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Abstract

We consider the time-dependent Ginzburg-Landau equation in the whole plane with terms modeling
pinning and applied forces. The Ginzburg-Landau vortices are then subjected to three forces: their
mutual repulsive interaction, a constant applied force pushing them in a fixed direction, and the pinning
force attracting them towards the local minima of the pinning potential. The competition between the
three is expected to lead to possible glassy effects.

We first rigorously study the limit in which the number of vortices Nε blows up as the inverse
Ginzburg-Landau parameter ε goes to 0, and we derive via a modulated energy method the limiting fluid-
like mean-field evolution equations. These results hold in the case of parabolic, conservative, and mixed-
flow dynamics in appropriate regimes of Nε → ∞. We next consider the problem of homogenization of
the limiting mean-field equations when the pinning potential oscillates rapidly: we formulate a number of
questions and heuristics on the appropriate limiting stick-slip equations, as well as some rigorous results
on the simpler regimes.
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1 Introduction

1.1 General overview
We are interested in the collective dynamics of many vortices in a superconductor with impurities, within

the framework of the 2D Ginzburg-Landau model. This is important for practical applications, and is a main
concern of current research in the physics community (see e.g. [10, 44, 70]). Indeed, superconductors are used
in order to carry electric currents without energy dissipation. In most of the interesting superconducting
materials (those with a high critical temperature), vortices occur for a very wide range of values of the applied
magnetic fields, in the so-called “mixed state”. When flowing an electric current through a superconducting
wire, the vortices are set in motion by the Lorentz force exerted by the current, leading to energy dissipation.
This problem is fixed in practice by introducing normal impurities in the material which “pin” the vortices
to their locations if the applied current is not too strong, thus avoiding the energy dissipation.

Physicists are therefore very interested in understanding the effect of such impurities (which are typically
randomly scattered around the sample) on the statics and dynamics of vortices. In particular, they want to
understand the critical applied current needed to depin the vortices from their pinning sites, and the slow
motion of vortices in the disordered sample — named creep — when the applied current has a small intensity
and thermal or quantum effects are taken into consideration (see e.g. [10, 44, 70]).

We will thus study the motion of vortices for the Ginzburg-Landau equations including both a pinning
potential and an applied electric current. The dynamics will be either parabolic (parabolic Ginzburg-Landau
equation), conservative (Gross-Pitaevskii equation), or even mixed. These equations have been studied
in [89, 84] in the mixed case and in [57] in the conservative case, for a fixed number N of vortices in the
asymptotic limit when ε (the inverse Ginzburg-Landau parameter, which is also the characteristic lengthscale
of the vortex cores) tends to 0. As seen there, vortices are subjected to three forces: their mutual interaction,
which is a logarithmic repulsion, the Lorentz force F due to the applied current of intensity Jex, and the
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pinning force equal to −∇ log a in terms of the pinning weight a. The effective vortex dynamics then
corresponds to a system of ODEs of the form

(α+ Jβ)ẋi = −N−1∇xiWN (x1, . . . , xN )−∇h(xi) + F (xi), 1 ≤ i ≤ N, (1.1)

h := log a, WN (x1, . . . , xN ) := −
N∑
i 6=j

log |xi − xj |,

where the xi’s are the effective vortex trajectories, where J denotes the rotation of vectors by angle π/2 in
the plane, and where the parameters α ≥ 0 and β ∈ R satisfy α2 + β2 = 1 and are such that β = 0 (resp.
α = 0) corresponds to the parabolic (resp. conservative) case.

The pinning and applied force intensities are parameters which can be tuned, leading to regimes in which
one or two forces dominate over the others, or all are of the same order. In [89] no pinning force is considered,
and the treated regimes lead to the applied force being of the same order as the interaction. In [84] the
pinning and applied forces are chosen to be of the same order, and both dominate the interaction. Finally
in [57] in the conservative case, the critical scaling is considered, that is, with all forces of the same order.

Here we consider the situation when the number Nε of vortices is not fixed but depends on ε, and blows
up as ε ↓ 0, which is a physically more realistic situation in many regimes of applied fields and currents. In
the case without pinning and applied current, the mean-field limiting dynamics of Nε � 1 vortices in the
parabolic and conservative equations have been rigorously established in a number of settings:

— for the Gross-Pitaevskii equation in the plane, it is shown in [54] in the regime 1� Nε . (log |log ε|)1/2

that the vorticity of solutions converges to the solution of the incompressible Euler equation in vorticity
form, while in [82] it is shown in the regime |log ε| � Nε � ε−1 that the current of solutions converges
to the solution of the incompressible Euler equation;

— for the parabolic Ginzburg-Landau equation in the plane, the convergence of the vorticity of solutions
to the solution of a limiting mean-field equation, first formally derived in [18, 39], is established in [58]
in the regime 1 � Nε ≤ (log log |log ε|)1/4, while the convergence of the current to an appropriate
limiting equation is established in [82] in the regime 1� Nε . |log ε|;

— the situation in the remaining regimes remains an open question.
All those results assume that the initial data is suitably “well-prepared”. The results of [58] and [54] rely
on a direct method and a careful study of the vortex trajectories, while the results of [82] are based on a
“modulated energy approach” which we will describe later, and rely on the assumed regularity of the limiting
solutions (or equivalently of the initial data).

The goal of the first part of this paper is to adapt the approach of [82] to the setting with pinning and
applied force as in [84, 57], but in the whole plane and with Nε � 1 vortices. We treat here the parabolic,
conservative and also mixed-flow cases, and obtain the convergence to some limiting fluid-type evolution
equations, for which global well-posedness is proved in the companion paper [37]. As described above,
different regimes for the intensities of the pinning and applied forces lead to different limiting equations:
either a nonlocal transport equation involving the pinning potential h and the applied force F , which in the
simplest case takes the following form for the limiting vorticity m,

∂t m = div
(
(α− Jβ)(∇h− F −∇4−1m) m

)
, (1.2)

or a simple linear transport equation with only the pinning and applied forces remaining when these are
scaled to be much stronger than the interaction.

The derivation bears several complications compared to the situation of [82], in particular due to the lack
of sufficient decay at infinity of the various quantities, and also to the fact that the self-interaction of each
vortex varies with its location due to the pinning potential.

We will perform this derivation for a pinning force which varies at the macroscopic scale. The most
interesting situation from the modeling viewpoint is however to let the pinning potential oscillate quickly
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at some mesoscopic scale ηε, which tends to 0 as ε ↓ 0 and can have some interplay with the vortex
interdistance. In real materials the way the impurities are inserted typically leads them to be uniformly
and randomly scattered in the sample. This is well-modeled by a periodic but rapidly oscillating pinning
weight a(x) = â0(x/ηε), or even better by a random pinning weight â0(x/ηε, ω) with some good ergodicity
properties. One is thus led to the question of combining the mean-field limit for the Ginzburg-Landau
evolution equations with an homogenization limit. In other words, can one perform the derivation of the
limiting equation as ε ↓ 0, Nε ↑ ∞ and ηε ↓ 0, and in which regimes does it hold?

While the homogenization of the (static) Ginzburg-Landau functional with pinning weight has been
studied in some settings [2, 5, 35], we believe that these questions in the dynamical case are very challenging.
They are in fact already very hard for just a finite number of vortices. Studying the limit as η ↓ 0 of (1.1)
with pinning potential h(x) = ĥ0(x/η) with ĥ0 periodic or random, is a question of homogenization of a
system of coupled ODEs and is notoriously difficult. Note that these difficulties seem to be related to the
possible “glassy” properties predicted by physicists for such systems (see e.g. [44]). On the other hand, the
case with no interaction term and with F constant is much simpler to analyze, and seems to be known under
the term “washboard” in the physics literature. When F = 0, the particle is simply attracted towards the
local wells of the pinning potential h. Otherwise, the constant applied force F 6= 0 can be absorbed into
the term −∇h by adding to the potential h an affine function, which effectively tilts the potential landscape
into a washboard-shaped graph. As will be seen in Section 1.3.1, above some positive value of |F | the tilted
potential has no local minimum, leading the particle to fall downwards. In the setting of a superconductor
with applied current and with pinning, this corresponds to the critical “depinning current” above which the
vortices are depinned from their pinning locations. Note that when the applied force F varies with x at the
macroscopic scale (still without interaction term) the situation is much more subtle and only partial results
are obtained in [61].

Since our modulated energy method to establish the mean-field limit does not seem well-adapted to
include homogenization effects, we will not say much about commuting the limits ε ↓ 0 and η ↓ 0, but
instead, in the second part of this paper, we formulate a few partial results in the direction of homogenizing
the limiting mean-field equations of the form (1.2) obtained in the first part, and we formulate many open
questions which we believe to be interesting both from an applied and a theoretical point of view. This
topic is indeed very delicate on its own, with the same kind of difficulties as for the homogenization of the
corresponding system of coupled ODEs (1.1), but in the case without interaction and with F constant the
problem is considerably simpler and leads to a well-defined limiting stick-slip equation. Finally, in order to
model thermal effects, one can replace the transport equations of the type (1.2) by their viscous versions,
and we will give a few heuristics in Section 1.3.2 on the corresponding homogenization questions.

Notation. Throughout the paper, C denotes various positive constants which depend on the dimension
d, and on various controlled quantities, but do not depend on the parameter ε, and we write . and &
for ≤ and ≥ up to such a constant C. We then write a ' b if both a . b and a & b hold. Given
sequences (aε)ε, (bε)ε ⊂ R, we also set aε � bε (or bε � aε) if aε/bε converges to 0 as the parameter ε
goes to 0. Alternatively, we write aε ≤ O(bε) if aε . bε, and aε ≤ o(bε) if aε � bε. We add a subscript
t to indicate the further dependence on an upper bound on time t, while additional subscripts indicate the
dependence on other parameters. A superscript t to a function indicates that this function is evaluated at
time t. We let Q = [− 1

2 ,
1
2 )2 denote the unit square, frequently identified with the 2-torus T2. For any

vector field G = (G1, G2) on R2, we denote G⊥ = (−G2, G1), curlG = ∂1G2 − ∂2G1, and also as usual
div G = ∂1G1 + ∂2G2. We write J : R2 → R2 for the rotation of vectors by angle π/2 in the plane, so
that JG = G⊥. We denote by B(x, r) the ball of radius r centered at x in R2, and we set Br := B(0, r)
and B(x) := B(x, 1). We use the notation x ∧ y = min{x, y} and x ∨ y = max{x, y} for x, y ∈ R. We
denote by Lpuloc(R2) the Banach space of functions that are uniformly locally Lp-integrable on R2, with norm
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‖f‖Lpuloc
:= supx ‖f‖Lp(B(x)), and we similarly define the Sobolev spaces W k,p

uloc(R2). Given a Banach space
X and t > 0, we use the notation ‖ · ‖Lpt X for the usual norm in Lp([0, t];X).

1.2 Mean-field limit results
Mesoscopic inhomogeneities in the material are usually modeled by introducing a pinning weight a : R2 →

[0, 1], which locally lowers the energy penalty associated with the vortices [59, 16] (see also [17]). In the
time-dependent Ginzburg-Landau equation, first derived by Schmid [78] and by Gor’kov and Eliashberg [46],
and in the simplified version without gauge, the pinning weight appears as follows:

(α+ i|log ε|β)∂twε = 4wε +
wε
ε2

(a− |wε|2), in R+ × Ω, (1.3)

where Ω is a domain of R2 and wε is the complex-valued order parameter. Here α ≥ 0, β ∈ R, α2 + β2 = 1,
and these parameters α and β allow to consider by the same token the parabolic case (α = 1, β = 0), the
Gross-Pitaevskii case (α = 0, β = 1), and the mixed-flow case (α > 0, β ∈ R), and are scaled so as to
obtain a nontrivial limiting dynamics. The case of the equation with magnetic gauge is briefly discussed in
Section 2.2. Since the gauge does not introduce significant mathematical difficulties, we omit it for simplicity
in our analysis. In this context, we aim to understand the dynamics of the vortices in the asymptotic regime
ε ↓ 0 as their number Nε blows up, thus describing the evolution of the density of the corresponding vortex
liquid. For simplicity we assume

1

C
≤ a(x) ≤ 1, for all x, (1.4)

which avoids degenerate situations. Physically one would like to consider a pinning weight a that may vanish,
representing normal inclusions [16], however this is much more delicate mathematically (see e.g. [5]).

The equation (1.3) should be supplemented with a boundary condition modeling the inflow of an electric
current. Because the presence of the boundary creates mathematical difficulties which we do not know how
to overcome (due to the possible entrance and exit of vortices), we take the model studied in [89, 84] and
make suitable modifications to consider a version on the whole plane with boundary conditions “at infinity”.
As in [89, 84], the boundary conditions can be changed into a bulk force term by a suitable change of phase
in the unknown function. Dividing also the unknown function by the expected density

√
a, we arrive at the

equation {
λε(α+ i|log ε|β)∂tuε = 4uε + a

ε2uε(1− |uε|
2) +∇h · ∇uε + i|log ε|F⊥ · ∇uε + fuε,

uε|t=0 = u◦ε,
(1.5)

with h = log a, f : R2 → R and F : R2 → R2, where F becomes an effective applied force corresponding
to the applied current. The parameter λε is an appropriate time rescaling to obtain a nontrivial limiting
dynamics. Within the derivation of (1.5) from (1.3), the zeroth-order term f takes the following explicit
form (but this is largely unimportant, and the scaling in the corresponding bounds (2.1)–(2.2) below may
be substantially relaxed),

f :=
4
√
a√
a
− 1

4
|log ε|2|F |2. (1.6)

The discussion of the derivation of (1.5) from (1.3), as well as that of the boundary conditions and the
assumptions at infinity, is postponed to Section 2.1. Setting F ≡ 0, a ≡ 1, h ≡ 0 and f ≡ 0, we retrieve the
equation studied in [82], and our results will thus be a generalization of those in [82].

The goal is to obtain the convergence of the supercurrent defined by

jε := 〈∇uε, iuε〉,
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where 〈·, ·〉 stands for the scalar product in C as identified with R2, that is, 〈x, y〉 = <(xȳ) for all x, y ∈ C.
The vorticity is derived from the supercurrent by µε := curl jε. Note that this also corresponds to the density
of vortices, defined as zeros of uε weighted by their degrees, in the sense that

µε ∼ 2π
∑
i

diδxi , as ε ↓ 0, (1.7)

with xi the vortex locations and di their degrees (this corresponds to the so-called Jacobian estimates, a
notion we will come back to in the course of the paper). We wish to show that N−1

ε jε converges as ε ↓ 0 to a
velocity field v solving a limiting PDE, which as in [82] is assumed to be regular enough. Note that solutions
of the limiting equations are studied in [37] and shown to be global and regular enough if the initial data is.

The method of the proof in [82] is based on a “modulated energy” technique, which originates in the
relative entropy method first designed by DiPerna [31] and Dafermos [23, 24] to establish weak-strong
stability principles for some hyperbolic systems. Such a relative entropy method was later rediscovered
by Yau [90] for the hydrodynamic limit of the Ginzburg-Landau lattice model, was introduced in kinetic
theory by Golse [12] for the convergence of suitably scaled solutions of the Boltzmann equation towards
solutions of the incompressible Euler equations (see e.g. [71] for the many recent developments on the topic),
and first took the form of a modulated energy method in the work by Brenier [15] on the quasi-neutral limit
of the Vlasov-Poisson system. In the present situation, the method consists in defining a “modulated energy”,
which without pinning takes the form

1

2

ˆ
R2

|∇uε − iuεNεv|2 +
1

2ε2
(1− |uε|2)2, (1.8)

where v denotes the solution of the (postulated) limiting PDE. This modulated energy thus somehow mea-
sures the distance between the supercurrent jε and the postulated limit Nεv in a way that is well adapted
to the energy structure. Under some regularity assumptions on v, it is then proved in [82] that, thanks
to the PDE satisfied by v, this quantity (1.8) satisfies a Grönwall relation, so that if it is initially small,
more precisely o(N2

ε ), it remains so, yielding the desired convergence N−1
ε jε → v. However, in the regimes

where Nε . |log ε|, the modulated energy cannot be of order o(N2
ε ), because each vortex carries an energy

π|d||log ε|. For that reason (and assuming that all vortices have positive degrees initially), we need to sub-
tract the fixed quantity πNε|log ε| from (1.8). Note that, while the Ginzburg-Landau energy (that is, (1.8)
with v ≡ 0) diverges for configurations uε with nonzero degree at infinity,

0 6= deg(uε) := lim
R↑∞

ˆ
∂BR

〈∇uε, iuε〉 · n⊥,

the modulated energy may indeed converge (and does if v has the correct circulation at infinity).
In the present context with pinning weight a, the modulated energy (1.8) should be changed into a

weighted one,
1

2

ˆ
R2

a
(
|∇uε − iuεNε v |2 +

a

2ε2
(1− |uε|2)2

)
. (1.9)

This leads to several additional difficulties. First, this energy does usually not remain finite along the flow
because ∇h, F and f in (1.5) are only assumed to be bounded (in order to realistically represent at least a
fixed applied current circulating through the sample). This leads us to consider a truncated version of (1.9).
In the Gross-Pitaevskii case, we have to assume that ∇h, F and f decay sufficiently at infinity in order to
guarantee the well-posedness of the mesoscopic model (1.5), and hence a truncation of (1.9) is no longer
needed. However, in that case, due to the presence of pinning, the pressure p in the limiting PDE does not
belong to L2, and a different truncation argument then becomes needed in order to deal with this lack of
integrability.
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Second, for technical reasons, since the pinning potential h depends on ε according to the regime, it is
convenient to replace in the modulated energy the map v by some ε-dependent map vε : R+ × R2 → R2

which is better adapted to the ε-dependence of the potential h, and will be shown separately to converge
to v. Of course, one may prefer to replace vε by its limit v, and directly prove that N−1

ε jε is close to v in
the modulated energy as in [82], which would make the proof a bit shorter. This can be done in some of
the considered regimes but not always (e.g. not for the regime (GL′2) below), hence it is more convenient
to completely separate the two difficulties, first proving that N−1

ε jε is close to vε by means of a Grönwall
argument on the modulated energy, which requires some careful vortex analysis, and then checking that vε
indeed converges to v, which is a softer consequence of the stability of the limiting equation. In this form,
we believe that the proof will appear clearer and more adaptable.

Third, in the present weighted setting, a vortex located at x0 carries an energy πa(x0)|log ε|, so what
needs to be subtracted from the modulated energy (1.9) is no longer πNε|log ε| but

π
∑
i

dia(xi)|log ε| ∼ |log ε|
2

ˆ
R2

aµε,

in view of (1.7). We thus consider the following truncated version of the modulated energy (1.9),

Eε,R :=

ˆ
aχR

2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
, (1.10)

as well as the following truncated “modulated energy excess”,

Dε,R := Eε,R −
|log ε|

2

ˆ
aχRµε =

ˆ
aχR

2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
, (1.11)

where for all r > 0 we set χr := χ(·/r) for some fixed cut-off function χ ∈ C∞c (R2; [0, 1]) with χ|B1
≡ 1 and

χ|R2\B2
≡ 0. In the sequel, all energy integrals are thus truncated as above with the cut-off function χR, for

some scale R� 1 to be later suitably chosen as a function of ε. We write Eε := Eε,∞ for the corresponding
quantity without the cut-off χR in the definition (formally R = ∞), and also Dε := supR≥1Dε,R. Rather
than the L2-norm restricted to the ball BR centered at the origin, our methods further allow to consider the
uniform L2

loc-norm at the scale R: setting χzR := χR(· − z) for all z ∈ R2, we define

E∗ε,R := sup
z
Ezε,R , Ezε,R :=

ˆ
aχzR

2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
, (1.12)

D∗ε,R := sup
z
Dzε,R , Dzε,R := Ezε,R −

|log ε|
2

ˆ
aχzRµε, (1.13)

where the suprema run over all lattice points z ∈ RZ2.
Let us now list our assumptions. For the essential part of the proof, in the dissipative case (α > 0), it

suffices to assume h ∈ W 2,∞(R2) and F ∈ W 1,∞(R2)2 (hence f ∈ L∞(R2) in view of (1.6)). In the Gross-
Pitaevskii case, as already explained, we need to restrict to a decaying setting, that is, to further assume
∇h, F ∈ W 1,p(R2)2 for some p < ∞, f ∈ L2(R2), and additionally div F = 0. Nevertheless, in both cases,
in order to ensure strong enough regularity properties of the solution of the limiting equation (as well as the
delicate global well-posedness of (1.5) in the Gross-Pitaevskii case, cf. Section 2.3), stronger assumptions on
the data are needed and are listed below.

Assumption A. Let α ≥ 0, β ∈ R, α2 + β2 = 1, h : R2 → R, a := eh, F : R2 → R2, f : R2 → R,
u◦ε : R2 → C, v◦ε, v

◦ : R2 → R2 for all ε > 0. Assume that (1.4) and (1.6) hold, and that the initial data
(u◦ε, v

◦
ε, v
◦) are well-prepared in the sense

D∗,◦ε := sup
R≥1

sup
z∈R2

ˆ
aχzR

2

(
|∇u◦ε − iu◦εNεv◦ε|2 +

a

2ε2
(1− |u◦ε|2)2 − |log ε|curl 〈∇u◦ε, iu◦ε〉

)
� N2

ε , (1.14)
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with v◦ε → v◦ in L2
uloc(R2)2, and with curl v◦ε, curl v◦ ∈ P(R2). Assume that v◦ε and v◦ are bounded in

W 1,q(R2)2 for all q > 2.
(a) Dissipative case (α > 0):

For some s > 0, assume that u◦ε ∈ H1
uloc(R2;C), that h ∈ W s+3,∞(R2), F ∈ W s+2,∞(R2)2 (hence

f ∈ W 1,∞(R2) in view of (1.6)), that v◦ε, v◦ are bounded in W s+2,∞(R2)2, and that curl v◦ε, curl v◦,
div (av◦ε) are bounded in Hs+1 ∩W s+1,∞(R2).

(b) Gross-Pitaevskii case (α = 0):
Assume that u◦ε ∈ U + H2(R2;C) for some reference map U ∈ L∞(R2;C) with ∇2U ∈ H1(R2;C),
∇|U | ∈ L2(R2), 1−|U |2 ∈ L2(R2), and ∇U ∈ Lp(R2;C) for all p > 2 (typically we may choose U smooth
and equal to eiNεθ in polar coordinates outside a ball at the origin). Assume that h ∈ W 3,∞(R2),
∇h ∈ H2(R2)2, F ∈ H3 ∩W 3,∞(R2)2, f ∈ H2 ∩W 2,∞(R2), and that we have div F = 0 pointwise,
and a(x) → 1 uniformly as |x| ↑ ∞. Assume that v◦ε, v◦ are bounded in W 2,∞(R2)2, and that curl v◦ε,
curl v◦ are bounded in H1(R2).

We distinguish between the following three main (critically scaled) regimes, in which the relative strengths
of the pinning, the applied forces and the interaction emerge.
(GL1) Weighted mixed-flow case, small number of vortices:

α > 0, Nε � |log ε|, λε = Nε
|log ε| , F = λεF̂ , h = λεĥ (hence a = âλε);

(GL2) Weighted mixed-flow case, critical number of vortices:
α > 0, Nε ' |log ε|, Nε

|log ε| → λ ∈ (0,∞), λε = 1, F = F̂ , h = ĥ (hence a = â);

(GP) Weighted Gross-Pitaevskii case, large number of vortices:
α = 0, β = 1, Nε � |log ε|, λε = Nε

|log ε| , F = λεF̂ , h = ĥ (hence a = â);

where ĥ and F̂ are independent of ε, and ĥ ≤ 0 is bounded below. Note that, just as in [82], it is not
clear what happens in the Gross-Pitaevskii case with fewer (but still unboundedly many) vortices, nor in the
dissipative case with more vortices (cf. Remarks 1.2–1.4).

Let us intuitively justify the choice of the above scalings. From energy considerations, we expect the
pinning, the applied force, and the interaction to be of order Nε|log ε||∇h|, Nε|log ε||F |, and N2

ε , respectively.
The critical scaling (such that pinning, applied force and interactions are all of the same order) should thus
amount to choosing both ∇h and F of order Nε/|log ε|. However, the non-degeneracy condition (1.4) for the
pinning weight a = eh imposes for the pinning potential h ≤ 0 to remain uniformly bounded in ε, hence the
particular non-critical choice in (GP) (with h of order 1 rather than λε � 1).

In the dissipative case, we may also consider sub- or supercritical scalings, for which the pinning either
dominates, or is dominated by the interaction. In these cases, the limiting equations are considerably
simplified.
(GL′1) (GL1) with subcritically scaled oscillating pinning, very weak interaction:

α > 0, Nε � |log ε|, λε = 1, F = F̂ , h = ĥ (hence a = â);
(GL′2) (GL1) with subcritically scaled oscillating pinning, weak interaction:

α > 0, Nε � |log ε|, Nε
|log ε| � λε � 1, F = λεF̂ , h = λεĥ (hence a = âλε);

(GL′3) (GL1) with supercritically scaled oscillating pinning, strong interaction:
α > 0, Nε � |log ε|, λε = Nε

|log ε| , F = λεF̂ , h = λ′εĥ (hence a = âλ
′
ε), λ′ε � λε;

(GL′4) (GL2) with supercritically scaled oscillating pinning, strong interaction:
α > 0, Nε ' |log ε|, Nε

|log ε| → λ ∈ (0,∞), λε = 1, F = F̂ , h = λ′εĥ, λ′ε � 1;

where again ĥ and F̂ are independent of ε, with ĥ ≤ 0 bounded below. Since in the present work we are
mostly interested in pinning effects, we may focus on the subcritical regimes (GL′1) and (GL′2), while for the
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two supercritical regimes the pinning effects vanish in the limiting equation and the situation is thus much
easier and closer to [82]. For simplicity, subscripts “ε” are systematically dropped from the data a, h, F, f ,
the precise dependence being chosen as above.

We are now in position to state our main mean-field results. As in [82] the mean-field limiting equations
are fluid-like equations with an incompressibility condition (hence the existence of a pressure p) which can
be lost when the number of vortices becomes large enough. We begin with the dissipative case, and consider
both critical regimes (GL1) and (GL2), as well as the subcritical regimes (GL′1) and (GL′2). Note that
the results are slightly finer in the purely parabolic case. In the regimes (GL1) and (GL′2), the weight a
naturally disappears from the incompressibility condition div v = 0 due to the assumption a = âλε → 1 as
ε ↓ 0. Although all the proofs in this paper are quantitative, we only give qualitative statements to simplify
the exposition.

Theorem 1.1 (Dissipative case). Let Assumption A(a) hold, with the initial data (u◦ε, v
◦
ε, v
◦) satisfying the

well-preparedness condition (1.14). For all ε > 0, let uε ∈ L∞loc(R+;H1
uloc(R2;C)) denote the unique global

solution of (1.5) on R+ × R2. Then, the following hold for the supercurrent density jε := 〈∇uε, iuε〉.
(i) Regime (GL1) with log |log ε| � Nε � |log ε|, and div (av◦ε) = div v◦ = 0:

We have N−1
ε jε → v in L∞loc(R+; L1

uloc(R2)2) as ε ↓ 0, where v is the unique global (smooth) solution of

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v)curl v, div v = 0, v|t=0 = v◦ . (1.15)

In the parabolic case β = 0, the same conclusion also holds for 1� Nε . log |log ε|.
(ii) Regime (GL2) with Nε/|log ε| → λ ∈ (0,∞), and v◦ε = v◦:

For some T > 0, we have N−1
ε jε → v in L∞loc([0, T ); L1

uloc(R2)2) as ε ↓ 0, where v is the unique local
(smooth) solution of

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)curl v, v|t=0 = v◦, (1.16)

on [0, T )×R2. In the parabolic case β = 0, this solution v can be extended globally, and the above holds
with T =∞.

(iii) Regime (GL′1) with log |log ε| � Nε � |log ε|, and v◦ε = v◦:
We have N−1

ε jε → v in L∞loc(R+; L1
uloc(R2)2) as ε ↓ 0, where v is the unique global (smooth) solution of

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥)curl v, v|t=0 = v◦ . (1.17)

(iv) Regime (GL′2) with log |log ε| � Nε � |log ε|, and div (av◦ε) = div v◦ = 0:
We have N−1

ε jε → v in L∞loc(R+; L1
uloc(R2)2) as ε ↓ 0, where v is the unique global (smooth) solution of

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥)curl v, div v = 0, v|t=0 = v◦ . (1.18)

In the parabolic case β = 0 with Nε/|log ε| � λε . eo(Nε)/|log ε|, the same conclusion also holds for
1� Nε . log |log ε|.

Remark 1.2. It is not clear how to treat the regime Nε � |log ε| (with λε = Nε/|log ε|, F = λεF̂ , h = ĥ)
by modulated energy methods in the dissipative case. The corresponding mean-field equation is formally
expected to take the following degenerate form,

∂tv = (α− Jβ)(−F̂⊥ − 2v)curl v, v|t=0 = v◦,

for which local well-posedness is obtained in [37].
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We now turn to the Gross-Pitaevskii case in the (supercritical) regime (GP). Note that as Nε � |log ε|
the well-preparedness condition (1.14) can be simplified. The pinning force ∇h is naturally absent from the
limiting equation since in the regime (GP) the interaction and the applied force dominate, but the weight
a (= â) nevertheless remains in the incompressibility condition – in the weighted space L2

a – div (av) = 0
since it is of order 1.

Theorem 1.3 (Gross-Pitaevskii case). Let Assumption A(b) hold, with v◦ε = v◦, and with the well-preparedness
condition (1.14) for the initial data (u◦ε, v

◦
ε, v
◦) replaced by

E◦ε :=

ˆ
a

2

(
|∇u◦ε − iu◦εNεv◦|2 +

a

2ε2
(1− |u◦ε|2)2

)
� N2

ε .

For all ε > 0, let uε ∈ L∞loc(R+;U +H2(R2;C)) denote the unique global solution of (1.5) on R+×R2. Then,
in the regime (GP) with |log ε| � Nε � ε−1, we have N−1

ε jε → v in L∞loc(R+; (L1 + L2)(R2)2) as ε ↓ 0,
where v is the unique global (smooth) solution of

∂tv = ∇p +(−F̂ + 2v⊥)curl v, div (âv) = 0, vt|t=0 = v◦ . (1.19)

Remark 1.4. The Gross-Pitaevskii model for vortices with Nε � |log ε| formally behaves like the conserva-
tive flow for a particle system with Coulomb pairwise interactions. However note that no modulated energy
proof is known for the mean-field limit of such a simplified discrete particle system [36] (the only known
proof is by compactness [80]), although it should be easier than for the complete Gross-Pitaevskii model.
We believe that the approach in [58, 54] can be adapted to this case, but it would anyway be limited to
a regime with a very small (unbounded) number of vortices Nε � 1. In contrast, the regime Nε � |log ε|
treated here is quite different in nature and should probably not be paralleled with a true particle system.

The structure of the mean-field equations (1.15)–(1.19) is more transparent when expressed in terms of
the limiting vorticity m := curl v. In the case of (1.15) (and similarly for (1.18) and (1.19)), the vorticity m
satisfies a nonlinear nonlocal transport equation,{

∂tm = div
(
(α− Jβ)(∇ĥ− F̂ + 2v⊥) m

)
,

curl v = m, div v = 0,
(1.20)

while in the case of (1.16) (and similarly for (1.17)) the vorticity m satisfies a similar equation coupled with
a transport-diffusion equation for the divergence d := div (âv),

∂tm = div
(
(α− Jβ)(∇ĥ− F̂ + 2λv⊥) m

)
,

∂td−α−14d +α−1 div (d∇ĥ) = div
(
(α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)âm

)
,

curl v = m, div (âv) = d .

(1.21)

A detailed study of these families of equations is given in the companion paper [37], including global existence
results for rough initial data. While the limiting vorticity m satisfies strictly different equations in the critical
regimes (GL1) and (GL2), we observe that it satisfies just the same equation in both subcritical regimes (GL′1)
and (GL′2), that is a simple linear transport equation.

The proofs of Theorems 1.1 and 1.3 follow the outline of [82], and rely on all the tools for vortex analysis
developed over the years: lower bounds via the ball construction, “Jacobian estimate”, “product estimate”.
In addition to the problems at infinity created by the non-decay of the forcing F that we want to allow,
the presence of the pinning weight introduces additional technical difficulties, as always in the analysis of
Ginzburg-Landau. The fact that the energy of a vortex depends on its location makes it more difficult to
a priori control the total number of vortices, and requires localized estimates, in particular localized ball
constructions. Adapting the required tools and analysis to this setting is done in Section 5.
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1.3 Homogenization results and questions
As explained above, the most interesting situation from the modeling viewpoint is to let the pinning

potential h vary quickly at the mesoscale ηε � 1, thus coupling the mean-field limit for the vortex density
with an homogenization limit. More precisely, we set

ĥ(x) := ηεĥ
0(x, x/ηε), (1.22)

for some ĥ0 independent of ε, and we will refer to ηε as the “pin separation”. For simplicity, we assume
that ĥ0 is periodic in its second variable. Since in the Gross-Pitaevskii case we are anyway limited to less
interesting subcritical regimes, we focus attention on the dissipative case.

1.3.1 Small pin separation limit and stick-slip models

As explained in Section 8.3, our methods only allow to treat a diagonal regime, that is, when the pin
separation ηε tends very slowly to 0, in which case the homogenization limit can simply be performed after
the mean-field limit. The other regimes are left as an open question.

Corollary 1.5. Let the same assumptions hold as in Theorem 1.1. In the regime (GL2), we further restrict
to the parabolic case β = 0. Then there exists a sequence ηε,0 � 1 (depending on all the data of the problem)
such that for all ηε,0 � ηε � 1, choosing the fast oscillating pinning potential (1.22), the same conclusions
hold as in Theorem 1.1 in the form N−1

ε jε − v̄ε → 0, where v̄ε is now the unique global (smooth) solution of
the corresponding equations (1.15)–(1.18) with ∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε).

The above result thus reduces in a diagonal regime the understanding of the limiting behavior of the
rescaled supercurrent N−1

ε jε to that of the solution v̄ε of the mean-field equations (1.15)–(1.18) with fast
oscillating pinning, that is, a (periodic) homogenization problem for the mean-field equations. In more
general regimes, only two minor rigorous results are obtained:
(a) For very small forcing ‖F‖L∞ � ‖∇h‖L∞ , in the subcritical regimes (GL′1) and (GL′2), the vorticity is

shown to remain “stuck” in the limit, that is, to converge at all times to its initial data (cf. Proposi-
tion 8.12). This is a very particular case of the pinning phenomenon evidenced below in the diagonal
regime.

(b) In a short timescale of order O(ηε), the vorticity is shown to concentrate in each (mesoscopic) periodicity
cell onto the invariant measure associated with the initial vector field (cf. Proposition 8.2). This
mesoscopic initial-boundary layer result is in clear agreement with the description of the dynamics on
larger timescales obtained below in the diagonal regime, where the transport is indeed shown to happen
“along” the invariant measures.

Subcritical regimes. In the subcritical regimes (GL′1) and (GL′2), the nonlinear interaction term
vanishes (cf. (1.17)–(1.18)): in terms of the vorticity m̄ε we are thus left with a (periodic) homogenization
problem for a simple linear transport equation, but with a compressible velocity field. Such questions were
first investigated in 2D by Menon [61], and are still partially open. The situation is however much simpler if
the pinning potential ĥ0(x, x/ηε) := h̃0(x/ηε) is independent of the macroscopic variable, and if the forcing
is a constant vector F̂ := F ∈ R2, that is, the so-called “washboard model”. The homogenization result is
then a particular case of the nonlinear setting considered in [27] (see also [38] for the incompressible case,
and [42, 26] for the linear Hamiltonian case), but in the present framework a more precise characterization
of the asymptotic behavior of m̄ε is possible (cf. Theorem 8.7). In the simplest situation, the result is
summarized as follows.
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Proposition 1.6 (Subcritical regimes). Let v̄ε denote the unique global (smooth) solution of (1.17) or (1.18)
with ∇ĥ(x) replaced by ∇h̃0(x/ηε), for h̃0 ∈ C2

per(Q) (independent of ε) and ηε � 1, and with F̂ := F ∈ R2

a constant vector. Consider the periodic vector field

ΓF := (α− Jβ)(∇h̃0 − F ) : Q→ R2,

and assume that the associated dynamics on the 2-torus Q has a unique stable invariant measure µF ∈
Pper(Q). Define the averaged vector

ΓFhom :=

ˆ
Q

ΓF dµF .

Then we have m̄ε := curl v̄ε
∗−⇀ m̄ in L∞loc(R+;P(R2)), where m̄ is the unique solution of the constant-

coefficient transport equation

∂tm̄ = div (ΓFhomm̄), m̄|t=0 = curl v◦ .

κc,e κ

|V κe|

Figure 1 – Typical forcing-velocity characteristics exhibiting a stick-slip velocity law.

This result describes a so-called stick-slip velocity law: On the one hand, for F close enough to 0
the invariant measure µF is concentrated at a fixed point, hence the corresponding velocity field is V F :=
−ΓFhom = 0, that is, the vorticity gets stuck, as the vortices are trapped in local wells of the pinning potential.
On the other hand, for F large enough the measure µF becomes non-trivial, hence we have V F 6= 0, that is,
the vorticity is transported, but at a reduced speed due to the attraction by the local wells of the pinning
potential. We further show that the velocity law F 7→ V F := −ΓFhom is not smooth at the depinning
threshold, but typically has a square-root behavior (cf. Proposition 8.10), denoting κ := |F |,

|V κe| = C(1 + o(1))(κ− κc,e)1/2, as 0 < κ− κc,e � 1, (1.23)

where e ∈ S1 is some direction, and where κc,ee (κc,e ≥ 0) is the critical depinning threshold in the direction e.
However, no general such result is obtained (cf. open question in Remark 8.11(a)). For very large |F | � 1,
we naturally find V F ∼ (α−Jβ)F , that is, the system flows as if there were no disorder. The typical response
of the system in this stick-slip velocity law is plotted in Figure 1. For more detail, we refer to Section 8.5.
Note that a similar frictional stick-slip dynamics is observed for very different physical processes (see e.g.
the Barkhausen effect for the magnetization of a domain under an applied field [47]).

Critical regimes. In the critical regimes (GL1) and (GL2), the nonlinear interaction term can no
longer be neglected (cf. (1.15)–(1.16)). A purely formal 2-scale expansion yields the following heuristics
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for the asymptotic behavior of v̄ε. Note that a rigorous justification of this homogenization limit seems
particularly challenging due to the nonlinear nonlocal character of the mean-field equations and to their
instability as ηε ↓ 0, and moreover the well-posedness of the formal limiting equations (1.24)–(1.25) below
is unclear (since the vector field Γhom[v̄] is in general not Lipschitz continuous even for smooth v̄). Making
good sense of the formal limiting equations and justifying the limit are thus left as open questions. We refer
to Section 8.4 and Remark 8.5 for detail.

Heuristics 1.7 (Critical regimes — formal asymptotic). For w : R2 → R2, consider the periodic vector field

−Γx[w] := −(α− Jβ)
(
∇2ĥ

0(x, ·)− F̂ (x) + 2w⊥(x)
)

: Q→ R2,

and assume that the associated dynamics on the 2-torus Q has a unique stable invariant measure µx[w] ∈
Pper(Q). We then define the averaged vector field

Γhom[w](x) :=

ˆ
Q

Γx[w](y)dµx[w](y).

(i) Regime (GL1) with fast oscillating pinning (1.22):
Let v̄ε denote the unique global (smooth) solution of (1.15) with ∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε),
ηε � 1, and with ĥ0 independent of ε. Then we expect curl v̄ε

∗−⇀ m̄ in L∞loc(R+;P(R2)), where m̄
satisfies

∂tm̄ = div
(
Ξhom[m̄] m̄

)
, m̄|t=0 = curl v◦, (1.24)

where the homogenized velocity is given by the following formula,

Ξhom[m̄](x) := Γhom[∇⊥4−1m̄](x).

Similarly, v̄ε
∗−⇀ v̄ := ∇⊥4−1m̄ in L∞loc(R+; L2

loc(R2)), where v̄ thus satisfies

∂tv̄ = ∇p̄ + Γhom[v̄]⊥curl v̄, div v̄ = 0, v̄|t=0 = v◦ .

More precisely, for all τ > 0, we expect
ˆ τ

0

(
curl v̄tε(x)− m̄t(x)µx[∇⊥4−1m̄t](x/ηε)

)
dt→ 0,

in the strong sense of measures.
(ii) Regime (GL2) in the parabolic case β = 0, with fast oscillating pinning (1.22):

Let β = 0, and let v̄ε denote the unique global (smooth) solution of (1.16) with ∇ĥ(x) replaced by
∇2ĥ

0(x, x/ηε), ηε � 1, and with ĥ0 independent of ε. Then we expect curl v̄ε
∗−⇀ m̄ in L∞loc(R+;P(R2))

and div (âv̄ε) −⇀ d̄ in L2
loc(R+ × R2), where m̄ and d̄ satisfy

∂tm̄ = div
(
Ξhom[m̄, d̄] m̄

)
, m̄|t=0 = curl v◦, (1.25)

∂td̄ = α−14d̄ + div
(
Ξhom[m̄, d̄]⊥ m̄

)
, d̄|t=0 = div (âv◦),

where the homogenized velocity is given by the following formula,

Ξhom[m̄, d̄](x) := Γhom[∇⊥4−1m̄ +∇4−1d̄](x).

Similarly, v̄ε
∗−⇀ v̄ := ∇⊥4−1m̄ +∇4−1d̄ in L∞loc(R+; L2

loc(R2)), where v̄ thus satisfies

∂tv̄ = α−1∇div v̄ + Γhom[v̄]⊥curl v̄, v̄|t=0 = v◦ .
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More precisely, for all τ > 0, we expect
ˆ τ

0

(
curl v̄tε(x)− m̄t(x)µx[∇⊥4−1m̄t +∇4−1d̄

t
](x/ηε)

)
dt→ 0,

in the strong sense of measures.

Due to the competition between the pinning potential and the vortex interaction, the dynamical properties
of the limiting v̄ are expected to change dramatically with respect to the subcritical regimes: the interacting
vortices are now expected to move as a coherent elastic object in an heterogeneous medium, yielding very
particular glassy properties [44, 70]. To describe the dynamics, we again consider the forcing-velocity curve.
Assume that the forcing F̂ := F ∈ R2 is a constant vector, let v̄F := v̄ denote as above the corresponding
limit of v̄ε as ε ↓ 0, and set m̄F := curl v̄F . Formally, the mean velocity is then defined by

V F := lim
t↑∞

1

t

ˆ
x dm̄F,t(x). (1.26)

Intuitively, for F close enough to 0, the above heuristics predicts that the vorticity m̄F should spread due to
the vortex repulsion, until the interaction force v̄F becomes small enough that the invariant measure µFx [v̄F ]
remains concentrated at a fixed point of the dynamics generated by −ΓFx [v̄F ], in which case ΓFhom[v̄F ] = 0
holds. We therefore expect, just as in the subcritical regimes, to find V F = 0 for F close enough to 0,
V F 6= 0 for F large enough, and V F ∼ αF − βF⊥ for very large |F | � 1 (cf. Figure 1). Nevertheless, the
precise picture is expected to become very different at the depinning threshold: the velocity law F 7→ V F

should still be non-smooth at this threshold, of the form

|V κe| = C(1 + o(1))(κ− κc,e)ζ , as 0 < κ− κc,e � 1,

in some direction e ∈ S1, but the value of the depinning threshold κc,e > 0 and of the depinning exponent
ζ ∈ (0, 1) are expected to differ completely from the case without interaction (1.23) and to be related to the
glassy properties of the system, as predicted in the physics literature [64, 67, 20] (see also [44, Section 5]).
A rigorous justification of this whole description is left as an open question.

Since the vortices are elastically coupled by the interaction, the problem is formally analogous to that of
understanding the motion of general elastic systems in disordered media, which is the framework considered
in the above-cited physics papers. In this spirit, a considerable attention has been devoted in the physics
community to the simpler Quenched Edwards-Wilkinson model for elastic interface motion in disordered
media [55, 14]. Note that for this interface model some rigorous mathematical understanding is available:
the pinning of the interface at low forcing is proved in [32] in dimension d ≥ 2, while the (ballistic) motion
of the interface at large forcing is obtained in [22, 33] in dimension d = 2, and more recently in [11, 34] for
various related discrete models in any dimension d ≥ 2. These questions are also related (although again for
different models) to the recent rigorous homogenization results for the forced mean curvature equation and
for more general geometric Hamilton-Jacobi equations [6].

1.3.2 System with temperature

Stochastic variants of the Ginzburg-Landau equation have been introduced to model the effect of thermal
noise [49, 77, 28, 29, 43]. Although we do not study here the mean-field limit problem for such models, for
a finite number N of vortices, in the limit ε ↓ 0, we expect the thermal noise to act on the vortices as N
independent Brownian motions: more precisely, in the regime (GL1), the limiting trajectories (xi)

N
i=1 of
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the N vortices are expected to satisfy the following system of coupled SDEs (see e.g. [39, Section III.B]),

dxi = (α− Jβ)
(
N−1∇xiWN (x1, . . . , xN )−∇ĥ(xi) + F̂ (xi)

)
dt+

√
2TdBti , 1 ≤ i ≤ N, (1.27)

WN (x1, . . . , xN ) := −π
N∑
i 6=j

log |xi − xj |,

where B1, . . . , BN are N independent 2D Brownian motions. Such macroscopic phenomenological models,
where the thermal noise acts via random Langevin kicks, are abundantly used by physicists [10, 44, 70].

In the case of a large number of vortices Nε � 1, in the regime (GL1), it is then natural to postulate that
a good phenomenological model for the limiting supercurrent v := limεN

−1
ε jε is given by the (deterministic)

mean-field limit of the particle system (1.27), that is, the following version of (1.15) with viscosity,

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v)curl v +T4v, div v = 0, v|t=0 = v◦, (1.28)

while in the regime (GL2) a natural model for the limit v is rather given by the following version of (1.16)
with viscosity,

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)curl v +T4v, v|t=0 = v◦ . (1.29)

In the regimes (GL′1) and (GL′2), these equations should be replaced by their versions without interaction
term. Note that in [41] the mean-field limit of the particle system (1.27) has been rigorously proved to
coincide with (1.28), although the modulated energy method seems to fail [36].

