies a large deviation principle at speed N |Λ| with rate function ent[·|Π1].

Proof. The idea is to tile ΛN into large hypercubes (up to some boundary part whose volume
will be negligible) and to apply Proposition 7.5 on each hypercube, together with Lemma 7.4.

For any r > 0 let us consider the hypercubes centered at the points of Λ ∩ 1
rZ

d and of
sidelength 1

r . We remove those that are centered at points in

Ar :=
{
x ∈ Λ ∩ 1

r
Zd,dist(x, ∂Λ) ≤ 2Cr−1/d

}
,

where C is the distance between the center of the unit hypercube in dimension d and any
vertex of this hypercube. Since the boundary of Λ is Lipschitz, we have

(7.4) lim
r→∞

|Ar| = 0.

Now, let N ≥ 1. From (7.4) we see that for r large enough (depending on N), the volume
lost when removing the boundary hypercubes (with center in Ar) is less than 2−N |Λ|. We
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may thus construct a family of m = m(N) hypercubes {Λ(i,N)}m(N)
i=1 included in Λ and such

that

(7.5) 1
|Λ| |Λ4

(
∪mi=1Λ(i,N)

)
| ≤ 2−N .

Let us also observe that we may also choose r arbitrarily large such that the following technical
point is satisfied

(7.6)
m∑
i=1
|Λ(i,N)| ∈ rNd,

as follows e.g. from an elementary argument based on the intermediate value theorem.
Next, we define Λ̃(N) as the hypercube of center 0 and such that

(7.7) |Λ̃(N)| =
m∑
i=1
|Λ(i,N)|.

Since (7.6) holds, we may split Λ̃(N) into hypercubes of sidelength r, and there exists a
measurable bijection ΦN : ∪mi=1Λ(i,N) → Λ̃(N) which is a translation on each hypercube Λ(i,N)

(i = 1, . . . ,m).
As defined above, RN is the push-forward of Π1 by the map

C 7→ 1
|ΛN |

ˆ
ΛN

δθx·C dx.

We also introduce R′N as the push-forward of Π1 by the map

C 7→ 1
Nm|Λ(1,N)|

ˆ
∪mi=1N

1/dΛ(i,N)
δθx·C dx.

Finally, from any configuration of points C in ∪mi=1N
1/dΛ(i,N) we get by applying x 7→

N1/dΦN (N−1/d(x)) a configuration in N1/dΛ̃(N), which by abusing notation we denote again
by ΦN (C). We denote by R′′N the push-forward of Π1

|ΛN by:

C 7→ 1
N |Λ̃(N)|

ˆ
ΛN

δθΦN (x)·ΦN (C)dx.

We impose that the random variables RN , R′N , R′′N are coupled together the natural way.
It is easily seen that the push-forward of Π1

|ΛN – or more precisely of the process induced
on the subset ∪mi=1N

1/dΛ(i,N) – by the map C 7→ ΦN (C) is equal in law to Π1
N1/dΛ̃(N) . The

sequence of hypercubes {N1/dΛ̃(N)}N satisfies the hypothesis of Proposition 7.5 hence a LDP
holds at speed |Λ|N for the sequence {R′′N}N (the fact that we consider the push-forward
of Π1

|ΛN instead of that of Π1 is irrelevant thanks to Lemma 7.4). To show that the same
principle holds for {RN}N it is enough to show that the two sequences are e.a.s. equivalent
in the sense of Definition 7.1.

Let us first observe that the sequences {RN}N and {R′N} are e.a.s.e. because as a conse-
quence of (7.7) the tiling of ΛN by the hypercubes ∪mi=1N

1/dΛ(i,N) only misses a o(1) fraction
of the volume of ΛN and e.a.s. equivalence is then a consequence of Lemma 7.3.

As for the pair of sequences {R′N}N and {R′′N}N , let us observe that for any k ≥ 1 we have

(θx · C) ∩�k =
(
θΦN (x) · ΦN (C)

)
∩�k
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for any x in one of the tiling hypercubes ∪mi=1N
1/dΛ(i,N) except for the points that are near

the boundary of their hypercube - those such that

dist
(
x,∪mi=1∂N

1/dΛ(i,N)
)
≤ |�k|1/d.

For any k the fraction of volume of points in the hypercube that are close to the boundary in
the previous sense is negligible as N → ∞. Arguing as in the proof of Lemma 7.4 gives the
result. �

7.2.2. Tagged point processes. We now recast the result of Lemma 7.6 in the context of tagged
point processes (as defined in Section 2.6) which necessitates to replace the specific relative
entropy ent by its analogue with tags.

Lemma 7.7. Let Λ be a compact set of Rd with C1 boundary and non-empty interior and let
R̄N be the push-forward of Π1 by the map

C 7→ 1
|Λ|

ˆ
Λ
δ(x,θ

N1/dx·C)
dx.

Then {R̄N}N satisfies a large deviation principle at speed N with rate function ent[P̄ |Π1].

Let us recall that the quantity ent[P̄ |Π1] has been defined in (2.29).

Proof. Upper bound. Let P̄ be a stationary tagged point process. We claim that

(7.8) lim sup
ε→0

lim sup
N→∞

1
N

log R̄N
(
B(P̄ , ε)

)
≤ −

ˆ
Λ

ent[P̄ x|Π1]dx.