In this viscous context, we may now consider the homogenization limit of the phenomenological mean-
field models (1.28)–(1.29) with fast oscillating pinning (1.22), or equivalently, with ∇ĥ(x) replaced by
∇2ĥ

0(x, x/ηε). We denote by v̄ε the unique (smooth) solution of the corresponding equation. We natu-
rally restrict attention to the critical scaling for the temperature, that is, T := ηεT0 for some fixed T0 > 0.

Remark 1.8. On the one hand, for temperatures T � ηε, the viscous term in equations (1.28)–(1.29) is
expected to have no effect in the limit, yielding the same asymptotic behavior for T = 0. On the other
hand, for T � ηε, the viscous term is so strong that the energy barriers are instantaneously overcome by the
dynamics: for T = κεT0 with ηε � κε � 1, the limit v̄ of the solution v̄ε of (1.28) or (1.29) with oscillating
pinning is expected to satisfy respectively (as suggested by a formal 2-scale expansion)

∂tv̄ = ∇p̄− (α− Jβ)(F̂⊥ + 2v̄)curl v̄, div v̄ = 0, v̄|t=0 = v◦,

or ∂tv̄ = α−1∇(div v̄)− (α− Jβ)(F̂⊥ + 2λv̄)curl v̄, v̄|t=0 = v◦,

while for T = T0 of order 1 the limit v̄ should satisfy respectively

∂tv̄ = ∇p̄− (α− Jβ)(F̂⊥ + 2v̄)curl v̄ + T04v̄, div v̄ = 0, v̄|t=0 = v◦,

or ∂tv̄ = α−1∇(div v̄)− (α− Jβ)(F̂⊥ + 2λv̄)curl v̄ + T04v̄, v̄|t=0 = v◦ .

It is thus indeed natural to rather restrict attention to the less trivial case of the critically scaled temperature
T ' ηε (say T := ηεT0 for some fixed T0 > 0).

Subcritical regimes. In the subcritical regimes (GL′1) and (GL′2), the mean-field equations take the
form (1.28)–(1.29) without interaction term; hence, in terms of the vorticity m̄ε := curl v̄ε, with oscillating
pinning, and with critically scaled temperature T = ηεT0, T0 > 0, the equation takes the form

∂tm̄ε = div
(
(α− Jβ)(∇2ĥ

0(·, ·/ηε)− F̂ )m̄ε

)
+ ηεT04m̄ε, m̄ε|t=0 = curl v◦ . (1.30)

The limit ηε ↓ 0 of this equation is a very particular case of homogenization of a parabolic equation with
vanishing viscosity, as studied by Dalibard [25]. Alternatively, using Nguetseng’s 2-scale compactness theorem
(in the form of Lemma 8.9, as in the proof of Theorem 8.7), we easily obtain the following.
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Proposition 1.9 (Subcritical regimes with temperature). Let m̄ε be as above, and assume that ĥ0 ∈
Cb(R2;C1

per(Q)), and F̂ ∈ Cb(R2). Let µ̃T0 ∈ L∞(R2;H1
per(Q)/R) denote the unique solution of the fol-

lowing cell problem,

T04yµ̃T0(x, y) + divy
(
(α− Jβ)(∇2ĥ

0(x, y)− F̂ (x))(1 + µ̃T0(x, y))
)

= 0, (1.31)

and define the following averaged vector field,

ΓT0

hom(x) :=

ˆ
Q

(α− Jβ)(∇2ĥ
0(x, y)− F̂ (x))(1 + µ̃T0(x, y))dy. (1.32)

Then we have m̄ε
∗−⇀ m̄ in L∞loc(R+;P(R2)), where m̄ is the unique solution of the transport equation

∂tm̄ = div (ΓT0

homm̄), m̄|t=0 = curl v◦ .

Note that this result is very similar to that of Proposition 1.6, except that here the invariant measure is
replaced by its viscous version (1.31). In order to describe the dynamical properties of this limiting model,
we again investigate the behavior of the typical forcing-velocity curve: we consider a constant forcing vector
F̂ := F ∈ R2, we assume that ĥ0(x, x/ηε) := h̃0(x/ηε) is independent of the macroscopic variable, we denote
by ΓF,T0

hom ∈ R2 the corresponding averaged vector (1.32), and we investigate the behavior of the velocity law
F 7→ V F,T0 := −ΓF,T0

hom . For large |F |, the picture is essentially the same as in the case without temperature
T0 = 0. However, since the viscous invariant measure 1 + µ̃F,T0 ∈ P(Q) always has maximal support in the
cell Q, we find V F,T0 6= 0 for all F 6= 0, that is, in the presence of temperature T0 > 0 the mass is always
transported (at a reduced speed) and cannot get stuck forever in the local wells of the pinning potential.
The precise behavior of V F,T0 for F close to 0 is then of particular interest. Heuristically, the forcing F 6= 0
tilts the energy landscape, and the energy barriers of size osc h̃0 := max h̃0 −min h̃0 are then overcome by
thermal activation even for small F 6= 0. The velocity law for this so-called thermally assisted flux flow is then
expected to satisfy the classical Arrhenius law from statistical thermodynamics (see e.g. [44, Section 5.1]),

V F,T0 = C(1 + o(1)) exp
(
− C

T0
osc h̃0

)
F, as T0 � 1 and |F | � 1, (1.33)

that is, the response should be linear, but exponentially small as a function of T0. More precise versions of
this asymptotic result, which is related (via characteristics) to the Eyring-Kramers formula, are proved to
hold in any dimension in [13, 48, 8]. Note that for the corresponding problem in dimension 1 (with β = 0)
the averaged vector V F,T0 can be explicitly computed, and the asymptotic law (1.33) is easily checked by
hand. The typical forcing-velocity characteristics are plotted in Figure 2(a).

Critical regimes. In the critical regimes (GL1) and (GL2), the nonlinear interaction term can no longer
be neglected, and we need to consider the homogenization limit of the complete mean-field models (1.28)–
(1.29), with ∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε), and with critically scaled temperature T := ηεT0, T0 > 0.
In spite of the vanishing viscosity term, the rigorous justification of this homogenization limit remains very
challenging due to the nonlinear nonlocal character of the mean-field models and to their instability as ηε ↓ 0.
A purely formal 2-scale expansion yields the following heuristics for the asymptotic behavior of v̄ε. Note that
this coincides with Heuristics 1.7 except that here the invariant measures are replaced by viscous versions.
Justifying the limit is again left as an open question. We refer to Section 8.4 and Remark 8.6 for detail.

Heuristics 1.10 (Critical regimes with temperature — formal asymptotics). For all w : R2 → R2, consider
the periodic vector field

Γx[w] := (α− Jβ)(∇2ĥ
0(x, ·)− F̂ (x) + 2w⊥(x)) : Q→ R2,
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κc,e κ

|V κe|

(a) Subcritical regimes: (linear) ohmic velocity
law in the low-forcing limit.

κc,e κ

|V κe|

(b) Critical regimes: (nonlinear) creep velocity
law in the low-forcing limit.

Figure 2 – Typical forcing-velocity characteristics in the presence of (low) temperature.

denote by µ̃T0
x [w] ∈ Pper(Q) the unique solution of the following equation on the 2-torus Q,

T04µ̃T0
x [w] + div (Γx[w]µ̃T0

x [w]) = 0,

and define the averaged vector field

ΓT0

hom[w](x) :=

ˆ
Q

Γx[w](y)dµ̃T0
x [w](y).

Let v̄ε denote the unique global (smooth) solution of (1.28) or (1.29) with ∇ĥ(x) replaced by ∇2ĥ
0(x, x/ηε),

and with T := ηεT0, ηε � 1, with ĥ0 and T0 > 0 independent of ε. Then the same asymptotic results should
hold as in Heuristics 1.7, but with Γhom[·] replaced by its better-behaved viscous version ΓT0

hom[·].

Noting that the viscous invariant measures µ̃T0
x [w] depend smoothly on w — unlike the situation without

temperature —, the local well-posedness of the limiting equations for v̄ is now easily obtained. Again we
are interested in the mean velocity law F 7→ V F,T0 (defined as in (1.26)). The overall picture is essentially
the same as in the subcritical regimes. However, as in the case without temperature, due to the competition
between the pinning potential and the vortex interaction, the precise dynamical properties of v̄ are expected to
change dramatically: the interacting vortices now move as a coherent whole, satisfying glassy properties [44].
The main manifestation of this difference is visible in the low-forcing low-temperature limit (|F |, T0 � 1),
where the linear Arrhenius law (1.33) is now expected to break down, being replaced by the following so-called
creep law, with stretched exponential dependence in the imposed forcing,

V F,T0 = C(1 + o(1)) exp
(
− C

T0Fµ

)
,

for some creep exponent µ > 0. This was first predicted by physicists for related elastic interface motion
models [65, 51] and then adapted to vortex systems [40, 66, 45, 19, 20] (see also [44, Section 5] and references
therein). The typical forcing-velocity curves are plotted in Figure 2(b). This particular glassy dynamical
behavior is more generally expected to hold for any elastic object (here, a system of interacting vortices) that
fluctuates in a heterogeneous medium, but even for simpler models no rigorous derivation is available. For
an attempt at a mathematical approach to creep laws, we refer to [3]. Note that the crucial influence of the
interactions on the dynamics is interestingly already exemplified in a simplified 1D model in [39, Section IV].
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1.3.3 Infinite mobility limit and Bean’s model

A further asymptotic limit may be considered in order to reduce the above limiting equations to simpler
laws: let us assume that the forcing F̂ is time-dependent, but varies on a much larger timescale than the
vortex motion. More precisely, let us consider the following rescaling of the mean-field equations (1.28)–
(1.29) for v̄ε with oscillating pinning potential and with critically scaled temperature T := ηεT0: in the
regime (GL1),

ηε∂tv̄ε = ∇p̄ε + (α− Jβ)(∇⊥2 ĥ0(·, ·/ηε)− F̂⊥ − 2v̄ε)curl v̄ε + ηεT04v̄ε, div v̄ε = 0, v̄ε|t=0 = v◦,

and in the regime (GL2),

ηε∂tv̄ε = α−1∇(â−1 div (âv̄ε)) + (α− Jβ)(∇⊥2 ĥ0(·, ·/ηε)− F̂⊥ − 2v̄ε)curl v̄ε + ηεT04v̄ε, v̄ε|t=0 = v◦,

while in the subcritical regimes (GL′1)–(GL′2) we consider the corresponding equations without interaction
term. In the case without temperature (T0 = 0), in the timescale of variation of the forcing F̂ , we may
heuristically replace the velocity law plotted in Figure 1 by the simplified law pictured in Figure 3, meaning
that the vortices have infinite mobility beyond the depinning threshold, hence rearrange themselves instan-
taneously. Such rate-independent limiting models are known as the Bean or the Kim-Anderson models;
we refer to [17, Sections 6.3–6.4] and [79] for more detail. In the subcritical regimes (GL′1)–(GL′2), for the
model without interaction and without temperature (T0 = 0), the convergence to a suitable rate-independent
process is proved in any dimension in [87], while an approach to the corresponding case with temperature
T0 > 0 is proposed in [88]. Rigorously treating the critical regimes with interaction is much more delicate,
and is not pursued here.

κc,e κ

|V κe|

Figure 3 – In the Bean and Kim-Anderson models, the exact velocity law typically given by Figure 1 is
replaced by this simplified law.

Acknowledgements: We thank Anne-Laure Dalibard, Jean-Pierre Eckmann and Thierry Giamarchi
for stimulating discussions.
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Part I

Mean-field limits
2 Discussion of the model and well-posedness

For future reference, note that in each of the above regimes, using the explicit choice (1.6) of the zeroth-
order term f , we have the following scalings,
(a) Dissipative case: we have

‖∇h‖L∞ . 1 ∧ λε, ‖∇2h‖L∞ . η−1
ε (1 ∧ λε), ‖F‖W 1,∞ . λε,

‖f‖L∞ . η−1
ε (1 ∧ λε) + |log ε|2λ2

ε, ‖∇f‖L∞ . η−2
ε (1 ∧ λε) + |log ε|2λ2

ε,

hence in the case ηε = 1,

‖∇h‖W 1,∞ . 1 ∧ λε, ‖F‖W 1,∞ . λε, ‖f‖W 1,∞ . 1 ∧ λε + |log ε|2λ2
ε, (2.1)

(b) Gross-Pitaevskii case: we have in the case ηε = 1,

‖∇h‖H1∩W 1,∞ . 1, ‖F‖H1∩W 1,∞ . λε, ‖f‖H1∩W 1,∞ . 1 + |log ε|2λ2
ε. (2.2)

2.1 Derivation of the modified Ginzburg-Landau equation
In this section we derive (1.5). We start from the equations considered in [89, 84], where the applied

current is modeled by a term appearing on the boundary of a bounded domain Ω,
λε(α+ i|log ε|β)∂twε = 4wε + wε

ε2 (a− |wε|2), in R+ × Ω,
n · ∇wε = iwε|log ε|n · Jex, on R+ × ∂Ω,
wε|t=0 = w◦ε

(2.3)

where n is the outer unit normal. As in [89, 84], we may modify the rescaled order parameter wε/
√
a in

order to turn the Neumann boundary condition into an homogeneous one, which then makes the imposed
current Jex appear directly in the equation. For that purpose, we assume that a = 1 at the boundary ∂Ω,
and that the total incoming current equals the total outgoing current, that is,

´
∂Ω
n · Jex = 0. We then have´

∂Ω
an · Jex = 0, so that there exists a unique solution ψ ∈ H1(Ω) of{

div (a∇ψ) = 0, in Ω,

n · ∇ψ = n · Jex, on ∂Ω.

A straightforward computation shows that the transformed order parameter uε := e−i|log ε|ψwε/
√
a satisfies

λε(α+ i|log ε|β)∂tuε = 4uε + auε
ε2 (1− |uε|2) +∇h · ∇uε + i|log ε|F⊥ · ∇uε + fuε, in R+ × Ω,

n · ∇(uε
√
a) = 0, on R+ × ∂Ω,

uε|t=0 = u◦ε,

(2.4)

where we have set

h := log a, F := −2∇⊥ψ, and f :=
4
√
a√
a
− 1

4
|log ε|2|F |2. (2.5)
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Note that the vector field F satisfies div F = curl (aF ) = 0. In order to avoid delicate boundary issues, 1 a
natural approach consists in sending the boundary ∂Ω to infinity and study the corresponding problem on
the whole of R2. The assumption a|∂Ω = 1 is now replaced by the assumption that

a(x)→ 1 (that is, h(x)→ 0), and ∇h(x)→ 0, uniformly as |x| ↑ ∞,

while F, f are simply assumed to be bounded. Noting that 2∇
√
a =

√
a∇h → 0 holds by assumption at

infinity, the Neumann boundary condition then formally translates into x
|x| · ∇uε → 0 at infinity. Further

imposing the natural condition |uε| → 1 at infinity, we look for a global solution uε : R+ × R2 → C of the
corresponding equation (2.4) with fixed total degree Dε ∈ Z, and with

|uε| → 1,
x

|x|
· ∇uε → 0, as |x| ↑ ∞, and deg uε = Dε.

In the dissipative case α > 0, global existence and uniqueness of a solution uε ∈ L∞loc(R+;H1
uloc(R2;C))

is proved in Appendix A, as well as additional regularity, but, due to the possibly complicated advection
structure at infinity caused by the non-decaying fields F, f , it is unclear whether the above properties at
infinity are satisfied. In particular, it is not even clear whether the total degree of the constructed solution uε
is well-defined. This difficulty originates in the possibility of instantaneous creation of many vortex dipoles
at infinity for fixed ε > 0 due to forcing and pinning effects, although these dipoles are shown to necessarily
disappear at infinity in the limit ε ↓ 0 e.g. as a consequence of our mean-field results. Anyway, since a more
precise description of uε at infinity is irrelevant for our purposes, it is not pursued here. Note that the global
existence and uniqueness for uε in the uniformly locally integrable class is proved even without any decay
assumption on h.

For simplicity, we may further truncate the forcing F, f at infinity, thus focusing on the local behavior
of the solution near the origin. In the Gross-Pitaevskii case, our results are limited to this decaying setting.
Note that then at least one of the conditions div F = curl (aF ) = 0 must be relaxed: we may for instance
rather truncate ψ and define F via formula (2.5), so that the condition div F = 0 is preserved. Since there is
no advection at infinity in this setting, we prove existence and uniqueness of a solution uε in an affine space
L∞loc(R+;Uε + H1(R2;C)), for some fixed smooth non-decaying “reference map” Uε satisfying |Uε| → 1 and
x
|x| · ∇Uε → 0 as |x| ↑ ∞. Given Dε ∈ Z, we typically choose Uε := UDε smooth and equal to eiDεθ (in polar
coordinates) outside a neighborhood of the origin, which imposes for uε a fixed total degree equal to Dε.

Remark 2.1. Rather than normalizing the original order parameter wε by the expected density
√
a, another

natural choice was proposed by Lassoued and Mironescu [60], and consists in normalizing wε by a minimizer
γε of the weighted Ginzburg-Landau energy, that is, a nonvanishing solution of{

−4γε = γε
ε2 (a− |γε|2), in Ω,

n · ∇γε = 0, on ∂Ω,

and setting ũε := e−i|log ε|ψwε/γε with ψ as before. This new order parameter ũε satisfies

λε(α+ i|log ε|β)∂tũε = 4ũε +
γ2
ε ũε
ε2

(1− |ũε|2) +∇h̃ · ∇ũε + i|log ε|F̃⊥ · ∇ũε + f̃ ũε,

in terms of h̃ := log γ2
ε , F̃ := −2∇⊥ψ, and f̃ := − 1

4 |F |
2. We are thus again reduced to a very similar

framework as the one above, and the results could easily be adapted.

1. Another way of avoiding boundary issues would consist in rather considering the equation on the 2-torus. Nevertheless,
the total degree of the map uε then necessarily vanishes, and hence, in order to describe a non-trivial vorticity with distinguished
sign, we would have no other choice than working with the complete Ginzburg-Landau model with gauge. Working with the
gauge actually does not change anything deep, but makes all computations even heavier, which we wanted to avoid for clarity
purposes.
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2.2 Case with gauge
In the dissipative case, it is interesting to make the computations also in the gauged case, which is the true

physical model for superconductors. The evolution equation (2.3) is then replaced by the following, as first
derived by Schmid [78] and by Gor’kov and Eliashberg [46], here written in the mixed-flow case, with strong
(critically scaled) imposed current |log ε|Jex : ∂Ω → R2 and imposed magnetic field |log ε|Hex : ∂Ω → R at
the boundary, and with a non-uniform pinning weight a : R2 → [0, 1],

λε(α+ i|log ε|β)(∂twε − iwεΨε) = ∇2
Bε
wε + wε

ε2 (a− |wε|2), in R+ × Ω,
σ(∂tBε −∇Ψε) = ∇⊥curlBε + 〈iwε,∇Bεwε〉, in R+ × Ω,
curlBε = |log ε|Hex, on R+ × ∂Ω,
n · ∇Bεwε = iwε|log ε|n · Jex, on R+ × ∂Ω,
wε|t=0 = w◦ε ,

where Bε : R+ × R2 → R2 now represents the gauge of the magnetic field curlBε, where Ψε : R+ × R2 → R
is the gauge of the electric field −∂tBε +∇Ψε, where ∇Bε := ∇− iBε is the usual covariant derivative, and
where the real parameter σ ≥ 0 characterizes the relaxation time of the magnetic field. We are then interested
in the asymptotic behavior of the supercurrent density 〈∇Bε(wε/

√
a), i(wε/

√
a)〉, naturally obtained after

rescaling the order parameter wε by the pinning weight. However, as in [89, 84], it is useful to further
modify the rescaled order parameter wε/

√
a in order to turn the boundary conditions into homogeneous

ones, which then makes the imposed current and magnetic field Jex and Hex appear directly in the equation.
Further, for simplicity, in order to avoid boundary issues, under similar assumptions on a as in Section 2.1,
we may formally send the boundary ∂Ω to infinity and study the corresponding problem on the whole of R2.
Without explicitly describing the transformation (which includes a choice of the gauge Ψε; we refer to [84,
Section 2] for detail), the transformed couple (uε, Aε) replacing the triplet (wε, Bε,Ψε) then satisfies the
following equation,

λε(α+ i|log ε|β)∂tuε = ∇2
Aε
uε + auε

ε2 (1− |uε|2) +∇h · ∇Aεuε + i|log ε|F⊥ · ∇Aεuε + fuε, in R+ × Ω,
σ∂tAε = ∇⊥curlAε + a〈iuε,∇Aεuε〉 − 1

2 |log ε|aF⊥(1− |uε|2), in R+ × Ω,
uε|t=0 = u◦ε,

where h := log a, and where F and f are given explicitly in terms of a, Jex and Hex. Natural quantities
associated with this transformed model are the gauge-invariant supercurrent and vorticity,

jε := 〈∇Aεuε, iuε〉, µε := curl (jε +Aε),

and the electric field
Eε := −∂tAε.

We believe that the derivation of mean-field limit results from this gauged version of the model (1.5) does
not cause any major difficulty, and can be achieved following the kind of computations performed in [82,
Appendix C]. Formally, the corresponding results to Theorem 1.1 are the convergences

jε
Nε
→ v,

µε
Nε
→ m := curl v + H,

curlAε
Nε

→ H,
Eε
Nε
→ E,

where the limiting triplet (v, H,E) satisfies, in the regime (GL1),
∂tv−E = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v) m,

div v = 0,

−σE = v +∇⊥H,

∂tH = −curl E,

(2.6)
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or in the regime (GL2)
∂tv−E = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv) m,

−σE = v +∇⊥H,

∂tH = −curl E,

(2.7)

while in the subcritical regimes (GL′1)–(GL′2) the equations are obtained from the above by removing the
nonlinear interaction terms vm. The structure of these equations is maybe more transparent at the level of
the vorticity m := curl v + H: the system (2.6) takes the form

∂tm = div
(
(α− Jβ)(∇ĥ− F̂ + 2v⊥) m

)
,

σ∂tH−4H + H = m,

div v = 0, curl v = m−H

while (2.7) becomes for σ > 0,
∂tm = div

(
(α− Jβ)(∇ĥ− F̂ + 2v⊥) m

)
,

∂td−α−14d +α−1 div (d∇ĥ) + 1
σ d = − 1

σ â∇ĥ · ∇
⊥H + div

(
(α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)âm

)
,

σ∂tH−4H + H = m,

div (âv) = d, curl v = m−H,

that is a transport equation for m, coupled with a linear heat equation for H, and in the case (2.7) further
coupled with a transport-diffusion equation for the divergence d := div (âv). For simplicity, we focus in this
work on the model without gauge (1.5).

2.3 Well-posedness for the modified Ginzburg-Landau equation
In this section, we address global well-posedness for equation (1.5), both in the dissipative (α > 0) and

in the Gross-Pitaevskii (α = 0) regimes. In the dissipative regime, a well-posedness result for (1.5) in the
space L∞loc(R+;H1

uloc(R2;C)) is obtained in the general non-decaying setting, but no precise description of the
solution is obtained in that case, due to a possibly subtle advection force at infinity. In particular, it is not
even clear to us whether the total degree of the constructed solution is well-defined. In the decaying setting,
in contrast, we do not allow any advection at infinity. As is classical since the work of Bethuel and Smets [9]
(see also [63]), we then consider the existence of a solution uε of (1.5) in the space L∞loc(R+;Uε +H1(R2;C))
for some “reference map” Uε, which is typically chosen smooth and equal (in polar coordinates) to eiDεθ
outside a ball at the origin, for some given Dε ∈ Z. Such a choice Uε = UDε imposes a fixed total degree Dε

at infinity. More generally, we may consider the following set of “admissible” reference maps

E1(R2) := {U ∈ L∞(R2;C) : ∇2U ∈ H1(R2;C),∇|U | ∈ L2(R2), 1− |U |2 ∈ L2(R2),∇U ∈ Lp(R2;C) ∀p > 2}.

Our global well-posedness results are summarized in the following; finer results and detailed proofs are given
in Appendix A, including additional regularity statements.

Proposition 2.2 (Well-posedness for (1.5)).
(i) Dissipative case α > 0, β ∈ R (general setting):

Let h ∈ W 1,∞(R2), a := eh, F ∈ L∞(R2)2, f ∈ L∞(R2), and u◦ε ∈ H1
uloc(R2;C). Then there exists a

unique global solution uε ∈ L∞loc(R+;H1
uloc(R2;C)) of (1.5) on R+ × R2 with initial data u◦ε, and this

solution satisfies ∂tuε ∈ L∞loc(R+; L2
uloc(R2;C)).

22



(ii) Gross-Pitaevskii case α = 0, β ∈ R (decaying setting):
Let h ∈ W 3,∞(R2), ∇h ∈ H2(R2)2, a := eh, F ∈ H3 ∩ W 3,∞(R2)2 with div F = 0, f ∈ H2 ∩
W 2,∞(R2), and u◦ε ∈ U +H2(R2;C) for some U ∈ E1(R2). Then there exists a unique global solution
uε ∈ L∞loc(R+;U + H2(R2;C)) of (1.5) on R+ × R2 with initial data u◦ε, and this solution satisfies
∂tuε ∈ L∞loc(R+; L2(R2;C)).

Proof. Item (i) follows from Proposition A.2. We turn to item (ii). By Proposition A.1(ii), the assumptions
in the above statement ensure the existence of a unique global solution uε ∈ L∞loc(R+;U + H2(R2;C)).
This directly implies that 4uε, ∇h · ∇uε, F⊥ · ∇uε, and fuε belong to L∞loc(R+; L2(R2;C)). Using the
Sobolev embedding of H1(R2) into L4 ∩L6(R2), and decomposing uε(1−|uε|2) in terms of uε = U + ûε with
ûε ∈ L∞loc(R+;H2(R2;C)), we further deduce that uε(1−|uε|2) belongs to L∞loc(R+; L2(R2;C)). Inserting this
into equation (1.5) yields the claimed integrability of ∂tuε.

Although a detailed proof of this well-posedness statement is included in Appendix A, we close this
section with some comments on the strategy. In the dissipative case with decaying h, F, f , the arguments
by [9, 63] are easily adapted to the present context with both pinning and forcing. The Gross-Pitaevskii
regime is however more delicate, and we then use the structure of the equation to make a change of variables
that usefully transforms the first-order terms into zeroth-order ones. The additional regularity assumptions
in item (ii) above are precisely needed for this transformation to be well-behaved. Finally, the general result
stated in item (i) for the dissipative case with non-decaying h, F, f , is deduced from the corresponding result
with decaying h, F, f by a careful approximation argument in the space H1

uloc(R2;C).

3 Preliminaries on the limiting equations
The limiting equations that we derive are all of the form

∂tvε = ∇pε +Γε curl vε, vε|t=0 = v◦ε, (3.1)

for some smooth pressure pε : R2 → R, and some smooth vector field Γε : R2 → R2. The pressure will either
be proportional to a−1 div (avε), or be the Lagrange multiplier associated with the constraint div (avε) = 0.
Before Sections 6–7, we only manipulate these quantities abstractly. In order for all our computations to be
licit, we then need to work under the following integrability and smoothness assumptions.

Assumption B.
(a) Dissipative case (α > 0): There exists some T > 0 such that for all ε > 0, all t ∈ [0, T ), and all q > 2,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1, ‖div (avtε)‖L2 ∩L∞ .t 1,

‖ptε‖L2 ∩L∞ .t λ
−1/2
ε , ‖∇pε‖L2

t L2 .t 1,

‖∂tvtε‖L2 ∩L∞ .t λ
−1/2
ε , ‖∂tvε‖L2

t L2 .t 1, ‖∂tptε‖L2
t L2 .t λ

−1
ε ,

‖Γtε‖W 1,∞ .t 1, ‖∂tΓε‖L2
t L2 .t 1.

(b) Gross-Pitaevskii case (α = 0): There exists some T > 0 such that for all ε > 0, all t ∈ [0, T ), and all
q > 2,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1

‖ptε‖Lq ∩L∞ .t,q 1, ‖∇ptε‖L2 ∩L∞ .t 1, ‖∂tvtε‖L2 .t 1, ‖∂tptε‖Lq .t,q 1,

‖Γtε‖W 1,∞ .t 1, ‖∂tΓtε‖L2 .t 1.
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In the dissipative case of Theorem 1.1 the rescaled supercurrent density N−1
ε jε is shown in Section 6 to

remain close to the solution vε of the following equation

∂tvε = ∇pε +Γεcurl vε, vε|t=0 = v◦ε, (3.2)

Γε := λ−1
ε (α− Jβ)

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
, pε := (λεαa)−1 div (avε),

while in the Gross-Pitaevskii case of Theorem 1.3 the rescaled supercurrent density N−1
ε jε is shown in

Section 7 to remain close to the solution vε of the following equation

∂tvε = ∇pε +Γεcurl vε, div (avε) = 0, vε|t=0 = v◦ε, (3.3)

Γε := −λ−1
ε

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)⊥
.

In the present section, we show that the solutions vε of the above equations (3.2)–(3.3) exist and satisfy all
the properties of Assumption B. Using the choice of the scalings for λε, h, F in each regime, we further show
how to pass to the limit ε ↓ 0 in these equations, which is needed to conclude the proofs of Theorems 1.1
and 1.3. Note that in the regimes (GL1) and (GL′2), as a consequence of the choice λε ↓ 0, we expect
the solution vε of (3.2) to converge to the solution v of some incompressible equation with the constraint
div v = 0. We thus naturally refer to (GL1), (GL′2) and (GP) as the incompressible regimes, and to (GL2)
and (GL′1) as the compressible regimes.

3.1 Dissipative case
3.1.1 Properties of solutions to (3.2)

It is instructive to examine the vorticity formulation of the equation (3.2) for vε. Setting mε := curl vε
and dε := div (avε), equation (3.2) may be rewritten as a nonlinear nonlocal transport equation for the
vorticity mε, coupled with a transport-diffusion equation for the divergence dε,

∂tmε = − div (Γ⊥ε mε), mε|t=0 = curl v◦ε,

∂tdε−(αλε)
−14dε +(αλε)

−1 div (dε∇h) = div (aΓεmε), dε|t=0 = div (av◦ε),

curl vε = mε, div (avε) = dε .

(3.4)

A detailed study of this kind of equations is given in the companion paper [37], including global existence
results for vortex-sheet initial data. The following proposition in particular states that a solution vε always
exists and satisfies the various properties of Assumption B(a), under suitable regularity assumptions on the
initial data v◦ε. Compared with [37], this result however requires some more work in the incompressible cases
λε ↓ 0, as it is then needed to make clear the link with the limiting incompressible equations, in particular
in order to obtain global existence in the mixed-flow case.

Proposition 3.1. Let h : R2 → R, a := eh, F : R2 → R2, and let v◦ε : R2 → R2 be bounded in W 1,q(R2)2 for
all q > 2, and satisfy curl v◦ε ∈ P(R2). For some s > 0, assume that h ∈ W s+3,∞(R2), F ∈ W s+2,∞(R2)2,
that v◦ε is bounded in W s+2,∞(R2)2, and that curl v◦ε and div (av◦ε) are bounded in Hs+1 ∩W s+1,∞(R2).
(i) Compressible regimes λε ' 1 (that is, (GL2)–(GL′1)):

There exist T > 0 (independent of ε) and a unique (local) solution vε ∈ L∞loc([0, T ); v◦ε +H2∩W 2,∞(R2)2)
of (3.2) on [0, T ) × R2. Moreover, all the properties of Assumption B(a) are satisfied, that is, for all
t ∈ [0, T ), and all q > 2,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1, ‖div (avtε)‖L2 ∩L∞ .t 1,

‖ptε‖L2 ∩L∞ .t 1, ‖∇ptε‖L2 .t 1, ‖∂tvtε‖L2 ∩L∞ .t 1, ‖∂tptε‖L2
t L2 .t 1.
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In the parabolic case β = 0, the solution vε can be extended globally, T =∞. In the small-interaction
regime (GL′1), in the mixed-flow case β 6= 0, the existence time T can be taken arbitrarily large for
ε > 0 small enough.

(ii) Incompressible regimes λε � 1 (that is, (GL1)–(GL′2)):
Further assume div (av◦ε) = 0. There exist T > 0 (independent of ε) and a unique (local) solution vε ∈
L∞loc([0, T ); v◦ε +H2∩W 2,∞(R2)2) of (3.2) on R+×R2. Moreover, all the properties of Assumption B(a)
are satisfied, that is, for all t ∈ [0, T ), and all q > 2,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1, ‖ div (avtε)‖L2 ∩L∞ .t 1,

‖ptε‖L2 ∩L∞ .t λ
−1/2
ε , ‖∇pε‖L2

t L2 .t 1, ‖∂tvtε‖L2 ∩L∞ .t λ
−1/2
ε , ‖∂tvε‖L2

t L2 .t 1, ‖∂tptε‖L2
t L2 .t λ

−1
ε .

In the parabolic case β = 0, this solution vε can be extended globally, i.e. T = ∞. In the mixed-flow
case β 6= 0, the existence time T can be taken arbitrarily large for ε > 0 small enough.

Proof. Item (i) is proved in Step 1 below, while the proof of (ii) is split into three further steps. The proof
of the global existence for the regime (GL′1), also stated in (i), is postponed to the last step.

Step 1: compressible regimes. Let s > 0 be non-integer. The assumption ‖ĥ‖W s+3,∞ , ‖F̂‖W s+2,∞ . 1
yields ‖λ−1

ε (∇⊥h − F⊥)‖W s+2,∞ . 1 in the considered regimes, and also λ−1
ε Nε/|log ε| . 1 and λε ' 1.

Further using the assumptions on the initial data v◦ε, the results in [37] imply that in each of the compressible
regimes (GL2)–(GL′1) there exists a unique (local) solution vε ∈ L∞loc([0, T ); v◦ε +H2 ∩W 2,∞(R2)2) of (3.2)
on [0, T )× R2 with initial data v◦ε, for some T & 1. Moreover, it is shown in [37] that this solution satisfies
for all t ∈ [0, T ),

‖vtε− v◦ε‖H1∩W 1,∞ .t 1, ‖mt
ε‖H1∩W 1,∞ .t 1, ‖dtε‖L2 ∩L∞ .t 1,

ˆ
mt
ε = 1, mt

ε ≥ 0. (3.5)

Note that in the parabolic case β = 0 the results in [37] actually give a global solution, that is, T =∞. We
claim that all the desired properties of vε follow from (3.5). Combining (3.5) with the assumption that v◦ε
is bounded in W 1,q(R2)2 for all q > 2, we obtain

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1.

Using the choice (3.2) in the form pε = (λεαa)−1 dε with λε ' 1, where the divergence dε = div (avε)
satisfies the transport-diffusion equation (3.4), the a priori estimates in [37, Lemma 2.3] give

‖ptε‖H1∩W 1,∞ . ‖dtε‖H1∩W 1,∞ .t ‖d◦ε‖H1∩W 1,∞ + ‖aΓtεm
t
ε‖H1∩W 1,∞ .t 1,

where the last bound follows from (3.5). inserting this information into (3.2), we conclude that

‖∂tvtε‖L2 ∩L∞ . ‖∇ptε‖L2 ∩L∞ + ‖aΓtεm
t
ε‖L2 ∩L∞ .t 1.

Testing the transport-diffusion equation ∂tdε−(λεα)−1(4dε−div (dε∇h)) = div (aΓεmε) against ∂tdε yields
ˆ
|∂tdε|2 +

1

2
(λεα)−1∂t

ˆ
|∇dε|2 = −

ˆ
∂tdε div

(
(λεα)−1 dε∇h− aΓεmε

)
,

and hence, integrating in time, with λε ' 1,

‖∂tdε‖2L2
t L2 +

1

2
(λεα)−1‖∇dε‖2L2 . ‖∇d◦ε‖2L2 + ‖∂tdε‖L2

t L2(‖dε‖L2
t H

1 + ‖aΓε‖L∞t W 1,∞‖mε‖L2
t H

1)

.t 1 + ‖∂tdε‖L2
t L2 .
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Absorbing the last right-hand side term, we conclude

‖∂tpε‖L2
t L2 . ‖∂tdε‖L2

t L2 .t 1. (3.6)

All the stated estimates follow.

Step 2: estimates for transport-diffusion equations with large diffusivity. In the incompressible regimes
(GL1) and (GL′2), the conclusion does not follow as in Step 1, because the corresponding choice pε =
(λεαa)−1 div (avε) contains the prefactor (λεα)−1 � 1. In particular, the equation (3.4) for the divergence
dε := div (avε) now takes the form

∂tdε−(λεα)−14dε +α−1 div (dε∇ĥ) = div (aΓεmε) (3.7)

= div

(
(α− Jβ)

(
∇⊥ĥ− F̂⊥ − 2λ−1

ε Nε
|log ε|

vε

)
amε

)
,

with a large prefactor (λεα)−1 � 1 in front of the Laplacian, and with initial data d◦ε := div (av◦ε) = 0. In
this step, we consider the model transport-diffusion equation

∂tw − ν4w + div (w∇ĥ) = div g, w|t=0 = 0,

with large diffusivity ν � 1. A direct adaptation of [37, Lemma 2.3] gives the following bounds, for any
ν & 1, using that the initial condition is chosen to be zero,
(a) for all s ≥ 0, t ≥ 0, for some constant C depending only on an upper bound on s and ‖∇h‖W s,∞ ,

‖wt‖Hs + ν1/2‖∇w‖L2
t H

s ≤ C(t/ν)1/2eCt/ν‖g‖L∞t Hs ≤ Ct1/2eCt‖g‖L∞t Hs ;

(b) for some constant C depending only on an upper bound on ‖∇h‖L∞ ,

‖wt‖Ḣ−1 ≤ CeCt‖g‖L2
t L2 ;

(c) for all 1 ≤ p, q ≤ ∞, t ≥ 0, for some constant C depending only on an upper bound on ‖∇h‖L∞ ,

‖w‖Lpt Lq ≤ C(t/ν)1/2eC(t/ν)2‖g‖Lpt Lq ≤ Ct1/2eCt
2

‖g‖Lpt Lq .

In particular, the same bounds as in [37, Lemma 2.3] hold uniformly with respect to the large diffusivity
ν � 1. Further adapting the proof of (3.6) in Step 1, we easily obtain
(d) for some constant C depending only on an upper bound on ‖∇h‖W 1,∞ ,

‖∂tw‖L2
t L2 ≤ Ct1/2eCt‖g‖L∞t H1 .

Step 3: incompressible regimes. In the vorticity formulation (3.4), the large prefactor (λεα)−1 � 1 does
not affect the equation for the vorticity mε, but only the equation for the divergence dε, which now takes the
form (3.7). However, for the choice d◦ε = 0, the result of Step 2 ensures that the estimates for dε used in [37]
hold uniformly with respect the large prefactor. Hence, as in Step 1, using the assumptions on the initial
data, the results in [37] imply that in the incompressible regimes (GL1) and (GL′2) there exists a unique
(local) solution vε ∈ L∞loc([0, T ); v◦+H2 ∩W 2,∞(R2)2) of (3.2) on [0, T )× R2 with initial data v◦, for some
T & 1. Moreover, it is shown in [37] that this solution satisfies for all t ∈ [0, T ),

‖vtε− v◦ε‖H1∩W 1,∞ .t 1, ‖mt
ε‖H1∩W 1,∞ .t 1, ‖dtε‖L2 ∩L∞ .t 1,

ˆ
mt
ε = 1, mt

ε ≥ 0. (3.8)
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Note that in the parabolic case β = 0 the results in [37] actually give a global solution, that is, T = ∞.
We claim that all the desired properties of vε follow from (3.8). By definition (3.2), we find ‖Γtε‖W 1,∞ .t 1.
Combining (3.5) with the assumption that v◦ε is bounded in W 1,q(R2)2 for all q > 2, we obtain

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1.

Using (3.2) in the form pε = (λεαa)−1 dε, and applying items (a)–(c) of Step 2, we find

‖ptε‖H1∩W 1,∞ . λ−1
ε ‖d

t
ε‖H1∩W 1,∞ .t λ

−1/2
ε ‖aΓεmε‖L∞t (H1∩W 1,∞) .t λ

−1/2
ε ,

where the last bound follows from (3.8). Similarly, item (a) of Step 2 yields

‖∇ptε‖L2
t L2 . λ−1

ε ‖∇dtε‖L2
t L2 .t ‖aΓεmε‖L∞t L2 .t 1.

inserting this information into (3.2), we deduce

‖∂tvtε‖L2 ∩L∞ . ‖∇ptε‖L2 ∩L∞ + ‖Γtε‖L∞‖mt
ε‖L2 ∩L∞ .t λ

−1/2
ε ,

and similarly
‖∂tvε‖L2

t L2 . ‖∇pε‖L2
t L2 + ‖Γε‖L∞t L∞‖mε‖L2

t L2 .t 1.

Finally, item (d) of Step 2 yields

‖∂tpε‖L2
t L2 . λ−1

ε ‖∂tdε‖L2
t L2 .t λ

−1
ε ‖aΓεmε‖L∞t H1 .t λ

−1
ε .

All the stated estimates follow.

Step 4: global existence in the (mixed-flow) incompressible regimes. Using [37, Lemma 4.1(iii)], we find

‖vtε− v◦ε‖L2 .t 1.

Arguing as in [37, Step 1 of the proof of Lemma 4.5], using the above estimate, as well as
´
|mt

ε| = 1 for
all t, we easily obtain

‖vtε‖L∞ .t 1 + ‖mt
ε‖

1/2
L∞ log1/2(2 + ‖mt

ε‖L∞) + ‖div (vtε− v◦ε)‖L2 log1/2(2 + ‖div (vtε− v◦ε)‖L2 ∩L∞). (3.9)

On the other hand, item (a) of Step 2 yields

‖dtε‖L2 .t λ
1/2
ε ‖aΓεmε‖L∞t L2 .t λ

1/2
ε ‖vε− v◦‖L∞t L2‖mε‖L∞t L∞ + λ1/2

ε ‖mε‖L∞t L2

.t λ
1/2
ε ‖mε‖L∞t L∞ + λ1/2

ε ‖mε‖1/2L∞t L∞ ,

hence, in terms of div (vε− v◦ε) = a−1dε−∇h · (vε− v◦ε),

‖div (vtε− v◦ε)‖L2 .t λ
1/2
ε (1 + ‖mε‖L∞t L∞).

inserting this into (3.9), we find

‖vtε‖L∞ .t (1 + ‖mε‖L∞t L∞) log1/2(2 + ‖mε‖L∞t L∞ + ‖div vtε‖L∞). (3.10)

Item (c) of Step 2 yields

‖dtε‖L∞ .t λ
1/2
ε ‖aΓεmε‖L∞t L∞ . λ1/2

ε (1 + ‖vε‖L∞t L∞)‖mε‖L∞t L∞ ,
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or alternatively, for div vε = a−1dε−∇h · vε,

‖div vtε‖L∞ .t λ
1/2
ε (1 + ‖vε‖L∞t L∞)(1 + ‖mε‖L∞t L∞).

Combining with (3.10) yields

‖div vtε‖L∞ .t λ
1/2
ε (1 + ‖mε‖2L∞t L∞) log1/2(2 + ‖mε‖L∞t L∞ + ‖div vtε‖L∞),

and hence, using λε � 1 and the inequality a log b ≤ b + a log a for a, b ≥ 0, in order to absorb the term
‖div vtε‖L∞ appearing in the right-hand side,

‖div vtε‖L∞ .t λ
1/2
ε (1 + ‖mε‖2L∞t L∞) log(2 + ‖mε‖L∞t L∞),

so that (3.10) finally takes the form

‖vtε‖L∞ .t (1 + ‖mε‖L∞t L∞) log1/2(2 + ‖mε‖L∞t L∞).

In particular, we have proved the following estimates,

‖vtε‖L∞ .t (1 + ‖mε‖2L∞t L∞), and ‖dtε‖L∞ .t λ
1/2
ε (1 + ‖mε‖3L∞t L∞).

The result in [37, Lemma 4.3(i)] then gives the following bound on the vorticity mε,

‖mt
ε‖L∞ . exp

[
Ct
(
1 + ‖dε‖L∞t L∞ + λε‖vε‖L∞t L∞

)]
. exp

[
Ctλ1/2

ε (1 + ‖mε‖3L∞t L∞)
]
.

As λε � 1, this bound easily implies that for all T > 0 there exists some ε0(T ) such that for all 0 < ε < ε0(T )
the vorticity mt

ε (if it exists) remains bounded in L∞(R2) for all t ∈ [0, T ]. Then repeating the arguments
in [37, Sections 4.2–4.3], this a priori bound on the vorticity allows to deduce existence and uniqueness of a
solution on the whole time interval [0, T ].

Step 5: global existence in the (mixed-flow) compressible regime (GL′1). Just as in (3.9), we obtain the
bounds ‖vtε− v◦ε‖L2 .t 1 and

‖vtε‖L∞ .t 1 + ‖mt
ε‖

1/2
L∞ log1/2(2 + ‖mt

ε‖L∞) + ‖div (vtε− v◦ε)‖L2 log1/2(2 + ‖div (vtε− v◦ε)‖L2 ∩L∞). (3.11)

On the other hand, considering the equation (3.4) satisfied by dε, the a priori estimates in [37, Lemma 2.3]
yield

‖dtε‖L2 .t 1 + ‖aΓεmε‖L∞t L2 .t 1 + ‖mε‖L∞t L2 + ‖mε‖L∞t L∞‖vε− v◦ε‖L∞t L2 .t 1 + ‖mε‖L∞t L∞ ,

and also

‖dtε‖L∞ .t 1 + ‖aΓεmε‖L∞t L∞ .t 1 + ‖mε‖L∞t L∞(1 + ‖vε‖L∞t L∞).