Let us observe that the forgetful map ϕ : P(Λ × Config) → P(Config) obtained by pushing
forward with the map (x, C) 7→ C is continuous. This yields

(7.9) lim sup
ε→0

lim sup
N→∞

1
N

log R̄N
(
B(P̄ , ε)

)
≤ lim sup

ε→0
lim sup
N→∞

1
N

logϕ]R̄N
(
B(ϕ(P̄ ), ε)

)
,

where ϕ]R̄N is the push-forward of R̄N by ϕ. By definition, we may observe that this coincides
with the push-forward of Π1 by the map

C 7→ 1
N |Λ|

ˆ
ΛN

δθx·C dx.

From Lemma 7.6 we know that an LDP holds for RN at speed |Λ|N with rate function
ent[·|Π1] (or equivalently at speed N with rate function |Λ|ent[·|Π1]) hence the right-hand
side of (7.9) is bounded by |Λ|ent[ϕ(P̄ )|Π1].

Now, since the relative specific entropy is affine, we have

ent[ϕ(P̄ )|Π1] = 1
|Λ|

ˆ
Λ

ent[P̄ x|Π1] dx

which yields the LDP upper bound.
Lower bound. Let P̄ be a tagged point process. We want to prove that

(7.10) lim inf
ε→0

lim inf
N→∞

1
N

log R̄N
(
B(P̄ , ε)

)
≥ −
ˆ

Λ
ent[P̄ x|Π1]dx.

Let ε > 0. By a standard approximation argument, we see that there exists M ≥ 1 and
k > 0 (both depending only on ε) such that for any function F ∈ Lip1(Λ × Config), there
exists
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• a covering of Λ by compact sets19 A1, . . . , AM ⊂ Λ of pairwise disjoint non-empty
interiors such that each set Ai has a Lipschitz boundary,
• for any i ∈ {1, . . . ,M}, a point xi in Ai,
• a family {Fi}i=1,...,M of functions in Lip1(Config) ∩ Lock(Config),

such that

‖F (x, C)−
M∑
i=1

1Ai(x)Fi(C)‖L∞(Λ×Config) ≤ ε.

The fact that the Fi’s can be taken in Lock (with k depending only on ε) follows from the
approximation result of Lemma 2.1 (in fact we can take Fi = F (xi, ·∩�k) for k large enough).

For any Q̄ in P(Λ× Config), and F ∈ Lip1(Λ× Config) we now have∣∣∣∣∣
ˆ
F (x, C)dQ̄(x, C)−

N∑
i=1

ˆ
x∈Ai

Fi(C)dQ̄(x, C)
∣∣∣∣∣ ≤ Cε,

for some C independent on ε,N .
For each i we define Pi ∈ P(Config) as

Pi := 1
|Ai|

ˆ
x∈Ai

δC dP̄ (x, C).

We may observe that

ent[Pi|Π1] = 1
|Ai|

ˆ
x∈Ai

ent[P̄ x|Π1].

Applying the lower bound of Lemma 7.6 on B(Pi, ε), we see that

lim
N→∞

1
N

logR(i)
N (B(Pi(ε)) ≥ −

1
|Ai|

ˆ
x∈Ai

ent[P̄ x|Π1],

where R(i)
N is the empirical field of Π1 with average on Ai. We can paste such empirical fields

together to obtain an empirical field with average on Λ which is close to P̄ , up to a negligible
error (arguing as in Lemma 7.3, Lemma 7.4). Combining the LDP lower bounds we see that

lim
N→∞

log R̄N
(
B(P̄ , ε)

)
≥ −

M∑
i=1
|Ai|ent[Pi|Π1] + oε(1).

Since −
∑M
i=1 |Ai|ent[Pi|Π1] =

´
x∈Λ ent[P̄ x|Π1]dx coincides with the definition of ent[P̄ |Π1],

the lower bound follows by taking ε→ 0.
Conclusion. From (7.8) and (7.10) we get a weak LDP for the sequence {R̄N}N . The full

LDP is obtained by observing that {R̄N}N is exponentially tight, a fact for which we only
sketch the (elementary) proof : for any integer M we may find an integer T (M) large enough
such that a point process has less than T (M) points in �M expect for a fraction ≤ 1

M of
the configurations, with R̄N -probability bounded below (when N → ∞) by 1 − e−NM . The
union (on N ≥ N0 large enough) of such events has a large R̄N -probability (bounded below
by 1− e−NM when N →∞) and is easily seen to be compact. �

19This covering can actually be chosen independently of F in Lip1(Λ× Config).
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7.2.3. From Poisson to Bernoulli. In what follows, when Λ is fixed, for N ≥ 1 we let BN be
the Bernoulli point process with N points in N1/dΛ (in other words, it is the law of N points
chosen uniformly and independently in N1/dΛ).

If we replace Π1 by BN as the reference measure i.e. if we constrain Π1 to have a fixed
number of points in N1/dΛ then the LDP for (tagged) empirical fields is modified: the large
deviation upper bound holds but the large deviation lower bound needs a technical adaption.
Let us recall that we denote by Ps,1(Λ×Config) the set of stationary tagged point processes
such that the integral on x ∈ Λ of the intensity of the disintegration measure P̄ x is 1.

Lemma 7.8. Let Λ be a compact set of Rd with C1 boundary and non-empty interior and let
S̄N be the push-forward of BN by the map

C 7→ 1
N |Λ|

ˆ
N1/dΛ

δ(N−1/dx,θx·C)dx.

Then for any A ⊂ Ps(Λ× Config) we have:

(7.11) − inf
P̄∈Å∩Ps,1(Λ×Config)

ent[P̄ |Π1]− (log |Λ| − |Λ|+ 1) ≤ lim inf
N→∞

1
N

log S̄N (A)

≤ lim sup
N→∞

1
N

log S̄N (A) ≤ − inf
P̄∈Ā

ent[P̄ |Π1]− (log |Λ| − |Λ|+ 1).

Proof. Step 1. Upper bound.
The upper bound of (7.11) follows from the LDP upper bound of Lemma 7.7. The conditional
expectation of Π1 conditioned into havingN points inN1/dΛ, is equal to the law of a Bernoulli
point process. In particular, for any A ⊂ Ps(Λ×Config) we have (with R̄N as in Lemma 7.7)

(7.12) 1
N

log R̄N (A) ≥ 1
N

log S̄N (A) + 1
N

log Π1
(
N points in N1/dΛ

)
= 1
N

log S̄N (A) + 1
N

log
(

exp (−N |Λ|) 1
N ! (N |Λ|)

N
)

= 1
N

log S̄N (A) + (log |Λ| − |Λ|+ 1) + oN→∞(1),

which yields the upper bound in (7.11).
Step 2. Lower bound.

For simplicity, we will prove a weak lower bound20, namely for any P̄ in Ps,1(Λ×Config) we
claim that:

(7.13) lim inf
ε→0

lim inf
N→∞

1
N

log S̄N (B(P̄ , ε)) ≥ −ent[P̄ |Π1]− (log |Λ| − |Λ|+ 1).

We want to use the LDP lower bound of Lemma 7.7, but we have to argue that (enough)
configurations C in N1/dΛ, for which the tagged empirical field is close from P̄ as in (7.10),
have approximately N points (then the constant −(log |Λ| − |Λ|+ 1) comes from normalizing
the probability measure).

We sketch the argument here. Let χ be a smooth, non-negative function with compact
support in the unit ball of Rd, and such that

´
χ = 1, we denote by χ̃ the map C 7→

´
Rd χdC.

We have
EP̄ [χ̃] = EP̄ [Num1] = 1,

20The general LDP lower bound follows from a similar argument or by using exponential tightness.
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and by continuity, if Q̄ is close from P̄ we must have EQ̄[χ̃] ≈ 1. But on the other hand, if Q̄
is an empirical field obtained by averaging over translations in some domain, EQ̄[χ̃] detects
the average number of points per unit volume in the domain, thus the associated realization
of the Poisson process has N points. Three points must be precised in order to make the
previous argument rigorous:

• First, the map C 7→ χ̃(C) is continuous but not bounded (it can be of the same order
as the number of points in the unit ball), hence cannot be tested against weakly
converging point processes.
• Next, if Q̄ is an empirical field, then EQ̄[χ̃] is slightly less than the average density
due to some boundary effect.
• Finally, we may only deduce that the associated realization of the Poisson process has
N(1 + oN (1)) points.

For the first issue, for anyM > 0 we may replace χ̃ by χ̃∧M (which can now be tested against
weak convergence). Using elementary properties of the Poisson point process, we see that the
errors due to this truncation become negligible as M → ∞, up to an event of negligible
probability. The second point can be dealt with by observing that the number of boundary
points is negligible (with respect to N), again up to an event of negligible probability. Finally,
once we have a realization with N(1 + oN (1)) points, we may add or delete NoN (1) points
without changing the empirical field too much. �

7.2.4. From Bernoulli to imperfect confinement. Finally, we extend the previous results to
the case where the points are sampled according to QN,β (as defined in (4.1)) and not a
Bernoulli process. Let us recall that QN,β has a constant density on ωN (ζ vanishes on ω, see
definitions (2.6), (2.7)), and that its marginal density tends to zero as exp(−βNζ(x)) outside
ω. Therefore we expect QN,β to behave like a Bernoulli point process with N points on N1/dω
(which would correspond to a “perfect confinement” where ζ = +∞ outside ω).

We may now turn to proving Proposition 4.1.

Proof. Step 1. Lower bound.
The probability under QN,β that all the points fall inside N1/dΣ is equal to |Σ|´

Rd exp
(
−βN1− s

d ζ(x)
)
dx

N .
Using the dominated convergence theorem, we see that

(7.14) lim
N→∞

1
N

logQN,β

(
N points in N1/dΣ

)
= log |Σ| − log |ω|.

The conditional expectation with respect to this event is a Bernoulli point process with N
points in N1/dΣ. Using the LDP lower bound of Lemma 7.8 together with (7.14) we obtain
the lower bound for Proposition 4.1.

Step 2. Upper bound.
The law of total probabilities yields, for any A ⊂ Ps(Σ × Config) (denoting by #ΣN the
number of points in N1/dΣ):

lim sup
N→∞

1
N

log Q̄N,β(A) ≤ lim sup
N→∞

1
N

log
N∑
k=0

Q̄N,β(A ∩#ΣN = k)QN,β(#ΣN = k).
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Conditionally to the event {#ΣN = k} the law of QN,β is equal to that of a Bernoulli point
process with k ≤ N points in N1/dΣ, and the LDP upper bound of Lemma 7.8 allows us to
bound each term.

More precisely it is easy to see that with overwhelming probability the number of points
#ΣN tends to infinity (e.g. as

√
N) so that we may bound

1
N

log
N∑
k=0

Q̄N,β(A ∩#ΣN = k)QN,β(#ΣN = k)

≤ 1
N

log
N∑

k=
√
N

Q̄N,β(A ∩#ΣN = k)QN,β(#ΣN = k).

Bounding QN,β(#ΣN = k) by 1 and the terms 1
N log Q̄N,β(A ∩#ΣN = k) by

1
k

log Q̄N,β(A ∩#ΣN = k),

and using Lemma 7.8 we get the result. �

7.3. Discrete average. In this section we give the proof of Lemma 6.5. The argument is
analogous as the proof of the continuous case and we will only sketch it here.