As by definition div (vtε− v◦ε) = a−1(dtε−d◦ε)−∇h · (vtε− v◦ε), the above estimates take the following form,

‖div (vtε− v◦ε)‖L2 .t 1 + ‖mε‖L∞t L∞ , (3.12)

‖div vtε‖L∞ .t (1 + ‖mε‖L∞t L∞)(1 + ‖vε‖L∞t L∞).

Combining these estimates with (3.11) yields

‖vtε‖L∞ .t 1 + ‖mt
ε‖

1/2
L∞ log1/2(2 + ‖mt

ε‖L∞) + (1 + ‖mε‖L∞t L∞) log1/2
(
(1 + ‖mε‖L∞t L∞)(1 + ‖vε‖L∞t L∞)

)
,
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and hence, using the inequality a log b ≤ b + a log a for a, b ≥ 0, in order to absorb the term ‖vε‖L∞t L∞

appearing in the right-hand side,

‖vε‖L∞t L∞ .t (1 + ‖mε‖L∞t L∞) log(1 + ‖mε‖L∞t L∞),

so that (3.12) finally takes the form,

‖div vε ‖L∞t L∞ .t (1 + ‖mε‖L∞t L∞)2 log(1 + ‖mε‖L∞t L∞).

The result in [37, Lemma 4.3(i)] then gives the following bound on the vorticity mε, in the considered
regime (GL′1),

‖mt
ε‖L∞ . exp

[
Ct
(

1 +
Nε
|log ε|

‖(vε,div vε)‖L∞t L∞

)]
.t exp

(
CtNε
|log ε|

‖mε‖3L∞t L∞

)
.

As Nε/|log ε| � 1, this bound easily implies that for all T > 0 there exists some ε0(T ) such that for all
0 < ε < ε0(T ) the vorticity mt

ε (if it exists) remains bounded in L∞(R2) for all t ∈ [0, T ]. Then repeating
the arguments in [37, Sections 4.2–4.3], existence and uniqueness of a solution on the whole time interval
[0, T ] follows from this a priori bound.

3.1.2 Passing to the limit in (3.2)

We now show how to pass to the limit in (3.2) as ε→ 0, which is easily achieved e.g. by a Grönwall type
argument for the L2-distance between vε and its limit.

Lemma 3.2. Let α > 0, β ∈ R, let h : R2 → R, a := eh, F : R2 → R2, let vε : [0, T ) × R2 → R2 be a
solution of (3.2) as in Proposition 3.1, for some T > 0, and assume that v◦ε → v◦ in L2

uloc(R2)2. Then,
(i) in the regime (GL1), we have vε → v in L∞loc([0, T ); L2

uloc(R2)2) as ε ↓ 0, where v is the unique solution
(in the space L∞loc(R+; v◦+ L2(R2)2) with curl v ∈ L∞loc(R+; L1 ∩L∞(R2))) of

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v)curl v, div v = 0, v|t=0 = v◦; (3.13)

(ii) in the regime (GL2), with Nε/|log ε| → λ ∈ (0,∞) and v◦ε = v◦, we have vε → v in L∞loc([0, T ); L2(R2)2)
as ε ↓ 0, where v is the unique solution (in the space L∞loc([0, T ); v◦+ L2 ∩W 1,∞(R2)2) with curl v ∈
L∞loc([0, T ); L1(R2)) and div (âv) ∈ L∞loc([0, T ); L2(R2))) of

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥ − 2λv)curl v, v|t=0 = v◦; (3.14)

(iii) in the regime (GL′1), with v◦ε = v◦, we have vε → v in L∞loc([0, T ); L2(R2)2) as ε ↓ 0, where v is the
unique solution (in the space L∞loc([0, T ); v◦+ L2(R2)2) with curl v ∈ L∞loc([0, T ); L1(R2)) and div (âv) ∈
L∞loc([0, T ); L2(R2))) of

∂tv = α−1∇(â−1 div (âv)) + (α− Jβ)(∇⊥ĥ− F̂⊥)curl v, v|t=0 = v◦; (3.15)

(iv) in the regime (GL′2), we have vε → v in L∞loc([0, T ); L2
uloc(R2)2) as ε ↓ 0, where v is the unique solution

(in the space L∞loc(R+; v◦+ L2(R2)2) with curl v ∈ L∞loc(R+; L1 ∩L∞(R2))) of

∂tv = ∇p +(α− Jβ)(∇⊥ĥ− F̂⊥)curl v, div v = 0, v|t=0 = v◦ . (3.16)
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Proof. We treat each of the four regimes separately. For R ≥ 1, we denote by ξzR(x) := e−|x−z|/R the
exponential cut-off at the scale R centered at z ∈ RZ2.

Step 1: regime (GL1). Using the choice of the scalings for λε, h, F in the regime (GL1), equation (3.2)
takes the following form, with λε = Nε/|log ε| � 1, and explicitly setting aε := âλε ,

∂tvε = ∇pε +(α− Jβ)(∇⊥ĥ− F̂⊥ − 2vε)curl vε, pε := (λεαaε)
−1 div (aεvε),

with initial data vε|t=0 = v◦ε → v◦ in L2
uloc(R2)2. As λε → 0, it is then formally clear from the vorticity

formulation of this equation that vε should converge to the solution v of (3.13).
The existence and uniqueness of a solution v ∈ L∞loc(R+; v◦+ L2(R2)2) of (3.13) with curl v ∈ L∞loc(R+; L1 ∩L∞(R2))

are proved in [37]. Moreover, the following estimates hold for all t ≥ 0 and R, θ > 0,

‖vt‖W 1,∞ .t 1, ‖(vt,pt)‖L2(BR) .t,θ R
θ. (3.17)

The above bounds for v follow from the results in [37] with v◦ ∈ W s+1,∞(R2)2 for some s > 0, and with
v◦ ∈ Lq(R2)2 for all q > 2. It remains to prove the bound on the pressure p. Taking the divergence of both
sides of equation (3.13), we obtain the following equation for the pressure pt, for all t ≥ 0,

−4pt = div
(
(α− Jβ)(∇⊥ĥ− F̂⊥ − 2vt)curl vt

)
.

By Riesz potential theory, we deduce for all 2 < q <∞,

‖pt‖Lq .q (1 + ‖vt‖L∞)‖curl vt‖L2q/(2+q) .t 1,

and the bound on the pressure pt in (3.17) follows.
Now we turn to the Grönwall argument for proving the convergence vε → v in L∞loc([0, T ); L2

uloc(R2)2).
Using the equations for vε, v, we find

∂t

ˆ
aεξ

z
R|vε− v|2 = 2

ˆ
aεξ

z
R(vε− v) · ∇(pε−p)− 4α

ˆ
aεξ

z
R|vε− v|2curl vε

+ 2

ˆ
aεξ

z
R(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v

)
· (vε− v)curl (vε− v). (3.18)

Integrating by parts in the first term, decomposing

div (aεξ
z
R(vε− v)) = aε∇ξzR · (vε− v) + λεαaεξ

z
Rpε−λεaεξzR∇ĥ · v,

noting that the second right-hand side term in (3.18) is nonpositive, and using the following weighted Delort-
type identity (as e.g. in [37])

(vε− v)curl (vε− v) = a−1
ε (vε− v)⊥ div (aε(vε− v))− 1

2
a−1
ε |vε− v|2∇⊥aε − a−1

ε (div (aεSvε− v))⊥ (3.19)

= λεαpε(vε− v)⊥ − λε(∇ĥ · v)(vε− v)⊥ − λε
2
|vε− v|2∇⊥ĥ− a−1

ε (div (aεSvε− v))⊥,
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in terms of the stress-energy tensor Sw := w ⊗ w − 1
2 |w|

2 Id, we deduce

∂t

ˆ
aεξ

z
R|vε− v|2 ≤ −2

ˆ
aε(pε−p)∇ξzR · (vε− v)− 2λεα

ˆ
aεξ

z
R pε(pε−p) + 2λε

ˆ
aεξ

z
R(pε−p) v ·∇ĥ

+ 2λεα

ˆ
aεξ

z
Rpε(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v) · (vε− v)⊥

− 2λε

ˆ
aεξ

z
R(∇ĥ · v)(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v) · (vε− v)⊥

− λε
ˆ
aεξ

z
R|vε− v|2(α− Jβ)(∇⊥ĥ− F̂⊥ − 2v) · ∇⊥ĥ

− 2

ˆ
aεSvε− v : ∇

(
ξzR(αJ + β)(∇⊥ĥ− F̂⊥ − 2v)

)
,

and hence, using (3.17) in the form ‖vt‖W 1,∞ . 1, the assumption ‖(∇ĥ, F̂ )‖W 1,∞ . 1, the property
|∇ξzR| . R−1ξzR of the exponential cut-off, and the pointwise estimate |Sw| . |w|2, we obtain

∂t

ˆ
aεξ

z
R|vε− v|2 ≤ (R−2 − λεα)

ˆ
aεξ

z
R|pε|2 + Ct(R

−2 + λε)

ˆ
aεξ

z
R(|p|2 + |v|2) + Ct

ˆ
aεξ

z
R|vε− v|2.

Choosing R = λ−nε for some n ≥ 1, we obtain R−2 � λε, and hence, for ε small enough, using (3.17) to
estimate the second term, we obtain

∂t

ˆ
aεξ

z
R|vε− v|2 .t,θ R

2θ(R−2 + λε) +

ˆ
aεξ

z
R|vε− v|2 . λ1−2nθ

ε +

ˆ
aεξ

z
R|vε− v|2.

For θ > 0 small enough, the conclusion follows from the Grönwall inequality.

Step 2: regime (GL2). Using the choice of the scalings for λε, h, F in the regime (GL2), equation (3.2)
takes the following form,

∂tvε = α−1∇(â−1 div (âvε)) +

(
(α− Jβ)

(
∇⊥ĥ− F̂⊥ − 2Nε

|log ε|
vε

))
curl vε,

with initial data vε|t=0 = v◦. As Nε/|log ε| → λ ∈ (0,∞), it is formally clear that vε should converge to
the solution v of equation (3.14). Note that the existence and uniqueness of the solution v are given by
Proposition 3.1 just as for vε, and yields in particular the following bounds for all t ∈ [0, T ),

‖(vt, vtε)‖W 1,∞ .t 1, ‖curl vt‖L1 .t 1. (3.20)

Using the equations for vε, v, we find

∂t

ˆ
âξzR|vε− v|2 = 2α−1

ˆ
âξzR(vε− v) · ∇(â−1 div (â(vε− v)))− 4αNε

|log ε|

ˆ
âξzR|vε− v|2curl vε

+ 2

ˆ
âξzR

(
(α− Jβ)

(
∇⊥ĥ− F̂⊥ − 2Nε

|log ε|
v
))
· (vε− v)(curl vε−curl v)

− 4
( Nε
|log ε|

− λ
)ˆ

âξzR(vε− v) · (α− Jβ) v curl v .

Integrating by parts, using the weighted Delort-type identity (3.19) in the form

(vε− v)curl (vε− v) = â−1(vε− v)⊥ div (â(vε− v))− 1

2
|vε− v|2∇⊥ĥ− â−1(div (âSvε− v))⊥,
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using the properties (3.20) of v, vε, and the assumption ‖(∇ĥ, F̂ )‖W 1,∞ . 1, and simplifying the terms as in
Step 1, we easily obtain

∂t

ˆ
âξzR|vε− v|2 ≤ −2α−1

ˆ
â−1ξzR|div (â(vε− v))|2

+ Ct

ˆ
ξzR|vε− v||div (â(vε− v))|+ Ct

ˆ
âξzR|vε− v|2 + Ct

∣∣∣ Nε
|log ε|

− λ
∣∣∣,

hence ∂t
´
âξzR|vε− v|2 . Ct

´
âξzR|vε− v|2 + ot(1), and the conclusion now follows from the Grönwall in-

equality, letting R ↑ ∞.

Step 3: regime (GL′1). Using the choice of the scalings for λε, h, F in the regime (GL′1), equation (3.2)
takes the following form

∂tvε = α−1∇(â−1 div (âvε)) + (α− Jβ)
(
∇⊥ĥ− F̂⊥ − 2Nε

|log ε|
vε

)
curl vε,

with initial data vε|t=0 = v◦. As by assumption Nε/|log ε| → 0, it is formally clear that vε should converge
to the solution v of equation (3.15) as ε ↓ 0. Existence, uniqueness and regularity of this solution v are given
by Proposition 3.1 just as for vε, and the proof of convergence is obtained as in Step 2 (with λ = 0).

Step 4: regime (GL′2). Using the choice of the scalings for λε, h, F in the regime (GL′2), equation (3.2)
takes the following form, with aε := âλε ,

∂tvε = ∇pε +(α− Jβ)
(
∇⊥ĥ− F̂⊥ − 2λ−1

ε Nε
|log ε|

vε

)
curl vε,

pε := (λεαaε)
−1 div (aεvε),

with initial data vε|t=0 = v◦ε → v◦ in L2
uloc(R2)2. As by assumption λ−1

ε Nε/|log ε| → 0, it is formally clear
that vε should converge to the solution v of equation (3.16) as ε ↓ 0. Existence, uniqueness and regularity
of this solution v are given by [37] as in Step 1, and the proof of convergence then similarly follows.

3.2 Gross-Pitaevskii case
3.2.1 Properties of solutions to (3.3)

Let us examine the vorticity formulation of equation (3.3) for vε. Setting mε := curl vε, equation (3.3)
may be rewritten as a nonlinear nonlocal transport equation for the vorticity mε,{

∂tmε = − div (Γ⊥ε mε), mε|t=0 = curl v◦ε,

curl vε = mε, div (avε) = 0.
(3.21)

Given the form of Γε in (3.3), this equation can be seen as an “inhomogeneous” 2D Euler equation with
“forcing”. A detailed study of this kind of equations is given in the companion paper [37]. The following
proposition states in particular that a solution vε always exists globally and satisfies the various properties
of Assumption B(b), under suitable regularity assumptions on the initial data v◦ε.

Proposition 3.3. Let h : R2 → R, a := eh, F : R2 → R2, and let v◦ε : R2 → R2 be bounded in W 1,q(R2)2

for all q > 2, satisfy curl v◦ε ∈ P(R2). Assume that h ∈ L∞(R2), ∇h, F ∈ L4 ∩W 2,∞(R2)2, that a(x) → 1
uniformly as |x| ↑ ∞, that v◦ε is bounded in W 2,∞(R2)2 with div (av◦ε) = 0, and that curl v◦ε is bounded in
H1(R2). Let the regime (GP) hold.
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Then, there exists a unique (global) solution vε ∈ L∞loc(R+; v◦ε +H2 ∩ W 1,∞(R2)2) of (3.3) on R+ × R2.
Moreover, all the properties of Assumption B(b) are satisfied, that is, for all t ≥ 0, and all 2 < q <∞,

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1, ‖curl vtε‖L1 ∩L∞ .t 1,

‖ptε‖Lq ∩L∞ .t,q 1, ‖∇ptε‖L2 ∩L∞ .t 1, ‖∂tvtε‖L2 .t 1, ‖∂tptε‖Lq .t,q 1.

Further, for all θ > 0 and % ≥ 1, we have for all t ≥ 0,

‖∇(ptε,%−ptε)‖L2 .θ,t %
θ−2 +

ˆ
|x|>%

|curl v◦ε|2. (3.22)

Proof. We split the proof into three steps.

Step 1: preliminary. In this step, we prove the following Meyers type elliptic regularity estimate: if
b ∈ L∞(R2) satisfies 1/2 ≤ b ≤ 1 pointwise, and b(x)→ 1 uniformly as |x| ↑ ∞, then for all g ∈ L1 ∩L2(R2)2

the decaying solution v of equation −div (b∇v) = div g satisfies, for all 2 < q <∞,

‖v‖Lq .q ‖g‖L2q/(q+2) ∩L2 . ‖g‖L1 ∩L2 .

Let b be fixed as above. Set br := χr + b(1− χr), and decompose the equation for v as follows,

−div (br∇v) = div
(
g + (b− br)∇v

)
.

Given 1 < p < 2, the Meyers perturbative argument [62] gives a value κp > 0 such that, if b̃ ∈ L∞(R2) satisfies
κp ≤ b̃ ≤ 1, then for all k ∈ L1 ∩L2(R2)2 the decaying solution w of equation −div (b̃∇w) = div k satisfies
‖∇w‖Lp .p ‖k‖Lp . By definition, for r large enough, the truncated coefficient br satisfies κp ≤ br ≤ 1, hence

‖∇v‖Lp .p ‖g + (b− br)∇v‖Lp .

Using the elementary energy estimate ‖∇v‖L2 . ‖g‖L2 , and noting that br = b on R2 \ B2r, we find by the
Hölder inequality,

‖∇v‖Lp .p ‖g‖Lp + ‖∇v‖Lp(B2r) . ‖g‖Lp + r2( 1
p−

1
2 )‖∇v‖L2 . ‖g‖Lp + r2( 1

p−
1
2 )‖g‖L2 .

On the other hand, rather decomposing the equation for v as follows,

−4v = div (g + (b− 1)∇v),

we deduce from Riesz potential theory, with 2 < q := 2p/(2− p) <∞,

‖v‖Lq .q ‖g‖Lp + ‖∇v‖Lp .

Combining this with the above, the conclusion follows.

Step 2: proof of Assumption B(b). The assumptions ‖ĥ‖W 3,∞ , ‖(∇ĥ, F̂ )‖L4 ∩W 2,∞ . 1 yield ‖λ−1
ε (∇⊥h−

F⊥)‖L4 ∩W 2,∞ . 1 in the considered regime, and also λ−1
ε Nε/|log ε| = 1 and λ−1

ε . 1. Further using the
assumptions on the initial data v◦, the results in [37] imply that there exists a unique (global) solution
vε ∈ L∞loc(R+; v◦ε +H2 ∩W 1,∞(R2)2) of (3.3) on R+ × R2 with initial data v◦ε. Moreover, it is shown in [37]
that this solution satisfies in particular, for all t ≥ 0,

‖vtε− v◦ε‖H1∩W 1,∞ .t 1, ‖mt
ε‖H1∩L∞ .t 1,

ˆ
mt
ε = 1, mt

ε ≥ 0. (3.23)
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(As such, in order to ensure vε ∈ L∞loc(R+; v◦ε +H2(R2)2), the result in [37] would actually further require
h ∈W s+3,∞(R2) and ∇h, F, v◦ ∈W s+2,∞(R2)2 for some s ∈ (0, 1), due to the use of the Sobolev embedding
for Hs+1(R2) into W s,∞(R2) in the proof of [37, Lemma 4.6]. However, this use of the Sobolev embedding
is easily replaced by an a priori estimate for vε in W s+1,∞(R2)2, for which it is already enough to assume
e.g. h ∈W 3,∞(R2) and ∇h, F, v◦ ∈W 2,∞(R2)2, as we do here.)

We claim that all the desired properties of vε follow from the bounds (3.23). Combining (3.23) with the
assumption that v◦ε is bounded in W 1,q(R2)2 for all q > 2, we obtain

‖(vtε,∇vtε)‖(L2 + Lq)∩L∞ .t,q 1.

Applying the operator div (a·) to both sides of equation (3.3), we find the following equation for the pressure,
in the considered regime (GP),

−div (â∇ptε) = div (âΓtεm
t
ε) = − div

(
âmt

ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2 vtε)

⊥). (3.24)

An energy estimate directly yields

‖∇ptε‖L2 . ‖âmt
ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2 vtε)

⊥‖L2 .t 1, (3.25)

and similarly, first differentiating both sides of equation (3.24),

‖∇2ptε‖L2 . ‖∇ptε‖L2 +
∥∥∇(âmt

ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2 vtε)

⊥)∥∥
L2 .t 1. (3.26)

Inserting (3.25) into equation (3.3) yields

‖∂tvtε‖L2 ≤ ‖∇ptε‖L2 + ‖Γtεmt
ε‖L2 .t 1.

Applying to equation (3.24) the Meyers type result of Step 1, we find for all 2 < q <∞,

‖ptε‖Lq .q ‖âmt
ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2 vtε)

⊥‖L1 ∩L2 .t 1.

Combining this with (3.26), we deduce from the Sobolev embedding ‖ptε‖Lq ∩L∞ .q,t 1 for all q > 2. First
differentiating both sides of equation (3.24) with respect to the time variable, the Meyers type result of
Step 1 further yields, for all 2 < q <∞,

‖∂tptε‖Lq .q
∥∥â∂t(mt

ε(λ
−1
ε ∇⊥ĥ− F̂⊥ − 2 vtε)

⊥)∥∥
L1 ∩L2

. ‖mt
ε‖L2 ∩L∞‖∂tvtε‖L2 + ‖Γtε∂tmt

ε ‖L1 ∩L2

.t 1 + ‖Γtε∂tmt
ε ‖L1 ∩L2 .

Using equation (3.21) to express the time-derivative of the vorticity, and using the assumption ‖λ−1
ε ∇ĥ −

F̂‖L4 ∩W 1,∞ . 1, we find

‖Γtε∂tmt
ε‖L1 ∩L2 . ‖Γtε‖2L4 ∩L∞‖∇mt

ε‖L2 + ‖Γtε‖2W 1,∞‖mt
ε‖L1 ∩L2

.t ‖Γtε‖2L4 ∩W 1,∞ . 1 + ‖vtε‖2L4 ∩W 1,∞ .t 1,

and hence ‖∂tptε‖Lq .t 1. All the stated estimates follow.

Step 3: proof of (3.22). For all t ≥ 0, testing equation (3.24) against (1 − χ%) ptε, and using |∇χ%| .
%−1(1− χ%)1/2 and the inequality 2xy ≤ x2 + y2, we find

ˆ
â(1− χ%)|∇ptε|2 =

ˆ
â ptε∇χ% · ∇ptε−

ˆ
â(1− χ%)∇ptε ·Γtε mt

ε +

ˆ
âptε∇χ% · Γtε mt

ε

≤ 1

2

ˆ
â(1− χ%)|∇ptε|2 + C%−2

ˆ
%≤|x|≤2%

|ptε|2 + C

ˆ
(1− χ%)|Γtε|2|mt

ε|2.
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Absorbing the first right-hand side term, and recalling that Step 2 gives ‖Γtε‖L∞ , ‖mt
ε‖L2 .t 1, and

‖ptε‖Lp .p,t 1 for all 2 < p <∞, we obtain with the Hölder inequality,
ˆ

(1− χ%)|∇ptε|2 .t %
−2

ˆ
%≤|x|≤2%

|ptε|2 +

ˆ
(1− χ%)|mt

ε|2 .p,t %
−4/p +

ˆ
(1− χ%)|mt

ε|2,

and thus

‖∇(ptε,%−ptε)‖2L2 .
ˆ

(1− χ%)|∇ptε|2 + %−2

ˆ
%≤|x|≤2%

|ptε|2 .p,t %
−4/p +

ˆ
(1− χ%)|mt

ε|2.

It remains to estimate the last right-hand side term. For all t ≥ 0, using again the bounds of Step 2 and the
estimate |∇χ%| . %−1(1− χ%)1/2, we deduce from equation (3.21),

∂t

ˆ
(1− χ%)|mt

ε|2 = 2

ˆ
(1− χ%) mt

εcurl (Γtεm
t
ε)

= 2

ˆ
|mt

ε|2Γtε · ∇⊥χ% −
ˆ

(1− χ%)Γtε · ∇⊥|mt
ε|2

= 2

ˆ
|mt

ε|2Γtε · ∇⊥χ% +

ˆ
|mt

ε|2curl
(
(1− χ%)Γtε

)
.t %

−1

ˆ
(1− χ%)1/2|mt

ε|2 +

ˆ
(1− χ%)|mt

ε|2 .t %
−2 +

ˆ
(1− χ%)|mt

ε|2,

hence by the Grönwall inequality,
ˆ

(1− χ%)|mt
ε|2 .t %

−2 +

ˆ
(1− χ%)|curl v◦ε|2,

and the result (3.22) follows.

3.2.2 Passing to the limit in (3.3)

We now show how to pass to the limit in (3.3) as ε ↓ 0, which is easily achieved by a Grönwall type
argument for the L2-distance between vε and its limit. Note that in the limit, pinning effects are in this case
only present through the constraint.

Lemma 3.4. Let h : R2 → R, a := eh, F : R2 → R2, and let vε : [0, T ) × R2 → R2 be a solution of (3.3)
as in Proposition 3.3, for some T > 0. Then, in the regime (GP), with v◦ε = v◦, we have vε → v in
L∞loc([0, T ); L2(R2)2) as ε ↓ 0, where v is the unique solution of

∂tv = ∇p +(−F̂ + 2 v⊥)curl v, div (âv) = 0, v|t=0 = v◦ . (3.27)

Proof. Using the choice of the scalings for λε, h, F in the regime (GP), equation (3.3) takes the following
form,

∂tvε = ∇pε +
(
λ−1
ε ∇ĥ− F̂ + 2 v⊥ε

)
curl vε, div (âvε) = 0, vε|t=0 = v◦ .

As λ−1
ε → 0, it is formally clear that vε should converge to the solution v of equation (3.27) as ε ↓ 0. Note

that the existence, uniqueness and regularity of this solution v are given by Proposition 3.3 just as for vε,
and yields in particular the following bounds for all t ∈ [0, T ),

‖(vt, vtε)‖W 1,∞ .t 1, ‖curl vtε ‖L1 .t 1, ‖(pt,ptε)‖L∞ .t 1, (3.28)
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and for all θ > 0,

‖(vt, vtε)‖L2(BR) .t,θ R
θ, ‖(pt,ptε)‖L2(BR) .t,θ R

θ. (3.29)

For R ≥ 1, we denote by ξzR(x) := e−|x−z|/R the exponential cut-off at the scale R centered at z ∈ RZ2.
Using the equations for vε, v, we find

∂t

ˆ
âξzR|vε− v|2 = 2

ˆ
âξzR(vε− v) · ∇(pε−p) + 2

ˆ
âξzR(−F̂ + 2 v⊥) · (vε− v)(curl vε−curl v)

+ 2λ−1
ε

ˆ
âξzR∇ĥ · (vε− v)curl vε .

Integrating by parts in the first term with div (âξzR(vε− v)) = â∇ξzR · (vε− v), and using the weighted
Delort-type identity (cf. (3.19)) in the form

(vε− v)curl (vε− v) = −1

2
|vε− v|2∇⊥ĥ− â−1(div (âSvε− v))⊥,

we deduce

∂t

ˆ
âξzR|vε− v|2 = −2

ˆ
â∇ξzR · (vε− v)(pε−p)−

ˆ
âξzR∇⊥ĥ · (−F̂ + 2 v⊥)|vε− v|2

+ 2

ˆ
âSvε− v : ∇(ξzR(F̂⊥ + 2 v)) + 2λ−1

ε

ˆ
âξzR∇ĥ · (vε− v)curl vε,

and hence, using (3.28)–(3.29), the assumption ‖(∇ĥ, F̂ )‖W 1,∞ . 1, the property |∇ξzR| . R−1ξzR of the
exponential cut-off, and the pointwise estimate |Sw| . |w|2,

∂t

ˆ
âξzR|vε− v|2 .t,θ R

−2(1−θ) + λ−2
ε +

ˆ
âξzR|vε− v|2.

Choosing θ = 1/2, the Grönwall inequality yields supz
´
aεξ

z
R|vε− v|2 .t R−1 + λ−2

ε , and the conclusion
follows, letting R ↑ ∞.

4 Computations on the modulated energy
In this section, we adapt to the weighted case with pinning and forcing the computations of [82] involv-

ing the modulated energy excess. Their point is to compute the time-derivative of the modulated energy
excess (1.13) and express it with only quadratic terms in the error instead of terms which initially appear
as linear, thus making a Grönwall argument impossible. These computations are based on purely algebraic
manipulations using all the equations and appropriate quantities that we will now describe.

For simplicity, in the estimates in this section, we focus on the non-oscillating case ηε = 1, and we consider
the regimes (GL1), (GL2), (GP), (GL′1), and (GL′2).

4.1 Modulated energy
We first recall the definitions of modulated energy and energy excess in (1.10)–(1.13). In order to prove

that N−1
ε jε is close to vε, we follow the strategy of [82], and consider the following modulated energy, which

is modeled on the weighted energy density eε, plays the role of an adapted measure of the distance between
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N−1
ε jε and vε, and is localized by means of the cut-off function χR at some scale R� 1 (to be later optimized

as a function of ε),

Eε,R :=

ˆ
aχR

2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
.

As usual, this modulated energy Eε,R further needs to be renormalized by subtracting the expected self-
interaction energy of the vortices (compare with Lemma 5.1), which then yields the following modulated
energy excess,

Dε,R := Eε,R −
|log ε|

2

ˆ
aχRµε =

ˆ
aχR

2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
.

As seen in the introduction, the cut-off χR is not needed in the Gross-Pitaevskii case, where we only treat
the case when h and F decay at infinity. We write Eε := Eε,∞ for the corresponding quantity without the
cut-off χR in the definition (formally R =∞), and also Dε := supR≥1Dε,R.

On the one hand, rather than the L2-norm restricted to the ball BR centered at the origin, our methods
further allow to consider the uniform L2

loc-norm at the scale R: setting χzR := χR(· − z), we define

E∗ε,R := sup
z
Ezε,R, Ezε,R :=

ˆ
aχzR

2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
,

where henceforth the supremum always implicitly runs over all lattice points z ∈ RZ2, and similarly

D∗ε,R := sup
z
Dzε,R, Dzε,R := Ezε,R −

|log ε|
2

ˆ
aχzRµε.

Note that by definition we have for all x ∈ R2 and all L > 0,

‖∇uε − iuεNεvε‖L2(BL(x)) + ε−1‖1− |uε|2‖L2(BL(x)) .
(

1 +
L

R

)d
E∗ε,R. (4.1)

On the other hand, in order to simplify computations, we need as in [82] to add some suitable lower-order
term, and rather consider, for some scale %� 1 (to be later optimized as a function of ε),

Êε,%,R :=

ˆ
a

2

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2
εψε,%,R + fχR)

)
,

and similarly for the modulated energy excess,

D̂ε,%,R := Êε,%,R −
|log ε|

2

ˆ
aχRµε

=

ˆ
a

2

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2ψε,%,R + fχR)− |log ε|χRµε
)
, (4.2)

where the field ψε,%,R is chosen as follows,

ψε,%,R := 3χR|vε|2 −
|log ε|
Nε

χR vε· (∇⊥h− F⊥) +
λεβ|log ε|

Nε
χR(2Γ⊥ε · vε + pε,%) +

|log ε|
Nε
∇χR · v⊥ε , (4.3)

with pε,% := χ% pε. This choice is motivated by the fact that it yields some crucial cancellations in the proof
of Lemma 4.4. Again, replacing χR and pε,% by χzR and pzε,% = χz% pε, we further define Êzε,%,R and D̂zε,%,R
for z ∈ R2, and we then set Ê∗ε,%,R := supz Êzε,%,R and D̂∗ε,%,R := supz D̂zε,%,R (where again the supremum
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implicitly runs over all lattice points z ∈ RZ2). The truncation scale ρ � 1 is introduced here to cure the
lack of integrability of the pressure pε in the Gross-Pitaevskii case: since the pressure pε does in general
not belong to L2(R2) (cf. Assumption B(b) above, which is indeed optimal in that respect), we define a
truncated pressure pε,% := χ%pε. (In contrast, note that in the case without pinning and forcing the pressure
always belongs to L2(R2), see [82].) To unify notation, we set in the dissipative case pε,∞ := pε with % :=∞,
and we then drop for simplicity the subscript %, writing ψε,R := ψε,∞,R, Êε,R := Êε,∞,R, and so on.

In the dissipative case, as a consequence of (2.1) and of Assumption B(a), ψε,R is bounded uniformly
with respect to R in Lp(R2) for all 2 < p ≤ ∞ (but not in L2(R2)), and using the bound (2.1) we have in
the considered regimes, for all t ∈ [0, T ) and θ > 0,

‖ψtε,R‖L2 .t,θ 1 +
|log ε|
Nε

(λεR
θ + λ1/2

ε +R−1+θ), ‖∂tψε,R‖L2
t L2 .t,θ

|log ε|
Nε

. (4.4)

In the Gross-Pitaevskii case, in the considered regime (GP), the bound (2.2) and Assumption B(b) rather
yield, for all t ∈ [0, T ) and θ > 0,

‖ψtε,%,R‖L2 + ‖∂tψtε,%,R‖L2 .t,θ 1 +
|log ε|
Nε

λε%
θ . %θ. (4.5)

Based on these estimates, the following lemma states that the additional term in Êε,%,R is indeed of lower
order, so that the modulated energy Êε,%,R itself controls the various quantities that we are interested in.

Lemma 4.1 (Neglecting lower-order terms). Let h : R2 → R, a := eh, F : R2 → R2 satisfy (2.1)–(2.2), let
uε : [0, T )× R2 → C, and let vε : [0, T )× R2 → R2 be as in Assumption B. Further assume that 0 < ε� 1
and %,R� 1 satisfy for some θ > 0, in the dissipative case (with Nε . |log ε|),

ε
(
N2
ε +Nε|log ε|(λεRθ + λ1/2

ε +R−1+θ) +R+Rλ2
ε|log ε|2

)
� Nε

(
1 ∧ Nε
|log ε|

)1/2

. (4.6)

or, in the Gross-Pitaevskii case (with Nε � ε−1),

εN2
ε (%θ +R)� Nε

(
1 ∧ Nε
|log ε|

)1/2

. (4.7)

Then for all z ∈ R2 we have

|Êz,tε,%,R − E
z,t
ε,R| = |D̂

z,t
ε,%,R −D

z,t
ε,R| .t o(Nε)

(
1 ∧ Nε
|log ε|

)1/2

(Ez,tε,R)1/2.

Proof. We focus on the dissipative case, the other case is similar. The Cauchy-Schwarz inequality yields

|Êzε,R − Ezε,R| .
ˆ
|1− |uε|2|(N2

ε |ψzε,R|+ |f |χzR)

≤
(ˆ

χzR(1− |uε|2)2
)1/2(

N2
ε ‖ψzε,R/(χzR)1/2‖L2 + ‖f‖L2(B2R(z))

)
. ε(Ezε,R)1/2

(
N2
ε ‖ψzε,R/(χzR)1/2‖L2 +R‖f‖L∞

)
.

Arguing just as in (4.4), using (2.1), Assumption B(a), and the fact that |∇χR(x)/χ
1/2
R (x)| . R−11|x|≤2R,

the choice (4.3) of ψε,R yields, for all θ > 0,

‖ψε,R/χ1/2
R ‖L2 .t,θ 1 +

|log ε|
Nε

(λεR
θ + λ1/2

ε +R−1+θ).

Combined with (2.1) and with assumption (4.6), this proves the result.
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4.2 Physical quantities and identities
Next to the supercurrent density jε := 〈∇uε, iuε〉 and the vorticity µε := curl jε, we define the vortex

velocity Vε := 2〈∇uε, i∂tuε〉. The following identities are easily checked from these definitions:

∂tjε = Vε +∇〈∂tuε, iuε〉, ∂tµε = curlVε, (4.8)

and also, using equation (1.5) for uε,

div jε = 〈4uε, iuε〉 = λεα〈∂tuε, iuε〉 − jε · ∇h (4.9)

− λεβ|log ε|
2

∂t(1− |uε|2) +
|log ε|

2
F⊥ · ∇(1− |uε|2) + |log ε|g(1− |uε|2).

We then consider the weighted energy density

eε :=
a

2

(
|∇uε|2 +

a

2ε2
(1− |uε|2)2 + (1− |uε|2)f

)
.

In the same vein as when introducing the modulated energy and energy excess, we define the following
modulated vorticity and modulated velocity,

µ̃ε := curl (Nεvε +〈∇uε − iuεNεvε, iuε〉) = µε + curl (Nεvε(1− |uε|2)), (4.10)

Ṽε,% := 2〈∇uε − iuεNεvε, i(∂tuε − iuεNεpε,%)〉 = Vε +Nεvε∂t|uε|2 −Nεpε,%∇|uε|2. (4.11)

For the computations, we will also need the 2× 2 stress-energy tensor Sε,

Sklε := a〈∂kuε, ∂luε〉 −
a

2
Id
(
|∇uε|2 +

a

2ε2
(1− |uε|2)2 + (1− |uε|2)f

)
, (4.12)

and its modulated version S̃ε,

S̃klε := a
(
〈∂kuε − iuεNεvε,k, ∂luε − iuεNεvε,l〉+N2

ε (1− |uε|2) vε,kvε,l

)
− a

2
Id
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + (1− |uε|2)(N2

ε |vε|2 + f)
)
. (4.13)

We close this section with the following pointwise estimates.

Lemma 4.2. We have

|jε −Nεvε| ≤ |∇uε − iuεNεvε|+ |∇uε − iuεNεvε||1− |uε|2|+Nε|vε||1− |uε|2|,
|µε| ≤ 2|∇uε|2 ≤ 4|∇uε − iuεNεvε|2 + 4N2

ε |vε|2 + 4N2
ε |1− |uε|2||vε|2,

|Vε| ≤ 2
(
|∇uε − iuεNεvε||∂tuε|+Nε|vε||∂tuε|+Nε|1− |uε|2||vε||∂tuε|

)
,

|Ṽε,%| ≤ 2|∂tuε||∇uε − iuεNεvε|+ 2Nε|pε,%||∇uε − iuεNεvε|+ 2Nε|pε,%||1− |uε|2||∇uε − iuεNεvε|,
|∂t|uε|| ≤ |∂tuε − iuεNεpε|,
|∇|uε|| ≤ |∇uε − iuεNεvε|.

Proof. The first estimate is obtained as follows,

|jε −Nεvε| ≤ |〈∇uε − iuεNεvε, iuε〉|+Nε|1− |uε|2||vε|
≤ |∇uε − iuεNεvε|+ |∇uε − iuεNεvε||1− |uε|2|+Nε|vε||1− |uε|2|,

while the estimates on Vε and Ṽε,% similarly follow the definitions. The estimate on µε is a direct consequence
of the representation µε = curl 〈∇uε, iuε〉 = 2〈∇2uε, i∇1uε〉. Finally noting that

|∂tuε − iuεNεpε |2 = |∂t|uε||2 + |uε|2
∣∣∣∂t uε|uε| − i uε|uε|Nεpε

∣∣∣2,
the result on ∂t|uε| follows, and the result on ∇|uε| is obtained similarly.
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4.3 Divergence of the modulated stress-energy tensor
In the following lemma we explicitly compute the divergence of the modulated stress-energy tensor: as

already mentioned, it will be crucial in the sequel in order to replace some linear terms in the error by
quadratic ones (cf. Step 3 of the proof of Lemma 4.4 below).

Lemma 4.3. Let uε : [0, T )×R2 → C be a solution of (1.5) as in Proposition 2.2, and let vε : [0, T )×R2 → R2

be as in Assumption B. Then, defining by (div S̃ε)k :=
∑
l ∂l(S̃ε)kl the divergence of the 2-tensor S̃ε, where

(S̃ε)kl denotes the (k, l)-component of S̃ε, we have

div S̃ε = aλεα
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
− aµε(Nεv⊥ε −|log ε|F/2) + aNε(Nεvε−jε)⊥curl vε

+
aλεβ

2
|log ε|Ṽε,% + aNε(Nεvε−jε)(div vε +∇h ·vε−λεα pε,%)−

a

2
(1− |uε|2)∇f

− a

2
∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)(N2

ε |vε|2 + f)
)

+ aλεβNε|log ε|vε∂t(1− |uε|2)

+ aλεαN
2
ε vεpε,%(1− |uε|2) +

aλεβ

2
Nε|log ε|pε,%∇|uε|2 +

a

2
Nε|log ε|(F⊥ · ∇|uε|2) vε .

Proof. A direct computation yields, for the stress-energy tensor,

div Sε = a
〈
∇uε,4uε +

auε
ε2

(1− |uε|2) +∇h · ∇uε + fuε

〉
− a

2
∇h
(
|∇uε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)f

)
− a

2
(1− |uε|2)∇f. (4.14)

On the other hand, the modulated stress-energy tensor may be decomposed as

S̃ε = Sε − aNεvε⊗jε − aNεjε ⊗ vε +aN2
ε vε⊗ vε−

aNε
2

Id
(
Nε|vε|2 − 2 vε· jε

)
,

which, combined with (4.14), yields

div S̃ε = a
〈
∇uε,4uε +

auε
ε2

(1− |uε|2) +∇h · ∇uε + fuε

〉
− a

2
∇h
(
|∇uε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)f

)
− a

2
(1− |uε|2)∇f

− aNε
(
jε∇h ·vε + vε∇h · jε −Nεvε∇h ·vε +

1

2
Nε|vε|2∇h− vε· jε∇h

)
− aNεjε div vε−aNε(vε· ∇)jε − aNεvεdiv jε − aNε(jε · ∇) vε +aN2

ε vεdiv vε +aN2
ε (vε· ∇) vε

− aN2
ε

∑
l

vε,l∇vε,l +aNε
∑
l

vε,l∇jε,l + aNε
∑
l

jε,l∇vε,l,

where we denote by vε,l and jε,l the l-th component of the vector fields vε and jε, respectively. Noting that
(F · ∇)G−

∑
l Fl∇Gl = F⊥curlG, and using equation (1.5) for uε, this becomes

div S̃ε = aλε 〈(α+ iβ|log ε|)∂tuε,∇uε〉 − a|log ε|〈∇uε, iF⊥ · ∇uε〉 − a|log ε|gjε

− a

2
∇h
(
|∇uε|2 +N2

ε |vε|2 − 2Nεvε· jε +
a

ε2
(1− |uε|2)2 + (1− |uε|2)f

)
− a

2
(1− |uε|2)∇f − aNε

(
jε∇h ·vε + vε∇h · jε −Nεvε∇h ·vε

)
+ aNε

(
− v⊥ε µε + (Nεvε−jε)⊥curl vε− vεdiv jε + (Nεvε−jε) div vε

)
. (4.15)
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Using identity (4.9), the first right-hand side term above may be rewritten as

λε 〈(α+ iβ|log ε|)∂tuε,∇uε〉
= λεα

〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+Nελεαvε〈∂tuε, iuε〉

+Nελεα pε,% jε −N2
ε λεα|uε|2 pε,%vε +

λεβ

2
|log ε|Vε

= λεα
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+Nεvε(div jε + jε · ∇h) +

1

2
Nε|log ε|(F⊥ · ∇|uε|2) vε

+
λεβ

2
Nε|log ε|vε∂t(1− |uε|2) +Nελεα pε,% jε −N2

ε λεα|uε|2pε,%vε +
λεβ

2
|log ε|Vε.

Inserting this into (4.15), recombining |∇uε|2 +N2
ε |vε|2− 2Nεvε· jε = |∇uε− iuεNεvε|2 +N2

ε (1−|uε|2)|vε|2,
noting that 〈∇uε, iF⊥ · ∇uε〉 = −Fµε/2, and using (4.11) to transform Vε into Ṽε,%, we obtain

div S̃ε = aλεα
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+ aNεvε(div jε + jε · ∇h)

+
a

2
Nε|log ε|(F⊥ · ∇|uε|2) vε +aλεβNε|log ε|vε∂t(1− |uε|2) + λεαaNε pε,% jε

− aN2
ε λεα|uε|2 pε,%vε +

aλεβ

2
|log ε|Ṽε,% +

aλεβ

2
Nε|log ε|pε,%∇|uε|2 − aµε(Nεv⊥ε −|log ε|F/2)

− a

2
∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)(N2

ε |vε|2 + f)
)

− a

2
(1− |uε|2)∇f − aNε

(
jε∇h ·vε + vε∇h · jε −Nεvε∇h ·vε

)
+ aNε

(
(Nεvε−jε)⊥curl vε− vεdiv jε + (Nεvε−jε) div vε

)
,

and the result follows after straightforward simplifications.

4.4 Time-derivative of the modulated energy excess
In the present section, we prove the following decomposition of the time-derivative of the modulated

energy excess D̂ε,%,R. As will be seen in Sections 6–7, mean-field limit results are then essentially reduced
to the estimation of the different terms in this decomposition. To simplify notation, it is stated here using
truncations centered at z = 0, but the translated result of course also holds for all z ∈ R2.

Lemma 4.4. Let α ≥ 0, β ∈ R, and let h : R2 → R, a := eh, F : R2 → R2, f : R2 → R satisfy (2.1)–(2.2).
Let uε : [0, T )×R2 → C and vε : [0, T )×R2 → R2 be solutions of (1.5) and (3.1) as in Proposition 2.2 and
as in Assumption B, respectively. Let 0 < ε � 1, %,R � 1, and let Γ̄ε : [0, T ) × R2 → R2 be a given field
with ‖Γ̄tε‖W 1,∞ .t 1. Then, we have

∂tD̂ε,%,R = ISε,%,R + IVε,%,R + IEε,%,R + IDε,%,R + IHε,%,R + Idε,%,R + Igε,%,R + Inε,%,R + I ′ε,%,R,
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where we have set

ISε,%,R := −
ˆ
χR∇Γ̄⊥ε : S̃ε,

IVε,%,R :=

ˆ
aχR

2
Ṽε,% · (−λεβ|log ε|Γ⊥ε + |log ε|(∇⊥h− F⊥)− 2Nεvε),

IEε,%,R := −
ˆ
aχR

2
Γε · (|log ε|(∇⊥h− F⊥)− 2Nεvε)µε,

IDε,%,R := −
ˆ
λεαaχR|∂tuε − iuεNεpε,%|2 −

ˆ
λεαaχRΓ⊥ε ·

〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
,

IHε,%,R :=

ˆ
aχR

2
Γ⊥ε · ∇h

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 − |log ε|µε

)
,

and also

Idε,%,R :=

ˆ
aχRNε

(
Γ̄⊥ε · (jε −Nεvε) + 〈∂tuε − iuεNεpε,%, iuε〉

)
(div vε + vε · ∇h− λεα pε,%),

Igε,%,R :=

ˆ
aχRNε(Nεvε−jε) · (Γε − Γ̄ε)curl vε +

ˆ
λεαaχR(Γε − Γ̄ε)

⊥ ·
〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+

ˆ
aχR

2
(Γ̄ε − Γε)

⊥ · ∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+

ˆ
aχR

2
λεβ|log ε|Ṽε,% · (Γε − Γ̄ε)

⊥

+

ˆ
aχR(Γ̄ε − Γε) · (Nεvε +|log ε|F⊥/2)µε +

ˆ
aχRλεβNε|log ε|(Γ̄ε − Γε)

⊥ ·vε ∂t|uε|2,

Inε,%,R := −
ˆ
∇χR · S̃ε · Γ̄⊥ε −

ˆ
a∇χR ·

(
〈∂tuε − iuεNεpε,%,∇uε − iuεNεvε〉+

|log ε|
2

Ṽ ⊥ε,%

)
,

and where the error I ′ε,%,R is estimated as follows, for all θ > 0, in the dissipative case, in the considered
regimes,
ˆ t

0

|I ′ε,%,R| .t,θ ε
(
λ−1/2
ε N2

ε +R(1 + λ2
ε|log ε|2) +Nε|log ε|(1 + λεR

θ)
)
(E∗ε,R)1/2 . εR|log ε|2(E∗ε,R)1/2,

(4.16)

or in the Gross-Pitaevskii case (GP),

|I ′ε,%,R| .t,θ εNεE∗ε,R +Nε(E∗ε,R)1/2‖∇(pε−pε,%)‖L2 + εN2
ε %

θ(E∗ε,R)1/2. (4.17)

Proof. We focus on the non-decaying setting, as the other case is similar. We split the proof into three steps,
first computing the time-derivative ∂tÊε,%,R, then deducing an expression for ∂tD̂ε,%,R, and finally introducing
the modulated stress-energy tensor to replace the linear terms by quadratic ones, which are better suited for
a Grönwall argument.