Proof. First, let us forget about the condition on the total number of points (i.e. we consider
independent Poisson point processes) and about the tags (i.e. the coordinate in Σ′til), then
there holds for any fixed R a LDP for {ṀN,R}N at speedmN,R with rate function Ent[·|Π1

|�R ].
This is a consequence of the classical Sanov theorem (see [DZ10, Section 6.2]) since in this
case the random variables θxi ·Ci are independent and identically distributed Poisson point
processes on each hypercube. Taking the limit R → ∞ yields, in view of the asymptotics
(6.12) on mN,R and the definition (2.28) of the specific relative entropy,

(7.15) lim
R→∞

lim inf
ν→0

lim inf
N→∞

1
N

log ṀN,R(B(Pm|�R , ε)) ≥ −ent
[
Pm|Π1

]
.

We may then extend this LDP to the context of tagged point processes by following the same
argument as in the continuous case.

Then, we argue as above (when passing from Poisson to Bernoulli). To condition the point
process into having Ntil ≈ NµV (Σm) points in Σ′til ≈ Σ′m modifies the LDP lower bound
obtained from Sanov’s theorem by a quantity

lim sup
N→∞

1
N

log
(
e−N |Σm|

(
N |Σm|

)NµV (Σm)(
NµV (Σm)

)
!

)
,

hence the constant rµV ,m in (6.25). This settles the first point of Lemma 6.5.
The second point follows from the first one by elementary manipulations. The idea is that

if one knows that a discrete average of large hypercubes is very close to some point process
P , then the continuous average of much smaller hypercubes is also close to P since it can be
re-written using the discrete average up to a small error. More precisely for any fixed δ > 0
establishing that a point process is in B(P, δ) can be done by testing against local functions
in Lock for some k large enough. For R,N large enough, an overwhelming majority of all
translates of �k by a point in Σ′m is included in one of the hypercubes �i (i = 1 . . .mN,R)
(this follows from the definitions and (6.12)).
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For any such local function f ∈ Lock we have

(7.16) 1
|Σ′m|

ˆ
Σ′m

f(θx · C) ≈
1

mN,R

mN,R∑
i=1

1
Rd

ˆ
�̄i

f(θx · C)dx,

which allows us to pass from the assumption that the discrete average (in the right-hand
side of (7.16)) of a configuration is close to P to the fact that the continuous average (in the
left-hand side of (7.16)) is close to P . These considerations are easily adapted to the situation
of tagged point processes. �

8. Additional proofs

We collect here the proofs of various lemmas used in the course of the paper.

8.1. Proof of Lemma 2.1.

Proof. The first point (Config is a Polish space) is well-known, see e.g. [DVJ08, Proposition
9.1.IV]).

It is easy to see that dConfig is a well-defined distance (the only point to check is the
separation property). It is also clear that any sequence converging for dConfig converges for
the topology on Config. Conversely, let {µn}n be a sequence in Config which converges
vaguely to µ and let ε > 0. There exists an integer K such that

∑
k≥K

1
2k ≤

ε
2 so we might

restrict ourselves to the first K terms in the series defining dConfig(µn, µ).
For each k = 1, . . . ,K and for any n, let µn,k (resp. µk) be the restriction to the hypercube

�k of µn (resp. of µ). For any k = 1, . . . ,K the masses (µn,k(�k))n≥1 are integers, and up
to passing to a common subsequence (using a standard diagonal argument) we may assume
that for each k the sequence {µn,k(�k)}n≥1 is either constant or diverging to +∞. The terms
for which this could diverge give a negligible contribution to the distance.

We may then restrict ourselves to the terms k for which µn,k is some constant Nk. By
compactness we may then assume that the Nk points of the configuration converge to some
Nk-tuple x1, . . . , xNk of points in �k. It is easy to see that Nk must be equal to µk(�k) and
that the points x1 . . . xNk must correspond to the points of the configuration µk. This implies
the convergence in the sense of dConfig.

In conclusion, from any sequence {µn}n converging to µ for the topology on Config, we may
extract a subsequence which converges to µ in the sense of dConfig, and conversely. Therefore
dConfig is compatible with the topology on Config.

We now prove the approximation property. Let F be in Lip1(Config) and δ > 0. From
the definition (2.19) of dConfig we see that there exists k such that if two configurations C, C′
coincide on �k then dConfig(C, C′) ≤ δ. We let fk := F (C ∩ �k). By definition f is a local
function in Lock, we have chosen k such that dConfig(C, C ∩ �k) ≤ δ for any configuration C
and since by assumption F is 1-Lipschitz we have

|F (C)− f(C)| = |F (C)− F (C ∩�k)| ≤ dConfig(C, C ∩�k) ≤ δ,

and k here depends only on δ, which concludes the proof of Lemma 2.1. �

8.2. Proof of Lemma 2.3.

Proof. Let us denote as in Section 2.3 by X = (x, y) the coordinates in Rd × Rk. We also
recall that γ ∈ (−1, 1).
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Let E1 and E2 be elements of Elecm compatible with the same configuration. Then we
have E1 −E2 = ∇u where u solves −div (|y|γ∇u) = 0. We can also observe that ∇xu (where
∇x denote the vector of derivatives in the x directions only), is also a solution to the same
equation (this should be understood component by component). This is a divergence form
equation with a weight |y|γ which belongs to the so-called Muckenhoupt class A2. The result
of [FKS82, Theorem 2.3.12] then says that there exists λ > 0 such that for 0 < r < R,

(8.1) osc(∇xu,B(X, r)) ≤ C
(

1´
B(X,R) |y|γ

ˆ
B(X,R)

|y|γ |∇xu|2
)1/2

(r/R)λ,

where osc(u,B(X, r)) = maxB(X,r) u−minB(X,r) u. We note that the condition thatW(E1,m)
and W(E2,m) are finite implies without difficulty that

(8.2) lim sup
R→∞

1
Rd

ˆ
KR×Rd

|y|γ |∇u|2 < +∞.

Applying (8.1) to X which belongs to a fixed compact set, and inserting (8.2) we find that

osc(∇xu,B(X, r)) ≤ C
(
R−(d+1+γ)Rd

)1/2
(r/R)λ for k = 1,

osc(∇xu,B(X, r)) ≤ C
(
R−dRd

)1/2
(r/R)λ for k = 0.

In both cases, letting R→∞, we deduce that osc(∇xu,B(X, r)) = 0, which means that ∇xu
is constant on every compact set of Rd+k.

In the case k = 0, this concludes the proof that u is affine, and then E1 and E2 differ by a
constant vector.

In the case k = 1, this implies that u is an affine function of x, for each given y. We may
thus write u(x, y) = a(y) · x+ b(y). Inserting into the equation div (|y|γ∇u) = 0, we find that
∂y(|y|γ(a′(y)x + b′(y)) = 0, i.e. a′(y)x + b′(y) = c(x)

|y|γ . But the fact that
´
R |y|

γ |∂yu|2 dy is

convergent implies that
´ c(x)2

|y|γ dy must be, which implies that c(x) = 0 and thus ∂yu = 0.
This means that u(x, y) = f(x). But then again

´
|y|γ |∇u|2 dy is convergent so we must have

∇f(x) = 0 and u is constant. Thus E1 = E2 as claimed.
In the case k = 1, it follows that W(C,m) (if it is finite) becomes an inf over a singleton,

hence is achieved.
Let us now turn to the case k = 0 (i.e. Log2 or Riesz with s = d−2). Let E be in Elec(C,m)

such that W(E,m) is finite, and let c be a constant vector in Rd, then

(8.3) −
ˆ
�R

|Eη + c|2 −mcd,sg(η) = −
ˆ
�R

|Eη|2 −mcd,sg(η) + |c|2 + 2c · −
ˆ
�R

Eη.

We claim that −́�R Eη is bounded independently of η and R. So the right-hand side of (8.3) is
a quadratic function of c, with fixed quadratic coefficients and linear and constant coefficients
which are bounded with respect to R and η. A little bit of convex analysis implies that
c 7→ W(E + c,m) being a limsup (over R and η) of such functions is strictly convex, coercive
and locally Lipschitz, hence it achieves its minimum for a unique c. This means that the
infimum defining W(·,m) is a uniquely achieved minimum.

To conclude the proof, we just need to justify that −́�R Eη is bounded independently of η
and R. We may write

−
ˆ
�R

Eη = −
ˆ
�R

E1 +−
ˆ
�R

(∇f1 −∇fη) ∗ C,
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where fη is as in (2.11).
Since, in the cases k = 0, the functions ∇fη and ∇f1 are integrable, we may check thatˆ

�R

(∇f1 −∇fη) ∗ C ≤ CNumR(C),

where C is independent of R and η. But since W(E,m) <∞ and E is Elecm, we have

lim
R→∞

1
Rd NumR(C) = m,

as follows e.g. from [PS14, Lemma 2.1]. We deduce that∣∣∣∣∣−
ˆ
�R

Eη

∣∣∣∣∣ ≤ C(1 +W(E, 1) +m)

and by almost monotonicity of W (Lemma 8.4) the claim follows. �

8.3. Proof of Lemma 3.5.

Proof. From [PS14, (2.29)] we know the following: let C be in Config, m ≥ 0 and E ∈
Elec(C,m) such that W(E,m) is finite. For any η ∈ (0, 1) we have

(8.4) Wτ (E,m)−Wη(E,m) ≥ C lim sup
R→∞

1
Rd

∑
p 6=q∈C∩�R,|p−q|≤η

(g(|p−q|+τ)−g(η))+−m2oη(1).

where C depends only on s and d.
To prove (3.7) we take the expectation under P̄ (more precisely, under a tagged electric

process compatible with (P̄ , µV )) of (8.4). Using stationarity, we obtain

Wτ (P̄ , µV )−Wη(P̄ , µV )

≥ CEP̄

lim sup
R→∞

∑
p6=q∈C∩�R

(g(|p− q|+ τ)− g(η))+

− oη(1)

= C lim sup
τ→0

EP̄

 ∑
p 6=q∈C∩�1

(g(|p− q|+ τ)− g(η))+

− oη(1).

In all cases Log1 , Log2 , Riesz, there exists C > 0 depending only on d, s such that for any
0 < τ < η2/2,∑

p6=q∈C∩�1

(g(|p− q|+ τ)− g(η))+

≥ Cg(2τ)
∑

~i∈�1∩τZd
(Numτ (~i)(C)2 − 1)+,+C

∑
p 6=q∈C∩�1,|p−q|≤η2/2

(g(p− q))+ ,

where we denote by Numτ (~i)(C) the number of points of the configuration C in the hypercube
of center~i and sidelength τ , with~i on the lattice τZd. On the other hand, stationarity implies

EP̄

 ∑
~i∈�1∩τZd

(Numτ (~i)(C)2 − 1)+

 = 1
τd

EP̄

[
(Num2

τ − 1)+
]
,

which concludes the proof of the lemma. �
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8.4. Proof of Lemma 3.8.