Step 1: time-derivative of the modulated energy. In this step, we prove the following identity :

∂tÊε,%,R = −
ˆ
a∇χR · 〈∂tuε,∇uε − iuεNεvε〉+

ˆ
aN2

ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
+

ˆ
NεaχR〈∂tuε, iuε〉(div vε + vε· ∇h)

+

ˆ
aχR

(
Nε(Nεvε−jε) · ∂tvε−λεα|∂tuε|2 −Nεvε·Vε −

|log ε|
2

F⊥ · Vε
)
. (4.18)
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For that purpose, let us first compute the time-derivative of the modulated energy density

1

2
∂t

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2
εψε,%,R + fχR)

)
= χR〈∇uε − iuεNεvε,∇∂tuε − iuεNε∂tvε−i∂tuεNεvε〉 − χR〈∂tuε,

auε
ε2

(1− |uε|2)〉

+
1

2
∂t
(
(1− |uε|2)(N2

εψε,%,R + fχR)
)
. (4.19)

Note that the first term in the right-hand side may be rewritten as

〈∇uε − iuεNεvε,∇∂tuε − iuεNε∂tvε−i∂tuεNεvε〉

= 〈∇uε,∇∂tuε〉 −Nε∂tvε· jε −Nεvε· 〈∇uε, i∂tuε〉 −Nεvε· 〈iuε,∇∂tuε〉+
N2
ε

2
|uε|2∂t|vε|2 +

N2
ε

2
|vε|2∂t|uε|2

= div 〈∇uε, ∂tuε〉 − 〈∂tuε,4uε〉 −Nε∂tvε· jε −Nεvε· 〈∇uε, i∂tuε〉

−Nεvε· (∂tjε − 〈i∂tuε,∇uε〉) +
N2
ε

2
∂t(|uε|2|vε|2)

= div 〈∇uε, ∂tuε〉 − 〈∂tuε,4uε〉 −Nεvε· ∂tjε −Nεjε · ∂tvε +
N2
ε

2
∂t(|uε|2|vε|2), (4.20)

where

div 〈∇uε, ∂tuε〉 = div 〈∂tuε,∇uε − iuεNεvε〉+ div (Nεvε〈∂tuε, iuε〉)
= div 〈∂tuε,∇uε − iuεNεvε〉+Nε〈∂tuε, iuε〉div vε +Nεvε· (∂tjε − Vε). (4.21)

Combining (4.19), (4.20) and (4.21), the time-derivative of the energy density takes on the following guise,
after straightforward simplifications,

1

2
∂t

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2
εψε,%,R + fχR)

)
= χR div 〈∂tuε,∇uε − iuεNεvε〉+NεχR〈∂tuε, iuε〉div vε−NεχRvε·Vε +NεχR(Nεvε−jε) · ∂tvε

− χR
〈
∂tuε,4uε +

auε
ε2

(1− |uε|2)
〉

+
1

2
∂t
(
(1− |uε|2)(N2

εψε,%,R −N2
εχR|vε|2 + fχR)

)
.

Integrating this identity in space yields

∂t

ˆ
a

2

(
χR|∇uε − iuεNεvε|2 +

aχR
2ε2

(1− |uε|2)2 + (1− |uε|2)(N2
εψε,%,R + fχR)

)
=

ˆ
aχR

(
Nε〈∂tuε, iuε〉div vε−Nεvε·Vε +Nε(Nεvε−jε) · ∂tvε−

〈
∂tuε,4uε +

auε
ε2

(1− |uε|2)
〉)

+

ˆ
a

2
∂t
(
(1− |uε|2)(N2

εψε,%,R −N2
εχR|vε|2 + fχR)

)
−
ˆ
∇(aχR) · 〈∂tuε,∇uε − iuεNεvε〉.

Decomposing ∇(aχR) = aχR∇h+ a∇χR, and using the equation (1.5) satisfied by uε in the form〈
∂tuε,4uε +

auε
ε2

(1− |uε|2) +∇h · ∇uε
〉

=
〈
∂tuε, λε(α+ iβ|log ε|)∂tuε − i|log ε|F⊥ · ∇uε − fuε

〉
= λεα|∂tuε|2 +

|log ε|
2

F⊥ · Vε −
1

2
f∂t|uε|2,

the result (4.18) follows after straightforward simplifications.
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Step 2: time-derivative of the modulated energy excess. In this step, we prove the following identity:

∂tD̂ε,%,R =

ˆ
aχR

2
Ṽε,% · (|log ε|(∇⊥h− F⊥)− 2Nεvε) +

ˆ
aχRNε(Nεvε−jε) · Γεcurl vε

−
ˆ
λεαaχR|∂tuε − iuεNεpε,%|2 +

ˆ
aχRNε〈∂tuε − iuεNεpε, iuε〉(div vε + vε· ∇h− λεα pε)

+

ˆ
aχRNε(Nεvε−jε) · ∇(pε−pε,%)−

ˆ
a∇χR ·

(
〈∂tuε − iuεNεpε,%,∇uε − iuεNεvε〉+

|log ε|
2

Ṽ ⊥ε,%

)
−
ˆ
aN2

ε pε(1− |uε|2)
(
vε· ∇χR + χR(div vε + vε· ∇h)

)
+

ˆ
aN2

ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
−
ˆ
aNε|log ε|

2
∂t(1− |uε|2)

(
v⊥ε ·∇χR + λεβχRpε,%−χRvε·

(
∇⊥h− F⊥ − 2

Nε
|log ε|

vε

))
−
ˆ
aNε|log ε|

2
pε,%∇(1− |uε|2) ·

(
∇⊥χR + χR

(
∇⊥h− 2F⊥ − 2

Nε
|log ε|

vε

))
. (4.22)

Noting that by identity (4.8) we have

|log ε|
ˆ
aχR∂tµε = |log ε|

ˆ
aχRcurlVε = −|log ε|

ˆ
aχRVε · ∇⊥h− |log ε|

ˆ
aVε · ∇⊥χR,

it is immediate to deduce from (4.18) the following identity for the time-derivative of the modulated energy
excess,

∂tD̂ε,%,R =

ˆ
aχR

2
Vε · (|log ε|(∇⊥h− F⊥)− 2Nεvε) +

ˆ
aNεχR〈∂tuε, iuε〉(div vε + vε· ∇h)

+

ˆ
aχRNε(Nεvε−jε) · ∂tvε−

ˆ
λεαaχR|∂tuε|2 +

ˆ
aN2

ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
−
ˆ
a∇χR ·

(
〈∂tuε,∇uε − iuεNεvε〉+

|log ε|
2

V ⊥ε

)
. (4.23)

Now using equation (3.1) for the time evolution of vε and an integration by parts, we find
ˆ
aχRNε(Nεvε−jε) · ∂tvε

=

ˆ
aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
aχRNε(Nεvε−jε) · ∇pε

=

ˆ
aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
aχRNε(Nεvε−jε) · ∇(pε−pε,%)

−
ˆ
aχRNεpε,%(Nε div vε−div jε)−

ˆ
aχRNεpε,%∇h · (Nεvε−jε)−

ˆ
aNεpε,%∇χR · (Nεvε−jε).
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Combining this with identity (4.9) yields
ˆ
aχRNε(Nεvε−jε) · ∂tvε

=

ˆ
aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
aχRNε(Nεvε−jε) · ∇(pε−pε,%)

−
ˆ
aχRNεpε,%∇h · (Nεvε−jε)−

ˆ
aNεpε,%∇χR · (Nεvε−jε)

−
ˆ
aχRNεpε,%

(
Nε div vε +jε · ∇h− λεα〈∂tuε, iuε〉+

|log ε|
2

F⊥ · ∇|uε|2 −
λεβ|log ε|

2
∂t|uε|2

)
=

ˆ
aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
aχRNε(Nεvε−jε) · ∇(pε−pε,%)−

ˆ
aχRN

2
ε pε,%(div vε + vε· ∇h)

−
ˆ
aNεpε,%∇χR · (Nεvε−jε) +

ˆ
aχRNεpε,%

(
λεα〈∂tuε, iuε〉 −

|log ε|
2

F⊥ · ∇|uε|2 +
λεβ|log ε|

2
∂t|uε|2

)
.

Inserting this into (4.23), we then find

∂tD̂ε,%,R =

ˆ
aχR

2
Vε ·

(
|log ε|(∇⊥h− F⊥)− 2Nεvε

)
+

ˆ
aχRNε〈∂tuε, iuε〉(div vε + vε· ∇h+ λεα pε,%)

−
ˆ
aχRN

2
ε pε,%(div vε + vε· ∇h) +

ˆ
aχRNε(Nεvε−jε) · Γεcurl vε +

ˆ
aχRNε(Nεvε−jε) · ∇(pε−pε,%)

+

ˆ
aN2

ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
+

ˆ
aχR

2
Nε|log ε|pε,%

(
λεβ∂t|uε|2 − F⊥ · ∇|uε|2

)
−
ˆ
λεαaχR|∂tuε|2 −

ˆ
a∇χR ·

(
〈∂tuε,∇uε − iuεNεvε〉+

|log ε|
2

V ⊥ε +Nεpε,%(Nεvε−jε)
)
. (4.24)

Using identity (4.11) to transform Vε into Ṽε,%, the first right-hand side term may be rewritten as

ˆ
aχR

2
Vε · (|log ε|(∇⊥h− F⊥)− 2Nεvε)

=

ˆ
aχR

2

(
Ṽε,% +Nεvε∂t(1− |uε|2) +Nεpε,%∇|uε|2

)
· (|log ε|(∇⊥h− F⊥)− 2Nεvε),

while the last right-hand side term of (4.24) becomes

ˆ
a∇χR ·

(
〈∂tuε,∇uε − iuεNεvε〉+

|log ε|
2

V ⊥ε +Nεpε,%(Nεvε−jε)
)

=

ˆ
a∇χR ·

(
〈∂tuε − iuεNεpε,%,∇uε − iuεNεvε〉+N2

ε pε,%vε(1− |uε|2)

+
|log ε|

2
Ṽ ⊥ε,% +

Nε|log ε|
2

v⊥ε ∂t(1− |uε|2) +
Nε|log ε|

2
pε,%∇⊥|uε|2

)
.

Further decomposing

|∂tuε|2 = |∂tuε − iuεNεpε,%|2 + 2Nεpε〈∂tuε − iuεNεpε,%, iuε〉+N2
ε |pε,%|2 − (1− |uε|2)N2

ε |pε,%|2,
〈∂tuε, iuε〉 = 〈∂tuε − iuεNεpε,%, iuε〉+ |uε|2Nεpε,%,

the result (4.22) easily follows after straightforward simplifications.
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Step 3: conclusion. In the right-hand side of (4.22), the term
´
aχRNε(Nεvε−jε) · Γεcurl vε is linear

in Nεvε−jε, preventing a direct Grönwall argument. As already explained, just as in [82], the idea is to
replace this bad term by others involving the modulated stress-energy tensor S̃ε, which is indeed a nicer
quadratic quantity. For that purpose, let us integrate the result of Lemma 4.3 in space against χRΓ̄⊥ε , where
Γ̄ε : [0, T )→W 1,∞(Rd) is a given field (we would like to simply choose Γ̄ε = Γε, but as we will see a suitable
perturbation of it is needed), and obtain
ˆ
χRΓ̄⊥ε ·div S̃ε =

ˆ
λεαaχRΓ̄⊥ε ·

〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
−
ˆ
aχRΓ̄ε · (Nεvε +|log ε|F⊥/2)µε

+

ˆ
aχRNε(Nεvε−jε) · Γ̄εcurl vε +

ˆ
λεβ

aχR
2
|log ε|Γ̄⊥ε · Ṽε,% +

ˆ
λεβ

aχR
2
Nε|log ε|pε,% Γ̄⊥ε · ∇|uε|2

+

ˆ
aχRNεΓ̄

⊥
ε · (Nεvε−jε)(div vε +∇h ·vε−λεα pε,%) +

ˆ
aχRλεβNε|log ε|∂t(1− |uε|2)(Γ̄⊥ε ·vε)

−
ˆ
aχR

2
Γ̄⊥ε · ∇h

(
|∇uε− iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + (1− |uε|2)(N2

ε |vε|2 + f)
)
−
ˆ
aχR

2
(1− |uε|2)Γ̄⊥ε · ∇f

+

ˆ
λεαaχRN

2
ε pε,%(1− |uε|2)(Γ̄⊥ε ·vε) +

ˆ
aχR

2
Nε|log ε|(F⊥ · ∇|uε|2)(Γ̄⊥ε ·vε).

In this last right-hand side, the term
´
aχRNε(Nεvε−jε) · Γ̄εcurl vε exactly corresponds to the bad term

in the right-hand side of (4.22). Replacing it by this new expression involving the modulated stress-energy
tensor, and treating as errors all the terms involving the difference Γ̄ε − Γε, we find

∂tD̂ε,%,R =

3∑
j=0

T jε,R + Igε,%,R + Inε,%,R−
ˆ
χR∇Γ̄⊥ε : S̃ε−

ˆ
λεαaχRΓ⊥ε ·

〈
∂tuε − iuεNεpε,%,∇uε − iuεNεvε

〉
+

ˆ
aχR

2
Γ⊥ε · ∇h

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
−
ˆ
λεαaχR|∂tuε − iuεNεpε,%|2

+

ˆ
aχRΓε · (Nεvε +|log ε|F⊥/2)µε +

ˆ
aχR

2
Ṽε,% · (−λεβ|log ε|Γ⊥ε + |log ε|(∇⊥h− F⊥)− 2Nεvε)

+

ˆ
aχRNε

(
〈∂tuε − iuεNεpε,%, iuε〉+ Γ̄⊥ε · (jε −Nεvε)

)
(div vε + vε· ∇h− λεα pε,%),

where Igε,%,R and Inε,%,R are given as in the statement, and where we have set

T 0
ε,%,R :=

ˆ
aχRNε(Nεvε−jε) · ∇(pε−pε,%),

T 1
ε,%,R :=

ˆ
aχR

2
(1− |uε|2)(N2

ε |vε|2 + f)Γ̄⊥ε · ∇h−
ˆ
aN2

ε pε,%(1− |uε|2)
(
vε· ∇χR + χR(div vε + vε· ∇h)

)
+

ˆ
aχR

2
(1− |uε|2)Γ̄⊥ε · ∇f −

ˆ
λεαaχRN

2
ε pε,%(1− |uε|2)Γ̄⊥ε ·vε,

T 2
ε,%,R :=−

ˆ
aNε|log ε|

2
pε,%∇(1− |uε|2) ·

(
∇⊥χR + χR

(
∇⊥h− 2F⊥ − λεβΓ̄⊥ε − 2

Nε
|log ε|

vε

))
+

ˆ
aχR

2
Nε|log ε|

(
F⊥ · ∇(1− |uε|2)

)
Γ̄⊥ε ·vε,

T 3
ε,%,R :=−

ˆ
aNε|log ε|

2
∂t(1− |uε|2)

(
v⊥ε ·∇χR + λεβχRpε,%−χRvε·

(
∇⊥h− F⊥ − 2λεβΓ⊥ε − 2

Nε
|log ε|

vε

))
+

ˆ
aN2

ε

2
∂t
(
(1− |uε|2)(ψε,%,R − χR|vε|2)

)
.
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It remains to estimate these four error terms T iε,%,R, 0 ≤ i ≤ 3. First consider the term T 0
ε,%,R. In the

dissipative case we take % = ∞, and T 0
ε,%,R = 0. In the Gross-Pitaevskii case, using the pointwise estimate

of Lemma 4.2 for jε −Nεvε, and using Assumption B(b), with in particular

‖∇(ptε−ptε,%)‖L2 ∩L∞ . ‖∇ptε‖L2 ∩L∞ + %−1‖ptε,%‖L2 ∩L∞ .t 1,

we find

|T 0
ε,%,R| .t Nε‖∇uε − iuεNεvε‖L2(B2R)(‖∇(pε− pε,%)‖L2 + ‖1− |uε|2‖L2(B2R))

+N2
ε ‖1− |uε|2‖L2(B2R)‖∇(pε−pε,%)‖L2

.t εNεE∗ε,R + (1 + εNε)Nε(E∗ε,R)1/2‖∇(pε−pε,%)‖L2 .

Second, using (2.1)–(2.2), Assumption B, and the assumption ‖Γ̄ε‖L∞ .t 1, we obtain in the dissipative case

|T 1
ε,%,R| .t ε

(
λ−1/2
ε N2

ε +R(1 + λ2
ε|log ε|2)

)
(E∗ε,R)1/2,

or in the Gross-Pitaevskii case,

|T 1
ε,%,R| .t ε(N2

ε + λ2
ε|log ε|2)(E∗ε,R)1/2.

Integrating by parts, T 2
ε,%,R takes the form

T 2
ε,%,R = −

ˆ
Nε|log ε|

2
(1− |uε|2)

× div

(
apε,%∇⊥χR + aχRF

⊥(Γ̄⊥ε ·vε) + apε,%χR

(
∇⊥h− 2F⊥ − λεβΓ̄⊥ε − 2

Nε
|log ε|

vε

))
,

and hence, again using (2.1)–(2.2), Assumption B, and the bound ‖Γ̄ε‖W 1,∞ . 1, we obtain, for all θ > 0, in
the dissipative case, in the considered regimes,

‖T 2
ε,%,R‖L1

t
.t,θ εNε|log ε|(1 + λεR

θ)(E∗ε,R)1/2,

or in the Gross-Pitaevskii case,

|T 2,t
ε,%,R| .t,θ εNε|log ε|(1 + λε%

θ)(E∗ε,R)1/2 . εN2
ε %

θ(E∗ε,R)1/2.

Finally, we observe that the choice (4.3) of ψε,%,R exactly yields

T 3
ε,%,R =

ˆ
aN2

ε

2
(1− |uε|2)∂t(ψε,%,R − χR|vε|2) =

ˆ
aN2

ε

2
(1− |uε|2)(∂tψε,%,R − 2χR vε· ∂tvε),

and hence, using (4.4)–(4.5) and Assumption B, in the dissipative case, we find

‖T 3
ε,%,R‖L1

t
. εN2

ε

(
1 +
|log ε|
Nε

)
(E∗ε,R)1/2 . εNε|log ε|(E∗ε,R)1/2,

or in the Gross-Pitaevskii case,

|T 3,t
ε,%,R| . εN2

ε %
θ(E∗ε,R)1/2.

The estimate (4.16) now follows from the above with I ′ε,%,R := T 0
ε,%,R + T 1

ε,%,R + T 2
ε,%,R + T 3

ε,%,R.
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5 Vortex analysis
In this section, we first recall and revisit some standard tools for vortex analysis, which are needed in

order to control the various terms appearing in the decomposition in Lemma 4.4. They will only be used in
the dissipative case, so we may restrict to the situation when Nε . |log ε|.

5.1 Ball construction lower bounds
We need a version of the ball construction lower bounds à la Jerrard-Sandier [72, 52] which is localizable

in order to be adapted both to the weighted case and to the setting of the infinite plane with no finite energy
control (hence no a priori finiteness assumption on the number of vortices), and which further yields very
small errors (we need an error of order o(N2

ε ), which gets very small when Nε diverges slowly). For that
purpose we use the version developed in [75], which in particular allows to cover the plane with balls centered
at the points of the lattice RZ2, make the standard ball construction in each ball of the covering, assemble
all the constructed balls, and then discard some balls from the collection so as to make it disjoint again. The
error in the lower bounds given by this ball construction is essentially Nε| log r|, where r is the total radius
of the balls, so that we need to take r large enough (almost as large as O(1) when Nε diverges slowly), but
here the pinning weight adds again a difficulty since it may vary significantly over the size of the balls of this
construction, thus perturbing the lower bound itself.

The following preliminary result describes the precise contribution of the vortices to the energy, and in
particular defines the vortex “locations”.

Lemma 5.1 (Localized lower bound). Let h : R2 → R, a := eh, with 1 . a ≤ 1, let uε : R2 → C,
vε : R2 → R2, with ‖curl vε‖L2 ∩L∞ . 1. Let 0 < ε � 1, 1 ≤ Nε . |log ε|, R ≥ 1, and assume that
log E∗ε,R � |log ε|. Then, for some r̄ ' 1, for all ε > 0 small enough, and all r ∈ (ε1/2, r̄), there exists a
locally finite union of disjoint closed balls Brε,R =

⊎
j B

j, Bj := B̄(yj , rj), monotone in r, covering the set
{x : |uε(x)| < 1/2}, such that

∑
j:yj∈BR(z) rj ≤ r for all z ∈ RZ2, and such that, letting dj := deg(uε, ∂B

j)

and νrε,R := 2π
∑
j djδyj , the following hold,

(i) Localized lower bound: for all φ ∈W 1,∞(R2) with φ ≥ 0, we have for all j

1

2

ˆ
Bj
φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ πφ(yj)|dj | log(r/ε)−O(rjE∗ε,R)‖∇φ‖L∞

−O
(
r2
jN

2
ε + |dj | log

(
2 +

E∗ε,R
|log ε|

))
‖φ‖L∞ , (5.1)

and similarly, for all φ ∈W 1,∞(R2) supported in a ball of radius R,

1

2

ˆ
Brε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r/ε)

2

ˆ
φ|νrε,R| −O(rE∗ε,R)‖∇φ‖L∞

−O
(
r2N2

ε +
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

))
‖φ‖L∞ ; (5.2)

(ii) Number of vortices:

sup
z

ˆ
BR(z)

|νrε,R| . Nε +
E∗ε,R
|log ε|

; (5.3)
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(iii) Jacobian estimate: for all γ ∈ [0, 1],

sup
z
‖νrε,R − µ̃ε‖(Cγc (BR(z)))∗ . rγ

(
Nε +

E∗ε,R
|log ε|

)
+ εγ/2E∗ε,R + ε2.

Proof. Step 1: proof of (i)–(ii). We use the notation Ẽ∗ε,R := supz
´
BR(z)

ẽε, with

ẽε :=
1

2
|∇uε − iuεNεvε|2 +

amin

4ε2
(1− |uε|2)2, amin := inf

x
a(x) ≥ 1

2
.

Note that by assumption we have in particular Ẽ∗ε,R ≤ E∗ε,R . ε−1/5. We may apply [75, Proposition 2.1] with
Ωε = R2, Aε = Nεvε, with ε replaced by ε/

√
amin, and with open cover (Uα)α = (BR(z))z∈RZ2 (note that

the argument in [75] indeed works identically on the whole space, and that the energy bound is only needed
uniformly on all elements of the open cover). For some ε0, C0, r̄ ' 1, for all ε < ε0 and all r ∈ (ε1/2, r̄), we
obtain a locally finite collection Brε,R of disjoint closed balls covering the set {x : |uε(x)| < 1/2}, such that
for all B ∈ Brε,R we have ˆ

B

(
ẽε +

N2
ε

2
|curl vε|2

)
≥ π|dB |

(
log

r

εC̄B
− C0

)
,

where we have set dB := deg(uε, ∂B), and where C̄B is defined as in [75, equation (2.4)]. Moreover, the
construction in [75] ensures that the collection Brε,R is monotone in r, and that BR(z)∩Brε,R has total radius
bounded by r for all z ∈ RZ2. By [75, Lemma 2.1], we have C̄B ≤ 16|log ε|−1Ẽ∗ε,R . |log ε|−1E∗ε,R, so that
the above becomes, for all B ∈ Brε,R,

ˆ
B

(
ẽε +

N2
ε

2
|curl vε|2

)
≥ π|dB | log(r/ε)− |dB |O

(
log
(

2 +
E∗ε,R
|log ε|

))
. (5.4)

Let r ∈ (ε1/2, r̄) be fixed, and set Brε,R =
⊎
j B

j , Bj := B̄(yj , rj), with corresponding degrees dj := dBj .
Noting that by assumption we have ˆ

Bj
|curl vε|2 . |Bj | . r2

j ,

the result (5.4) takes the following form, for all j,
ˆ
Bj
ẽε ≥ π|dj | log(r/ε)− |dj |O

(
log
(

2 +
E∗ε,R
|log ε|

))
−O(r2

jN
2
ε ). (5.5)

Using the assumption log E∗ε,R � |log ε| and the choice r > ε1/2, the above right-hand side is bounded from
below by π

2 |dj ||log ε|(1− o(1))−O(r2
jN

2
ε ), and hence, summing over Bj ∈ Brε,R with yj ∈ BR(z), we find for

all ε > 0 small enough,

π

3
|log ε|

∑
j:yj∈BR(z)

|dj | ≤
ˆ
BR+1(z)∩Brε,R

ẽε +O(N2
ε )

∑
j:yj∈BR(z)

r2
j . E∗ε,R + r2N2

ε ,

and hence, with the choice Nε . |log ε| and r . 1,

∑
j:yj∈BR(z)

|dj | . Nε +
E∗ε,R
|log ε|

, (5.6)
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that is, item (ii). Let us now prove item (i). Let φ ∈W 1,∞(R2), φ ≥ 0. For all Bj ∈ Brε,R, we have from (5.5)
ˆ
Bj
φẽε ≥ φ(yj)

ˆ
Bj
ẽε − rj‖∇φ‖L∞

ˆ
Bj
ẽε

≥ πφ(yj)|dj | log(r/ε)− φ(yj)|dj |O
(

log
(

2 +
E∗ε,R
|log ε|

))
− φ(yj)O(r2

jN
2
ε )− rj‖∇φ‖L∞

ˆ
Bj
ẽε,

hence
ˆ
Bj
φẽε ≥ πφ(yj)|dj | log(r/ε)−O

(
r2
jN

2
ε + |dj |

(
2 +

E∗ε,R
|log ε|

))
‖φ‖L∞ −O(rjE∗ε,R)‖∇φ‖L∞ .

Further assuming that φ is supported in BR(z) for some z ∈ RZ2, summing the above with respect to j with
yj ∈ BR, setting νrε,R := 2π

∑
j djδyj , and using (5.6), we find

ˆ
Brε,R

φẽε ≥
log(r/ε)

2

ˆ
φ|νrε,R| −O

(
r2N2

ε +
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

))
‖φ‖L∞ −O(rE∗ε,R)‖∇φ‖L∞ .

Item (ii) then follows by definition of ẽε with amin ≤ a.

Step 2: proof of (iii). Using item (i) and arguing just as in [82, item (5) of Proposition 4.4], for γ ∈ [0, 1],
we obtain for all r ∈ (ε1/2, r̄) and all φ ∈ Cγc (R2) supported in BR(z) for some z ∈ RZ2,∣∣∣∣ˆ φ(νrε,R − µ̃ε)

∣∣∣∣ . rγ‖φ‖Cγ
∑

j:yj∈BR(z)

|dj |

+ εγ/2‖φ‖Cγ
ˆ
BR

(
|∇uε − iuεNεvε|2 +

(1− |uε|2)2

2ε2
+Nε|1− |uε|2||curl vε|

)
. rγ

(
Nε +

E∗ε,R
|log ε|

)
|φ|Cγ +

(
εγ/2E∗ε,R + ε2+γ/2N2

ε

ˆ
BR

|curl vε|2
)
‖φ‖Cγ , (5.7)

and the result follows from the assumption ‖curl vε‖L2 . 1.

In Section 6 below, strong estimates are proved on the modulated energy excess D∗ε,R, but these estimates
involve the modulated energy E∗ε,R itself. In order to buckle the argument, it is thus crucial to independently
find an optimal control on E∗ε,R, or equivalently on the number of vortices. Note that in the case without
pinning and forcing no cut-off is needed and this difficulty is absent (the excess is then indeed simply defined
by Dε = Eε − πNε|log ε|, cf. [82]). This control of E∗ε,R is the main content of the following result, and
allows to further refine the conclusions of Lemma 5.1 above. Particular attention is needed in the regime
Nε . log |log ε| to ensure an error as small as o(N2

ε ) in the lower bound. Various useful corollaries are further
included. In particular, item (vi) gives an optimal control of the energy inside the balls, measured in Lp for
any p < 2; and since this result in Lp is already enough for our purposes, it is not necessary here to adapt
the more precise Lorentz estimates of [83, Corollary 1.2] to the present weighted context, and we instead use
a more direct argument adapted from [86].

Proposition 5.2 (Refined lower bound). Let h : R2 → R, a := eh, with 1 . a ≤ 1 and ‖∇h‖L∞ . 1, let
uε : R2 → C, vε : R2 → R2, with ‖curl vε‖L1 ∩L∞ , ‖vε‖L∞ . 1. Let 0 < ε� 1, 1� Nε . |log ε|, and R ≥ 1
with |log ε| . R . |log ε|n for some n ≥ 1, and assume that D∗ε,R . N2

ε . Then E∗ε,R . Nε|log ε| holds for all
ε > 0 small enough.

Moreover, for some r̄ ' 1, for all ε > 0 small enough and all r ∈ (ε1/2, r̄), there exists a locally finite
union of disjoint closed balls Brε,R, monotone in r and covering the set {x : |uε(x)| < 1/2}, and for all

50



r0 ∈ (ε1/2, r̄) and r ≥ r0 there exists a locally finite union of disjoint closed balls B̃r0,rε,R , monotone in r

and covering the set {x : ||uε(x)| − 1| ≥ |log ε|−1}, such that Br0ε,R ⊂ B̃
r0,r0
ε,R , such that for all z ∈ RZ2

the sum of the radii of the balls of the collection Brε,R centered at points of BR(z) is bounded by r and the
sum of the radii of the balls of the collection B̃r0,rε,R centered at points of BR(z) is bounded by Cr, and such
that, letting Brε,R =

⊎
j B

j, Bj := B̄(yj , sj), dj := deg(uε, ∂B
j), and defining the point-vortex measure

νrε,R := 2π
∑
j djδyj , the following properties hold,

(i) Lower bound: in the regime Nε � log |log ε|, for e−o(Nε) ≤ r � Nε|log ε|−1, we have for all z ∈ R2,

1

2

ˆ
Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
aχzR|νrε,R| − o(N2

ε ), (5.8)

while in the regime 1 � Nε . log |log ε| we have for all e−o(Nε) ≤ r � 1 and all r0 ≤ r with
ε1/2 < r0 � Nε|log ε|−1, for all z ∈ R2,

1

2

ˆ
B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
aχzRν

r0
ε,R − o(N

2
ε ); (5.9)

(ii) Number of vortices: for ε1/2 < r � 1,

sup
z

ˆ
BR(z)

|νrε,R| . Nε, (5.10)

and moreover in the regime 1� Nε � |log ε|1/2 the measure νrε,R is nonnegative for all e−o(1)N−1
ε |log ε| ≤

r < r̄;
(iii) Jacobian estimate: for ε1/2 < r � 1, for all γ ∈ [0, 1],

sup
z
‖νrε,R − µ̃ε‖(Cγc (BR(z)))∗ . rγNε + εγ/2Nε|log ε|, (5.11)

sup
z
‖µε − µ̃ε‖(Cγc (BR(z)))∗ . εγNε|log ε|n+1, (5.12)

hence in particular, for all γ ∈ (0, 1],

sup
z
‖µ̃ε‖(Cγc (BR(z)))∗ 'γ Nε, sup

z
‖µε‖(Cγc (BR(z)))∗ 'γ Nε; (5.13)

(iv) Excess energy estimate: for all φ ∈W 1,∞(R2) supported in a ball of radius R,
ˆ
R2

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
. (D∗ε,R + o(N2

ε ))‖φ‖W 1,∞ ; (5.14)

(v) Energy outside small balls: in the regime Nε � log |log ε|, we have for all e−o(Nε) ≤ r < r̄,

sup
z

ˆ
R2\Brε,R

χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ D∗ε,R + o(N2

ε ), (5.15)

while in the regime 1 � Nε . log |log ε| we have for all r ≥ e−o(Nε) and all r0 ≤ r with ε1/2 < r0 �
Nε|log ε|−1,

sup
z

ˆ
R2\B̃r0,rε,R

χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ D∗ε,R + o(N2

ε ); (5.16)
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(vi) Lp-estimate inside small balls: in the regime Nε � log |log ε|, we have for all ε1/2 < r < r̄, for all
1 ≤ p < 2,

sup
z

ˆ
Brε,R

χzR|∇uε − iuεNεvε|p .p (D∗ε,R + o(N2
ε ))p/2, (5.17)

while in the regime 1 � Nε . log |log ε| we have for all r > ε1/2 and all r0 ≤ r with ε1/2 < r0 �
Nε|log ε|−1, for all 1 ≤ p < 2,

sup
z

ˆ
B̃r0,rε,R

χzR|∇uε − iuεNεvε|p .p (D∗ε,R + o(N2
ε ))p/2. (5.18)

Proof. We split the proof into nine steps. The main work consists in checking that the assumptions imply
the optimal bound on the energy E∗ε,R . Nε|log ε|. The conclusion is obtained in Step 5 for the regime
Nε & log |log ε|, but only in Step 8 for the complementary regime. The various other conclusions are then
deduced in Step 9.

Step 1: rough a priori estimate on the energy. In this step, we prove E∗ε,R . R2|log ε|2, and hence by the
choice of R we deduce E∗ε,R . |log ε|m for some m ≥ 4. Decomposing µε = Nεcurl vε +curl (jε −Nεvε), the
assumption D∗ε,R . N2

ε yields for all z ∈ R2,

Ezε,R ≤ D∗ε,R +
|log ε|

2

ˆ
aχzRµε . N2

ε +Nε|log ε|
ˆ
aχzR|curl vε|+ |log ε|

ˆ
|∇(aχzR)||jε −Nεvε|. (5.19)

Using the pointwise estimate of Lemma 4.2 for jε − Nεvε, using |∇(aχzR)| . 1B2R(z), ‖curl vε‖L1 . 1, and
‖vε‖L∞ . 1, we obtain

Ezε,R . |log ε|2 + |log ε|
(ˆ

B2R(z)

(1− |uε|2)2
)1/2(ˆ

B2R(z)

|∇uε − iuεNεvε|2
)1/2

+R|log ε|
(ˆ

B2R(z)

|∇uε − iuεNεvε|2
)1/2

+RNε|log ε|
( ˆ

B2R(z)

(1− |uε|2)2
)1/2

. |log ε|2 + ε|log ε|E∗ε,R +R|log ε|(E∗ε,R)1/2.

Taking the supremum over z, and absorbing E∗ε,R into the left-hand side, the result follows.

Step 2: applying Lemma 5.1. The result of Step 1 yields in particular log E∗ε,R � |log ε|, which allows to
apply Lemma 5.1. For fixed r ∈ (ε1/2, r̄), let Brε,R =

⊎
j B

j denote the union of disjoint closed balls given by
Lemma 5.1, and let νrε,R denote the associated point-vortex measure. Using Lemma 5.1(ii) in the form

ˆ
BR(z)

|νrε,R| =
∑

j:yj∈BR(z)

|dj | . Nε +
E∗ε,R
|log ε|

, (5.20)

Lemma 5.1(i) gives, for all φ ∈W 1,∞(R2) with φ ≥ 0, if φ is supported in a ball of radius R,

1

2

ˆ
Brε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
φ|νrε,R| −O(rE∗ε,R)‖∇φ‖L∞

−O
(
r2N2

ε + |log r|
(
Nε +

E∗ε,R
|log ε|

)
+
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

))
‖φ‖L∞ . (5.21)
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We now prove the following consequence of these bounds,

sup
z

ˆ
R2\Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ D∗ε,R +O

(
rE∗ε,R + (|log r|+ r|log ε|)

(
Nε +

E∗ε,R
|log ε|

)
+
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

))
. (5.22)

First, the lower bound (5.21) applied to φ = aχzR is rewritten as follows,

1

2

ˆ
R2\Brε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ T r,zε,R +O

(
rE∗ε,R + r2N2

ε + |log r|
(
Nε +

E∗ε,R
|log ε|

)
+
(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

))
,

where we have set

T r,zε,R :=
1

2

ˆ
aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
.

If νrε,R was replaced by µε in this last expression, we would recognize the definition of the excess Dzε,R,
and the result (5.22) would follow. Hence, in order to deduce (5.22), it only remains to check that for all
φ ∈W 1,∞(R2) supported in a ball of radius R,∣∣∣ ˆ φ(µε − νrε,R)

∣∣∣ . r
(
Nε +

E∗ε,R
|log ε|

)
‖φ‖W 1,∞ + o(|log ε|−1)‖φ‖W 1,∞ . (5.23)

Using the result of Step 1 in the form ε1/2|log ε|E∗ε,R � 1, Lemma 5.1(iii) with γ = 1 yields∣∣∣ˆ φ(µ̃ε − νrε,R)
∣∣∣ . r

(
Nε +

E∗ε,R
|log ε|

)
‖φ‖W 1,∞ + o(|log ε|−1)‖φ‖W 1,∞ .

It remains to replace µ̃ε by µε in this estimate. By definition (4.10), with ‖vε‖L∞ . 1 and |∇φ| ≤
1BR(z)‖φ‖W 1,∞ , and using the result of Step 1 in the form εRNε|log ε|(E∗ε,R)1/2 = o(1), we find∣∣∣ˆ φ(µ̃ε − µε)

∣∣∣ ≤ Nε ˆ
B2R(z)

|∇φ||vε||1− |uε|2|

. RNε‖φ‖W 1,∞

(ˆ
B2R(z)

(1− |uε|2)2
)1/2

. εRNε(E∗ε,R)1/2‖φ‖W 1,∞ = o(|log ε|−1)‖φ‖W 1,∞ , (5.24)

and the result (5.23) follows.

Step 3: energy and number of vortices. In this step, we show that (5.20) is essentially an equality, in the
sense that for all ε1/2 < r � 1,

sup
z

ˆ
χzR|νrε,R| . Nε +

E∗ε,R
|log ε|

. Nε + sup
z

ˆ
χzR|νrε,R|. (5.25)

The lower bound already follows from (5.20). We now turn to the upper bound. Since the energy excess
satisfies Dzε,R . N2

ε , we deduce from (5.23)

Ezε,R ≤ Dzε,R +
|log ε|

2

ˆ
aχzRµε ≤

|log ε|
2

ˆ
aχzRν

r
ε,R +O

(
N2
ε + r|log ε|

(
Nε +

E∗ε,R
|log ε|

))
. (5.26)
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Taking the supremum in z, and absorbing E∗ε,R in the left-hand side with r � 1, the upper bound in (5.25)
follows.

Step 4: estimate on the negative part of the vorticity. In this step, we prove that for all ε1/2 < r � 1,

sup
z

ˆ
χzR|νrε,R| ≤ (1 + o(1)) sup

z

ˆ
χzRν

r
ε,R +O(Nε). (5.27)

This result is used in Step 5 below in order to replace
´
aχzRν

r
ε,R (resp.

´
aχzRµε) by

´
χzRν

r
ε,R (resp.

´
χzRµε),

which happens to be crucial if we want to avoid integrability assumptions on ∇h, as we do here. The lower
bound (5.21) of Step 2 with φ = aχyR yields for all y ∈ R2, using the upper bound in (5.25) to replace the
energy E∗ε,R in the error terms,

Eyε,R ≥
1

2

ˆ
Brε,R

aχyR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
aχyR|ν

r
ε,R|

−O
(

(|log r|+ r|log ε|)
(
Nε + sup

z

ˆ
χzR|νrε,R|

)
+
(
Nε + sup

z

ˆ
χzR|νrε,R|

)
log
(

2 +
E∗ε,R
|log ε|

))
.

For e−o(|log ε|) < r � 1, using the result of Step 1 in the form log E∗ε,R � |log ε|, we obtain for all y ∈ R2,

Eyε,R ≥
|log ε|

2

ˆ
aχyR|ν

r
ε,R| − o(|log ε|) sup

z

ˆ
χzR|νrε,R| −O(Nε|log ε|). (5.28)

On the other hand, the upper bound (5.26) yields

Eyε,R ≤
|log ε|

2

ˆ
aχyRν

r
ε,R +O(Nε|log ε|) + o(1)E∗ε,R, (5.29)

and thus, taking the supremum over y and absorbing E∗ε,R in the left-hand side,

E∗ε,R ≤
1

2
|log ε|(1 + o(1)) sup

z

ˆ
aχzR|νrε,R|+O(Nε|log ε|),

so that (5.29) takes the form, for all y ∈ R2,

Eyε,R ≤
|log ε|

2

ˆ
aχyRν

r
ε,R +O(Nε|log ε|) + o(|log ε|) sup

z

ˆ
χzR|νrε,R|.

Combining this with (5.28), dividing both sides by 1
2 |log ε|, and taking the supremum over y, we find

sup
z

ˆ
χzR(νrε,R)− ≤ sup

z

ˆ
aχzR(|νrε,R| − νrε,R) ≤ O(Nε) + o(1) sup

z

ˆ
χzR|νrε,R|.

This implies

sup
z

ˆ
χzR|νrε,R| = sup

z

ˆ
χzR(νrε,R + 2(νrε,R)−) ≤ sup

z

ˆ
χzRν

r
ε,R +O(Nε) + o(1) sup

z

ˆ
aχzR|νrε,R|,

and the result (5.27) follows after absorbing the last term in the left-hand side.

Step 5: refined bound on the energy. In this step, we prove E∗ε,R . (Nε + log |log ε|)|log ε|. By (5.20)
this implies in particular supz

´
χzR|νrε,R| . Nε + log |log ε|. In the regime Nε & log |log ε|, these bounds are
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already the optimal ones. The regime with a “small” number of vortices 1 � Nε � log |log ε| is treated in
Steps 6–8 below. Let ε1/2 < r � 1 to be suitably chosen later. Using (5.23), the bound on the energy excess
D∗ε,R . N2

ε yields for all z ∈ RZ2

Ezε,R ≤ Dzε,R +
|log ε|

2

ˆ
aχzRµε . N2

ε + |log ε|
ˆ
χzR|νrε,R|+ r(Nε|log ε|+ E∗ε,R),

and hence, using the result (5.27) of Step 4,

E∗ε,R . Nε|log ε|+ |log ε| sup
z

ˆ
χzRν

r
ε,R + rE∗ε,R.

Using (5.23) again, and absorbing E∗ε,R in the left-hand side with r � 1, this takes the form

E∗ε,R . Nε|log ε|+ |log ε| sup
z

ˆ
χzRµε. (5.30)

It remains to estimate
´
χzRµε. Decomposing µε = Nεcurl vε +curl (jε−Nεvε), using the pointwise estimate

of Lemma 4.2 for jε − Nεvε, using |∇χzR| . R−11B2R(z), ‖∇χzR‖L2 . 1, ‖curl vε‖L1 . 1, ‖vε‖L∞ . 1, and
using the result of Step 1 in the forms εR−1E∗ε,R . 1 and ε(E∗ε,R)1/2 . 1, we find

ˆ
χzRµε = Nε

ˆ
χzRcurl vε−

ˆ
∇⊥χzR · (jε −Nεvε) . Nε +

ˆ
|∇χzR||∇uε − iuεNεvε|.

Regarding the last integral, we distinguish between the contributions inside and outside the balls Brε,R, with
|∇χzR| . R−11B2R(z) ≤ R−1χz2R, ‖∇χzR‖L2 . 1, and |B2R(z) ∩ Brε,R| . r2,

ˆ
χzRµε . Nε +

ˆ
R2\Brε,R

|∇χzR||∇uε − iuεNεvε|+R−1

ˆ
B2R(z)∩Brε,R

|∇uε − iuεNεvε|

. Nε +
(ˆ

R2\Brε,R
χz2R|∇uε − iuεNεvε|2

)1/2

+ rR−1
(ˆ

B2R(z)

|∇uε − iuεNεvε|2
)1/2

. (5.31)

Estimating the last right-hand side term by rR−1(E∗ε,R)1/2, using (5.22) to estimate the first, using the bound
on the energy excess D∗ε,R . N2

ε , and noting that k1/2 log1/2(2 + k)� k holds for k � 1, we obtain
ˆ
χzRµε . Nε + (D∗ε,R)1/2 + rR−1(E∗ε,R)1/2 + r1/2(Nε|log ε|+ E∗ε,R)1/2

+
(
Nε +

E∗ε,R
|log ε|

)1/2
(
|log r|+ log

(
2 +

E∗ε,R
|log ε|

))1/2

. Nε + r1/2(Nε|log ε|)1/2 + r1/2(E∗ε,R)1/2 + o(1)
E∗ε,R
|log ε|

+ |log r|1/2
(
Nε +

E∗ε,R
|log ε|

)1/2

.

Combining this with (5.30) yields

E∗ε,R
|log ε|

. Nε + r1/2(Nε|log ε|)1/2 + r1/2(E∗ε,R)1/2 + o(1)
E∗ε,R
|log ε|

+ |log r|1/2
(
Nε +

E∗ε,R
|log ε|

)1/2

,

and hence,

E∗ε,R
|log ε|

. Nε + |log r|+ r1/2|log ε|.
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The result then follows from the choice r = |log ε|−2.