Proof. Let P ∈ Ps(Config) be such that EP [W(C, 1)] is finite. For P -a.e. C, the energyW(C, 1)
is thus finite, and we may find (according to Lemma 2.3) an electric field E compatible with
(C, 1) and such that W(E, 1) = W(C, 1). Let P elec be the push-forward of P by this map
C 7→ E. By definition, P elec is compatible with P and its energy is that of P , but it may
happen that P elec is not stationary. In that case, we consider a stationarizing sequence,
namely a sequence of averages of translations of P elec over large hypercubes. Each element
of this sequence is still compatible with (P, 1) (because P is stationary) and has the correct
energy. Any limit point is compatible, has the correct energy, and moreover is stationary. We
thus have

W̃(P, 1) ≥ min
{
EP elec

[
W̃(·, 1)

]
| P elec stationary and compatible with (P, 1)

}
.

The reverse inequality is obvious by definition of W̃1. �

8.5. Proof of Lemma 3.2.

Proof. If we admit (3.4), we easily get that P has intensity 1. Indeed, Jensen’s inequality
yields

lim
R→∞

EP [DisR]
Rd = 0,

and on the other hand the stationarity assumption implies that for any R > 0
EP [DisR]

Rd = EP [Dis1].

Hence we get EP [DisR] = 0 for any R > 0, which implies that P has intensity 1.
We now turn to proving (3.4).

Step 1. Preliminary bounds.
From Lemma 3.8 we obtain a stationary electric process P elec compatible with (P, 1) and such
that W̃(P elec, 1) = W̃(P, 1). We set η0 := 1

4 , and the monotonicity property (8.4) implies that

EP elec [Wη0(E, 1)] ≤ W̃(P elec, 1) + C ≤ W̃(P, 1) + C,

with a constant C depending only on d, s.
In the case k = 1, by stationarity and the definition of W we see that

EP elec

[ˆ
�1×Rk

|y|γ |Eη0 |2
]

= EP elec [Wη0(E, 1)] + cd,sg(η0) ≤ W̃(P elec, 1) + C = W̃(P, 1) + C,

with a constant C depending only on d, s. For any R > 0, by a mean value argument we may
find T ∈ (R, 2R) such that

(8.5) EP elec

[ˆ
�1×{−T,T}

|y|γ |Eη0 |2
]
≤ 1
R

(
W̃(P, 1) + C

)
.

Step 2. Expressing the discrepancy in terms of the field.
Letting �̌R be the hyperrectangle �R × [−T, T ]k we have, integrating by parts

(8.6)
ˆ
∂�̌R

|y|γEη0 · ~ν =
ˆ
�̌R

−div (|y|γEη0) = cd,s(DisR(C) + rη0),

where C is the point configuration with which E is compatible, and the error term rη0 is
bounded by nη0 , the number of points of C in a η0-neighborhood of ∂�R. We may roughly
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include this neighborhood in the disjoint union of O(Rd−1) hypercubes of sidelength 1. By
stationarity we have

(8.7) EP [n2
η0 ] ≤ CR2d−2EP

[
Num2

1

]
.

Taking the expectation of (8.6) against P elec and using elementary inequalities and (8.7) we
get

(8.8) EP

[
Dis2

R

]
≤ CEP elec

[ˆ
∂�̌R

|y|γ |Eη0 |2
](ˆ

∂�̌R

|y|γ
)

+ CR2d−2EP

[
Num2

1

]
.

We can computeˆ
∂�̌R

|y|γ = CRd−1 = CRs+1 for k = 0,(8.9)
ˆ
∂�̌R

|y|γ ≤ CRd−1
ˆ T

0
|y|γ + CRdT γ ≤ CRs+1 for k = 1.(8.10)

Step 3. Control on the boundary terms.
We split ∂�̌R as the disjoint union of

(1) 2d faces of the type [−R/2,−R/2]× . . . {±R/2} × · · · × [−R/2, R/2]× [−T, T ]k,
(2) 0 (if k = 0) or 2 (if k = 1) faces of the type �R × {±T}k.

For each of the 2d faces of the first type we may write, using the stationarity of P elec,

(8.11) EP elec

[ˆ
[−R2 ,

R
2 ]×···{±R2 }×···×[−R2 ,

R
2 ]×[−T,T ]k

|y|γ |Eη0 |2
]

= 1
R

EP elec

[ˆ
�R×[−T,T ]k

|y|γ |Eη0 |2
]

≤ 1
R

EP elec

[ˆ
�R×Rk

|y|γ |Eη0 |2
]
≤ CRd−1

(
W̃(P, 1) + C

)
,

whereas for the second type of faces we have, using (8.5) and the stationarity of P elec

(8.12) EP elec

[ˆ
�R×{−T,T}k

|y|γ |Eη0 |2
]

= RdEP elec

[ˆ
�1×{−T,T}k

|y|γ |Eη0 |2
]

≤ CRd−1(W̃(P, 1) + C).
Inserting (8.9) (if k = 0) or (8.10) (if k = 1), (8.11) and (8.12) (if k = 1) into (8.8) we obtain

(8.13) EP

[
Dis2

R

]
≤ C

(
W̃(P, 1) + C

)
Rd−1+s+1 + CR2d−2E

[
Num2

1

]
.

Step 4. Conclusion.
We have thus proven that

(8.14) EP

[
Dis2

R

]
≤ C

(
W̃(P, 1) + C

)
Rd+s + CR2d−2 + CR2d−2E

[
Dis2

1

]
,

it remains to show that E
[
Dis2

1

]
is itself bounded by C

(
W̃(P, 1) + C

)
, which would conclude

the proof. For L > 2 let us define an auxiliary function

ΨL(x) := x2

Ls min
(

1, |x|
Ld

)
.
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We may re-write [PS14, Lemma 2.2] as

(8.15) ΨL(DisL) ≤ C
ˆ
�2L×[−L,L]k

|y|γ |Eη0 |2.

Taking the expectation we get as above

EP [ΨL(DisL)] ≤ CLd(W̃(P, 1) + C).
Distinguish between the events |DisL| ≤ Ld and |DisL| > Ld, we obtain

(8.16) EP

[
Dis2

L

]
≤ min

(
L2d, CLd+s(W̃(P, 1) + C)

)
.

This is enough for our purpose. We could somehow improve (8.16) but we would still get a
weaker bound than (3.4). �

We now give a proof of the result stated in Remark 3.3.

Proof. We follow the same line as in the previous proof. We replace (8.5) by the following
observation: since

´
�1×R |y|

γ |Eη0 |2 is finite we have

lim inf
T→∞

(T log T )
ˆ
�1×{−T,T}

|y|γ |Eη0 |2 = 0.

In particular we might find an increasing sequence {Tk}k with limk→∞ Tk = +∞ and

lim
k→∞

(Tk log Tk)
ˆ
�1×{−Tk,Tk}

|y|γ |Eη0 |2 = 0.

Setting Rk = Tk
√

log Tk and keeping the same notation as in the previous proof we see that
for k large enough we have

EP [Dis2
Rk

] ≤ CTk
(

1 + Rk
Tk log Tk

)
= o(Rk),

which proves (3.5). �

8.6. Proof of Lemma 5.12.

Proof. Let m = −́
K µ be the average of µ over K. We may (see e.g. [PS14, Lemma 6.3])

partition K into NK hyperrectangles Ri, which all have volume 1/m, and whose sidelengths
are in [2−dm−1/d, 2dm1/d]. In each of these hyperrectangles we solve

(8.17)
{
−div (|y|γ∇hi) = cd,s (δXi −mδRd) in Ri × [−1, 1]k
∇hi · ~ν = 0 on ∂(Ri × [−1, 1]k)

According to [PS14, Lemma 6.5], if Xi ⊂ Rd × {0} is at distance ≤ 2−(d+1)m−1/d from the
center pi of Ri then we have

lim
η→0

∣∣∣∣∣
ˆ
Ri×[−1,1]k

|y|γ |∇(hi)η|2 − cd,sg(η)
∣∣∣∣∣ ≤ C

where C depends only on d and m. We may then define Ei = ∇hi1Ri×[−1,1]k , and by
compatibility of the normal components, the vector field Egen =

∑
iEi satisfies

(8.18)
{
−div (|y|γEgen) = cd,s (

∑
i δXi −mδRd) in K × Rk

Egen · ~ν = 0 on ∂(K × Rk)
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and if η < η0 < 2−(d+2)m−1/d,

(8.19)
ˆ
K×Rk

|y|γ |Egen
η |2 − cd,sNKg(η) ≤ CNK

with C depending only on d and m. The last step is to rectify for the error made by replacing
µ by m. For that, we use the following result from [PS14, Lemma 6.4].

Lemma 8.1. Let KR be a hyperrectangle whose sidelengths are in [R, 2R], and µ a bounded
measurable function such that

´
KR

µ is an integer, and let m = −́
KR

µ. The solution (unique
up to constant) to

(8.20)
{
−div (|y|γ∇h) = cd,s(µ−m)δRd in KR × [−R,R]k
∇h · ~ν = 0 on ∂(KR × [−R,R]k),

exists and satisfies

(8.21)
ˆ
KR×[−R,R]k

|y|γ |∇h|2 ≤ CRd+1−γ‖µ−m‖2L∞(KR).

Applying this lemma provides a function h, and we let

Ê = E +∇h1K×[−R,R]k .

It is obvious that Ê solves

(8.22)
{
−div (|y|γÊ) = cd,s (

∑
i δXi − µδRd) in K × Rk

Ê · ~ν = 0 on ∂(K × Rk).

Combining (8.21) and (8.19) and using the Cauchy-Schwarz inequality, we obtain
ˆ
K×Rk

|y|γ |Êη|2 ≤ cd,sNK(g(η) + C) + CRd+1−γ‖µ−m‖2L∞(KR)

+ C (NKg(η))
1
2 R

d+1−γ
2 ‖µ−m‖L∞(KR).

Letting then R(K,µ) be the family of configurations {Xi}NKi=1 above where each Xi varies
in B(pi, 2−(d+1)m−1/d) (pi being the center of Ri), and with all possible permutations of the
labels, we have thus obtained that for every C ∈ R(K,µ) the desired results hold. �

8.7. Proof of Lemma 6.17.

Proof. Let us return to the notation of Section 6.1.1. Since Σ′\Σ′T is formed of disjoint sets
of the form {x ∈ Σ′,dist(x,Γ′(j)) ≤ Tj}, we may work component by component, and from
now on drop the indices j. Let us set

Boundµ(t) :=
ˆ
{x∈Σ′,dist(x,Γ)≤t}

µ′V (x) dx.