Step 6: refined lower bound in the regime with a “small” number of vortices. In this step, we treat the
regime 1 � Nε . log |log ε|, for which the result of Step 5 is not optimal. More precisely, we consider the
whole regime 1 � Nε . |log ε| and we show the following: for all r0 ∈ (ε1/2, r̄) and r ≥ r0, there exists a
locally finite union of disjoint closed balls B̃r0,rε,R , monotone in r, covering the set {x : ||uε(x)|−1| ≥ |log ε|−1},
such that for all z the sum of the radii of the balls intersecting BR(z) is bounded by Cr, and such that for
all ε > 0 small enough, and all r0 ≤ r satisfying

ε1/2 < r0 � N2
ε |log ε|−1(Nε + log |log ε|)−1, e−o(Nε) ≤ r � 1, (5.32)

we have for all z ∈ R2,

1

2

ˆ
B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
aχzRν

r0
ε,R − o(1)

( E∗ε,R
|log ε|

)2

− o(N2
ε ), (5.33)

and similarly, for all B = B̄(yB , rB) ∈ B̃r0,rε,R with degree dB ,

1

2

ˆ
B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
B

νr0ε,R − EB
(
Nε +

E∗ε,R
|log ε|

)2

− C|dB | log
(

2 +
E∗ε,R
|log ε|

)
, (5.34)

where the EB ’s satisfy supz
∑
B∈B̃r0,rε,R ∩BR(z) |EB | � 1. In the sequel, we focus on (5.33), while (5.34) is

proved similarly, based on Lemma 5.1(i) in the localized form (5.1) rather than in the form (5.2). We split
the proof into three further substeps.

Substep 6.1: enlarged balls. In this step, given some fixed r0 ∈ (ε1/2, r̄), we construct the enlarged
collections of balls B̃r0,rε,R for r ≥ r0. According to [74, Proposition 4.8], and using the energy estimate of
Step 5, we have

H1({x ∈ BR(z), ||uε(x)| − 1| ≥ |log ε|−1}) ≤ Cε|log ε|2E∗ε,R ≤ Cε|log ε|4,

where H1 denotes the 1-dimensional Haussdorff measure. From [74, Section 4.4.1] and [75, Section 2.2], it
follows that we may cover the set {x : ||uε(x)| − 1| ≥ |log ε|−1} by a locally finite union of disjoint closed
balls such that for all z the sum of the radii of the balls intersecting BR(z) is bounded by Cε|log ε|4. We
then combine this collection of balls with the collection Br0ε,R. Inductively merging as in [74, Lemma 4.1]
any two such balls that intersect into a ball with the same total radius, we obtain a new collection B̃r0ε,R of
disjoint closed balls that cover the set {x : ||uε(x)| − 1| ≥ |log ε|−1}, and such that for all z the sum of the
radii of the balls intersecting BR(z) is bounded by r0 + Cε|log ε|6 ≤ Cr0.

Let us now grow the balls of this new collection B̃r0ε,R following Sandier’s ball construction, as described
e.g. in [74, Theorem 4.2]. This consists in growing simultaneously all the balls keeping their centers fixed
and multiplying their radius by the same factor t. If some balls touch at some point during the growth, the
corresponding balls are merged into one larger ball containing the previous ones and of same total radius.
This construction ensures that the balls always remain disjoint. Stopping the growth process at some value
of the factor t, and setting r = tr0, we denote by B̃r0,rε,R the corresponding locally finite collection of disjoint
closed balls. By construction, for all z, the sum of the radii of the balls that intersect BR(z) is bounded by
Ct(r0 +Cε|log ε|6) ≤ Cr. Note that by construction Br0ε,R ⊂ B̃

r0
ε,R = B̃r0,r0ε,R , but for r > r0 the collection B̃r0,rε,R

has a priori no clear relation with the collection Brε,R.
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Substep 6.2: preliminary estimate. According to [83, Lemma 3.2] (applied with c = d and λ = 1), we
have, for any S1-valued map v with degree d on a generic ball B, and for any vector field A : ∂B → R2,

1

2

ˆ
∂B

|∇v − ivA|2 +
1

2

ˆ
B

|curlA|2 ≥ πd2

r
− πd2

2
+

1

2

ˆ
∂B

∣∣∣∇v − ivA− ivdτ
r

∣∣∣2 ,
where τ denotes the unit tangent to the circle ∂B. Applying it to v = uε

|uε| and A = Nεvε, and noting that
|∇uε − iuεF |2 = |uε|2|∇ uε

|uε| − i
uε
|uε|F |

2 + |∇|uε||2 holds for any real-valued vector field F , we obtain the
following improved lower bound on annuli: if ||uε| − 1| ≤ |log ε|−1 holds on ∂B, then we have

1

2
(1 +O(|log ε|−1))

ˆ
∂B

|∇uε − iuεNεvε|2 +
1

2
N2
ε

ˆ
B

|curl vε|2

≥ πd2

r
− πd2

2
+

1

2
(1−O(|log ε|−1))

ˆ
∂B

∣∣∣∇uε − iuεNεvε−iuεdτ
r

∣∣∣2. (5.35)

Substep 6.3: proof of (5.33). Let r0 > 0 be chosen as in (5.32). We start from Lemma 5.1(i) with
φ = aχzR, combined with the refined energy estimate of Step 5 and the choice of r0, which yields

1

2

ˆ
Br0ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r0/ε)

2

ˆ
aχzR|ν

r0
ε,R| − o(N

2
ε )− C

(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

)
. (5.36)

We next need to show that this lower bound for the energy is essentially maintained during the ball growth
and merging process, hence holds as well for the collections B̃r0,rε,R with r > r0.

Assume that some ball B = B̄(y, s) gets grown into B′ = B̄(y, ts) without merging, for some t ≥ 1, and
assume that B′ \ B does not intersect B̃r0ε,R, so that ||uε| − 1| ≤ |log ε|−1 holds on B′ \ B. Let d denote the
degree of B (hence of B′). Since by assumption we have

|a(x)χzR(x)− a(y)χzR(y)| ≤ χzR(y)|a(x)− a(y)|+ a(x)|χzR(x)− χzR(y)| ≤ C
(
R−1 + χzR(y)

)
|x− y|, (5.37)

we may write

1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ a(y)χzR(y)

2

ˆ
B′\B

|∇uε − iuεNεvε|2

− CR−1

ˆ
B′\B

| · −y||∇uε − iuεNεvε|2 − CχzR(y)

ˆ
B′\B

| · −y||∇uε − iuεNεvε|2.

Using that |uε| ≤ 1 + |log ε|−1 holds on B′ \B, the last right-hand side term above is estimated as follows,

ˆ
B′\B

| · −y||∇uε − iuεNεvε|2

≤ 2

ˆ
B′\B

| · −y| |uε|2
∣∣∣ dτ

| · −y|

∣∣∣2 + 2

ˆ
B′\B

| · −y|
∣∣∣∇uε − iuεNεvε−iuε dτ

| · −y|

∣∣∣2
≤ Cd2ts+ 2ts

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε dτ

| · −y|

∣∣∣2, (5.38)
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where τ(x) = (x− y)⊥/|x− y| is the unit tangent to each circle centered at y, and we may then deduce

1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ a(y)χzR(y)

2

ˆ
B′\B

|∇uε − iuεNεvε|2

− CtsR−1

ˆ
B′\B

|∇uε − iuεNεvε|2 − Cd2tsχzR(y)− CtsχzR(y)

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε dτ

| · −y|

∣∣∣2. (5.39)

Again using that ||uε|−1| ≤ |log ε|−1 holds on B′ \B, the estimate (5.35) on the ball B(y, ρ) for ρ integrated
between s and ts takes the form

(1 +O(|log ε|−1))
1

2

ˆ
B′\B

|∇uε − iuεNεvε|2 ≥ πd2 log t− π

2
d2ts− 1

2
N2
ε ts

ˆ
B′
|curl vε|2

+ (1−O(|log ε|−1))
1

2

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε dτ

| · −y|

∣∣∣2. (5.40)

Combining this with (5.39), we are then led to

(1 + C|log ε|−1)
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ a(y)χzR(y)πd2 log t− Cd2ts− 1

2
N2
ε ts

ˆ
B′
|curl vε|2 − CtsR−1

ˆ
B′\B

|∇uε − iuεNεvε|2

+
(a(y)

2
(1− C|log ε|−1)− Cts

)
χzR(y)

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε dτ

| · −y|

∣∣∣2.
For ε small enough and ts ≤ min{1, 1

4C inf a} =: r̃ (note that by assumption r̃ ' 1), the last right-hand side
term is nonnegative, so that we conclude

(1 + C|log ε|−1)
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ a(y)χzR(y)πd2 log t− Cd2ts− 1

2
N2
ε ts

ˆ
B′
|curl vε|2 − CtsR−1

ˆ
B′\B

|∇uε − iuεNεvε|2

≥ a(y)χzR(y)πd2 log t− Cts(d2 +N2
ε )− CtsR−1E∗ε,R. (5.41)

If the ball B = B̄(y, s) belongs to the collection B̃r0,rε,R for some r ≥ r0, only a finite number of balls of
the collection Br0ε,R are included in the ball B. Denote them by Bj = B̄(yj , sj), j = 1, . . . , k. By definition,
the degree d of B is then equal to d =

∑
j dj , where dj denotes the degree of Bj . We may then write

a(y)χzR(y)d2 ≥ a(y)χzR(y)
∑
j

dj ≥
∑
j

a(yj)χ
z
R(yj)dj − C

∑
j

|dj ||y − yj |1B2R(z)(yj)

≥
∑
j

a(yj)χ
z
R(yj)dj − Cs

∑
j

|dj |1B2R(z)(yj),

and hence, in terms of the point-vortex measure νr0ε,R,

a(y)χzR(y)d2 ≥ 1

2π

ˆ
B

aχzRν
r0
ε,R − Cs

ˆ
B2R(z)

|νr0ε,R|. (5.42)
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Therefore, if the ball B = B̄(y, s) belongs to the collection B̃r0,rε,R for some r ≥ r0 and gets grown without
merging into a ball B′ = B̄(y, ts) for some t ≥ 1 with ts ≤ r̃, then combining (5.41) and (5.42) yields

(1 + C|log ε|−1)
1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log t

2

ˆ
B

aχzRν
r0
ε,R − Cs log t

ˆ
B2R(z)

|νr0ε,R| − Cts
(
Nε +

ˆ
B2R(z)

|νr0ε,R|
)2

− CtsR−1E∗ε,R,

and hence, using Lemma 5.1(ii), the inequality |log t| ≤ t for t ≥ 1, and the choice R & |log ε|,

1

2

ˆ
B′\B

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log t

2

ˆ
B

aχzRν
r0
ε,R − Cts

(
Nε +

E∗ε,R
|log ε|

)2

.

By construction of the ball growth and merging process, this easily implies the following: if a ball
B = B̄(yB , sB) belongs to the collection B̃r0,rε,R for some r0 ≤ r ≤ r̃, then we have

1

2

ˆ
B\B̃r0ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r/r0)

2

ˆ
B

aχzRν
r0
ε,R − CsB

(
Nε +

E∗ε,R
|log ε|

)2

.

Summing this estimate over all the balls B of the collection B̃r0,rε,R that intersect B2R(z), and recalling that
the sum of the radii of these balls is by construction bounded by Cr, we deduce for any r0 ≤ r ≤ r̃,

1

2

ˆ
B̃r0,rε,R \B̃

r0
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r/r0)

2

ˆ
aχzRν

r0
ε,R − Cr

(
Nε +

E∗ε,R
|log ε|

)2

.

Combining this with (5.36), and recalling that by definition Br0ε,R ⊂ B̃
r0
ε,R, we deduce

1

2

ˆ
B̃
r0,r

ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(r/ε)

2

ˆ
aχzRν

r0
ε,R − Cr

(
Nε +

E∗ε,R
|log ε|

)2

− o(N2
ε )− C

(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

)
, (5.43)

and hence, using Lemma 5.1(ii) and the choice (5.32) of r,

1

2

ˆ
B̃
r0,r

ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
aχzRν

r0
ε,R − C|log r|

(
Nε +

E∗ε,R
|log ε|

)
− Cr

( E∗ε,R
|log ε|

)2

− o(N2
ε )− C

(
Nε +

E∗ε,R
|log ε|

)
log
(

2 +
E∗ε,R
|log ε|

)
≥ |log ε|

2

ˆ
aχzRν

r0
ε,R − o(1)

( E∗ε,R
|log ε|

)2

− o(N2
ε ),

that is, (5.33).

Step 8: optimal bound on the energy. In this step, we prove E∗ε,R . Nε|log ε|, thus completing the result
of Step 5 in all regimes. Note that by Step 3 this also implies supz

´
χzR|νrε,R| . Nε. By Step 5, it only

remains to consider the regime with a “small” number of vortices 1 � Nε . log |log ε|. Let r0 ≤ r � 1 be
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fixed as in (5.32). On the one hand, using the estimate (5.23), we deduce from the result (5.33) of Step 7,

1

2

ˆ
R2\B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ Dzε,R +O

(
r0|log ε|

(
Nε +

E∗ε,R
|log ε|

))
+ o(1)

( E∗ε,R
|log ε|

)2

+ o(N2
ε )

and hence, using the assumption D∗ε,R . N2
ε , the suboptimal energy bound of Step 5, and the choice (5.32)

of r0,

1

2

ˆ
R2\B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
. N2

ε + o(1)
( E∗ε,R
|log ε|

)2

. (5.44)

On the other hand, combining the estimates (5.30) and (5.31) (with Brε,R replaced by B̃r0,rε,R ) of Step 5, we
find

E∗ε,R . Nε|log ε|+ |log ε|
(

sup
z

ˆ
R2\B̃r0,rε,R

χzR|∇uε − iuεNεvε|2
)1/2

+ r|log ε|R−1(E∗ε,R)1/2.

Now inserting (5.44) yields

E∗ε,R . Nε|log ε|+ o(1)E∗ε,R + |log ε|R−1(E∗ε,R)1/2,

and thus, recalling the choice R & |log ε|, and absorbing E∗ε,R in the left-hand side, the result E∗ε,R . Nε|log ε|
follows.

Step 9: conclusion. The optimal energy bound E∗ε,R . Nε|log ε| is now proved. In the present step, we
check that the rest of the statements follow from this bound. We split the proof into seven further substeps.

Substep 9.1: proof of (i). The result (5.8) follows from (5.21) in Step 2 with φ = aχzR, combined with the
optimal energy bound. Repeating the argument of Step 6 with the optimal energy bound rather than with
the suboptimal bound of Step 5, the choice (5.32) can be replaced by ε1/2 < r0 � Nε|log ε|−1. For such a
choice of r0, and for r ≥ r0 as in (5.32), the result (5.33) together with the optimal energy bound directly
implies the result (5.9) for a “small” number of vortices 1� Nε . log |log ε|.

Substep 9.2: proof of (ii). The bound (5.10) on the number of vortices follow from the result (5.25) of
Step 3 together with the optimal energy bound. It remains to prove that in the regime 1� Nε � |log ε|1/2

for e−o(1)N−1
ε |log ε| ≤ r < r̄ each ball of the collection Brε,R has a nonnegative degree. This is a refinement of

the result of Step 4. The lower bound (5.21) of Step 2 with φ = aχzR can be rewritten as follows, using the
optimal energy bound, for all z ∈ R2,

|log ε|
ˆ
aχzR(νrε,R)− =

|log ε|
2

ˆ
aχzR(|νrε,R| − νrε,R)

≤ Ezε,R −
|log ε|

2

ˆ
aχzRν

r
ε,R +O

(
rNε|log ε|+ r2N2

ε +Nε|log r|
)

+ o(N2
ε ),

and hence, using (5.23) to replace νrε,R by µε in the right-hand side, and using the assumption Dzε,R . N2
ε ,

we find

|log ε|
ˆ
χzR(νrε,R)− . N2

ε + rNε|log ε|+Nε| log r|. (5.45)
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Dividing both sides by |log ε|, we deduce in the regime Nε � |log ε|1/2 with e−o(1)N−1
ε |log ε| ≤ r � N−1

ε ,

sup
z

ˆ
χzR(νrε,R)− � 1,

which means that for ε small enough there exists no single ball Bj ∈ Brε,R with negative degree dj < 0. This
proves the result for r � N−1

ε . Now for N−1
ε . r < r̄ the same property must hold, since, by monotonicity

of the collection Brε,R with respect to r, for any r > r′ the degree of a ball B ∈ Brε,R equals the sum of the
degrees of all the balls B′ ∈ Bε(r′) with B′ ⊂ B.

Substep 9.3: proof of (v). In the regime Nε � log |log ε|, for e−o(Nε) ≤ r � Nε|log ε|−1, the result (5.15)
follows from (5.22) together with the optimal energy bound. Monotonicity of Brε,R with respect to r then
implies (5.15) for all r ≥ e−o(Nε) in the regime Nε � log |log ε|. In the regime 1� Nε . log |log ε|, it suffices
to argue as for (5.22) in Step 2, but with the lower bound (5.21) replaced by its refined version (5.33): for
r0 ≤ r with ε1/2 < r0 � Nε|log ε|−1 and e−o(Nε) ≤ r � 1, the estimate (5.33) together with (5.23) indeed
yields

1

2

ˆ
R2\B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≤ 1

2

ˆ
R2

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− |log ε|

2

ˆ
aχzRν

r0
ε,R + o(N2

ε )

≤ D∗ε,R + r0Nε|log ε|+ o(N2
ε ) = D∗ε,R + o(N2

ε ),

and the result (5.16) follows by monotonicity of B̃r0,rε,R with respect to r.

Substep 9.4: proof of (iii). The Jacobian estimate (5.11) follows from Lemma 5.1(iii) together with the
optimal energy bound, and the estimate (5.12) with γ = 1 similarly follows from (5.24). The result (5.12)
for all γ ∈ [0, 1] then follows by interpolation (as e.g. in [53]) provided we also manage to prove, for all
φ ∈ L∞(R2) supported in a ball BR(z),∣∣∣ˆ φ(µ̃ε − µε)

∣∣∣ . RNε|log ε|‖φ‖L∞ . (5.46)

Let φ ∈ L∞(R2) be supported in BR(z), for some z ∈ RZ2. By definition (4.10), we find

ˆ
φ(µ̃ε − µε) = Nε

ˆ
φ
(
(1− |uε|2)curl vε +2(∇uε − iuεNεvε, uε) · v⊥ε

)
≤ Nε‖φ‖L∞

ˆ
BR(z)

(
|1− |uε|2||curl vε|+ 2|vε||1− |uε|2||∇uε − iuεNεvε |+ 2|vε||∇uε − iuεNεvε |

)
,

and hence we obtain with the optimal energy bound, with ‖vε‖L∞ , ‖curl vε‖L2 . 1,
ˆ
φ(µ̃ε − µε) .

(
εN2

ε |log ε|+RNε|log ε|)‖φ‖L∞ ,

that is, (5.46).

Substep 9.5: proof of (iv) in the regime Nε � log |log ε|. We focus on the regime Nε � log |log ε|. Let
ε1/2 < r � 1 to be later optimized as a function of ε. We write as before Brε,R =

⊎
j B

j , Bj = B̄(yj , rj), we
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denote by dj the degree of Bj , and we set νrε,R = 2π
∑
j djδyj . Given φ ∈ W 1,∞(R2) supported in the ball

BR(z), we decompose
ˆ
R2

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
≤
ˆ
R2\Brε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+
∑
j

∣∣∣∣ˆ
Bj
φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πφ(yj)dj |log ε|

∣∣∣∣
≤ ‖φ‖L∞

ˆ
R2\Brε,R

χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+ ‖φ‖L∞

∑
j

χzR(yj)

∣∣∣∣ˆ
Bj

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πdj |log ε|

∣∣∣∣
+ r‖∇φ‖L∞

ˆ
B2R(z)∩Brε,R

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
. (5.47)

Combined with the optimal energy bound, the localized lower bound (5.1) in Lemma 5.1(i) with φ = 1 yields
for all j,

1

2

ˆ
Bj

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ π|dj ||log ε| −O

(
r2
jN

2
ε + |dj ||log r|+ |dj | logNε

)
,

and hence∣∣∣∣ˆ
Bj

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2π|dj ||log ε|

∣∣∣∣
≤
ˆ
Bj

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2π|dj ||log ε|+O

(
r2
jN

2
ε + |dj ||log r|+ |dj | logNε

)
.

Noting that χzR(yj) ≤ χzR(y) + O(R−1rj)χ
z
2R(yj) holds for y ∈ BR(z), using the optimal energy bound and

R & |log ε|, we obtain

χzR(yj)

∣∣∣∣ˆ
Bj

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2π|dj ||log ε|

∣∣∣∣
≤
ˆ
Bj
χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− 2πχzR(yj)|dj ||log ε|

+ χz2R(yj)O
(
rjNε + r2

jN
2
ε + |dj ||log r|+ |dj | logNε

)
.

Inserting this into (5.47), and using the bound of item (ii) on the number of vortices, we find
ˆ
φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|νrε,R

)
≤ ‖φ‖L∞

ˆ
χzR

(
|∇uε−iuεNεvε|2 +

a

2ε2
(1−|uε|2)2−|log ε|νrε,R

)
+O

(
1+r2N2

ε +Nε|log r|+Nε logNε
)
‖φ‖L∞

+ r‖∇φ‖L∞
ˆ
B2R(z)∩Brε,R

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
,
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where the last term is estimated by rE∗ε,R‖∇φ‖L∞ . rNε|log ε|‖∇φ‖L∞ , and where (5.23) can be used to
replace νrε,R by µε in both sides up to an error of order (rNε|log ε| + 1)‖φ‖W 1,∞ . In the present regime
Nε � log |log ε|, we may choose e−o(Nε) ≤ r � Nε|log ε|−1, and the conclusion (5.14) follows for that choice.

Substep 9.6: proof of (iv) in the regime 1� Nε . log |log ε|. We turn to the regime 1� Nε . log |log ε|,
in which case the proof needs to be adapted in the spirit of the computations in Step 7. Let φ ∈W 1,∞(R2)
be supported in the ball BR(z), and let e−o(1)|log ε|/Nε ≤ r0 � Nε/|log ε|. First arguing as in Substep 9.5
with this choice of r0, we obtain

ˆ
Br0ε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − log(r0/ε)ν

r0
ε,R

)
≤ ‖φ‖L∞

ˆ
Br0ε,R

χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − log(r0/ε)ν

r0
ε,R

)
+ o(N2

ε )‖φ‖W 1,∞ . (5.48)

Now we consider the modified ball collection B̃r0,rε,R with r ≥ r0, as constructed in Step 7.1. Assume that
some ball B = B̄(y, s) gets grown into B′ = B̄(y, ts) without merging, for some t ≥ 1, and assume that
B′ \ B does not intersect B̃r0ε,R, so that by construction ||uε| − 1| ≤ |log ε|−1 holds on B′ \ B. Let d denote
the degree of B (hence of B′). We may then decompose∣∣∣∣12

ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ ‖φ‖L∞

∣∣∣∣12
ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πd log t

∣∣∣∣
+ ‖∇φ‖L∞

1

2

ˆ
B′\B

| · −y|
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
,

and hence, arguing as in (5.38),∣∣∣∣12
ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ ‖φ‖L∞

∣∣∣∣12
ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πd log t

∣∣∣∣
+ ts‖∇φ‖L∞

(
Cd2 +

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε dτ

| · −y|

∣∣∣2 +

ˆ
B′\B

a

4ε2
(1− |uε|2)2

)
. (5.49)

Let us estimate the last right-hand side term of (5.49). Applying the lower bound (5.33) with ε replaced
by 2ε (with ε < 1/2), together with the optimal energy bound, we obtain, for r ≥ r0 with e−o(Nε) ≤ r � 1,

|log ε|
2

ˆ
aχzR|ν

r0
ε,R| −

log 2

2

ˆ
aχzR|ν

r0
ε,R| − o(N

2
ε ) =

|log(2ε)|
2

ˆ
aχzR|ν

r0
ε,R| − o(N

2
ε )

≤ 1

2

ˆ
B̃r0,rε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2(2ε)2
(1− |uε|2)2

)
≤ D∗ε,R +

|log ε|
2

ˆ
aχzRµε −

3

16ε2

ˆ
B̃r0,rε,R

a2χzR(1− |uε|2)2.
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Using (5.23), the bound of item (ii) on the number of vortices, and the choice of r0, we then find

3

16ε2

ˆ
B̃r0,rε,R

a2χzR(1− |uε|2)2 ≤ D∗ε,R +
|log ε|

2

ˆ
aχzR(µε − νr0ε,R) +

log 2

2

ˆ
aχzR|ν

r0
ε,R|+ o(N2

ε )

≤ D∗ε,R + o(N2
ε ) . N2

ε .

Combining this with the result (5.16) of item (v), we deduce the (suboptimal) estimate

sup
z

ˆ
Rd

χzR
ε2

(1− |uε|2)2 . N2
ε . (5.50)

Injecting this result into (5.49), together with the bound of item (ii) on the number of vortices, we find∣∣∣∣12
ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ CtsN2

ε ‖∇φ‖L∞ + ‖φ‖L∞
∣∣∣∣12
ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πd log t

∣∣∣∣
+ ts‖∇φ‖L∞

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε dτ

| · −y|

∣∣∣2. (5.51)

Recalling the improved lower bound (5.40), and combining it with the bound of item (ii) on the number
of vortices, and with the assumption ‖curl vε‖L∞ . 1, we find for ts ≤ 1,

(1 +O(|log ε|−1))
1

2

ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ πd log t− CtsN2

ε

+ (1−O(|log ε|−1))
1

2

ˆ
B′\B

∣∣∣∇uε − iuεNεvε−iuε dτ

| · −y|

∣∣∣2.
Injecting this estimate into (5.51) yields∣∣∣∣12

ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πφ(y)d log t

∣∣∣∣
≤ C‖φ‖W 1,∞

(
1

2

ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πd log t

)
+ CtsN2

ε ‖φ‖W 1,∞ + C‖φ‖W 1,∞ |log ε|−1

ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
.

Arguing as in (5.42), together with the bound of item (ii) on the number of vortices, we find∣∣∣∣2πφ(y)d log t− log t

ˆ
B

φνr0ε,R

∣∣∣∣ ≤ ‖∇φ‖L∞s log t

ˆ
B

|νr0ε,R| ≤ C‖∇φ‖L∞tsNε,

so that the above becomes∣∣∣∣12
ˆ
B′\B

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log t

2

ˆ
B′
φνr0ε,R

∣∣∣∣
≤ C‖φ‖W 1,∞

(
1

2

ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− πd log t

)
+ CtsN2

ε ‖φ‖W 1,∞ + C‖φ‖W 1,∞ |log ε|−1

ˆ
B′\B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
.
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By construction of the ball growth and merging process, this easily implies the following: if a ball
B = B̄(yB , sB) belongs to the collection B̃r0,rε,R for some r0 ≤ r ≤ 1, then we have∣∣∣∣12

ˆ
B\B̃r0ε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

2

ˆ
B

φνr0ε,R

∣∣∣∣
≤ C‖φ‖W 1,∞

(ˆ
B\B̃r0ε,R

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

ˆ
B

νr0ε,R

)
+ CsBN

2
ε ‖φ‖W 1,∞ + C‖φ‖W 1,∞ |log ε|−1

ˆ
B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
.

Since by assumption φ is supported in BR(z), we may write φ = χzRφ. Using that |χzR(y)−χzR(yB)| . sBR
−1

holds for all y ∈ B, and recalling the choice R & |log ε|, we then find∣∣∣∣12
ˆ
B\B̃r0ε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

2

ˆ
B

φνr0ε,R

∣∣∣∣
≤ χzR(yB)

∣∣∣∣12
ˆ
B\B̃r0ε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

2

ˆ
B

φνr0ε,R

∣∣∣∣
+ C‖φ‖L∞rR−1

(ˆ
B

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+ log(r/r0)

ˆ
B

|νr0ε,R|
)

≤ C‖φ‖W 1,∞

(ˆ
B\B̃r0ε,R

χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

ˆ
B

χzRν
r0
ε,R

)
+CsBN

2
ε ‖φ‖W 1,∞ +C‖φ‖W 1,∞ |log ε|−1

(ˆ
B

(
|∇uε− iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+ log(r/r0)

ˆ
B

|νr0ε,R|
)
.

Summing this estimate over all balls B of the collection B̃r0,rε,R that intersect BR(z), recalling that the sum
of the radii of these balls is by construction bounded by Cr, and using the optimal energy bound and the
bound of item (ii) on the number of vortices, we deduce∣∣∣∣12

ˆ
B̃r0,rε,R \B̃

r0
ε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

2

ˆ
R2

φνr0ε,R

∣∣∣∣
≤ C‖φ‖W 1,∞

(ˆ
B̃r0,rε,R \B̃

r0
ε,R

χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

ˆ
R2

χzRν
r0
ε,R

)
+ CrN2

ε ‖φ‖W 1,∞ + C‖φ‖W 1,∞ |log ε|−1

(
Ezε,2R + |log ε|

ˆ
B2R(z)

|νr0ε,R|
)

≤ C‖φ‖W 1,∞

(ˆ
B̃r0,rε,R \B̃

r0
ε,R

χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/r0)

ˆ
R2

χzRν
r0
ε,R + o(N2

ε )

)
.

Combining this with (5.48), and recalling that by definition Br0ε,R ⊂ B̃
r0
ε,R, we deduce∣∣∣∣12

ˆ
B̃r0,rε,R

φ
(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/ε)

2

ˆ
R2

φνr0ε,R

∣∣∣∣
≤ C‖φ‖W 1,∞

(ˆ
B̃r0,rε,R

χzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
− log(r/ε)

ˆ
R2

χzRν
r0
ε,R + o(N2

ε )

)
.
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Using (5.23) to replace νr0ε,R by µε in both sides up to an error of order (r0Nε|log ε| + 1)‖φ‖W 1,∞ �
N2
ε ‖φ‖W 1,∞ , the result (5.14) follows.

Substep 9.7: proof of (vi). We adapt an argument by Struwe [86] (see also [76, Proof of Lemma 4.7]).
Recalling that |B2R(z) ∩ Brε,R| . r2, a direct application of the Hölder inequality yields

ˆ
Brε,R

χzR|∇uε − iuεNεvε|p . r2−p
( ˆ
Brε,R

χzR|∇uε − iuεNεvε|2
)p/2

. r2−p(Nε|log ε|)p/2,

which only implies the result if we are allowed to choose the total radius r small enough. Otherwise, it is
useful to rather work on dyadic “annuli”. For all integer 0 ≤ k ≤ Kε := blog2(r/ε1/2)c, define the “annulus”
Ek := Br2−kε,R \ Br2−k−1

ε,R . We set for simplicity sk := r2−k. Applying the Hölder inequality separately on each
annulus yields
ˆ
Brε,R

χzR|∇uε − iuεNεvε|p ≤
(ˆ
B
√
ε

ε,R

χzR|∇uε − iuεNεvε|2
)p/2
|B2R(z) ∩ B

√
ε

ε,R|
1−p/2

+

Kε∑
k=0

(ˆ
Ek

χzR|∇uε − iuεNεvε|2
)p/2
|B2R(z) ∩ Ek|1−p/2.

Using that |B2R(z) ∩ B
√
ε

ε,R| . ε, that |B2R(z) ∩ Ek| . s2
k, and that the integral over B

√
ε

ε,R in the right-hand
side is bounded by Ezε,R . Nε|log ε|, we deduce

ˆ
Brε,R

χzR|∇uε − iuεNεvε|p . ε1−p/2(Nε|log ε|)p/2 +

Kε∑
k=0

s2−p
k

( ˆ
R2\B

sk+1
ε,R

χzR|∇uε − iuεNεvε|2
)p/2

. (5.52)

It remains to estimate the last integrals. Using Lemma 5.1(i)–(ii) in the forms (5.2) and (5.3), together with
the optimal energy bound, we obtain

1

2

ˆ
B
sk+1
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ |log ε|

2

ˆ
aχzRν

sk+1

ε,R −O
(
Nε|log sk+1|+ sk+1Nε|log ε|)− o(N2

ε ),

and hence, using (5.23) to replace νsk+1

ε,R by µε,

1

2

ˆ
R2\B

sk+1
ε,R

aχzR|∇uε − iuεNεvε|2 ≤ Dzε,R +O(Nε|log sk+1|+ sk+1Nε|log ε|) + o(N2
ε ).

If r � Nε|log ε|−1, then sk ≤ r � Nε|log ε|−1 for all k, so that we find

1

2

ˆ
R2\B

sk+1
ε,R

χzR|∇uε − iuεNεvε|2 . N2
ε +Nε(|log r|+ k). (5.53)

Inserting this into (5.52) yields for all p < 2, with r � Nε|log ε|−1,

ˆ
Brε,R

χzR|∇uε − iuεNεvε|p . ε1−p/2(Nε|log ε|)p/2 +

Kε∑
k=0

(r2−k)2−p
(
Np
ε +Np/2

ε |log r|p/2 +Np/2
ε kp/2

)
.p ε

1−p/2(Nε|log ε|)p/2 + r2−pNp
ε + r2−pNp/2

ε |log r|p/2.
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In the regime Nε � log |log ε|, we may choose e−o(Nε) ≤ r � Nε|log ε|−1, and the above yields for that
choice ˆ

Brε,R
χzR|∇uε − iuεNεvε|p �p N

p
ε . (5.54)

Combining this with the result (5.15) of item (v) and with the Hölder inequality, the result (5.17) easily
follows.

We now consider the regime 1� Nε . log |log ε|. In that case, we need to prove (5.54) for larger values
of the radius r ≥ e−o(Nε), and the above argument no longer holds. Given ε1/2 < r0 � Nε|log ε|−1, we
replace the initial total radius ε1/2 by r0, and for r0 ≤ r � 1 we consider the modified dyadic “annuli”
Ẽk := B̃r0,r2

−k

ε,R \ B̃r0,r2
−k−1∨r0

ε,R , with 0 ≤ k ≤ K := blog2(r/r0)c. We set for simplicity s̃k := (r2−k)∨ r0. The
decomposition (5.52) is then replaced by

ˆ
B̃r0,rε,R

χzR|∇uε − iuεNεvε|p . r2−p
0 (Nε|log ε|)p/2 +

K∑
k=0

s2−p
k

(ˆ
R2\B̃

r0,s̃k+1
ε,R

χzR|∇uε − iuεNεvε|2
)p/2

, (5.55)

where it remains to adapt the estimate (5.53) for the last integrals. The lower bound (5.43) of Step 7 together
with the optimal energy bound and with the bound of item (ii) on the number of vortices yields

1

2

ˆ
B̃
r0,s̃k+1
ε,R

aχzR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
≥ log(s̃k+1/ε)

2

ˆ
aχzRν

r0
ε,R − o(N

2
ε )

≥ |log ε|
2

ˆ
aχzRν

r0
ε,R −O(Nε|log sk+1|)− o(N2

ε ),

and hence, using (5.23) to replace νr0ε,R by µε,

1

2

ˆ
R2\B̃

r0,s̃k+1
ε,R

aχzR|∇uε − iuεNεvε|2 ≤ Dzε,R +O(Nε|log sk+1|+ r0Nε|log ε|) + o(N2
ε ).

The choice r0 � Nε|log ε|−1 then yields

1

2

ˆ
R2\B̃

r0,s̃k+1
ε,R

aχzR|∇uε − iuεNεvε|2 . N2
ε +Nε(|log r|+ k).

Inserting this into (5.55), the result (5.18) follows as before.

Based on the above vortex-balls construction, we have the following approximation result, which is easily
obtained just as in [74, Proposition 9.6].

Lemma 5.3. Let ε1/2 < r0 ≤ r < r̄, and let Brε,R and B̃r0,rε,R denote the collections of the balls constructed
in Proposition 5.2. Then, given Γε ∈ W 2,∞(R2)2, there exist approximate vector fields Γ̄ε, Γ̃ε ∈ W 2,∞(R2)2

such that Γ̄ε is constant in each ball of the collection Brε,R and Γ̃ε is constant in each ball of the collection
B̃r0,rε,R , such that ‖Γ̄ε‖L∞ ≤ ‖Γε‖L∞ and ‖Γ̃ε‖L∞ ≤ ‖Γε‖L∞ , such that for all 0 ≤ γ ≤ 1,

‖Γ̄ε − Γε‖Cγ + ‖Γ̃ε − Γε‖Cγ . r1−γ‖∇Γε‖L∞ ,

and such that for all R ≥ 1,

sup
z
‖∇(Γ̄ε − Γε)‖L1(BR(z)) + sup

z
‖∇(Γ̃ε − Γε)‖L1(BR(z)) . rR2‖∇Γε‖W 1,∞ .
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5.2 Additional results
In order to control the velocity of the vortices, the following quantitative version of the “product estimate”

of [73] is needed; the proof is omitted, as it is a direct adaptation of [82, Appendix A] (further deforming
the metric in a non-constant way in the time direction; see also [73, Section III]).

Lemma 5.4 (Product estimate). Denote by Mε any quantity such that for all q > 0,

lim
ε↓0

εqMε = lim
ε↓0
|log ε|M−qε = lim

ε↓0
|log ε|−1 logMε = 0.

Let uε : [0, T ]×R2 → C, vε : [0, T ]×R2 → R2, and pε : [0, T ]×R2 → R. Assume that E∗,tε,R . |log ε|2 for all
t, and that Ē∗,Tε,R ≤Mε, where we have set

Ē∗,Tε,R := sup
z

ˆ T

0

(
Ez,tε,R +

ˆ
χzR|∂tutε − iutεNεptε|2

)
dt.

Then, for all X ∈W 1,∞([0, T ]× R2)2 and Y ∈W 1,∞([0, T ]× R2), we have for all z ∈ R2,

∣∣∣∣ˆ T

0

ˆ
χzRṼε ·XY

∣∣∣∣ ≤ 1 + C logMε

|log ε|

|log ε|

(ˆ T

0

ˆ
χzR|(∂tuε − iuεNεpε)Y |2 +

ˆ T

0

ˆ
χzR|(∇uε − iuεNεvε) ·X|2

)
+ C

(
1 + ‖(X,Y )‖5W 1,∞([0,T ]×R2)

)(
M−1/8
ε + εNε

)(
Ē∗,Tε,R + sup

0≤τ≤T
E∗,τε,R +N2

ε

)
.

We now turn to some useful a priori estimates on the solution uε of equation (1.5). We begin with the
following (very suboptimal) a priori bound on the velocity of the vortices, adapted from [82, Lemma 4.1].

Lemma 5.5 (A priori bound on velocity). Let α ≥ 0, β ∈ R, and let h : R2 → R, a := eh, F : R2 → R2,
f : R2 → R satisfy (2.1). Let uε : [0, T )×R2 → C and vε : [0, T )×R2 → R2 be solutions of (1.5) and (3.2)
as in Proposition 2.2(i) and in Proposition 3.1, respectively. Let 0 < ε � 1, 1 ≤ Nε . |log ε|, and R ≥ 1
with εRθ � 1 for some θ > 0, and assume that E∗,tε,R .t Nε|log ε| for all t. Then, in each of the regimes
considered, (GL1), (GL2), (GL′1), and (GL′2), we have for all θ > 0, for all t,

α2 sup
z

ˆ t

0

ˆ
aχzR|∂tuε|2 .t,θ Nε|log ε|3 +RθN2

ε |log ε|2 . RθNε|log ε|3.

Proof. We focus on the non-decaying setting, as the other case is similar. Integrating identity (4.18) in time,
reorganizing the terms, and setting Dz,t

ε,R :=
´ t

0

´
aχzR|∂tuε|2, we obtain

λεαD
z,t
ε,R = Êz,◦ε,R − Ê

z,t
ε,R −

ˆ t

0

ˆ
a∇χzR · 〈∂tuε,∇uε − iuεNεvε〉+

ˆ t

0

ˆ
Nεχ

z
R〈∂tuε, iuε〉div (avε)

+

ˆ
aN2

ε

2
(1− |utε|2)(ψz,tε,R − χ

z
R|vtε|2)−

ˆ
aN2

ε

2
(1− |u◦ε|2)(ψz,◦ε,R − χ

z
R|v◦ε|2)

+

ˆ t

0

ˆ
aχzR

(
Nε(Nεvε−jε) · ∂tvε−Nεvε·Vε −

|log ε|
2

F⊥ · Vε
)
.

Noting that |∇χzR| . R−1(χzR)1/2, using the pointwise estimates of Lemma 4.2 for Vε and jε − Nεvε, and
using assumptions (2.1), the properties of vε in Proposition 3.1, the bound (4.4) on ψzε,R, and Lemma 4.1 in
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the form Êz,tε,R . E∗,tε,R + o(N2
ε ) .t Nε|log ε|, we find for θ > 0 small enough, in the considered regimes,

λεαD
z,t
ε,R .t,θ Nε|log ε|+R−1(Nε|log ε|)1/2(Dz,t

ε,R)1/2 +Nε(1 + ε(Nε|log ε|)1/2)(Dz,t
ε,R)1/2

+ εN2
ε (Nε|log ε|)1/2

(
1 +
|log ε|
Nε

(λεR
θ + λ1/2

ε +R−1+θ)
)

+Nε(Nε|log ε|)1/2(1 + εNε) + ελ−1/2
ε N2

ε |log ε|

+ (Nε + λε|log ε|)
(
(1 + εNε)(Nε|log ε|)1/2 +NεR

θ
)
(Dz,t

ε,R)1/2

.θ Nε|log ε|+ (Nε + λε|log ε|)
(
(Nε|log ε|)1/2 +NεR

θ
)
(Dz,t

ε,R)1/2 + o(1).

Absorbing (Dz,t
ε,R)1/2 in the left-hand side, and noting that either λε = 1 or λε = Nε

|log ε| in the considered
regimes, the result follows.

The following optimal a priori estimate is also crucially needed in our analysis in the presence of pinning,
due to the absence of a factor 1

2 in front of the a
ε2 (1− |uε|2)2-part of the energy density as it appears in the

term IHε,%,R in Lemma 4.4. A simple computation based on the lower bound results of Proposition 5.2 yields
a similar bound with Nε replaced by N2

ε (see indeed (5.50)), but the optimal result below is much more
subtle. It is proved as a combination of the Pohozaev vortex-balls construction of [74, Section 5], together
with some careful cut-off techniques inspired by [74, Proof of Proposition 13.4].

Lemma 5.6. Let α ≥ 0, β ∈ R, and let h : R2 → R, a := eh, F : R2 → R2, f : R2 → R satisfy (2.1). Let
uε : [0, T )× R2 → C and vε : [0, T )× R2 → R2 be solutions of (1.5) and (3.2) as in Proposition 2.2(i) and
in Proposition 3.1, respectively. Let 0 < ε� 1, 1 ≤ Nε . |log ε|, and R ≥ 1 with εR|log ε|3 . 1, and assume
that E∗,tε,R .t Nε|log ε| for all t. Then, in each of the regimes considered, (GL1), (GL2), (GL′1), and (GL′2),
we have for all t

α2 sup
z

ˆ t

0

ˆ
χzR
ε2

(1− |uε|2)2 .t Nε. (5.56)

Proof. To simplify notation, we focus on the case z = 0, but the result of course holds uniformly with respect
to the translation z ∈ RZ2. We split the proof into three steps.

Step 1: Pohozaev estimate on balls. In this step, we prove the following Pohozaev type estimate, adapted
from [74, Theorem 5.1]: for any ball Br(x0) with r ≤ 1, we have

α2

ˆ t

0

ˆ
Br(x0)

a2χR
2ε2

(1− |uε|2)2 .t rλεNε|log ε|3

+ r

ˆ t

0

ˆ
∂Br(x0)

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)
. (5.57)

For any smooth vector field X and any bounded open set U ⊂ R2, we have by integration by parts

−
ˆ
U

χR∇X : S̃ε =

ˆ
U

χR div S̃ε ·X +

ˆ
U

X · S̃ε · ∇χR −
ˆ
∂U

χRX · S̃ε · n,

and hence, for U = Br(x0), r > 0, and X = x− x0,

−
ˆ
Br(x0)

χR Tr S̃ε =

ˆ
Br(x0)

χR div S̃ε · (x− x0) +

ˆ
Br(x0)

(x− x0) · S̃ε · ∇χR − r
ˆ
∂Br(x0)

χR S̃ε : n⊗ n.
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By definition (4.13) of the modulated stress-energy tensor S̃ε, this means

ˆ
Br(x0)

aχR

( a

2ε2
(1− |uε|2)2 + (1− |uε|2)f

)
=

ˆ
Br(x0)

χR div S̃ε · (x− x0) +

ˆ
Br(x0)

(x− x0) · S̃ε · ∇χR

+ r

ˆ
∂Br(x0)

aχR
2

(
|n⊥ · (∇uε − iuεNεvε)|2 − |n · (∇uε − iuεNεvε)|2

+
a

2ε2
(1− |uε|2)2 + (1− |uε|2)

(
N2
ε (|n⊥ ·vε|2 − |n ·vε|2) + f

))
,

so that we may simply estimate

ˆ
Br(x0)

a2χR
2ε2

(1− |uε|2)2 ≤ r
ˆ
Br(x0)

|div S̃ε|+ r

ˆ
Br(x0)

|∇χR||S̃ε|+
ˆ
Br(x0)

a|1− |uε|2||f |

+ r

ˆ
∂Br(x0)

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)
. (5.58)

It remains to estimate the first three right-hand side terms. Using the pointwise estimates of Lemma 4.2,
using assumption (2.1) and the boundedness properties of vε,pε (cf. Proposition 3.1), and noting that λε . 1
holds in the regimes considered, Lemma 4.3 directly yields

|div S̃ε| . λε|log ε||∂tuε||∇uε − iuεNεvε|+Nε(1 + λ1/2
ε |log ε|)(1 + |1− |uε|2|)|∇uε − iuεNεvε|

+ λεNε|log ε||∂tuε|(1 + |1− |uε|2|) + (Nε + λε|log ε|)|∇uε − iuεNεvε|2 + ε−2(1− |uε|2)2

+ |1− |uε|2|
(
N2
ε (Nε + λε|log ε|) + λ2

ε|log ε|2
)

+N2
ε (Nε + λε|log ε|),

which gives, using Nε . |log ε|,

|div S̃ε| . λε|∂tuε|2 + λε|log ε|2|∇uε − iuεNεvε|2 + λεN
2
ε |log ε|2(1 + (1− |uε|2)2) + ε−2(1− |uε|2)2.

By Lemma 5.5 with R = 1, we deduce for all r ≤ 1,

α2

ˆ t

0

ˆ
Br(x0)

|div S̃ε| .t λεNε|log ε|3 + λεN
2
ε |log ε|2(1 + ε2Nε|log ε|) . λεNε|log ε|3.

Inserting this into (5.58), and noting that (2.1) in the form ‖f‖L∞ . |log ε|2 yields
ˆ
Br(x0)

a|1− |uε|2||f | .t εr(Nε|log ε|)1/2‖f‖L∞ . εr|log ε|3,

and ˆ
Br(x0)

|∇χR||S̃ε| . R−1

ˆ
Br(x0)

(
|∇uε − iuεNεvε|2 +

1

ε2
(1− |uε|2)2 + ε2(N4

ε |vε|4 + |f |2)
)

. R−1
(
Nε|log ε|+ ε2(N4

ε + ‖f‖2L∞)
)
. Nε|log ε|,

the result (5.57) follows.

Step 2: estimate inside small balls. In this step, we prove the desired estimate (5.56) for the integral
restricted to suitable small balls centered at the vortex locations. More precisely, since we have by assumption
E∗ε,R . Nε|log ε| . |log ε|2, we may apply [74, Proposition 4.8] for any κ ∈ (0, 1). This yields a finite union
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B̂ε,0 of disjoint closed balls with total radius r(B̂ε,0) = εκ/2, covering the set {x ∈ B2R : ||uε(x)|−1| ≥ εκ/4}.
We then prove that

α2

ˆ t

0

ˆ
B̂ε,0

a2χR
2ε2

(1− |uε|2)2 .t Nε. (5.59)

For that purpose, we let the initial collection of balls B̂ε,0 grow, and we use the Pohozaev estimate of Step 1
as in [74, Proof of Theorem 5.1]. By [74, Theorem 4.2], there exists a monotone family (B̂sε)s≥0 of unions of
disjoint closed balls, such that B̂0

ε = B̂ε,0, B̂sε has total radius r(B̂sε) = esr(B̂ε,0) for all s ≥ 0, and B̂sε = es−rB̂rε
for all 0 ≤ r ≤ s with [r, s] ⊂ R+ \ Tε, for some finite set Tε ⊂ R+ (corresponding to the merging times in
the growth process). For all s ≥ 0 with r(B̂sε) ≤ 1, the result (5.57) of Step 1 gives the following estimate,
for all θ > 0,

α2

ˆ t

0

ˆ
B̂sε

a2χR
2ε2

(1− |uε|2)2 .t r(B̂sε)Nε|log ε|3

+
∑

Br(x)∈B̂sε

r

ˆ t

0

ˆ
∂Br(x)

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + f)
)
.

Integrating this estimate over s and applying [74, Proposition 4.1], we find, for all s ≥ 0 with r(B̂ε(s)) ≤ 1,

sα2

ˆ t

0

ˆ
B̂ε,0

a2χR
2ε2

(1− |uε|2)2 ≤ α2

ˆ s

0

dv

ˆ t

0

ˆ
B̂vε

a2χR
2ε2

(1− |uε|2)2

.t s r(B̂sε)Nε|log ε|3 +

ˆ t

0

ˆ
B̂sε\B̂ε,0

aχR
2

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + f)
)
,

and hence, using assumption (2.1) and the boundedness of vε (cf. Proposition 2.2(i)), and the assumed
energy bound,

sα2

ˆ t

0

ˆ
B̂ε,0

a2χR
2ε2

(1− |uε|2)2 .t s r(B̂sε)Nε|log ε|3 +Nε|log ε|.

Recalling that r(B̂sε) = esεκ/2, this yields for all s ≥ 1 with r(B̂sε) ≤ 1,

α2

ˆ t

0

ˆ
B̂ε,0

a2χR
2ε2

(1− |uε|2)2 .t e
sεκ/2Nε|log ε|3 +

Nε|log ε|
s

,

and the result (5.59) now follows for the choice s = |log εκ/4|.

Step 3: estimate outside small balls. It remains to show that the desired estimate (5.56) also holds for
the integral restricted to the complement of the small balls B̂ε,0. More precisely, we prove in this step for all
θ > 0,

α

ˆ t

0

ˆ
||uε|−1|≤εκ/4

χR

(
|∇|uε||2 +

a(1− |uε|2)2

2ε2

)
.t,θ ε

κ/4Rθ|log ε|2 + εR|log ε|3 (5.60)

The conclusion (5.56) of course follows from this together with (5.59), choosing θ > 0 small enough. In order
to prove (5.60), we adapt the argument of [74, Proof of Proposition 13.4]. For 0 < ε ≤ 2−4/κ, we define a
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cut-off function ζε as follows,

ζε(y) :=



y, if 0 ≤ y ≤ 1/2;
1
2 + y−1/2

1−2εκ/4
, if 1/2 ≤ y ≤ 1− εκ/4;

1, if 1− εκ/4 ≤ y ≤ 1 + εκ/4;

1 + y−1−εκ/4
1−2εκ/4

, if 1 + εκ/4 ≤ y ≤ 3/2;

y, if y ≥ 3/2.

Writing uε := ρεe
iϕε locally, the equation (1.5) for uε yields in particular

αλε∂tρε − βλε|log ε|ρε∂tϕε = 4ρε − ρε|∇ϕε|2 +
aρε
ε2

(1− ρ2
ε) +∇h · ∇ρε − ρε|log ε|F⊥ · ∇ϕε + fρε. (5.61)

Testing this equation against χR(ζε(ρε)− ρε), and rearranging the terms, we obtain
ˆ
χR(1− ζ ′ε(ρε))|∇ρε|2 +

ˆ
aχR
ε2

ρε(ζε(ρε)− ρε)(1− ρ2
ε) = αλε

ˆ
χR(ζε(ρε)− ρε)∂tρε

− βλε|log ε|
ˆ
χRρε(ζε(ρε)− ρε)∂tϕε +

ˆ
(ζε(ρε)− ρε)∇χR · ∇ρε +

ˆ
χR(ζε(ρε)− ρε)ρε|∇ϕε|2

−
ˆ
χR(ζε(ρε)− ρε)∇h · ∇ρε + |log ε|

ˆ
χRρε(ζε(ρε)− ρε)F⊥ · ∇ϕε −

ˆ
χR(ζε(ρε)− ρε)fρε. (5.62)

Using that the cut-off function ζε satisfies for all y ≥ 0

|ζε(y)− y| . εκ/41|y−1|≤1/2, |ζε(y)− y| ≤ |1− y| ≤ |1− y2|, (5.63)

|ζ ′ε(y)− 1| . 1|y−1|≤εκ/4 + εκ/41|y−1|≤1/2, (ζε(y)− y)(1− y) ≥ 0, (5.64)

and noting that
ˆ
|ρε−1|≤εκ/4

aχR
5ε2

(1− ρ2
ε)

2 ≤
ˆ
|ρε−1|≤εκ/4

aχR
ε2

ρε(1− ρε)(1− ρ2
ε) ≤

ˆ
aχR
ε2

ρε(ζε(ρε)− ρε)(1− ρ2
ε),

we obtain from (2.1), (5.62) and (5.63),
ˆ
|ρε−1|≤εκ/4

χR

(
|∇ρε|2 +

a

2ε2
(1− ρ2

ε)
2
)
. εκ/4

ˆ
|ρε−1|≤1/2

χR(|∇ρε|2 + ρ2
ε|∇ϕε|2)

+ λε|log ε|
ˆ
|ρε−1|≤1/2

χR|1− ρ2
ε|(|∂tρε|+ ρε|∂tϕε|) + (1 + λε|log ε|)

ˆ
|ρε−1|≤1/2

χR|1− ρ2
ε|(|∇ρε|+ ρε|∇ϕε|)

+

ˆ
|ρε−1|≤1/2

χR|f ||1− ρ2
ε|+
ˆ
|ρε−1|≤1/2

|∇χR||1− ρ2
ε||∇ρε|.

Since |∇uε|2 = |∇ρε|2 + ρ2
ε|∇ϕε|2, and |∂tuε|2 = |∂tρε|2 + ρ2

ε|∂tϕε|2, we obtain with assumption (2.1),
ˆ
|ρε−1|≤εκ/4

χR

(
|∇|uε||2 +

a

2ε2
(1−|uε|2)2

)
. εκ/4‖∇uε‖2L2(B2R) +λε|log ε|‖1−|uε|2‖L2(B2R)‖∂tuε‖L2(B2R)

+ (1 + λε|log ε|)‖1− |uε|2‖L2(B2R)‖∇uε‖L2(B2R) +R(1 + λ2
ε|log ε|2)‖1− |uε|2‖L2(B2R).

By the integrability properties of vε (cf. Proposition 3.1), we have for all θ > 0

‖∇uε‖L2(B2R) .θ ‖∇uε − iuεNεvε‖L2(B2R) +Nε(R
θ + ‖1− |uε|2‖L2(B2R)),
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hence, using also Lemma 5.5, with λε . 1 and Nε . |log ε|,

α

ˆ t

0

ˆ
|ρε−1|≤εκ/4

χR

(
|∇|uε||2 +

a

2ε2
(1− |uε|2)2

)
.t,θ ε

κ/4Rθ|log ε|2 + εR|log ε|3,

and the result (5.60) follows.

6 Dissipative case: main proof
In this section we prove Theorem 1.1, that is, the mean-field limit result in the dissipative case α > 0,

in both critical regimes (GL1) and (GL2) (that is, with Nε � |log ε| and Nε ' |log ε|, respectively), and we
further consider the subcritical regimes (GL′1) and (GL′2). More precisely, the rescaled supercurrent density
N−1
ε jε is shown to remain close to the solution vε of equation (3.2). Combining this with the results of

Section 3.1 (in particular, with Lemma 3.2), the result of Theorem 1.1 follows.

6.1 Modulated energy argument
Using the various estimates and technical tools developed in Section 5, we may now turn to the estimation

of the various terms in the decomposition of Lemma 4.4, and deduce the smallness of the modulated energy
excess by a Grönwall argument. This is the main step in the proof of the mean-field limit result stated
in Theorem 1.1. (In this section, as we assume α > 0, multiplicative constants are allowed to additionally
depend on an upper bound on α−1.)

Proposition 6.1. Let α > 0, β ∈ R, α2 + β2 = 1, and let h : R2 → R, a := eh, F : R2 → R2, f : R2 → R
satisfy (2.1). Let uε : [0, T ) × R2 → C and vε : [0, T ) × R2 → R2 be solutions of (1.5) and (3.2) as in
Proposition 2.2(i) and in Proposition 3.1, respectively, for some T > 0. Let 0 < ε � 1 and R ≥ 1 satisfy
1 � Nε . |log ε|, |log ε|/Nε � R . |log ε|n for some n ≥ 1, and assume that the initial modulated energy
excess satisfies D∗,◦ε,R � N2

ε . Then,

(i) if log |log ε| � Nε . |log ε|, we have D∗,tε,R �t N
2
ε for all t ∈ [0, T ), in each of the regimes (GL1), (GL2),

(GL′1), and (GL′2);
(ii) if 1 � Nε . log |log ε|, in the pure dissipative case α = 1, β = 0, the same conclusion D∗,tε,R �t N

2
ε

holds for all t ∈ [0, T ) in the regime (GL1), as well as in the regime (GL′2) with λε . eo(Nε)/|log ε|.
In particular, in both cases, we deduce N−1

ε jε − vε → 0 in L∞loc([0, T ); L1
uloc(R2)2) as ε ↓ 0. If we further

assume D∗,◦ε,∞ � N2
ε , then for any ` ≥ 1 we obtain more precisely, for all t ∈ [0, T ) and L ≥ 1,

sup
z
‖N−1

ε jε − vε‖(L1 + L2)(BL(z)) �t,`

(
1 +

L

|log ε|`
)2

. (6.1)

Remarks 6.2.
(a) If we further assume ‖utε‖L∞ .t 1 for all t, we note that the convergence N−1

ε jε − vε → 0 actually
holds in L∞loc([0, T ); Lpuloc(R2)2) for all p < 2. In the parabolic case β = 0 without forcing F = f = 0, a
maximum principle type argument gives that ‖u◦ε‖L∞ ≤ 1 implies ‖utε‖L∞ ≤ 1 for all t ≥ 0 (see e.g. [21,
Proposition 4.4]). However, the same argument fails in the presence of forcing F, f 6= 0. Moreover,
such a uniform L∞-bound on uε is expected to fail in the Gross-Pitaevski case α = 0, due to the time
reversibility of the equation in that case, and it is also expected to fail in the dissipative case α > 0,
β 6= 0. We therefore systematically avoid to use such L∞-estimates here.
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(b) The main reason why we obtain no result in the case Nε � |log ε| with our computations is as follows:
the estimate (6.18) at the end of Step 3 yields

D̂tε,R ≤ ot(N2
ε ) + Ct(1 + λεα)

ˆ t

0

D̂ε,R,

where in the case Nε � |log ε| we need to choose a rescaling λε = Nε/|log ε| � 1, so that in the case
α > 0 the conclusion fails to hold due to the prefactor λεα � 1. This problem formally disappears in
the Gross-Pitaevskii case α = 0, for which the regime Nε � |log ε| is indeed treated in Section 7.

Proof. We choose R � |log ε|/Nε with Rθ0 . |log ε| for some θ0 > 0. Given the assumption D∗,◦ε,R � N2
ε on

the initial data, for all ε > 0 we define Tε > 0 the maximum time ≤ T such that D∗,tε,R ≤ N2
ε holds for all

t ≤ Tε. By Lemma 4.1 and Proposition 5.2, we deduce D̂∗,◦ε,R � N2
ε and for all t ≤ Tε,

E∗,tε,R .t Nε|log ε|, Ê∗,tε,R .t Nε|log ε|, D̂∗,tε,R .t N
2
ε , D∗,tε,R . D̂∗,tε,R + ot(N

2
ε ). (6.2)

The strategy of the proof consists in showing that for all t ≤ Tε,

D̂∗,tε,R .t o(N
2
ε ) +

ˆ t

0

D̂∗ε,R. (6.3)

By the Grönwall inequality, this implies D̂∗,tε,R �t N
2
ε , hence D∗,tε,R �t N

2
ε for all t ≤ Tε. This gives in

particular Tε = T , and the main conclusion follows.
To simplify notation, we focus on (6.3) with the left-hand side D̂tε,R centered at z = 0, but the result

of course holds uniformly with respect to the translation. We split the proof of (6.3) into four steps. We
begin with the general mixed-flow case in the regime log |log ε| � Nε . |log ε|, while Step 4 describes the
modifications needed in the proof for the purely parabolic case in the regime 1 � Nε . log |log ε|. The
additional stated consequences are deduced in Step 5.

Let us first introduce some notation. For all t ≤ Tε, as we are in the framework of Proposition 5.2
with utε, vtε, we let Btε := Btε,R denote the constructed collection of disjoint closed balls Brεε,R(utε, v

t
ε) with total

radius rε := |log ε|−4e−
√
Nε . Let then Γ̄tε denote the corresponding approximation of Γtε given by Lemma 5.3.

We decompose Γε := αΓε,0 − βΓ⊥ε,0 with

Γε,0 := λ−1
ε

(
∇⊥h− F⊥ − 2Nε

|log ε|
vε

)
.

Step 1: time-derivative of the modulated energy excess. Lemma 4.4 yields the following decomposition,

∂tD̂ε,R = ISε,R + IVε,R + IEε,R + IDε,R + IHε,R + Idε,R + Igε,R + Inε,R + I ′ε,R, (6.4)

where the eight first terms are as in the statement of Lemma 4.4, and where the error I ′ε,R is estimated as
follows (cf. (4.16)), in the considered regimes,

ˆ t

0

|I ′ε,R| .t εR(Nε|log ε|)1/2|log ε|2 = o(N2
ε ).

Step 2: estimating the error terms. In this step, we study the three error terms Idε,R, I
g
ε,R, and I

n
ε,R, and

we prove
ˆ t

0

(Idε,R + Igε,R + Inε,R) .t o(N
2
ε ) + o

( Nε
|log ε|

)ˆ t

0

ˆ
χR|∂tuε − iuεNεpε|2. (6.5)
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We begin with the estimation of Inε,R. Using (6.2), Lemma 5.5, and the boundedness properties of pε (cf.
Proposition 3.1), the quantity Ē∗ε,R defined in Lemma 5.4 is estimated as follows, in the regimes considered,
for all θ > 0,

Ē∗,tε,R . sup
z

ˆ t

0

Ezε,R + sup
z

ˆ t

0

ˆ
χzR
(
|∂tuε|2 +N2

ε |pε|2 +N2
ε |1− |uε|2||pε|2

)
.t,θ R

θNε|log ε|3 + λ−1
ε N2

ε (1 + ε(Nε|log ε|)1/2) . Rθ|log ε|4,

hence, choosing θ > 0 small enough, Ē∗,tε,R .t |log ε|5. Choosing e.g. Mε = |log ε|40, and using the obvious

estimate |∇χR| . R−1χ
1/2
R , Lemma 5.4 then yields∣∣∣∣ˆ t

0

ˆ
aṼε · ∇⊥χR

∣∣∣∣ . ot(1) +R−1|log ε|−1
( ˆ t

0

ˆ
χR|∂tuε − iuεNε pε|2 +

ˆ t

0

ˆ
B2R

|∇uε − iuεNεvε|2
)
,

and hence,∣∣∣ ˆ t

0

Inε,R

∣∣∣ .t o(1) +R−1

ˆ t

0

ˆ
B2R

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)

+R−1
(ˆ t

0

ˆ
χR|∂tuε − iuεNε pε|2 +

ˆ t

0

ˆ
B2R

|∇uε − iuεNεvε|2
)
.

By (6.2), (2.1), and the integrability properties of vε (cf. Proposition 3.1), with the choice R� |log ε|/Nε,∣∣∣ ˆ t

0

Inε,R

∣∣∣ .t o(1) +R−1Nε|log ε|+R−1

ˆ t

0

ˆ
χR|∂tuε − iuεNε pε |2 (6.6)

. o(N2
ε ) + o

( Nε
|log ε|

)ˆ t

0

ˆ
χR|∂tuε − iuεNε pε |2. (6.7)

We now turn to the estimation of Igε,R. Using (2.1) and the pointwise estimates of Lemma 4.2, we find

|Igε,R| . ‖Γε−Γ̄ε‖L∞
(
Nε

ˆ
B2R

(|∇uε−iuεNεvε|+Nε|1−|uε|2|)|curl vε|+Nε
ˆ
B2R

|1−|uε|2||∇uε−iuεNεvε|

+ λε

ˆ
χR

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+ λε|log ε|

ˆ
χR|∂tuε − iuεNεpε,%||∇uε − iuεNεvε|

+ (Nε + λε|log ε|)
ˆ
χR(|∇uε − iuεNεvε|2 +N2

ε |1− |uε|2||vε|2) +N2
ε

ˆ
χR|vε|2(Nε|vε|+ |log ε||F |)

+ λεNε|log ε||β|
ˆ
χR|∂tuε − iuεNεpε|(|vε|+ |1− |uε|2|)

)
.

By (6.2), by Lemma 5.3 in the form ‖Γε − Γ̄ε‖L∞ . rε = |log ε|−4e−
√
Nε , and by the integrability properties

of vε (cf. Proposition 3.1), we deduce in the considered regimes for all θ > 0,

|Igε,R| .t,θ
e−
√
Nε

|log ε|4
RθNε|log ε|2

(
1 +

ˆ
χR|∂tuε − iuεNεpε|2

)1/2

, (6.8)

and hence, for θ > 0 small enough such that Rθ . |log ε|, we conclude

|Igε,R| .t o(N
2
ε ) + o

( Nε
|log ε|

) ˆ
χR|∂tuε − iuεNεpε|2. (6.9)
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Regarding the last term Idε,R, the definition of the pressure in (3.2) simply yields Idε,R = 0, and the conclu-
sion (6.5) follows.

Step 3: estimating the dominant terms. We now turn to the estimation of the five first terms in (6.4),
showing more precisely that

D̂tε,R .t o(N
2
ε ) +

ˆ t

0

D̂ε,R. (6.10)

As this result obviously holds uniformly with respect to translations of the cut-off functions, the conclu-
sion (6.3) follows. We begin with the estimation of the first term ISε,R. Since for all t the field Γ̄tε is by
definition constant in each ball of the collection Btε and satisfies ‖∇Γ̄tε‖L∞ . ‖∇Γtε‖L∞ , we obtain

|ISε,R| .
ˆ
R2\Bε

χR|S̃ε| .
ˆ
R2\Bε

aχR

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2

)
+

ˆ
χR|1− |uε|2|(N2

ε |vε|2 + |f |).

Since Bε has total radius rε := |log ε|−4e−
√
Nε , and since the choice Nε � log |log ε| ensures rε ≥ e−o(Nε), we

may apply Proposition 5.2(v), which shows that the first integral in the above right-hand side is bounded
by D∗ε,R + o(N2

ε ). Further using (6.2), (2.1), and the integrability properties of vε (cf. Proposition 3.1), we
obtain in the considered regimes, with εR|log ε|3 . 1,

|ISε,R| . D∗ε,R + o(N2
ε ) + ε(Nε|log ε|)1/2(N2

ε +Rλ2
ε|log ε|2) . D̂∗ε,R + o(N2

ε ). (6.11)

We turn to IHε,R. Since ‖(Γε,∇h)‖L∞ .t 1, Lemma 5.6 yields
ˆ t

0

IHε,R = Ot(Nε) +

ˆ t

0

ˆ
aχR

2
Γ⊥ε · ∇h

(
|∇uε − iuεNεvε|2 +

a

2ε2
(1− |uε|2)2 − |log ε|µε

)
,

and hence by Proposition 5.2(iv) and Lemma 4.1, with ‖(Γε,∇h)‖W 1,∞ .t 1,
ˆ t

0

IHε,R .t o(N
2
ε ) +

ˆ t

0

Dε,R .t o(N
2
ε ) +

ˆ t

0

D̂ε,R. (6.12)

The term IDε,R is simply estimated by

IDε,R ≤ −
λεα

2

ˆ
aχR|∂tuε − iuεNεpε|2 +

λεα

2

ˆ
aχR|(∇uε − iuεNεvε) · Γ⊥ε |2. (6.13)

We finally turn to IVε,R. Using α
2 + β2 = 1, we have by definition

Γε,0 − βΓ⊥ε = Γε,0 − β(αΓ⊥ε,0 + βΓε,0) = α2Γε,0 − αβΓ⊥ε,0 = αΓε,

and hence IVε,R takes on the following guise, in terms of Γε, Γε,0,

IVε,R = λε|log ε|
ˆ
aχR

2
Ṽε · (Γε,0 − βΓ⊥ε ) = λεα|log ε|

ˆ
aχR

2
Ṽε · Γε.

As shown in Step 2, the quantity Ē∗ε,R defined in Lemma 5.4 satisfies Ē∗,tε,R .t |log ε|5. Choosing e.g. Mε =

|log ε|40, Lemma 5.4 then yields, for any Λ ' 1,∣∣∣ ˆ t

0

IVε,R

∣∣∣ ≤ ot(1)

+ λεα
(

1 +
C log |log ε|
|log ε|

)( 1

Λ

ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε|2 +

Λ

4

ˆ t

0

ˆ
aχR|(∇uε − iuεNεvε) · Γε|2

)
,
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and thus, using the optimal energy bound (6.2), and noting that λεNε log |log ε| � N2
ε holds in the considered

regimes,

∣∣∣ ˆ t

0

IVε,R

∣∣∣ ≤ ot(N2
ε ) +

(
λε + o

( Nε
|log ε|

))α
Λ

ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε|2

+
λεαΛ

4

ˆ t

0

ˆ
aχR|(∇uε − iuεNεvε) · Γε|2. (6.14)

We now distinguish between two cases:

(Case 1)
ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε|2 ≤ 5

ˆ t

0

ˆ
aχR|(∇uε − iuεNεvε) · Γε|2, (6.15)

(Case 2)
ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε|2 > 5

ˆ t

0

ˆ
aχR|(∇uε − iuεNεvε) · Γε|2. (6.16)

In Case 1, choosing Λ = 2 in (6.14) yields

∣∣∣ˆ t

0

IVε,R

∣∣∣ ≤ ot(N2
ε ) +

(
λε + o

( Nε
|log ε|

))α
2

ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε|2

+
λεα

2

ˆ t

0

ˆ
aχR|(∇uε − iuεNεvε) · Γε|2.

In Case 2, the condition (6.16) can be rewritten as

1

4

ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε|2 +

ˆ t

0

ˆ
aχR|(∇uε − iuεNεvε) · Γε|2

≤
(1

4
+

1

10

)ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε|2 +

1

2

ˆ t

0

ˆ
aχR|(∇uε − iuεNεvε) · Γε|2,

and choosing Λ = 4 in (6.14) then yields, with Nε/|log ε| . λε in the considered regimes,

∣∣∣ ˆ t

0

IVε,R

∣∣∣ ≤ ot(N2
ε )

+ λεα

((1

4
+

1

10
+ o(1)

)ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε|2 +

1

2

ˆ t

0

ˆ
aχR|(∇uε − iuεNεvε) · Γε|2

)
.

Further noting that in Case 1 the condition (6.15) together with the energy bound (6.2) yields

o
( Nε
|log ε|

)ˆ
aχR|∂tuε − iuεNεpε|2 ≤ o

( Nε
|log ε|

)ˆ t

0

ˆ
aχR|∇uε − iuεNεvε|2 .t o(N

2
ε ),

and combining this with (6.5) and (6.13), we observe an exact recombination of the terms, and obtain in
Case 1
ˆ t

0

(IVε,R + IDε,R + Idε,R + Igε,R + Inε,R + I ′ε,R) ≤ λεα

2

ˆ t

0

ˆ
aχR|∇uε − iuεNεvε |2|Γε|2 + ot(N

2
ε ), (6.17)
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and in Case 2

ˆ t

0

(IVε,R + IDε,R + Idε,R + Igε,R + Inε,R + I ′ε,R)

≤ −λεα
2

(1

2
− 1

5
− o(1)

)ˆ t

0

ˆ
aχR|∂tuε − iuεNεpε,%|2 +

λεα

2

ˆ t

0

ˆ
aχR|∇uε − iuεNεvε |2|Γε|2 + ot(N

2
ε ),

so that (6.17) holds in both cases for ε > 0 small enough. Using α2 + β2 = 1, we have by definition
Γε · Γε,0 = α|Γε,0|2 = α|Γε|2, and hence the term IEε,R takes on the following guise, in terms of Γε, Γε,0,

IEε,R = −λε
2
|log ε|

ˆ
aχRΓε · Γε,0 µε = −λεα

2
|log ε|

ˆ
aχR|Γε|2µε.

Together with (6.17), this yields

ˆ t

0

(IVε,R + IEε,R + IDε,R + Idε,R + Igε,R + Inε,R + I ′ε,R)

≤ λεα

2

ˆ t

0

ˆ
aχR

(
|∇uε − iuεNεvε|2 − |log ε|µε

)
|Γε|2 + ot(N

2
ε ).

Combining this with (6.4), (6.11), (6.12), and with D̂∗,◦ε,R � N2
ε , we conclude

D̂tε,R ≤ ot(N2
ε ) + Ct

ˆ t

0

D̂ε,R +
λεα

2

ˆ t

0

ˆ
aχR

(
|∇uε − iuεNεvε|2 − |log ε|µε

)
|Γε|2, (6.18)

and the result (6.10) now follows from Proposition 5.2(iv).

Step 4: refinement in the purely parabolic case. We consider the parabolic case α = 1, β = 0, in both
the critical regime (GL1), and the subcritical regime (GL′2) with λε ≤ eo(Nε)/|log ε|, and we show that the
assumption Nε � log |log ε| can be dropped. In the proof in Steps 1–3 above, the limitation comes from the
fact that we need to use balls Bε with a particularly small total radius rε in order to obtain smallness of
the error term Igε,%,R in (6.8), while on the other hand the term ISε,%,R corresponds to the energy outside the
small balls Bε, so that we need to have rε ≥ e−o(Nε) to be allowed to apply Proposition 5.2(v). However, in
the parabolic case, the worst terms in Igε,%,R vanish, and the total radius rε may then be chosen to be much
larger.

Let us thus consider the regime (GL1) or the subcritical regime (GL′2) with λε . eo(Nε)/|log ε|, in the
parabolic case α = 1, β = 0, and with a “small” number of vortices 1 � Nε . log |log ε|. Let r̃ε :=
(λε|log ε|)−2 ≥ e−o(Nε) and choose ε1/2 < r̃0

ε � Nε|log ε|−1. For all t ≤ Tε, as we are in the framework of
Proposition 5.2 with utε, v

t
ε, we let B̃tε := B̃tε,R denote the corresponding collection of disjoint closed balls

B̃r̃
0
ε ,r̃ε
ε,R (utε, v

t
ε). Let then Γ̃tε denote the associated approximation of Γtε given by Lemma 5.3. As in Step 1,

Lemma 4.4 yields the following decomposition, with Γ̄ε replaced by Γ̃ε,

∂tD̂ε,R = ISε,R + IVε,R + IEε,R + IDε,R + IHε,R + Idε,R + Igε,R + Inε,R + I ′ε,R,

where all the terms are estimated just as before, except Igε,R and ISε,R. We begin with the discussion of Igε,R.
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For α = 1, β = 0, this term takes on the following simpler form,

Igε,R =

ˆ
aχRNε(Nεvε−jε) · (Γε − Γ̃ε)curl vε +

ˆ
λεaχR(Γε − Γ̃ε)

⊥ · 〈∂tuε − iuεNεpε,∇uε − iuεNεvε〉

+

ˆ
aχR

2
(Γ̃ε − Γε)

⊥ · ∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+

ˆ
aχR(Γ̃ε − Γε) · (Nεvε +|log ε|F⊥/2)µε. (6.19)

We estimate each of the four right-hand side terms separately. We begin with the first term. Using the
pointwise estimates of Lemma 4.2 and the integrability properties of vε (cf. Proposition 3.1), we find
ˆ
aχRNε(Nεvε−jε) · (Γε − Γ̃ε)curl vε

. Nε‖Γε − Γ̃ε‖L∞
(ˆ
B̃tε
χR|∇uε − iuεNεvε|+

(ˆ
R2\B̃tε

χR|∇uε − iuεNεvε|2
)1/2

)
+Nε‖Γε − Γ̃ε‖L∞

( ˆ
χR|1− |uε|2||∇uε − iuεNεvε|+Nε

ˆ
χR|1− |uε|2||curl vε|

)
,

and hence, using (6.2) and Proposition 5.2(v)–(vi) with p = 1 to estimate the first two integrals in the
right-hand side, and using Lemma 5.3 in the form ‖Γtε − Γ̃tε‖L∞ .t r̃ε � 1,ˆ

aχRNε(Nεvε−jε) · (Γε − Γ̃ε)curl vε . N2
ε ‖Γε − Γ̃ε‖L∞ �t N

2
ε .

For the second term in (6.19), using (6.2) and again Lemma 5.3, with r̃ελε � Nε|log ε|−1, we obtain
ˆ
λεaχR(Γε − Γ̃ε)

⊥ · 〈∂tuε − iuεNεpε,∇uε − iuεNεvε〉

. λε(Nε|log ε|)1/2‖Γε − Γ̃ε‖L∞
(ˆ

χR|∂tuε − iuεNεpε|2
)1/2

. o(N2
ε ) + o

( Nε
|log ε|

) ˆ
χR|∂tuε − iuεNεpε|2.

For the third term in (6.19), using (6.2), and (2.1) together with Lemma 5.3 in the form ‖(Γ̃ε−Γε)
⊥·∇h‖L∞ .t

r̃ελε � Nε|log ε|−1, we findˆ
aχR

2
(Γ̃ε − Γε)

⊥ · ∇h
(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
�t N

2
ε .

It remains to estimate the fourth term in (6.19). Using (6.2), Proposition 5.2(iii) in the form (5.13) with
γ = 1/2, the regularity properties of vε (cf. Proposition 3.1), (2.1) in the form ‖F‖C1/2 . λε, and Lemma 5.3
in the form ‖Γ̃ε − Γε‖C1/2 .t r̃

1/2
ε = (λε|log ε|)−1, we obtainˆ

aχR(Γ̃ε − Γε) · (Nεvε +|log ε|F⊥/2)µε . Nε‖aχR(Γ̃ε − Γε) · (Nεvε +|log ε|F⊥/2)‖C1/2

. Nε(Nε + λε|log ε|)‖Γ̃ε − Γε‖C1/2 �t N
2
ε .

Inserting these various estimates into (6.19) now yields

Igε,R .t o(N
2
ε ) + o

( Nε
|log ε|

)ˆ
χR|∂tuε − iuεNεpε|2,
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proving that (6.9) again holds in the present setting. On the other hand, since the total radius satisfies
r̃ε ≥ e−o(Nε), we may apply Proposition 5.2(v), so that the estimate (6.11) for ISε,%,R can again be obtained
just as in Step 3, and the conclusion (6.3) follows.

Step 5: consequences. In the previous steps, the result D∗,tε,R �t N
2
ε for t ∈ [0, T ) is proved in both

cases (i) and (ii) of the statement. We now show that it implies the convergence N−1
ε jε − vε → 0. For all

t ∈ [0, T ), Proposition 5.2 yields E∗,tε,R .t Nε|log ε|, and for r ∈ (ε1/2, r̄) we denote by Br,tε,R the constructed
collection of disjoint closed balls corresponding to utε, vtε, R and total radius r. Let e−o(Nε) ≤ r < r̄. For all
t ∈ [0, T ), Proposition 5.2(v)–(vi) gives

sup
z

ˆ
R2\Br,tε,R

χzR|∇uε − iuεNεvε|2 �t N
2
ε ,

and for all 1 ≤ p < 2,

sup
z

ˆ
Br,tε,R

χzR|∇uε − iuεNεvε|p �t N
p
ε .

Using the pointwise estimates of Lemma 4.2, we deduce

sup
z

ˆ
B(z)

|jε −Nεvε| .t sup
z

ˆ
B(z)

|∇uε − iuεNεvε|+ εNε|log ε|

.t sup
z

ˆ
Br,tε,R

χzR|∇uε − iuεNεvε|+ sup
z

(ˆ
B(z)\Br,tε,R

|∇uε − iuεNεvε|2
)1/2

+ o(Nε)�t Nε,

hence N−1
ε jε − vε → 0 in L∞loc([0, T ); L1

uloc(R2)2). More precisely, we may decompose for all L ≥ 1,

sup
z
‖jε −Nεvε‖(L1 + L2)(BL(z)) .t sup

z

ˆ
Br,tε,R

χzR|∇uε − iuεNεvε|+ sup
z
‖∇uε − iuεNεvε‖L2(BL(z)\Br,tε,R)

+Nε sup
z
‖1− |uε|2‖L2(BL(z)) + sup

z
‖1− |uε|2‖L2(BL(z))‖∇uε − iuεNεvε‖L2(BL(z)),

hence

sup
z
‖jε −Nεvε‖(L1 + L2)(BL(z)) .t o(Nε)(1 + L/R) + εNε(Nε|log ε|)1/2(1 + L/R) + εNε|log ε|(1 + L/R)2,

and the result (6.1) follows. As stated in Remark 6.2(a), under the additional assumption that ‖utε‖L∞ .t 1,
the convergence N−1

ε jε − vε → 0 also holds in L∞loc([0, T ); Lploc(R2)2) for all 1 ≤ p < 2; this follows from a
similar argument as above, replacing the pointwise estimate of Lemma 4.2 for jε −Nεvε by

|jε −Nεvε| ≤ |uε||∇uε − iuεNεvε|+Nε|1− |uε|2||vε|.

7 Gross-Pitaevskii case
In this section, we prove Theorem 1.3, that is, the mean-field limit result in the Gross-Pitaevskii case in

the regime (GP) (in particular, with Nε � |log ε|). More precisely, the rescaled supercurrent density N−1
ε jε

is shown to be very close to the solution vε of equation (3.3). Combining this with the results of Section 3.2
(in particular, with Lemma 3.4), the result of Theorem 1.3 follows.
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7.1 Preliminary: vorticity estimate
Although the vortex-balls construction and the localized lower bound of Lemma 5.1 could be adapted to

the present setting with Nε � |log ε|, we only need the following optimal estimate on the number of vortices
based on an estimate on the modulated energy excess. Since the vector field ∇h is assumed to decay at
infinity, the proof is considerably reduced. (Note that in the absence of pinning and forcing no cut-off is
needed and the corresponding property is completely trivial: the excess is then indeed simply defined by
Dε = Eε − πNε|log ε|, cf. [82].)

Lemma 7.1. Let h : R2 → R, a := eh, with a ≤ 1 and ‖∇h‖L2 ∩L∞ . 1, let uε : R2 → C, vε : R2 → R2,
with ‖curl vε‖L1 ∩L∞ . 1 and ‖vε‖L∞ . 1. Assume that 0 < ε� 1, |log ε| � Nε . ε−1, R ≥ 1, and assume
that the modulated energy excess satisfies D∗ε,R . N2

ε . Then,

sup
z
‖µε‖(Ḣ1∩W 1,∞(BR(z)))∗ . Nε,

hence in particular
sup
z
|Ezε,R −Dzε,R| . Nε|log ε| � N2

ε .

Proof. Let φ ∈ Ḣ1 ∩W 1,∞(R2) be supported in a ball of radius R. We decompose
ˆ
φµε =

ˆ
φ
(
Nεcurl vε +curl (jε −Nεvε)

)
= Nε

ˆ
φcurl vε−

ˆ
∇⊥φ · (jε −Nεvε),

hence, using the pointwise estimates of Lemma 4.2,
ˆ
φµε . Nε‖φ‖L∞ + (E∗ε,R)1/2‖∇φ‖L2 + εE∗ε,R‖∇φ‖L∞ . (7.1)

In particular, using the assumptions D∗ε,R . N2
ε and ‖∇h‖L2 ∩L∞ . 1, we obtain

Ezε,R = Dzε,R + |log ε|
ˆ
aχzRµε . N2

ε + |log ε|(E∗ε,R)1/2 + εE∗ε,R,

and hence, taking the supremum in z and absorbing E∗ε,R in the left-hand side, for ε > 0 small enough,

E∗ε,R . N2
ε + (1 + εNε)

2|log ε|2 . N2
ε .

Inserting this into (7.1) yields
´
φµε . Nε‖φ‖Ḣ1∩W 1,∞ , and the result follows.

7.2 Modulated energy argument
Using the estimates of the previous section, we may now turn to the estimation of the different terms in

the decomposition of Lemma 4.4, and deduce the smallness of the modulated energy excess by a Grönwall
argument. This is the main step in the proof of the mean-field limit result stated in Theorem 1.3.

Proposition 7.2. Let α = 0, β = 1, and let h : R2 → R, a := eh, F : R2 → R2, f : R2 → R satisfy (2.2). Let
uε : [0, T ]×R2 → C and vε : [0, T ]×R2 → R2 be solutions of (1.5) and (3.2) as in Proposition 2.2(ii) and in
Proposition 3.3, respectively, for some T > 0. Let 0 < ε� 1, |log ε| � Nε � ε−1, R & ‖∂tuε‖L∞T L2 +|log ε|2,
and assume that the initial modulated energy satisfies E∗,◦ε,R � N2

ε .
Then, in the regime (GP), we have E∗,tε,R �t N

2
ε for all t ∈ [0, T ], and in particular N−1

ε jε − vε → 0 holds in
L∞([0, T ]; L1

uloc(R2)2) as ε ↓ 0. Under the stronger assumption E∗,◦ε � N2
ε , the same convergence holds in

L∞([0, T ]; (L1 + L2)(R2)2).
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In the present regime Nε � |log ε|, Lemma 7.1 states that |Dε,R − Eε,R| � N2
ε . Hence, as opposed

to the more difficult situation treated in Section 6, the different terms appearing in the decomposition in
Lemma 4.4 now only need to be estimated by means of the modulated energy Eε,R, without having to take
care of the renormalization on the small balls around the vortex locations. In particular, the vector field
Γε does no more need to be truncated on the small balls, and we simply set Γ̄ε = Γε. For this choice,
all terms involving the vortex velocity Ṽε,% are easily seen to vanish. This simplification is crucial since in
the present conservative case we have no good a priori control on the velocity (apart from rough a priori
estimates of the form ‖∂tuε − iuεNεpε,%‖L2 . ε−2), and this prevents us from treating the case Nε . |log ε|
in the Gross-Pitaevskii case.

Proof. In the sequel, we choose 1 � % ≤ R with %θ0 � (εNε)
−1 for some θ0 > 0. Regarding the global

truncation at the scale R, it is not really needed in the present context (as a consequence of the decay
assumption on the fields ∇h, F, f), and can be sent to infinity arbitrarily fast; here it suffices to choose
R ≥ supt∈[0,T ] ‖∂tuε‖L2 + |log ε|2 (where the right-hand side is indeed finite by Proposition 2.2(ii)). Given
the assumption E∗,◦ε,R � N2

ε on the initial data, for all ε > 0, we define Tε > 0 as the maximum time ≤ T

such that E∗,tε,R ≤ N2
ε holds for all t ≤ Tε. By Lemmas 4.1 and 7.1, we deduce D̂∗,◦ε,%,R � N2

ε and for all t ≤ Tε,

D∗,tε,R .t N
2
ε , Ê∗,tε,%,R .t N

2
ε , D̂∗,tε,%,R .t N

2
ε , E∗,tε,R . Ê∗,tε,%,R + ot(N

2
ε ), Ê∗,tε,%,R . D̂∗,tε,%,R + ot(N

2
ε ). (7.2)

The strategy of the proof now consists in showing that for all t ≤ Tε

Ê∗,tε,%,R .t o(N
2
ε ) +

ˆ t

0

Ê∗ε,%,R. (7.3)

This estimate is proved in Step 1 below. To simplify notation, we focus on (7.3) with the left-hand side Êtε,%,R
centered at z = 0, but the result of course holds uniformly with respect to the translation. By the Grönwall
inequality, it implies Ê∗,tε,%,R �t N

2
ε , hence E

∗,t
ε,R �t N

2
ε for all t ≤ Tε. This gives in particular Tε = T , and

the main conclusion follows, while the additional stated consequences are deduced in Step 2.

Step 1: proof of (7.3). Using the constraint 0 = a−1 div (avε) = div vε + vε· ∇h, and choosing Γ̄ε := Γε,
the result of Lemma 4.4 takes the following simpler form,

∂tD̂ε,%,R = ISε,%,R + IVε,%,R + IEε,%,R + IHε,%,R + Inε,%,R + I ′ε,%,R, (7.4)

where we have set

ISε,%,R := −
ˆ
χR∇Γ⊥ε : S̃ε,

IVε,%,R :=

ˆ
aχR

2
Ṽε,% · (−λε|log ε|Γ⊥ε + |log ε|(∇⊥h− F⊥)− 2Nεvε),

IEε,%,R := −
ˆ
aχR

2
Γε · (|log ε|(∇⊥h− F⊥)− 2Nεvε)µε,

IHε,%,R :=

ˆ
aχR

2
Γ⊥ε · ∇h

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 − |log ε|µε

)
,

Inε,%,R := −
ˆ
∇χR · S̃ε · Γ⊥ε −

ˆ
a∇χR ·

(
〈∂tuε − iuεNεpε,∇uε − iuεNεvε〉+

|log ε|
2

Ṽ ⊥ε,%

)
,

and where the error I ′ε,%,R is estimated as follows (cf. (4.17)),

|I ′ε,%,R| .t,θ εNεE∗ε,R +Nε(E∗ε,R)1/2‖∇(pε−pε,%)‖L2 + εN2
ε %

θ(E∗ε,R)1/2.
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Choosing θ > 0 small enough, and using Proposition 3.3 in the form ‖∇(ptε−ptε,%)‖L2 �t 1 (cf. (3.22)), we
obtain

|I ′ε,%,R| .t,θ E∗ε,R + o(Nε)(E∗ε,R)1/2. (7.5)

The choice (3.3) for Γε gives IVε,%,R = IEε,%,R = 0, hence

∂tD̂ε,%,R = ISε,%,R + IHε,%,R + Inε,%,R + I ′ε,%,R. (7.6)

It remains to estimate the first three right-hand side terms. By (2.2) in the form ‖f‖L2 . N2
ε , and by the

integrability properties of vε (cf. Proposition 3.3), the first right-hand side term is estimated by

ISε,%,R . ‖∇Γε‖L∞
ˆ
χR

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)

.t Eε,R + εN2
ε (Eε,R)1/2 . Eε,R + o(N2

ε ). (7.7)

We turn to the second right-hand side term in (7.6). Lemma 7.1 yields

IHε,%,R ≤ ‖Γ⊥ε · ∇h‖L∞
ˆ
χR

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2

)
+ |log ε|

∣∣∣∣ ˆ aχRΓ⊥ε · ∇hµε
∣∣∣∣

. Eε,R‖Γ⊥ε · ∇h‖L∞ +Nε|log ε|‖aχRΓ⊥ε · ∇h‖Ḣ1∩W 1,∞ ,

and hence, using (2.2) and the properties of vε (cf. Proposition 3.3),

IHε,%,R .t Eε,R +Nε|log ε| ≤ Eε,R + o(N2
ε ). (7.8)

It remains to estimate the third right-hand side term in (7.6). Arguing as above, we find

Inε,%,R . R−1‖Γε‖L∞
ˆ
B2R

(
|∇uε − iuεNεvε|2 +

a

ε2
(1− |uε|2)2 + |1− |uε|2|(N2

ε |vε|2 + |f |)
)

+R−1|log ε|
ˆ
B2R

|∂tuε − iuεNεpε,%||∇uε − iuεNεvε|

.t E∗ε,R + o(N2
ε ) +R−1|log ε|(E∗ε,R)1/2‖∂tuε − iuεNεpε,%‖L2(B2R).