In view of (6.1) and (6.6) we have

Boundµ(t) ≥ c1

ˆ t

0
H`(Γ)sd−`−1

(
s

N1/d

)α
ds ≥ c1N

`−α
d tα+d−`,(8.23)

Boundµ(t) ≤ c2

ˆ t

0
H`(Γ)sd−`−1

(
s

N1/d

)α
ds ≤ c2N

`−α
d tα+d−`.(8.24)
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The goal is to build layers that are thick enough to contain a large number of points, and so
that the points can be placed in cells of bounded aspect ratios. To do so, we define inductively
a sequence of t’s terminating at T , by letting t0 = 0, and t1 be the smallest such that

(8.25) Boundµ(t1) ∈ N, t1 ≥ N
α

d(α+d) .

In view of (8.23) we have
t1 ≤ CN

α
d(α+d) ,

for some C depending on the constant c1. We let n1 := Boundµ(t1) and from (8.23), (8.24)
we observe that

c1N
`

α+d ≤ n1 ≤ c2N
`

α+d .

Next, let us assume that tj−1 has been constructed for some j ≥ 2. We define tj as the
smallest positive number such that

(8.26) Boundµ(tj)− Boundµ(tj−1) ∈ N, tj − tj−1 ≥ N
α
d2 t
−α/d
j−1 .

Elementary computations of exponents yield that for every j ≥ 2,

tj − tj−1 ≤ c2N
α/d2

t
−α/d
j−1

tj − tj−1 ≤ c2N
α

d(α+d) .

We set nj := Boundµ(tj)− Boundµ(tj−1), and using (8.23), (8.24) we get

c2(tj − tj−1)tα+d−`−1
j−1 N

`−α
d ≥ nj ≥ c1(tj − tj−1)tα+d−`−1

j−1 N
`−α

d .

The construction terminates at j = J such that tJ = T . We may then partition each slice
Γtj−1\Γtj into nj regions R of “size” comparable to tj − tj−1 (which means that they contain
a ball of radius c1(tj − tj−1) and can be included in a ball of radius c2(tj − tj−1)) on which
µ′V has mass 1 and on which we place 1 point each. We can construct a screened electric field
for each region, as described in [PS14].

The energy cost of the union of all these cells, for j ranging from 1 to J , is evaluated as
in [PS14], except for the part corresponding to the correction between µ′V and its average on
the cell, which depends on the regularity of µV and the size of cell: since Assumption (H4) is
more general than the one in [PS14], this requires some changes.

We show that the sum of these contributions over all the regions R is negligible compared
to N (like all the other energy contributions of this boundary layer). Using Lemma 8.1 (or
its analogue over more general shapes than hyperrectangles), we get for each cell R a term of
order

(tj − tj−1)d+1−γ
∥∥∥∥µ′V − ( 1

|R|

ˆ
R
µ′V

)∥∥∥∥2

L∞
.

On the one hand, the Hölder control of µV as in (6.2) yields

|µ′V −
1
|R|

ˆ
R
µ′V | ≤ |tj − tj−1|min(α,1)N−min(α,1)/d,

and since we have seen above that tj − tj−1 is bounded by c2N
α

d(α+d) , we find that the
contribution of each cell R is bounded by

(8.27) N
α

d(α+d) (2α′+d+1−γ)
N−2α′/d ≤ N

α
d(α+d) (2α′+d+1−γ−2α′−2α

′
α

d)
,

where α′ := min(α, 1).
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On the other hand, the number of such cells is bounded by c2m
1/αN , because they all

contribute to a mass at least 1 of µ′V and the total mass of this boundary layer is bounded
by c2m

1/αN . Therefore, if d + 1 − γ − 2dα′/α ≤ 0, these contributions will be negligible
compared to N , as desired. In particular, if α ≤ 1, since we always have d − 1 + γ = s ≥ 0,
we are done.

If α ≥ 1, we can use (6.1) instead. We then bound the contributions of the cells by

c2

J∑
j=1

nj(tj − tj−1)d+3−γt
2(α−1)
j N−2α/d.

Using that nj is comparable to (tj − tj−1)tα+d−`−1
j−1 N

`−α
d , we bound the previous expression

by
J∑
j=1

(tj − tj−1)d+4−γt3α+d−`−3
j−1 N

`−3α
d ,

and then, since tj − tj−1 is bounded by N
α
d2 t
−α/d
j−1 , we bound again the sum by

J∑
j=1

(tj − tj−1)N
α
d2 (d+3−γ)+ `−3α

d t
−α(d+3−γ)/d+3α+d−`−3
j−1 .

This sum is comparable to the integral

N
α
d2 (d+3−γ)+ `−3α

d

ˆ T

t1

tp dt, p = −α(d + 3− γ)/d + 3α+ d− `− 3.

If p > −1, then we may bound it (using (6.3)) by

N
α
d2 (d+3−γ)+ `−3α

d T p+1 ≤ mp+1/αN
α
d2 (d+3−γ)+ `−3α+p+1

d .

After some elementary algebra, the exponent of N turns out to be 1 − 2
d < 1, hence the

contribution in this case is negligible with respect to N any time p > −1.
If p ≤ −1, then the integral is dominated by tp+1

1 , which in view of t1 ≥ N
α

d(α+d) yields a
total contribution bounded by

N
α
d2 (d+3−γ)+ `−3α

d + α
d(α+d) (−α(d+3−γ)/d+3α+d−`−2)

.

The exponent is
α+ d`− γα− αd

d(α+ d) .

Using the fact that ` ≤ d − 1 and the expression of γ as in (2.8), we find that the exponent
is always < 1, so the whole contribution is o(N) as needed in that case as well. �
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