The properties of pε (cf. Proposition 3.3) yield for all θ > 0,

‖∂tuε − iuεNεpε,%‖L2(B2R) . ‖∂tuε‖L2(B2R) +Nε‖pε,%‖L2(B2R) +Nε‖pε,%‖L∞(B2R)‖1− |uε|2|‖L2(B2R)

.t,θ ‖∂tuε‖L2(B2R) +Nε%
θ + εNε(E∗ε,R)1/2,

so that the above takes the form

Inε,%,R .t,θ E∗ε,R +R−2|log ε|2‖∂tuε‖2L2(B2R) +R−2(1−θ)N2
ε |log ε|2 + o(N2

ε ).

Using the choice R & ‖∂tuε‖L2 + |log ε|2, and choosing θ > 0 small enough, we deduce Inε,%,R .t E∗ε,R+o(N2
ε ).

Combining this with (7.5), (7.6), (7.7), and (7.8), we conclude

∂tD̂ε,%,R .t E∗ε,R + o(N2
ε ).

Integrating this in time with D̂∗,◦ε,%,R � N2
ε , using (7.2), and noting that the same result holds uniformly with

respect to translations of the cut-off functions, the conclusion (7.3) follows.
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Step 2: conclusion. As explained, the result of Step 1 implies Tε = T and E∗,tε,R �t N
2
ε for all t ∈ [0, T ).

We now show that it implies the convergence N−1
ε jε− vε → 0. Using the pointwise estimates of Lemma 4.2,

we obtain

‖jε −Nεvε‖(L1 + L2)(BR(z)) . ‖∇uε − iuεNεvε‖L2(BR(z))

(
1 + ‖1− |uε|2‖L2(BR(z))

)
+Nε‖1− |uε|2‖L2(BR(z))

�t Nε(1 + εNε) . Nε,

and the conclusion follows, letting R ↑ ∞.

Part II

Homogenization questions
8 Small pin separation limit

In this section, we aim to combine the mean-field limit with the homogenization limit of a small pin
separation ηε ↓ 0. Only partial results are obtained here for this double limit. We focus on the dissipative
case, and for simplicity we restrict to the periodic setting, that is, ĥ(x) = ηεĥ

0(x, x/ηε) with ĥ0 periodic in
its second variable.

8.1 Modulated energy argument
In this section, we adapt the result of Proposition 6.1 to the case with fast oscillating pinning. Since for

simplicity we have not been looking for precise rates of convergence in Proposition 6.1 (that is, refinements
of the o(N2

ε ) error in (6.3)), we are only in position to treat inexplicit diagonal regimes ηε,0 � ηε � 1, for
some suitable ηε,0. Further refinements are left to the interested reader.

Proposition 8.1. Given a fast oscillating pinning potential (1.22), we consider the regimes (GL1), (GL2),
(GL′1), and (GL′2). Then, the solution vε of the corresponding limiting equation (3.2) exists up to time ηεT ,
where T > 0 is as in Proposition 3.1. In particular, except in the regime (GL2) with β 6= 0, the time T can
be chosen either infinite, or at least arbitrary large for ε > 0 small enough (independently of ηε).

Moreover, there exists some exponent σ > 0 and some increasing bijection θ : R+ → R+ such that, if
the initial modulated energy satisfies D∗,◦ε,R � N2

ε , then we have in the corresponding regimes, with the same
restrictions as in Proposition 6.1, for all 0 ≤ t < ηεT ,

sup
0≤s≤t

D̂sε,R ≤ N2
ε =⇒ D̂tε,R ≤ θ(t/ηε)

(
η−σε o(N2

ε ) + η−1
ε

ˆ t

0

D̂ε,R
)
. (8.1)

Proof. We adapt the proof of Proposition 6.1 to the present case with fast oscillating pinning. For that
purpose we first need to check how the solution vε of the limiting equations (3.2) depends on the small
parameter ηε, thus adapting the result of Proposition 3.1. A scaling argument shows that the solution
vε exists up to time ηεT , where T is as in Proposition 3.1. Moreover, an inspection of the proofs in [37]
together with a scaling argument shows that all the estimates in Proposition 3.1 still hold up to multiplicative
constants of the form η−σε θ(t/ηε), for all 0 ≤ t < ηεT , for some exponent σ ≥ 0 and some increasing bijection
θ : R+ → R+. (Of course this is but a rough estimate, but it is enough for our purposes here.) Note that a
scaling argument yields more precisely, for all 0 ≤ t < ηεT ,

‖Γtε‖L∞ ≤ θ(t/ηε), ‖∇Γtε‖L∞ ≤ η−1
ε θ(t/ηε),
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for some increasing bijection θ : R+ → R+. Repeating the proof of Proposition 6.1, but now taking into
account this ηε-dependence, the conclusion follows.

8.2 Local relaxation for slowed-down dynamics
The result of Proposition 8.1 a priori prevents us from applying a Grönwall argument beyond times of

order ηε. As the following shows, in this short timescale, in each (mesoscopic) periodicity cell, the vorticity
gets projected onto the invariant measure for the cell dynamics associated with the initial vector field Γ◦ε
(where Γε is the vector field driving the limiting equation (3.2)). This initial-boundary layer is captured in
the framework of 2-scale convergence. The proof of this short-time result is very easy since the non-linearity
does not play any role in this timescale. In contrast, in the next sections, we give formal arguments that on
larger timescales the effective vector field is given by the cell vector field projected onto the corresponding
invariant measure (which is indeed in agreement with the present short-time result), but on such large
timescales the nonlinearity truly enters into play and a rigorous justification is still missing.

Proposition 8.2. Let Assumption A(a) prevail, with the initial data (u◦ε, v
◦
ε, v
◦) satisfying the well-preparedness

condition (1.14). We consider the regimes (GL1), (GL2), (GL′1), and (GL′2), with fast oscillating pinning
potential (1.22). Let uε : R+ × R2 → C be the solution of (1.5) as in Proposition 2.2(i). Let T > 0 denote
the finite existence time given by Proposition 3.1 in the regime (GL2) in the mixed-flow case β 6= 0, and set
T := ∞ otherwise. Let also m̂0 denote the unique solution of the following transport equation on R+ × Q,
for all x ∈ Rd,

∂tm̂0(x, ·) = divy
(
Γ◦(x, ·)m̂0(x, ·)

)
, m̂0(x, ·)|t=0 = curl v◦(x), (8.2)

Γ◦(x, y) := (α− Jβ)
(
∇2ĥ

0(x, y)− F̂ (x) + 2κv◦(x)⊥
)
,

where κ := 1 in the regime (GL1), κ := λ in the regime (GL2), and κ := 0 in the regimes (GL′1)–(GL′2).
Then, there exists ηε,0 � 1 (depending on all the data of the problem), such that for any choice ηε,0 ≤ ηε � 1
the rescaled vorticity N−1

ε µηεtε 2-scale converges to m̂t
0, in the sense that, for all φ ∈ C∞c ([0, T )×R2;C∞per(Q)),

lim
ε↓0

¨
φ(t, x, x/ηε)N

−1
ε µηεtε (x)dxdt =

˚
φ(t, x, y)m̂t

0(x, y)dydxdt.

Proof. Let vε : [0, ηεT ) × R2 → R2 denote the solution of the limiting equations (3.2) with oscillating
pinning (1.22), as given by Proposition 8.1. Now using Proposition 8.1 in the form of (8.1), and choosing
ηε,0 � 1 large enough such that η−σε,0 o(N

2
ε )� N2

ε , the Grönwall inequality yields for any choice ηε,0 ≤ ηε � 1

that D∗,ηεtε,R .t o(N2
ε ) holds for all 0 ≤ t < T . Hence, arguing as in Step 5 of the proof of Proposition 6.1,

we deduce N−1
ε jηεtε (x) − vηεtε (x) → 0 in L∞loc(R+; L1

uloc(R2)2) as ε ↓ 0. It now remains to determine the
asymptotic behaviour of vηεtε .

Step 1: 2-scale convergence of curl vηεtε . Let v̂tε := vηεtε and m̂ε := curl v̂ε. Taking the curl in both sides
of (3.2), we deduce

∂tm̂ε = ηε div (Γεm̂ε), m̂ε|t=0 = curl v◦ε, (8.3)

Γε := λ−1
ε (α− Jβ)

(
∇h− F +

2Nε
|log ε|

v̂⊥ε

)
.

By [37, Lemma 4.1(iii)] in the dissipative case α > 0, with ‖h‖W 1,∞ , ‖λ−1
ε (∇⊥h − F⊥)‖L∞ , ‖v◦ε‖L∞ ,

‖div (av◦ε)‖L2 . 1, we deduce that
´
|vtε− v◦ε|2 . t for all t ∈ [0, ηεT ). On the other hand, by [37, Lemma 4.2],
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with further ‖curl v◦ε‖L∞ . 1 and ‖λ−1
ε ∇(∇⊥h − F⊥)‖L∞ . η−1

ε , we find ‖curl vtε‖L∞ .t/ηε 1. After time
rescaling, this implies for all t ∈ [0, T ),

ˆ
|v̂tε − v◦ε|2 .t ηε, and ‖m̂t

ε‖L∞ .t 1. (8.4)

Nguetseng’s 2-scale compactness theorem [68, 4] (e.g. in the form of [38, Theorem 3.2]) then states that
there exists m̃0 ∈ L∞loc(R+; L∞(R2 ×Q)) such that (up to a subsequence) m̂ε 2-scale converges to m̃0, in the
sense that for all φ ∈ C∞c (R+ × R2;C∞per(Q)) we have

lim
ε↓0

¨
φ(t, x, x/ηε)m̂

t
ε(x)dxdt =

˚
φ(t, x, y)m̃t

0(x, y)dydxdt.

Testing equation (8.3) against φt(x, x/ηε), we find

ˆ
φ◦(x, x/ηε)curl v◦(x)dx+

¨
∂tφ(t, x, x/ηε)m̂

t
ε(x)dxdt

=

¨
m̂t
ε(x)(ηε∇1φ(t, x, x/ηε) +∇2φ(t, x, x/ηε)) · Γtε(x)dxdt,

and hence, passing to the limit ε ↓ 0 (up to a subsequence), using that v̂ε → v◦ in L∞loc(R+; L2
uloc(R2))

(cf. (8.4)), we obtain in the considered regimes,
¨

φ(0, x, y)curl v◦(x)dydx+

˚
∂tφ(t, x, y)m̃t

0(x, y)dydxdt =

˚
m̃t

0(x, y)∇2φ(t, x, y) · Γ◦(x, y)dydxdt.

This proves that m̃0 satisfies the weak formulation of the linear transport equation (8.2), and therefore
coincides with its unique solution, m̃0 = m̂0.

Step 2: conclusion. Let φ ∈ C∞c (R+×R2;C∞per(Q)), with φ(t, x, y) = 0 for t > T0 or |x| > R0. Integration
by parts yields∣∣∣∣¨ φ(t, x, x/ηε)curl (jηεtε /Nε)(x)dxdt−

˚
φ(t, x, y)m̂t

0(x, y)dydxdt

∣∣∣∣ (8.5)

≤ η−1
ε ‖∇x,yφ‖L∞

ˆ T0

0

ˆ
BR0

|jηεtε /Nε − v̂tε|+
∣∣∣∣¨ φ(t, x, x/ηε)curl v̂tε(x)dxdt−

˚
φ(t, x, y)m̂t

0(x, y)dydxdt

∣∣∣∣.
By Step 1, the second right-hand side term goes to 0. It remains to estimate the first term. In the very
beginning of the proof, we have shown that

´ T0

0

´
BR0
|jηεtε /Nε − v̂tε| → 0 holds uniformly with respect to the

choice of ηε,0 ≤ ηε � 1. Now choosing ηε,0 � 1 large enough ensures that for any ηε,0 ≤ ηε � 1 the first
right-hand side term in (8.5) also goes to 0.

8.3 Homogenization diagonal result
Although the result of Proposition 8.1 a priori prevents us from applying a Grönwall argument beyond

times of order ηε, it is possible to find some perturbative diagonal regime where the conclusion holds for
all times. (While this regime is still denoted by ηε,0 ≤ ηε � 1 for some large enough ηε,0 � 1, it should
be emphasized that the sequence ηε,0 needs here to be taken in practice incomparably much larger than
in Propositions 8.1–8.2.) In such a regime, the homogenization limit may simply be performed after the
mean-field limit.
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Corollary 8.3. Given a fast oscillating pinning potential (1.22), we consider the regimes (GL1), (GL2),
(GL′1), and (GL′2), and in the regime (GL2) we restrict to the parabolic case β = 0. Then there exists
ηε,0 � 1 (depending on all the data of the problem), such that for all ηε,0 � ηε � 1 the conclusions of
Proposition 6.1 hold in each of the corresponding regimes.

Proof. Since the regime (GL2) is excluded here in the mixed-flow case β 6= 0, Proposition 8.1 asserts that
the solution vε of (3.2) with oscillating pinning exists up to time ηεT , where T > 0 can be chosen arbitrarily
large for ε > 0 small enough (independently of ηε). Hence, choosing ηε,0 ≤ ηε � 1 with ηε,0 large enough,
the existence time ηεT can itself be taken arbitrarily large. Now given the assumption D∗,◦ε,R � N2

ε on the
initial data, for all ε > 0 we define Tε > 0 as the maximum time such that D∗,tε,R ≤ N2

ε holds for all t ≤ Tε,
so that Proposition 8.1 yields for all 0 ≤ t ≤ Tε,

D̂tε,R ≤ θ(t/ηε)
(
η−σε o(N2

ε ) + η−1
ε

ˆ t

0

D̂ε,R
)
,

for some exponent σ ≥ 0 and some increasing bijection θ : R+ → R+. Hence we find by the Grönwall
inequality, for all 0 ≤ t ≤ Tε,

D̂tε,R . θ
( t+ 1

ησε

)
o(N2

ε ),

for some exponent σ ≥ 1 and some other increasing bijection θ : R+ → R+. Choosing [θ−1(Nε/
√
o(N2

ε ))]−1/σ ≤
ηε,0 � 1, for any ηε,0 � ηε � 1 we deduce D̂tε,R � N2

ε for all t ≥ 0, and the conclusion now follows as in
Step 5 of the proof of Proposition 6.1.

In this diagonal regime, the problem is thus reduced to determining the asymptotic behavior as ε ↓ 0 of
the solution vε of the limiting equation (3.2) with fast oscillating pinning potential (1.22). As the following
shows, we may further replace vε by the solution v̄ε of the simpler corresponding equations in Lemma 3.2
with fast oscillating pinning potential. Determining the asymptotic behavior of v̄ε exactly coincides with an
homogenization problem; this is precisely the content of Corollary 1.5.

Corollary 8.4. Given a fast oscillating pinning potential (1.22), we consider the regimes (GL1), (GL2),
(GL′1), and (GL′2), and in the regime (GL2) we restrict to the parabolic case β = 0. Let vε be the solution
of (3.2) with fast oscillating pinning as in Proposition 8.1, and let v̄ε be the solution of the corresponding
equation (3.13)–(3.16) in Lemma 3.2 with ∇ĥ(x) replaced by ∇2ĥ

0(x, x/ηε). Then there exists ηε,0 � 1
(depending on all the data of the problem) such that for all ηε,0 � ηε � 1, choosing the fast oscillating
pinning potential (1.22), the solutions vε and v̄ε exist on arbitrarily large time intervals as ε ↓ 0, and the
same conclusions hold as in Lemma 3.2 in the form vε−v̄ε → 0.

Note that here the correct choice of the diagonal regime ηε,0 � 1 could be made completely explicit in
terms of the rate of convergence of Nε/|log ε| to its limit. This is however not made precise here, as anyway
we are limited to some unclear diagonal regime when combining this with Corollary 8.3.

Proof. This convergence result directly follows from the computations in the proof of Lemma 3.2, taking
into account the ηε-dependence of vε and v̄ε, and applying the Grönwall inequality in a diagonal regime as
in the proof of Corollary 8.3.

In the next sections 8.4–8.5, we examine the various homogenization problems arising in the above result.
Although the justification of the homogenization of the nonlinear equation arising in the critical regimes
seems out of reach, the situation is simpler in the subcritical regimes.

87



8.4 Critical regimes: formal asymptotics
In this section, we investigate the asymptotic behavior of the mean-field equations in the critical regimes (GL1)–

(GL2) with fast oscillating pinning (1.22). In order to extract the effective equations that should rule the
system in the limit ηε ↓ 0, we use a formal 2-scale expansion (see [7] for a general presentation), which
yields the result of Heuristics 1.7. However, as emphasized in Remark 8.5 below, due to both the nonlinear
nonlocal character of the mean-field equations and their instability as ηε ↓ 0, the rigorous justification of this
homogenization limit seems to be a very difficult task, and is not pursued here. Regarding the interpretation
of the formal limiting equations as a stick-slip model, we refer to Section 1.3.1.

Formal justification of Heuristics 1.7. We focus on the regime (GL1), while the formal justification is easily
adapted to the regime (GL2). The only difference is that in the regime (GL2) it is further needed to restrict
to the parabolic case β = 0 in order to get global existence for the solution v̄ε of (3.14) with fast oscillating
pinning, since otherwise the finite existence time would a priori shrink to 0 as ηε ↓ 0 (cf. Proposition 8.1).
Let v̄ε : R+ × R2 → R2 denote the unique (global) smooth solution of (3.13) with ∇ĥ(x) replaced by
∇2ĥ

0(x, x/ηε) (see [37]),

∂tv̄ε = ∇p̄ε + Γεcurl v̄ε, div v̄ε = 0, v̄ε|t=0 = v◦ε,

Γε := (α− Jβ)
(
∇⊥2 ĥ0(·, ·/ηε)− F̂⊥ − 2v̄ε

)
,

with ĥ0 and F̂ independent of ε. Let us recall the more convenient vorticity formulation of this equation:
the vorticity m̄ε := curl v̄ε satisfies

∂tm̄ε = −div (Γ⊥ε m̄ε), v̄ε = ∇⊥ḡε, 4ḡε = m̄ε. (8.6)

As a consequence of [37, Lemmas 4.1(iii) and 4.2], we find ‖v̄tε − v◦‖L2 .t 1 and ‖m̄t
ε‖L∞ .t/ηε 1. In order

to obtain the effective equations satisfied by vε in the limit ηε ↓ 0, we use a formal 2-scale expansion (see [7]
for a general presentation): we assume that vε satisfies the following natural 2-scale Ansatz,

v̄tε(x) = v̄0(t, t/ηε, x, x/ηε) + ηεv̄1(t, t/ηε, x, x/ηε) +O(η2
ε), (8.7)

m̄t
ε(x) = m̄0(t, t/ηε, x, x/ηε) + ηεm̄1(t, t/ηε, x, x/ηε) +O(η2

ε),

ḡtε(x) = ḡ0(t, t/ηε, x, x/ηε) + ηεḡ1(t, t/ηε, x, x/ηε) + η2
ε ḡ2(t, t/ηε, x, x/ηε) +O(η3

ε).

We denote by (t, τ, x, y) the coordinates corresponding with (t, t/ηε, x, x/ηε). Injecting the above ansatz into
equation (8.6), and formally identifying the powers of ηε, we derive the following equations,

∂τ m̄0 = divy(Γ0[v̄0]m̄0), (8.8)

∂tm̄0 + ∂τ m̄1 = divx(Γ0[v̄0]m̄0) + divy(Γ0[v̄0]m̄1) + divy(Γ1[v̄1]m̄0),

v̄0 = ∇⊥x ḡ0 +∇⊥y ḡ1,

∇y ḡ0 = 0, 4y ḡ1 = 0, 4xḡ0 + 2∇x · ∇y ḡ1 +4y ḡ2 = m̄0,

where for any vector field w we have defined for simplicity the following vector fields,

Γ0[w] := (α− Jβ)(∇2ĥ
0 − F̂ + 2w⊥),

Γ1[w] := 2(α− Jβ)w⊥.

The first two equations in the last line of (8.8) imply that both ḡ0 and ḡ1 are independent of the y-variable.
The third equation then ensures that v̄0 = ∇⊥x ḡ0 is also independent of the y-variable. Averaging both the
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first and the last equations on the periodicity cell Q, and denoting for simplicity 〈·〉 :=
´
Q
dy the averaging

operator, we find
∂τ 〈m̄0〉 = 0, v̄0 = ∇⊥x ḡ0, 4xḡ0 = 〈m̄0〉,

which implies that 〈m̄0〉 is independent of the τ -variable, hence the same holds for ḡ0 and v̄0. The 2-scale
Ansatz (8.7) then takes the more precise form

v̄tε(x) = v̄t0(x) + ηεv̄1(t, t/ηε, x, x/ηε) +O(η2
ε),

m̄t
ε(x) = m̄0(t, t/ηε, x, x/ηε) + ηεm̄1(t, t/ηε, x, x/ηε) +O(η2

ε).

Further averaging the second equation in (8.8) on the periodicity cell Q, we obtain

∂τ m̄0 = divy(Γ0[v̄0]m̄0), (8.9)

∂t〈m̄0〉+ ∂τ 〈m̄1〉 = divx(〈Γ0[v̄0]m̄0〉),
v̄0 = ∇⊥x4−1

x 〈m̄0〉.

Let us now take a closer look at these equations (8.9). For any x ∈ R2 and t ∈ R+, consider the periodic
flow φx,t : R+ ×Q→ Q associated with the periodic vector field Γ0[v̄t0](x, ·) : Q→ R2,

∂τφ
τ
x,t(y) = −Γ0[v̄t0](x, φτx,t(y)).

The first equation in (8.9) then yields

m̄0(t, τ, x, y) =
(
(φτx,t)∗m̄0(t, 0, x, ·)

)
(y).

Now applying s−1
´ s

0
dτ to both sides of the second equation in (8.9), passing to the limit s ↑ ∞, and recalling

that 〈m̄0〉 is independent of the τ -variable, we formally deduce

∂t〈m̄0〉(t, x) = divx

ˆ
Q

(
lim
s↑∞

s−1

ˆ s

0

Γ0[v̄t0](x, φτx,t(y))dτ
)

m̄0(t, 0, x, y)dy. (8.10)

By assumption, the periodic vector field Γ0[v̄t0](x, ·) admits a unique stable (normalized) invariant measure
µx[v̄t0] ∈ P(Q). By the ergodic theorem, for any ψ ∈ Cper(Q), we deduce for µx[v̄t0]-almost all y ∈ Q,

lim
s↑∞

s−1

ˆ s

0

ψ(φτx,t(y))dτ = 〈ψ µx[v̄t0]〉.

In view of the unique stability assumption, it is most natural to admit that the above also holds for
m̄0(t, 0, x, ·)-almost all y ∈ Q, in which case we find

lim
s↑∞

ˆ
Q

ψ(y)
(
s−1

ˆ s

0

m̄0(t, τ, x, y)dτ
)
dy = lim

s↑∞

ˆ
Q

(
s−1

ˆ s

0

ψ(φτx,t(y))dτ
)

m̄0(t, 0, x, y)dy

= 〈m̄0〉(t, x)〈ψ µx[v̄t0]〉,

that is,

lim
s↑∞

s−1

ˆ s

0

m̄0(t, τ, x, y)dτ = 〈m̄0〉(t, x)µx[v̄t0],

in the weak-* sense of measures. In particular, the limit in the right-hand side of (8.10) is explicitly computed,

∂t〈m̄0〉(t, x) = divx
(
〈Γ0[v̄t0](x, ·)µx[v̄t0]〉〈m̄0〉(t, x)

)
. (8.11)

Combining this with the first and the last equations in (8.9), the heuristics follows.
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Remark 8.5 (Obstacles to a rigorous justification). As described below, there are essentially three distinct
weaknesses in the above formal justification of Heuristics 1.7.
(a) The first part of the justification consists in formally deriving the relations (8.9) for the 2-scale expansion

of v̄ε. This derivation is based on formally inserting the 2-scale Ansatz in the equation for v̄ε and
identifying the powers of ηε. However, due to both the nonlinear nonlocal character of the equation for
v̄ε and its instability as ηε ↓ 0, a rigorous justification seems difficult to obtain, as we explain here.
In order to justify formal 2-scale expansions, a powerful tool is given by Nguetseng’s 2-scale weak
compactness theorem [68, 4]. Since the equation for vε is nonlinear, this technique is of course not well
suited, and since the nonlinearity is in addition nonlocal, E’s technique of 2-scale Young measures [38]
is also of no use.
Another way to proceed (see e.g. [25, Section 3.1]) consists in approximating the solution v̄ε by the
first terms of its formal 2-scale expansion (8.7): by definition this approximation satisfies the very same
equation as v̄ε up to a small error, and this could be combined with a quantitative uniqueness principle
to ensure that v̄ε remains close to its expansion. However, the linear part of the equation with fast
oscillating forcing and the nonlinear interaction part are difficult to conciliate, and we do not know of
any stability estimate which does not blow up in the homogenization limit. On the one hand, the L1-
contraction principle for the vorticity holds in the linear case but interacts badly with the nonlinearity.
On the other hand, the nonlinear interaction part calls for energy-type estimates (that is, estimates
on the L2-distance between supercurrent densities), but the evolution of such metrics (as well as the
2-Wasserstein distance) is sensitive to the blowing Lipschitz norm of the oscillating forcing vector field.
This issue is linked with the particularly strong instability of the equation upon perturbations as ηε ↓ 0.

(b) The last part of the justification consists in checking that the relations (8.9) imply the closed equa-
tion (8.11) for the averaged vorticity 〈m0〉. If the (normalized) invariant measure µx[v̄t] was truly
unique for all x, t, then the given justification would be perfectly rigorous. Unfortunately, in the periodic
setting, due to the gradient structure, this uniqueness (or unique ergodicity) is impossible, while the
uniqueness assumption for a stable invariant measure seems more reasonable. The flaw in the above
justification then lies in the assumption that unstable invariant measures do not play any role in the
limit in (8.10), which is however not obvious and would require some argument.

(c) Finally, the well-posedness of the limiting equation (1.24) or (1.25) is unclear. The main difficulty is
that the map Rd × Rd → Rd : (x, Z) 7→ Γhom[Z](x) is not even expected to be Lipschitz-continuous in
Z: indeed, as explained in Remark 8.8 and Proposition 8.10, for fixed x, this map typically vanishes for
Z in some bounded domain (pinning phenomenon), and is expected to have a power-law behavior with
some power < 1 at the boundary of this domain (fractional depinning rate). Note that no comparison
principle is expected to hold here (compare indeed with [85, Section 6.5]), so that a good notion of
viscosity solutions seems unavailable.

Remark 8.6 (Toy model with vanishing viscosity). For simplicity, we may consider the corresponding
homogenization problems with a vanishing viscosity, that is, adding in the right-hand side of equation (3.13)
or (3.14) for v̄ε a term +Dηε4v̄ε, for some D > 0. A similar formal 2-scale expansion as above then yields
the following modification of the relations (8.9), in the case of the regime (GL1),

∂τ m̄0 = D4ym̄0 + divy(Γ0[v̄0]m̄0), (8.12)

∂t〈m̄0〉+ ∂τ 〈m̄1〉 = divx(〈Γ0[v̄0]m̄0〉),
v̄0 = ∇⊥x4−1

x 〈m̄0〉.

From these relations the interpretation is now much easier: the first equation implies the (exponential)
convergence of m̄0(t, τ, x, ·) to 〈m̄0〉(t, x)µ̃Dx [v̄t0] as τ ↑ ∞, where the viscous invariant measure µ̃Dx [v̄t0] ∈
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Pper(Q) is the unique (smooth) solution to the following equation on the periodicity cell Q,

D4yµ̃Dx [v̄t0] + divy(Γ0[v̄t0]µ̃Dx [v̄t0]) = 0.

The formal limiting equation then takes exactly the same form as in Heuristics 1.7, but with Γhom[w] replaced
by its better-behaved viscous analogue,

Γ̃Dhom[w](x) :=

ˆ
Q

Γx[w](y)dµ̃Dx [w](y).

In this case, the last two difficulties (b) and (c) pointed out in Remark 8.5 above disappear: the viscous
invariant measure is easily checked to be always uniquely defined, and the corresponding limiting equation for
m̄ is (locally) well-posed. Nevertheless, the difficulty (a) remains unchanged (that is, the rigorous derivation
of the relations (8.12) for the 2-scale limit), and finding a rigorous proof still seems challenging.

8.5 Subcritical regimes
In the subcritical regimes (GL′1)–(GL′2), the interaction of the vortices vanishes in the limit, and we are

left with a much simpler linear transport equation with fast oscillating forcing for the vorticity m̄ε := curl v̄ε
(obtained as the curl of equations (3.15)–(3.16) in the form of Corollary 8.4),

∂tm̄ε = div
(
Γ̄εm̄ε

)
, m̄ε|t=0 = curl v◦ε,

Γ̄ε(x) := Γ̄(x, x/ηε), Γ̄ := (α− Jβ)Γ̄0 Γ̄0(x, y) := ∇2ĥ
0(x, y)− F̂ (x).

With its fast oscillating gradient part, this linear transport equation is referred to as a washboard or wiggly
system. Obviously the macroscopic dynamics strongly depends on microstructural events, for instance if
some mass gets stuck in local minima: the typical mental picture is that of a particle sliding down a rough
slope (like a washboard), thus taking a jerky path downwards, sometimes getting stuck along the way. Due
to its gradient part, the corresponding vertical flow Γ̄(x, ·) on the periodicity cell Q cannot be uniquely
ergodic, so that the problem of determining the asymptotic behavior of the solution m̄ε lies outside the
classical theory of averaging. This problem was first studied in dimension 1 by [1], and later investigated in
dimension 2 by Menon [61].

Menon’s results [61] show that the space R2 splits into three regions associated with different dynamical
properties: (1) an open set where the mass gets stuck (pinning region), (2) a transition region with a
combination of sticking and slipping, and (3) the rest of the plane with only slipping. The slipping region
is actually further split into countably many resonance zones where the limiting vector field has a constant
direction given by the (rational) rotation number of the underlying microscopic cell flow, and the direction
of the vector field varies continuously but not smoothly across the boundary of the resonance zones: given
an initial position far from the pinning region, its path downwards is typically rough like a Cantor function.
The dynamics is indeed particularly rich in dimensions d ≥ 2: through the forcing F̂ , the macroscopic
variable x acts as a bifurcation parameter for the topology of the underlying microscopic cell flow, and the
bifurcations in the topology generate changes in the macroscopic motion between stick and slip, as well as
between (rational) slipping directions. Note that Menon’s results [61] are only partially justified, and are
restricted to dimension d = 2 (due to some key topological arguments).

Simplified model. In order to exemplify the complexity of the structure of the limiting motion described
above, let us consider (in general dimension d, say) the easier case of a constant forcing F ∈ Rd together with
a wiggly potential h̃0 that only depends on the microscopic variable; we thus consider the linear transport
equation

∂tm̃ε = div (ΓFε m̃ε), m̃ε|t=0 = m̃◦ε, (8.13)

ΓFε (x) = ΓF (x/ηε), ΓF (y) = (α− Jβ)(∇h̃0(y)− F ).
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In this context, there is a true separation of scales in the limit ηε ↓ 0, and we may simply study the bifurcation
of the limiting motion with respect to the constant forcing F . This system is a very particular case of the
general nonlinear systems studied in [27] under additional well-preparedness conditions, but a more precise
result is obtained here (see also [38] for the easier incompressible case, and [42, 26] for the corresponding
Hamiltonian setting).

We first introduce some notation and make some regularity assumptions. The periodic vector field −ΓF

on the unit cell Q ⊂ Rd defines a dynamical system on the d-torus Q. Assume that h̃0 is smooth and non-
degenerate, in the sense that for F 6= 0 this dynamical system admits a finite number of (normalized) ergodic
invariant measures (µFk )LFk=1 ⊂ P(Q), 1 ≤ LF < ∞. For F = 0 we only assume that the dynamical system
admits a finite number of (normalized) ergodic invariant measures on intQ, while the boundary ∂Q is assumed
to be made of unstable fixed points of the dynamics, thus yielding an infinite family (δp)p∈∂Q of ergodic
measures on this boundary. (This assumption is motivated by the typical choice h̃0 ≤ 0, (h̃0)−1({0}) = ∂Q;
cf. the explicit example in Figure 4.) For all 1 ≤ k ≤ LF we define the minimal invariant sets AFk := suppµFk ,
and we let BFk denote the set of µFk -generic points. We order the ergodic measures in such a way that |BFk | > 0
holds for all 1 ≤ k ≤ KF , and |BFk | = 0 for all KF + 1 ≤ k ≤ LF , with 1 ≤ KF ≤ LF . By construction,

∣∣∣Q \ KF⊎
k=1

Bk

∣∣∣ = 0.

Note that in dimension d = 2 the dynamical picture is particularly simple, as Denjoy’s version of the
Poincaré-Bendixson on the 2-torus [30] (see also [81]) asserts that minimal invariant sets are either fixed
points, periodic orbits, or the whole torus.

Figure 4 – In dimension 2, a typical choice for the pinning potential is e.g. h̃0(x) := − cos(πx1)2 cos(πx2)2

for x ∈ Q = [− 1
2 ,

1
2 )2.

The limiting behavior of the solution m̃ε of (8.13) is then characterized as follows; note that the result is
much simpler in the case KF = 1, that is, if there exists a unique stable (normalized) invariant measure.

Theorem 8.7. Let the above notation and assumptions hold, and let m̃◦ε ∈ P ∩ L∞(Rd) satisfy

m̃◦ε(x)− ω◦(x, x/ηε)→ 0, (8.14)

strongly in L1(Rd) as ε ↓ 0, for some ω◦ ∈ L1(Rd;Cper(Q)). Let F ∈ Rd, and denote by m̃ε ∈ L∞loc(R+;P(Rd))
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the unique solution to the transport equation (8.13) with initial data m̃◦ε. Then we have for all t ≥ 0,

m̃t
ε

∗−⇀ m̃t :=

KF∑
k=1

m̃t
k,

where for all k we denote by m̃k ∈ L∞loc(R+;P(Rd)) the unique solution of the (constant-coefficient) transport
equation

∂tm̃k = div (ΓFk m̃k), ΓFk :=

ˆ
Q

ΓF (y)dµFk (y), m̃k|t=0 = m̃◦k :=

ˆ
BFk

ω◦(·, y)dy.

In particular, if the stable invariant sets of the dynamical system generated by −ΓF are all reduced to a point
(that is, if AFk is a point for all 1 ≤ k ≤ KF ), then we have m̃t

ε
∗−⇀ m̃◦ :=

´
Q
ω◦(·, y)dy =

∑K
k=1 m̃◦k for all

t ≥ 0.

Remarks 8.8.
(a) Stick-slip motion. In this remark, we consider the behavior of the limit m̃ as a function of the forcing F ,

and we argue that the space Rd of values of F splits into three regions: (1) an open bounded set around
0 for which the limiting solution is stuck m̃ = m̃◦ (pinning phenomenon), (2) a transition region for
which a part of the mass is stuck and another part is transported, and (3) the rest of Rd for which there
is only transport (with possibly a superposition of different effective velocities). The link with Menon’s
results [61] is thus clear. A natural question consists in studying the precise behavior of the effective
velocity as a function of F beyond the pinning region. The behavior at the depinning threshold, that is,
for forcing F just across the boundary of the pinning region, is shortly addressed in the sequel of this
section (see Proposition 8.10 below). On the other hand, for very large |F | � 1, the deviation of the
effective velocity due to the wiggly potential h̃0 naturally tends to 0,

−ΓFk = (α− Jβ)F − (α− Jβ)

ˆ
Q

∇h̃0dµk = (α− Jβ)F (1 + o(1)).

We first consider the case F = 0, hence −Γ0 = −α∇h̃0 + β∇⊥h̃0. For energy reasons, we note that the
only invariant sets are then necessarily made of unions of fixed points of the dynamics. The last part
of Theorem 8.7 then allows to conclude that the limiting solution m̃ is constant in time. Now for F
close enough to 0, the stable invariant sets of −ΓF are still made of stable fixed points, which are simply
deformations of the stable fixed points of −Γ0, and we conclude that the limiting solution m̃ still remains
constant. In contrast, for larger values of F , the topological nature of the stable invariant sets may
change, yielding a possible combination of both stable fixed points and other types of stable sets, hence
by Theorem 8.7 a combination of pinning and transport. Finally, for |F | > ‖∇h̃0‖L∞ , we note that the
map −ΓF no longer has a fixed point (since the condition on F implies |ΓF |2 = (α2 +β2)|∇h̃0−F |2 > 0),
so that Theorem 8.7 yields pure transport in that case.

(b) Initial-boundary layer. While the initial data m̃◦ε may have some microscopic heterogeneities, which are
assumed to be given by ω◦(·, ·/ηε), it is instantaneously relaxed to an invariant measure

∑KF
k=1 µk(·/ηε)m̃◦k

in a timescale of order O(ηε). This initial-boundary layer at the microscopic scale could be described in
similar terms as in Proposition 8.2.

We now turn to the proof of Theorem 8.7. It is obtained from a suitable version of 2-scale convergence
methods. More precisely, we use the following L1-version of Nguetseng’s 2-scale compactness theorem [68, 4];
as it is not standard in this form, we include a short proof.
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Lemma 8.9 (à la Nguetseng). Let (gη)η be a bounded sequence in L∞loc(R+; L1(Rd)). Further assume that
it is tight, in the sense that for all T > 0,

lim
L↑∞

sup
t∈[0,T ]

sup
η>0

ˆ
|x|>L

|gtη| = 0. (8.15)

Then, there exists a subsequence, still denoted by (gη)η, and an element g0 ∈ L∞loc(R+;M(Rd;Mper(Q)))
(where M (resp. Mper) denotes the space of Radon measures (resp. periodic Radon measures)), such that
we have for all T > 0 and all ψ ∈ L1([0, T ];Cb(Rd;Cper(Q))),

lim
η↓0

ˆ T

0

ˆ
ψt(x, x/η)gtη(x)dxdt =

ˆ T

0

¨
Rd×Q

ψt(x, y)dgt0(x, y)dt, (8.16)

We say that gη 2-scale converges weakly-* to g0. Moreover, if ψη → ψ holds strongly in L1([0, T ];Cb(Rd;Cper(Q))),
then we find

lim
η↓0

ˆ T

0

ˆ
ψtη(x, x/η)gtη(x)dxdt =

ˆ T

0

¨
Rd×Q

ψt(x, y)dgt0(x, y)dt.

Proof. Let T > 0 be fixed. The boundedness assumption on gη gives supη ‖gη‖L∞([0,T ];L1(Rd)) ≤ CT , so that
we find for all ψ ∈ L1([0, T ];C0(Rd;Cper(Q))),∣∣∣∣ˆ T

0

ˆ
ψt(x, x/η)gtη(x)dxdt

∣∣∣∣ ≤ CT ‖ψ‖L1([0,T ];C0(Rd;Cper(Q))).

The sequence (gη)η may thus be seen as a bounded sequence of elements in the dual of the Banach space
L1([0, T ];C0(Rd;Cper(Q))), that is, a bounded sequence in the space L∞([0, T ];M(Rd;Mper(Q))). Combin-
ing this with the additional tightness assumption (8.15), we deduce that there is a subsequence, still denoted
by (gη)η, and an element g0 ∈ L∞([0, T ];M(Rd;Mper(Q))) such that gη converges weakly-* to g0 in that
space, in the sense of (8.16).

With this compactness result at hand, we now sketch a proof of Theorem 8.7.

Sketch of the proof of Theorem 8.7. Let F be fixed, and write for simplicity Ak := AFk , Bk := BFk , and
µk := µFk . We split the proof into four steps.

Step 1: 2-scale compactness argument. In this step, we show that up to a subsequence the solution m̃ε

of (8.13) 2-scale converges weakly-* (in the sense of Lemma 8.9) to some limit m̃0 ∈ L∞loc(R+;M+(Rd;M+
per(Q))).

Moreover, denoting for simplicity by 〈·〉 :=
´
Q
dy the averaging operator, the limit m̃0 satisfies the following

equations:

−divy(ΓF m̃0) = 0, (8.17)

∂t〈m̃0〉 = divx〈ΓF m̃0〉, 〈m̃0〉|t=0 = 〈ω◦〉 = m̃◦. (8.18)

Equation (8.17) means that m̃t
0(x, ·) is an invariant measure for the vector field −ΓF on Q for almost all t, x.

For F 6= 0, by assumption, we may then decompose m̃0 as a linear combination

m̃t
0(x, y) =

LF∑
k=1

ξtk(x)µk(y). (8.19)
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For F = 0, by assumption, a similar decomposition holds in intQ: there exists m̂0 ∈ L∞loc(R+;M(Rd;Mper(Q)))
such that for all t, x the measure m̂t

0(x, ·) is supported in ∂Q, and such that

m̃t
0(x, y) = m̂t

0(x, y) +

L0∑
k=1

ξtk(x)µk(y).

Since m̃ε is nonnegative and has constant mass 1, it is bounded in L∞(R+; L1(Rd)). Moreover, as the
velocity field ΓFε is bounded in L∞(Rd)d, the tightness of the initial data (m̃◦ε)ε easily implies the tightness of
the solutions (m̃ε)ε in the sense of (8.15). Therefore, by Lemma 8.9, up to a subsequence, m̃ε 2-scale converges
weakly-* to some m̃0 ∈ L∞loc(R+;M+(Rd;M+

per(Q))). We now prove that this limit satisfies equations (8.17)–
(8.18). Testing the equation for m̃ε against a test function ψt(x, x/ηε), with ψ ∈ C1

c (R+ × Rd;C1
per(Q)), we

find ˆ
R+

ˆ
Rd
∂tψ

t(x, x/ηε)dm̃t
ε(x)dt+

ˆ
Rd
ψ0(x, x/ηε)dm̃◦ε(x)

=

ˆ
R+

ˆ
Rd

(η−1
ε ∇yψt(x, x/ηε) +∇xψt(x, x/ηε)) · ΓF (x/ηε)dm̃t

ε(x)dt.

Choosing ψt(x, y) := ηεφ
t(x, y) with φ ∈ C1

c (R+ × Rd;C1
per(Q)), and letting ε ↓ 0 (along the subsequence),

we find ˆ
R+

¨
Rd×Q

∇yφt(x, y) · ΓF (y)dm̃t
0(x, y)dt = 0,

that is (8.17). Now choosing ψt(x, y) := φt(x) with φ ∈ C1
c (R+ ×Rd), letting ε ↓ 0 (along the subsequence),

and using assumption (8.14), we obtain
ˆ
R+

¨
Rd×Q

∂tφ
t(x)dm̃t

0(x, y)dt+

¨
Rd×Q

φ0(x)dω◦(x, y) =

ˆ
R+

¨
Rd×Q

∇φ(t, x) · ΓF (y)dm̃t
0(x, y)dt,

that is (8.18).

Step 2: localization. Let 1 ≤ k ≤ KF be fixed. Denote by B′k the 1-periodic extension of Bk on Rd. In
this step, we show that, if m̃◦ε(Rd \ ηεB′k) = 0 for all ε, then ξtj(x) = 0 holds for all j 6= k for almost all t, x.
In particular, this implies m̃t

0(x, y) = ξtk(x)µk(y) almost everywhere.
Given the smoothness assumptions, viewing Bk as the attraction basin associated with Ak, it follows that

we must have n · ΓF = 0 on the boundary ∂Bk. Note that the method of propagation along characteristics
together with the Liouville-Ostrogradski formula yields the following estimate for the solution m̃ε of (8.13),

‖m̃t
ε‖L∞ ≤ ‖m̃◦ε‖L∞ exp(t‖div ΓFε ‖L∞) ≤ ‖m̃◦ε‖L∞ exp(αη−1

ε t‖4h̃0‖L∞),

hence m̃ε ∈ L∞loc(R+; L∞(Rd)) (although of course no ε-uniform bound holds in that space). We may then
deduce by integration by parts, for all t ≥ 0,

∂t

ˆ
ηεB′k

dm̃t
ε =

ˆ
ηε∂B′k

n · ΓFε (x)m̃t
ε(x)dσ(x) = 0,

that is, m̃t
ε(ηεB

′
k) = m̃◦ε(ηεB

′
k) = 1, and the conclusion follows from the decomposition (8.19).

Step 3: convergence of partitioned initial data. Decompose m̃◦ε =
∑KF
k=1 m̃◦ε,k with m̃◦ε,k := m̃◦ε1ηεB′k . In

this step, for all k, we show that m̃◦ε,k converges weakly in L1(R2) to m̃◦k :=
´
Bk
ω◦(·, y)dy.
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For any test function φ ∈ L∞(R2), assumption (8.14) yields

lim sup
k↑∞

∣∣∣ˆ φdm̃◦ε,k −
ˆ
ηεB′k

φ(x)ω◦(x, x/ηε)dx
∣∣∣ ≤ lim sup

k↑∞

ˆ
|φ(x)| |m̃◦ε(x)− ω◦(x, x/ηε)|dx = 0,

while by periodicity we may compute (see e.g. [4, proof of Lemma 5.2])

lim
ε↓0

ˆ
φ(x)ω◦(x, x/ηε)1x/ηε∈B′kdx =

¨
Rd×Bk

φ(x)ω◦(x, y)dxdy =

ˆ
φdm̃◦k,

and the result follows.

Step 4: conclusion. By linearity, with the choice of the m̃◦ε,k’s in Step 3, we may decompose m̃ε =∑KF
k=1 m̃ε,k, where for all k the function m̃ε,k ∈ L∞(R+;M+(Rd)) is the unique solution of the following

equation,
∂tm̃ε,k = div (ΓFε m̃ε,k), m̃ε,k|t=0 = m̃◦ε,k.

Up to a subsequence, for all k, we know by Step 1 that m̃ε,k 2-scale converges weakly-* to some m̃0,k ∈
L∞loc(R+;M+(R2;M+

per(Q))), which satisfies

−divy(ΓF m̃0,k) = 0,

∂t〈m̃0,k〉 = divx〈ΓF m̃0,k〉, 〈m̃0,k〉|t=0 = m̃◦k,

where the first equation implies for m̃0,k a similar decomposition (8.19) as in Step 1. By Step 2, since we
have by construction m̃◦ε,k(R2 \ ηεB′k) = 0 for all ε, we deduce m̃t

0,k(x, y) = 〈m̃t
0,k(x, ·)〉µk(y). Inserting this

form into the above equations, we find

∂t〈m̃0,k〉 = div (ΓFk 〈m̃0,k〉), ΓFk := 〈ΓFµk〉, 〈m̃0,k〉|t=0 = m̃◦k.

This is now a linear transport equation for 〈m̃0,k〉. Uniqueness allows us to get rid of all extractions of
subsequences, and the conclusion follows, since by linearity we necessarily have m̃0 =

∑KF
k=1 m̃0,k, where m̃0

is the weak limit extracted in Step 1.

As noticed in Remark 8.8(a), the question of determining the depinning rate at the depinning threshold
is of particular interest. While obtaining a complete answer seems difficult due to the variety of possible
dynamical behaviors, we consider the simplest situation when the depinning is due to the bifurcation of a
unique stable fixed point into a stable periodic orbit. A square-root power law is then obtained under a
non-degeneracy condition. An additional assumption is made for simplicity, which reduces the computation
to a 1D setting (being then comparable to some explicit computations in [1, 50]). This assumption is satisfied
for β = 0 and for a forcing F that is parallel to a coordinate axis when the pinning potential h has similar
symmetries as in the example of Figure 4 (see indeed Figure 5). Yet, we believe that the same result holds
in more general situations.

Proposition 8.10. Let e, |e| = 1, be some direction, and consider the system (8.13) with F = κe. Assume
that the vector field −Γκe has a unique stable invariant set for all κ ≥ 0, and assume that there exists a critical
value κc > 0 such that this invariant set is a fixed point for 0 ≤ κ < κc, and is a periodic orbit for κ > κc.
Further assume that the image of the periodic orbit O ⊂ Q remains the same for all κ > κc. Assume that h̃0

is smooth, and is non-degenerate in the following sense: for all x and all |v| = 1, if v ·∇(α∇−β∇⊥)h̃0(x) = 0
holds, then (v · ∇)2(α∇− β∇⊥)h̃0(x) 6= 0. Then, the effective velocity Γκe1 defined in Theorem 8.7 satisfies,
as κ ↓ κc,

Γκe1 = C(1 + o(1))(κ− κc)1/2e,

for some constant C > 0 depending on the shape of h̃0.
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Figure 5 – In dimension d = 2, for the typical example of pinning potential h̃0 given in Figure 4, with α = 1,
β = 0, we plot the stream lines of the vector field −Γ(0,κ) for growing values of κ. The assumptions of
Proposition 8.10 are clearly seen to be satisfied: for κ < κc = π there is a unique stable fixed point, while
for κ > κc = π the stable fixed point gives way to a periodic orbit with image O = {0} × [−1/2, 1/2).

Remarks 8.11.
(a) While Proposition 8.10 above is proved in the particularly simple situation of the bifurcation of a fixed

point into a periodic orbit, it would be interesting to determine the best general lower bound on the
Hölder regularity of the multivalued map F 7→ {ΓF1 , . . . ,ΓFKF } at the depinning threshold, for smooth h̃0.
We do not pursue this question here, but note that at least the continuity of this map essentially follows
from the argument in [61, Section 7.2] together with the result on circle maps in [69, Theorem I.1].

(b) Without the non-degeneracy assumption for the pinning potential h̃0, the behavior can be very different:
if h̃0 is degenerate at order k for some 0 ≤ k ≤ ∞, in the sense that the power 2 in the expansion (8.21)
near critical points is replaced by a power k + 2, then we indeed rather obtain Γκe1 ∼ (κ− κc)1−1/(k+2)e
as κ ↓ κc. (Although in this case the effective velocity Γκe1 is still a Hölder function of κ, and is at least
of class C1/2, examples of non-smooth pinning potentials h̃0 ∈ C0,1(Rd) can be constructed for which
the Hölder property fails at κ = κc; see e.g. [50, Example 1.3].)

Proof. Choose an arc-length parametrization (φt)0≤t≤T of the periodic orbit O, where |∂tφt| = 1 for all
t ≥ 0, and where the period T ∈ R+ is the total length of the orbit. Since O is the image of the (unique
stable) periodic orbit of −Γκe for all κ > κc, we find ∂tφ

t = −Γκe(φt)/|Γκe(φt)| for all t ≥ 0. We then
deduce that for all κ > κc the unique stable ergodic invariant measure µκ ∈ Pper(Q) takes the form

ˆ
fdµκ =

(ˆ T

0

f(φt)|Γκe(φt)|−1dt
)( ˆ T

0

|Γκe(φt)|−1dt
)−1

,

so that the effective velocity is given by

ΓF1 =
(ˆ T

0

Γκe(φt)|Γκe(φt)|−1dt
)( ˆ T

0

|Γκe(φt)|−1dt
)−1

= (φ0 − φT )
(ˆ T

0

|Γκe(φt)|−1dt
)−1

.

Now setting ẽ := φT − φ0, we obtain

−ΓF1 =
( ˆ T

0

|Γκe(φt)|−1dt
)−1

ẽ.
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Consider the finite collection (tj)
J
j=1 of all points t ∈ [0, T ] such that Γκce(φt) = 0. By smoothness of h̃0 and

by the minimality assumption defining κc, the function f(t) := |Γκce(φt)| is smooth, hence satisfies for all j,

f ′(tj) = 0, f ′′(tj) ≥ 0, (8.20)

and also
0 = ∂tΓ

κce(φt)|t=tj = ∂tφ
tj · ∇(α∇− β∇⊥)h̃0(φtj ).

A direct computation then yields

f ′′(tj) = |Γκce(φtj )|−1|∂tφtj · ∇(α∇− β∇⊥)h̃0(φtj )|2 − 2|Γκce(φtj )|−1|∂tφtj · ∇(α∇− β∇⊥)h̃0(φtj ) · ∂tφtj |2

+ |Γκce(φtj )|−1∂tφ
tj · ∇(α∇− β∇⊥)h̃0(φtj ) · ∇(α∇− β∇⊥)h̃0(φtj ) · ∂tφtj

+ (∂tφ
tj )⊗3 �∇2(α∇− β∇⊥)h̃0(φtj )

= (∂tφ
tj )⊗3 �∇2(α∇− β∇⊥)h̃0(φtj ),

where � denotes the complete contraction of 3-tensors. The non-degeneracy assumption now implies f ′′(tj) 6=
0. Combined with (8.20), this yields

2Cj := f ′′(tj) = (∂tφ
tj )⊗3 �∇2(α∇− β∇⊥)h̃0(φtj ) > 0.

A Taylor expansion around tj allows to write

|ΓFc(φtFc)| = Cj(t− tj)2 +O((t− tj)3), (8.21)

for |t− tj | � 1. Let δ > 0 be small enough such that |tj − tj+1| > 2δ is satisfied for all j, and define

Iδ :=

J⊎
j=1

[tj − δ, tj + δ], cδ := inf
t∈[0,T ]\Iδ

|Γκce(φt)| > 0.

For κ > κc sufficiently close to κc, we may then compute
ˆ

[0,T ]\Iδ
|Γκe(φt)|−1dt = (α2 + β2)−1/2

ˆ
[0,T ]\Iδ

|∇h̃0(φt)− κe|−1dt ≤ (α2 + β2)−1/2T (cδ − |κ− κc|)−1,

and hence, setting for simplicity eα,β := αe− βe⊥,
ˆ T

0

|Γκe(φt)|−1dt ≤
ˆ
Iδ

|Γκce(φt)− (κ− κc)eα,β |−1dt+ T (α2 + β2)−1/2(cδ − |κ− κc|)−1

≤
J∑
j=1

ˆ tj+δ

tj−δ

(
|Cj(t− tj)2∂tφ

tj − (κ− κc)eα,β | − C|t− tj |3
)−1

dt+ C(cδ − |κ− κc|)−1

= 2

J∑
j=1

ˆ δ

0

((
C2
j t

4 + (κ− κc)2 − 2Cjt
2(κ− κc)∂tφtj · eα,β

)1/2 − Ct3)−1

dt+ C(cδ − |κ− κc|)−1

=
2

C
1/2
j (κ− κc)1/2

J∑
j=1

ˆ δ
(

Cj
κ−κc

)1/2
0

((
t4 − 2t2∂tφ

tj · eα,β + 1
)1/2 − CC−1/2

j (κ− κc)1/2t3
)−1

dt

+ C(cδ − |κ− κc|)−1.
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Multiplying by (κ− κc)1/2 and letting κ ↓ κc, this yields

lim sup
κ↓κc

(κ− κc)1/2|Γκe1 |−1 ≤ 2

|ẽ|C1/2
j

J∑
j=1

ˆ ∞
0

(t4 − 2t2∂tφ
tj · eα,β + 1)−1/2dt. (8.22)

Symmetrically, we have a similar lower bound

ˆ T

0

|Γκe(φt)|−1dt ≥
J∑
j=1

ˆ tj+δ

tj−δ

(
|Cj(t− tj)2∂tφ

tj − (κ− κc)eα,β |+ C|t− tj |3
)−1

dt− C(cδ − |κ− κc|)−1

=
2

C
1/2
j (κ− κc)1/2

J∑
j=1

ˆ δ
(

Cj
κ−κc

)1/2
0

((
t4 − 2t2∂tφ

tj · eα,β + 1
)1/2

+ CC
−1/2
j (κ− κc)1/2t3

)−1

dt

− C(cδ − |κ− κc|)−1,

so that the equality actually holds in (8.22),

lim
κ↓κc

(κ− κc)1/2|Γκe1 |−1 =
2

|ẽ|C1/2
j

J∑
j=1

ˆ ∞
0

(t4 − 2t2∂tφ
tj · eα,β + 1)−1/2dt,

and the result follows.

8.6 Small applied force implies macroscopic frozenness
Beyond diagonal regimes, we may at least prove the following intuitive result: in the presence of a small

applied force ‖F‖L∞ � ‖∇h‖L∞ , but with fast oscillating pinning potential, the vortices are pinned in
the limit. The proof below is based on energy methods, and is limited to subcritical Ginzburg-Landau
regimes (GL′1) and (GL′2).

Proposition 8.12. We consider the dissipative case α > 0, β ∈ R, α2 + β2 = 1. Let Assumption A(a)
hold, with the initial data (u◦ε, v

◦
ε, v
◦) satisfying the well-preparedness condition (1.14). For all ε > 0, let

uε ∈ L∞(R+;H1
uloc(R2;C)) denote the unique global solution of (1.5) on R+ × R2 with initial data u◦ε, and

with

1� Nε � |log ε|, Nε
|log ε|

� λε . 1,
ελ−1
ε

(Nε|log ε|)1/2
� ηε � λε,

h(x) := λεηεĥ
0(x, x/ηε), ‖F‖W 1,∞ � λε.

We consider the regime (GL′1) with v◦ε = v◦, and the regime (GL′2) with div (av◦ε) = 0. Then for all γ > 0

there holds N−1
ε µε

∗−⇀ curl v◦ in L∞loc(R+; (C0,γ
c (R2))∗).

Proof. We choose vε := v◦ε in the definition of the modulated energy, thus setting for all z ∈ RZ2,

Ezε,R :=

ˆ
aχzR

2

(
|∇uε − iuεNεv◦ε|2 +

a

2ε2
(1− |uε|2)2

)
, Dzε,R := Ezε,R −

|log ε|
2

ˆ
aχzRµε,

and E∗ε,R := supz Ezε,R, D∗ε,R := supz Dzε,R. We further consider the following modification of this modulated
energy, including suitable lower-order terms,

Êzε,R :=

ˆ
aχzR

2

(
|∇uε − iuεNεv◦ε|2 +

a

2ε2
(1− |uε|2)2 + (1− |uε|2)(f −N2

ε |v◦ε|2 −Nε|log ε| v◦ε ·F⊥)
)
,
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and Ê∗ε,R := supz Êzε,R. The lower bound assumption on ηε allows to choose the cut-off length R ≥ 1 in such
a way that λ−1

ε � R� ηεε
−1(Nε|log ε|)1/2.

By Proposition 5.2, the assumption on the initial data implies E∗,◦ε,R ≤ C0Nε|log ε| for some C0 ' 1. Let
T > 0 be fixed, and define Tε > 0 as the maximum time ≤ T such that the bound E∗,tε,R ≤ (C0 + 1)Nε|log ε|
holds for all t ≤ Tε. Note that, using the bound ‖f‖L∞ . λεη

−1
ε + λ2

ε|log ε|2 (cf. (1.6)), the choice of ηε and
R, and the assumption ‖v◦ε‖L2 ∩L∞(B2R) .θ R

θ for all θ > 0, we deduce for all t ≤ Tε,

|Êz,tε,R − E
z,t
ε,R| .

ˆ
χzR|1− |utε|2|(|f |+N2

ε |v◦ε|2 +Nε|log ε||v◦ε||F |)

. εR(λεη
−1
ε + λ2

ε|log ε|2)(Ez,tε,R)1/2 + εRθo(λεNε|log ε|)(Ez,tε,R)1/2 � λεNε|log ε|, (8.23)

hence in particular Ê∗,tε,R . Nε|log ε| for all t ≤ Tε. We split the proof into three steps.

Step 1: evolution of the modulated energy. In this step, for all ε > 0 small enough, we show that Tε = T ,
and that for all t ≤ T ,

λεα

4

ˆ t

0

ˆ
aεχ

z
R|∂tuε|2 ≤ Ê

z,◦
ε,R − Ê

z,t
ε,R + ot(λεNε|log ε|) .t Nε|log ε|. (8.24)

By integration by parts, we find

∂tÊzε,R =

ˆ
aχzR

(
〈∇uε − iuεNεv◦ε,∇∂tuε〉 −Nεv◦ε· 〈∇uε − iuεNεv◦ε, i∂tuε〉

− a

ε2
(1− |uε|2)〈uε, ∂tuε〉 − (f −N2

ε |v◦ε|2 −Nε|log ε| v◦ε ·F⊥)〈uε, ∂tuε〉
)

= −
ˆ
aχzR

〈
4uε +

auε
ε2

(1− |uε|2) +∇h · ∇uε + i|log ε|F⊥ · ∇uε + fuε, ∂tuε

〉
+Nε

ˆ
aχzR(v◦ε ·∇h+ div v◦ε)〈∂tuε, iuε〉 −

ˆ
a∇χzR · 〈∇uε − iuεNεv◦ε, ∂tuε〉

−
ˆ
aχzR(|log ε|F⊥ + 2Nεv

◦
ε) · 〈∇uε − iuεNεv◦ε, i∂tuε〉,

hence, inserting equation (1.5) in the first right-hand side term,

∂tÊzε,R = −λεα
ˆ
aχzR|∂tuε|2 −

ˆ
aχzR(|log ε|F⊥ + 2Nεv

◦
ε) · 〈∇uε − iuεNεv◦ε, i∂tuε〉

+Nε

ˆ
χzR div (av◦ε)〈∂tuε, iuε〉 −

ˆ
a∇χzR · 〈∇uε − iuεNεv◦ε, ∂tuε〉.

In particular, using the assumption ‖∇h‖L∞ . λε, and using that E∗,tε,R . Nε|log ε|, we find for all t ≤ Tε,

∂tÊzε,R ≤ −
λεα

2

ˆ
aχzR|∂tuε|2 −

ˆ
aχzR(|log ε|F⊥ + 2Nεv

◦
ε) · 〈∇uε − iuεNεv◦ε, i∂tuε〉

+ Cλ−1
ε N2

ε

ˆ
χzR|div (av◦ε)|2(1 + |1− |uε|2|) + Cλ−1

ε R−2

ˆ
B2R(z)

a|∇uε − iuεNεv◦ε|2

≤ −λεα
2

ˆ
aχzR|∂tuε|2 −

ˆ
aχzR(|log ε|F⊥ + 2Nεv

◦
ε) · 〈∇uε − iuεNεv◦ε, i∂tuε〉

+ Cλ−1
ε N2

ε ‖ div (av◦ε)‖2L2 ∩L∞(B2R) + Cλ−1
ε R−2Nε|log ε|,
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so that the assumptions on div (av◦ε) and the choice of the cut-off length R yield

∂tÊzε,R ≤ −
λεα

2

ˆ
aχzR|∂tuε|2 −

ˆ
aχzR(|log ε|F⊥ + 2Nεv

◦
ε) · 〈∇uε − iuεNεv◦ε, i∂tuε〉+ o(λεNε|log ε|).

(8.25)

Simply using the Cauchy-Schwarz inequality to estimate the second term, with ‖(F, v◦ε)‖L∞ . 1, we find the
following rough a priori estimate,

∂tÊzε,R ≤ −
λεα

4

ˆ
aχzR|∂tuε|2 + Cλ−1

ε |log ε|2
ˆ
aχzR|∇uε − iuεNεv◦ε|2 + o(λεNε|log ε|)

≤ −λεα
4

ˆ
aχzR|∂tuε|2 +O(λ−1

ε Nε|log ε|3),

and thus, integrating in time, with λε � Nε/|log ε|, we find for all t ≤ Tε,

λεα

4

ˆ t

0

ˆ
aχzR|∂tuε|2 ≤ Ê

z,◦
ε,R − Ê

z,t
ε,R + ot(|log ε|4) .t |log ε|4.

This rough estimate now allows us to apply the product estimate in Lemma 5.4 (with vε = v◦ε and pε = 0),
using |log ε|‖F‖L∞ +Nε � λε|log ε|, to the effect of∣∣∣ˆ t

0

ˆ
aχzR(|log ε|F⊥ + 2Nεv

◦
ε) · 〈∇uε − iuεNεv◦ε, i∂tuε〉

∣∣∣
.
|log ε|‖F‖L∞ +Nε

|log ε|

(ˆ t

0

ˆ
aχzR|∂tuε|2 +

ˆ t

0

ˆ
aχzR|∇uε − iuεNεv◦ε|2

)
+ ot(1)

. o(λε)

ˆ t

0

ˆ
aχzR|∂tuε|2 + ot(λεNε|log ε|).

Inserting this into (8.25), and integrating in time, we find for all t ≤ Tε,

Êz,tε,R − Ê
z,◦
ε,R ≤ −

(λεα
2
− o(λε)

)ˆ t

0

ˆ
aχzR|∂tuε|2 + ot(λεNε|log ε|),

and the result (8.24) follows for all t ≤ Tε. In particular, combined with (8.23), this yields for all t ≤ Tε,

Ez,tε,R ≤ Ê
z,t
ε,R + o(λεNε|log ε|) ≤ Êz,◦ε,R + ot(λεNε|log ε|) ≤ Ez,◦ε,R + ot(λεNε|log ε|) ≤ (C0 + ot(1))Nε|log ε|,

and thus, taking the supremum in z, the conclusion Tε = T follows for ε > 0 small enough.

Step 2: lower bound on the modulated energy. In this step, we prove that for all t ≤ T ,

Ez,tε,R ≥
|log ε|

2

ˆ
aχzRµ

t
ε − o(λεNε|log ε|),

hence, by (8.23) and by the assumption that Ez,◦ε,R = 1
2 |log ε|

´
aεχ

z
Rµ
◦
ε + o(N2

ε ),

Êz,◦ε,R − Ê
z,t
ε,R ≤ E

z,◦
ε,R − E

z,t
ε,R + o(λεNε|log ε|) ≤ |log ε|

2

ˆ
aχzR(µ◦ε − µtε) + o(λεNε|log ε|).

As we show, this is a simple consequence of Lemma 5.1. (However note that we may not directly apply
Proposition 5.2(i)–(iii), since in the present situation the assumption R & |log ε| does not hold.) Noting
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that ‖∇(aχzR)‖L∞ . λε + R−1 . λε, we deduce from Lemma 5.1(i) with φ = aχzR, E∗ε,R . Nε|log ε|, and
e−Nε . r � 1,

Ezε,R ≥
log(r/ε)

2

ˆ
aχzR|νrε,R| −O(λεrNε|log ε|)−O(r2N2

ε )−O(Nε logNε)

≥ |log ε|
2

ˆ
aχzR|νrε,R| −O(| log r|)

ˆ
χzR|νrε,R| − o(λεNε|log ε|),

hence by item (ii) of Lemma 5.1, with the choice of the radius r & e−Nε ,

Ezε,R ≥
|log ε|

2

ˆ
aχzR|νrε,R| −O(Nε| log r|)− o(λεNε|log ε|) ≥ |log ε|

2

ˆ
aχzRν

r
ε,R − o(λεNε|log ε|).

By Lemma 5.1(iii) in the form (5.7) and by (5.12) with γ = 1, using again that ‖∇(aχzR)‖L∞ . λε, we may
now replace νrε,R by µε in the right-hand side,

Ezε,R ≥
|log ε|

2

ˆ
aχzRµε −O(λεrNε|log ε|)− o(λεNε|log ε|).

and the result follows.

Step 3: estimate on the total vorticity. In this step, we prove that for all t ≤ T ,∣∣∣ˆ aχzR(µtε − µ◦ε)
∣∣∣�t λεNε.

We first prove (a weaker version of) the result with a replaced by 1, and the conclusion then follows by
noting that a = exp(λεηεĥ

0) indeed converges to 1 as ε ↓ 0. Using identity (4.8), we write
ˆ
χzR(µtε − µ◦ε) =

ˆ t

0

ˆ
χzR∂tµ

t
ε =

ˆ t

0

ˆ
χzRcurlV tε = −

ˆ t

0

ˆ
∇⊥χzR · V tε

= −2

ˆ t

0

ˆ
∇⊥χzR · 〈∇uε − iuεNεv◦ε, i∂tuε〉+Nε

ˆ t

0

ˆ
∇⊥χzR · v◦ε ∂t(1− |uε|2).

Applying the product estimate of Lemma 5.4 as in Step 1, with |∇χR| . R−1χ
1/2
R , we find for all |log ε|−2 .

K . |log ε|2 and for all t ≤ T ,∣∣∣ˆ χzR(µtε − µ◦ε)
∣∣∣ . 1

|log ε|

(
K−2

ˆ t

0

ˆ
χzR|∂tuε|2 +K2R−2

ˆ t

0

ˆ
B2R

|∇uε − iuεNεv◦ε|2
)

+ ot(|log ε|−1)

+Nε

ˆ
|1− |utε|2||∇⊥χzR|+Nε

ˆ
|1− |u◦ε|2||∇⊥χzR|

.t
K−2

|log ε|

ˆ t

0

ˆ
χzR|∂tuε|2 +K2R−2Nε + εNε|log ε|+ o(|log ε|−1).

Using (8.24) to estimate the first right-hand side term, and choosing λ−1
ε � K2 � λεR

2, we obtain∣∣∣ˆ χzR(µtε − µ◦ε)
∣∣∣ .t K−2

λε|log ε|
(Êz,◦ε,R − Ê

z,t
ε,R)+ + o(K−2Nε) +K2R−2Nε + o(|log ε|−1)

.t o(|log ε|−1)(Êz,◦ε,R − Ê
z,t
ε,R)+ + o(λεNε). (8.26)
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It remains to smuggle the weight a into the left-hand side. For all t ≤ T , Lemma 5.1(iii) together with (5.12)
yields for ε1/2 < r � λε, ∣∣∣ ˆ (1− a)χzR(µtε − ν

r,t
ε,R)

∣∣∣� λεNε,

and hence, by Lemma 5.1(ii), with ‖1− a‖L∞ . ηε � λε,ˆ
(1− a)χzRµ

t
ε . ‖1− aε‖L∞

ˆ
χzR|ν

r,t
ε,R|+ o(λεNε)� λεNε.

Combining this with (8.26) and with the result of Step 2, we deduce∣∣∣ˆ aχzR(µtε − µ◦ε)
∣∣∣ .t o(|log ε|−1)(Êz,◦ε,R − Ê

z,t
ε,R)+ + o(λεNε) . o(1)

∣∣∣ˆ aχzR(µtε − µ◦ε)
∣∣∣+ o(λεNε),

and the result follows.

Step 4: conclusion. Combining the results of Steps 1 and 2 with the assumption Êz,◦ε,R = 1
2 |log ε|

´
aχzRµ

◦
ε+

o(N2
ε ), we find

λεα

2

ˆ T

0

ˆ
aχzR|∂tuε|2 ≤ |log ε|

ˆ
aχzR(µ◦ε − µTε ) + oT (λεNε|log ε|),

and hence by the result of Step 3,
ˆ T

0

ˆ
aχzR|∂tuε|2 �T Nε|log ε|.

The product estimate of [82, Appendix A] (see also Lemma 5.4) then yields for all X ∈ W 1,∞([0, T ]× R2)2

and all |log ε|−1 . K . |log ε|,∣∣∣ ˆ T

0

ˆ
χzRX · Vε

∣∣∣ . 1

|log ε|

( 1

K

ˆ T

0

ˆ
χzR|∂tuε|2 +K

ˆ T

0

ˆ
χzR|X · (∇uε − iuεNεv◦ε)|2

)
+ o(1)

(
1 + ‖X‖2W 1,∞([0,T ]×R2)

)
.T

(
K−1o(Nε) +KNε + o(1)

)(
1 + ‖X‖2W 1,∞([0,T ]×R2)

)
,

hence, for a suitable choice of K,

sup
z

∣∣∣ ˆ T

0

ˆ
χzRX · Vε

∣∣∣�T Nε
(
1 + ‖X‖2W 1,∞([0,T ]×R2)

)
.

This proves N−1
ε Vε

∗−⇀ 0 in (C1
c ([0, T ]× R2))∗, so that identity (4.8) yields ∂t(N−1

ε µε) = N−1
ε curlVε

∗−⇀ 0 in
(C1([0, T ];C2

c (R2)))∗. Arguing as in Step 5 of the proof of Proposition 6.1, the well-preparedness assumption
on the initial data implies N−1

ε j◦ε → v◦ in L1
uloc(R2)2, hence in particular N−1

ε µ◦ε
∗−⇀ curl v◦ in (C1

c (R2))∗.
We easily conclude N−1

ε µε
∗−⇀ curl v◦ in (C([0, T ];C2

c (R2)))∗. The conclusion then follows, noting that by
Lemma 5.1(iii) and by (5.12) the sequence (N−1

ε µε)ε is bounded in L∞([0, T ]; (C0,γ
c (R2))∗) for all γ > 0, and

using interpolation (as e.g. in [53]).

A Appendix: Well-posedness for the modified Ginzburg-Landau
equation

In this appendix, we address global well-posedness for equation (1.5), proving Proposition 2.2 as well as
additional regularity. We begin with the decaying setting, that is the case when ∇h, F, f are assumed to
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have some decay at infinity. Note that in this setting no transport is expected to occur at infinity. As is
classical since the work of Bethuel and Smets [9] (see also [63]), we consider the existence of solutions uε
of (1.5) in the affine space L∞loc(R+;U + H1(R2;C)) for some “reference map” U , which is typically chosen
smooth and equal (in polar coordinates) to eiDεθ outside a ball at the origin, for some given Dε ∈ Z. Such a
choice U = UDε imposes a total degree Dε at infinity. More generally, we consider here the following spaces
of “admissible” reference maps, for all k ≥ 0,

Ek(R2) := {U ∈ L∞(R2;C) : ∇2U ∈ Hk(R2;C),∇|U | ∈ L2(R2), 1− |U |2 ∈ L2(R2),∇U ∈ Lp(R2;C) ∀p > 2}.

(Note that this definition slightly differs from the usual one in [9], but it is more suitable in this form in the
presence of pinning and forcing.) The map UDε above clearly belongs to the space E∞(R2). Global well-
posedness and regularity in this framework are provided by the following proposition. Note that a stronger
decay of the coefficients ∇h, F, f is required in the Gross-Pitaevskii case, although we do not know whether
it is necessary.

Proposition A.1 (Well-posedness for (1.5) — decaying setting). Set a := eh, with h : R2 → R.
(i) Dissipative case α > 0, β ∈ R:

Given h ∈ W 1,∞(R2), F ∈ L∞(R2)2, f ∈ L2 ∩L∞(R2), with ∇h, F ∈ Lp(R2)2 for some p < ∞, and
u◦ε ∈ U + H1(R2;C) for some U ∈ E0(R2), there exists a unique global solution uε ∈ L∞loc(R+;U +
H1(R2;C)) of (1.5) on R+ × R2 with initial data u◦ε.
Moreover, if for some k ≥ 0 we have h ∈ W k+1,∞(R2), F ∈ W k,∞(R2)2, f ∈ Hk ∩W k,∞(R2), with
∇h, F ∈W k,p(R2)2 for some p <∞, and U ∈ Ek(R2), then uε ∈ L∞loc([δ,∞);U +Hk+1(R2;C)) for all
δ > 0. In particular, if in addition u◦ε ∈ U +Hk+1(R2;C), then uε ∈ L∞loc(R+;U +Hk+1(R2;C)).

(ii) Gross-Pitaevskii case α = 0, β ∈ R:
Given h ∈ W 2,∞(R2), ∇h ∈ H1(R2)2, F ∈ H2 ∩W 2,∞(R2)2 with div F = 0, f ∈ L2 ∩L∞(R2), and
u◦ε ∈ U + H1(R2;C) for some U ∈ E0(R2), there exists a unique global solution uε ∈ L∞loc(R+;U +
H1(R2;C)) of (1.5) on R+ × R2 with initial data u◦ε.
Moreover, if for some k ≥ 0 we have h ∈ W k+2,∞(R2), ∇h ∈ Hk+1(R2)2, F ∈ Hk+2 ∩W k+2,∞(R2)2

with div F = 0, f ∈ Hk+1 ∩W k+1,∞(R2), and u◦ε ∈ U + Hk+1(R2;C) for some U ∈ Ek+1(R2), then
uε ∈ L∞loc(R+;U +Hk+1(R2;C)).

The proof below is based on arguments by [9, 63], which need to be adapted in the present context
with both pinning and forcing. The conservative case α = 0 is however more delicate, and we then use the
structure of the equation to make a crucial change of variables that transforms the first-order terms into
zeroth-order ones. As shown in the proof, in the dissipative regime, the decay assumption ∇h, F ∈ Lp(R2)2

(for some p <∞) can be simply replaced by (|∇h|+ |F |)∇U ∈ L2(R2;C)2.

Proof. We split the proof into seven steps. We begin with the (easiest) case α > 0, and then turn to the
conservative case α = 0 in Steps 4–7.

Step 1: local existence in U + Hk+1(R2;C) for α > 0. In this step, given k ≥ 0, we assume h ∈
W k+1,∞(R2), F ∈ W k,∞(R2)2, f ∈ Hk ∩ W k,∞(R2), ∇h, F ∈ W k,p(R2) for some p < ∞, and u◦ε ∈
U + Hk+1(R2;C) for some U ∈ Ek(R2), and we prove that there exists some T > 0 and a unique solution
uε ∈ L∞([0, T );U +Hk+1(R2;C)) of (1.5) on [0, T )×R2. To simplify notation, we replace equation (1.5) by
its rescaled version

(α+ iβ)∂tu = 4u+ au(1− |u|2) +∇h · ∇u+ iF⊥ · ∇u+ fu, u|t=0 = u◦. (A.1)

We begin with the case k = 0, and briefly comment afterwards on the adaptations needed for k ≥ 1. We
argue by a fixed-point argument in the set EU,u◦(C0, T ) := {u : ‖u − U‖L∞T H1 ≤ C0, u|t=0 = u◦}, for some
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C0, T > 0 to be suitably chosen. We denote by C ≥ 1 any constant that only depends on an upper bound
on α, α−1, |β|, ‖h‖W 1,∞ , ‖(F, f, U)‖L∞ , ‖1− |U |2‖L2 , ‖4U‖L2 , ‖f‖L2 , and ‖(|F |+ |∇h|)∇U‖L2 , and we add
a subscript to indicate dependence on further parameters.

The kernel of the semigroup operator e(α+iβ)−1t4 is given explicitly by St(x) := (α+iβ)(4πt)−1e−(α+iβ)|x|2/(4t).
Since α > 0, this kernel decays just like the standard heat kernel,

|St(x)| ≤ Ct−1e−α|x|
2/(4t), (A.2)

and we have the following obvious estimates, for all 1 ≤ r ≤ ∞, k ≥ 1,

‖St‖Lr ≤ Ct1/r−1, ‖∇kSt‖Lr ≤ Ckt1/r−1−k/2. (A.3)

Setting û := u− U , we may rewrite equation (A.1) as follows:

(α+ iβ)∂tû = 4û+4U + a(û+ U)(1− |U |2)− 2a(û+ U)〈U, û〉 − a(û+ U)|û|2

+∇h · ∇û+∇h · ∇U + iF⊥ · ∇û+ iF⊥ · ∇U + fû+ fU, (A.4)

with initial data û|t=0 = û◦ := u◦−U . Any solution û ∈ L∞([0, T );H1(R2;C)) satisfies the Duhamel formula
û = ΞU,û◦(û), where we have set

ΞU,û◦(û)t := St ∗ û◦ + (α+ iβ)−1

ˆ t

0

St−s ∗ ZU,û◦(ûs)ds,

ZU,û◦(û
s) := 4U + a(ûs + U)(1− |U |2)− 2a(ûs + U)〈U, ûs〉 − a(ûs + U)|ûs|2

+∇h · ∇ûs +∇h · ∇U + iF⊥ · ∇ûs + iF⊥ · ∇U + fûs + fU.

Let us examine the map ΞU,û◦ more closely. Using (A.3) in the forms ‖St‖L1 ≤ C and ‖∇St‖L1 ≤ Ct−1/2,
we obtain by the triangle inequality

‖ΞU,û◦(û)t‖H1 ≤ ‖St‖L1‖û◦‖H1 + C

ˆ t

0

(1 + (t− s)−1/2)
(

1 + ‖ûs‖L2 + ‖ûs‖3L6 + ‖∇ûs‖L2

)
ds,

and hence, by the Sobolev embedding in the form ‖ûs‖L6 ≤ C‖ûs‖H1 , for all û ∈ −U + EU,u◦(C0, T ),

‖ΞU,û◦(û)‖L∞T H1 ≤ C‖û◦‖H1 + C(T + T 1/2)(1 + C3
0 ).

Similarly, again using the Sobolev embedding, we easily find for all û, v̂ ∈ −U + EU,u◦(C0, T )

‖ΞU,û◦(û)− ΞU,û◦(v̂)‖L∞T H1 ≤ C
ˆ t

0

(1 + (t− s)−1/2)(1 + ‖ûs‖2H1 + ‖v̂s‖2H1)‖ûs − v̂s‖H1ds

≤ C(T + T 1/2)(1 + C2
0 )‖û− v̂‖L∞T H1 .

Choosing C0 := 1 + C‖û◦‖H1 and T := 1 ∧ (4C(1 + C3
0 ))−2, we deduce that ΞU,û◦ maps the set −U +

EU,u◦(C0, T ) into itself, and is contracting on that set. The conclusion follows from a fixed-point argument.
Let us now briefly comment on the case k ≥ 1 and explain how to adapt the argument above. We again

proceed by a fixed point argument, but estimating this time ΞU,û◦(w) in Hk+1(R2;C) as follows

‖ΞU,û◦(û)t‖Hk+1 ≤ ‖St‖L1‖û◦‖Hk+1 + C

ˆ t

0

(‖St−s‖L1 + ‖∇St−s‖L1)‖ZU,û◦(ûs)‖Hk ,
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where we easily check with the Sobolev embedding that

‖ZU,û◦(ûs)‖Hk ≤ Ck(1 + ‖ûs‖3Hk+1), (A.5)

for some constant Ck ≥ 1 that only depends on an upper bound on α, α−1, |β|, k, ‖h‖Wk+1,∞ , ‖F‖Wk,∞ ,
‖f‖Hk∩Wk,∞ , ‖U‖L∞ , ‖∇|U |‖L2 , ‖∇2U‖Hk , ‖1 − |U |2‖L2 , and

∑
j≤k ‖(|∇jF | + |∇j∇h|)∇U‖L2 . Similarly

estimating the Hk+1-norm of the difference ΞU,û◦(û)− ΞU,û◦(v̂), the result follows.

Step 2: regularizing effect for α > 0. In this step, given k ≥ 0, we assume h ∈ W k+1,∞(R2), F ∈
W k,∞(R2)2, f ∈ Hk ∩W k,∞(R2), ∇h, F ∈W k,p(R2)2 for some p <∞, and U ∈ Ek(R2), and we prove that
any solution u ∈ L∞([0, T );U +H1(R2;C)) of (A.1) satisfies u ∈ L∞([δ, T );U +Hk+1(R2;C)) for all δ > 0.
We denote by Ck ≥ 1 any constant that only depends on an upper bound on α, α−1, |β|, k, ‖h‖Wk+1,∞ ,
‖F‖Wk,∞ , ‖f‖Hk∩Wk,∞ , ‖U‖L∞ , ‖1 − |U |2‖L2 , ‖∇|U |‖L2 , ‖∇2U‖Hk ,

∑
j≤k ‖(|∇jF | + |∇j∇h|)∇U‖L2 , and

‖u◦ − U‖H1 . We write C for such a constant in the case k = 1. We denote by Ck,t ≥ 1 any constant
that additionally depends on an upper bound on t, t−1, and ‖u− U‖L∞t H1 . We add a subscript to indicate
dependence on further parameters.

Let u ∈ L∞([0, T );U + H1(R2;C)) be a solution of (A.1), and let û := u − U . We prove by induction
that ‖ût‖Hk+1 ≤ Ck,t for all t ∈ (0, T ) and k ≥ 0. As it is obvious for k = 0, we assume that it holds for
some k ≥ 0 and we then deduce that it also holds for k replaced by k + 1. Using the Duhamel formula
û = ΞU,û◦(û) as in Step 1, we find

‖∇k+1ût‖L2 ≤ ‖∇kSt‖L1‖∇û◦‖L2 + C

ˆ t

t/2

‖∇St−s ∗ ∇kZU,û◦(ûs)‖L2ds (A.6)

+ C

ˆ t/2

0

‖∇k+1St−s ∗ ZU,û◦(ûs)‖L2ds.

A finer estimate than (A.5) is now needed. Arguing as in [9, Lemma 2] by means of various Sobolev
embeddings, we have for all 1 < r < 2

‖∇ZU,û◦(ût)‖L2 + Lr ≤ Cr(1 + ‖ût‖3H1 + ‖ût‖H2). (A.7)

(Note that we cannot choose r = 2 above because of terms of the form ‖ûs∇|ûs|2‖Lr , and that the term
‖ût‖H2 in the right-hand side simply comes from the forcing terms (∇h + iF⊥) · ∇ût in the expression for
ZU,û◦(û

t).) By a similar argument (see e.g. [63, Step 1 of the proof of Proposition A.8]), we find for all k ≥ 0
and 1 < r < 2

‖∇kZU,û◦(ût)‖L2 + Lr ≤ Ck,r(1 + ‖ût‖3Hk + ‖ût‖Hk+1). (A.8)

We may then deduce from (A.6) together with Young’s convolution inequality and with (A.3), for all 1 <
r < 2,

‖∇k+1ût‖L2 ≤ ‖∇kSt‖L1‖∇û◦‖L2 + C

ˆ t

t/2

‖∇St−s‖L1 ∩L2r/(3r−2)‖∇kZU,û◦(ûs)‖L2 + Lrds

+ C

ˆ t/2

0

‖∇k+1St−s‖L1‖ZU,û◦(ûs)‖L2ds

≤ Ct−k/2 + Ck,r

ˆ t

t/2

((t− s)−1/2 + (t− s)−1/r)(1 + ‖ûs‖3Hk + ‖ûs‖Hk+1)ds

+ C

ˆ t/2

0

(t− s)−(k+1)/2(1 + ‖ûs‖3H1)ds

≤ Ck,t + Ck,t sup
t/2≤s≤t

‖ûs‖3Hk + Ck,t

(ˆ t

0

‖∇k+1ûs‖3L2ds

)1/3

.
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By induction hypothesis, this yields ‖∇k+1ût‖3
L2 ≤ Ck,t + Ck,t

´ t
0
‖∇k+1ûs‖3

L2ds, so the result follows from
the Grönwall inequality (combined with a simple approximation argument based on the local existence result
of Step 1 in the space U +Hk+1(R2;C)).

Step 3: global existence for α > 0. In this step, we assume h ∈ L∞(R2), f ∈ L2 ∩L∞(R2), ∇h, F ∈
Lp ∩L∞(R2) for some p <∞, u◦ ∈ U+H1(R2;C), and U ∈ E0(R2), and we prove that (A.1) admits a unique
global solution u ∈ L∞loc(R+;U+H1(R2;C)). We denote by C > 0 any constant that only depends on an upper
bound on α, α−1, |β|, ‖h‖W 1,∞ , ‖(F,U)‖L∞ , ‖1− |U |2‖L2 , ‖4U‖L2 , ‖f‖L2 ∩L∞ , and ‖(|F |+ |∇h|)∇U‖L2 .

Given a solution u ∈ L∞([0, T );U + H1(R2;C)) of (A.1), we claim that the following a priori estimate
holds for all t ∈ [0, T )

α

2

ˆ t

0

ˆ
|∂tu|2 +

1

2

ˆ (
|∇(ut − U)|2 +

a

2
(1− |ut|2)2 + |ut − U |2

)
≤ CeCt(1 + ‖u◦ − U‖2H1). (A.9)

Combining this with the local existence result of Step 1 in the space U + H1(R2;C), we deduce that local
solutions can be extended globally in that space, and the result follows. It thus remains to prove the
claim (A.9). For simplicity, we assume in the computations below that u ∈ L∞([0, T );U+H2(R2;C)), which
in particular implies ∂tu ∈ L∞([0, T ); L2(R2;C)) by (A.1). The general result then follows from a simple
approximation argument based on the local existence result of Step 1 in the space U +H2(R2;C).

We set for simplicity (α + iβ)−1 = α′ + iβ′, α′ > 0. Using equation (A.1), we compute the following
time-derivative, suitably regrouping the terms and integrating by parts,

1

2
∂t

ˆ
|u− U |2 =

ˆ
〈u− U, (α′ + iβ′)(4u+ au(1− |u|2) +∇h · ∇u+ iF⊥ · ∇u+ fu)〉

= −α′
ˆ
|∇(u− U)|2 + α′

ˆ
a|u− U |2(1− |u|2)

+

ˆ
〈u− U, (α′ + iβ′)(∇h · ∇(u− U) + iF⊥ · ∇(u− U) + f(u− U))〉

+

ˆ
〈u− U, (α′ + iβ′)(4U + aU(1− |u|2) +∇h · ∇U + iF⊥ · ∇U + fU)〉,

which we may now estimate as follows

1

2
∂t

ˆ
|u− U |2 ≤ −α′

ˆ
|∇(u− U)|2 + C

ˆ
|u− U |2 + C

ˆ
|u− U ||∇(u− U)|

+

ˆ
|u− U |(|4U |+ |1− |u|2|+ (|∇h|+ |F |)|∇U |+ |f |)

≤ −α
′

2

ˆ
|∇(u− U)|2 + C + C

ˆ
|u− U |2 + C

ˆ
(1− |u|2)2.

On the other hand, again using the equation, and integrating by parts, we compute

1

2
∂t

ˆ
|∇(u− U)|2 =

ˆ
〈∇(u− U),∇∂tu〉 = −

ˆ
〈4(u− U), ∂tu〉

= −
ˆ
〈(α+ iβ)∂tu−4U − au(1− |u|2)−∇h · ∇u− iF⊥ · ∇u− fu, ∂tu〉

= − α
ˆ
|∂tu|2 −

1

4
∂t

ˆ
a(1− |u|2)2 +

ˆ
〈∇h · ∇(u− U) + iF⊥ · ∇(u− U) + f(u− U), ∂tu〉

+

ˆ
〈4U +∇h · ∇U + iF⊥ · ∇U + fU, ∂tu〉
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and hence

1

2
∂t

ˆ
|∇(u− U)|2 +

1

4
∂t

ˆ
a(1− |u|2)2

≤ − α
ˆ
|∂tu|2 + C

ˆ
|∂tu|(|u− U |+ |∇(u− U)|) + C

ˆ
|∂tu|(|4U |+ (|∇h|+ |F |)|∇U |+ |f |)

≤ − α

2

ˆ
|∂tu|2 + C + C

ˆ
|u− U |2 + C

ˆ
|∇(u− U)|2.

We may thus conclude

α

2

ˆ
|∂tu|2 + ∂t

ˆ (
1

2
|∇(u− U)|2 +

a

4
(1− |u|2)2 +

1

2
|u− U |2

)
≤ C + C

ˆ (
1

2
|∇(u− U)|2 +

a

4
(1− |u|2)2 +

1

2
|u− U |2

)
,

and the claim (A.9) follows from the Grönwall inequality.

Step 4: a useful change of variable. We now turn to the conservative case α = 0. The first-order terms
(that are forcing terms) in the right-hand side of (1.5) can then no longer be treated as errors, since the lost
derivative is not retrieved by the Schrödinger operator. The proof of local existence in Step 1 can thus not
be adapted to this case. The global estimates in Step 3 similarly fail, as there is no dissipation to absorb the
first-order terms. To remedy this, we begin by performing a useful change of variables transforming first-
order terms into zeroth-order ones, which are much easier to deal with. Since by assumption div F = 0 with
F ∈ L∞(R2)2, we deduce from a Hodge decomposition that there exists ψ ∈ H1

loc(R2) such that F = −2∇⊥ψ.
Using the relation a = eh, and setting wε :=

√
auεe

i|log ε|ψ, a straightforward computation yields that the
equation (1.5) for uε is equivalent to{

λε(α+ i|log ε|β)∂twε = 4wε + wε
ε2 (a− |wε|2) + (f0 + ig0)wε, in R+ × R2,

wε|t=0 = w◦ε :=
√
aei|log ε|ψu◦ε.

(A.10)

where we have set

f0 := f − 4
√
a√
a

+
1

4
|log ε|2|F |2, g0 :=

1

2
|log ε|a−1curl (aF ).

We look for solutions wε of the above in the class W + H1(R2;C), for a “weighted reference map” W , that
is an element of

Eak(R2) := {W ∈ L∞(R2;C) : ∇2W ∈ Hk(R2;C),∇|W | ∈ L2(R2), a−|W |2 ∈ L2(R2),∇W ∈ Lp(R2;C) ∀p > 2}.

For k ≥ 0, and ∇h,∇ψ ∈ Hk+1(R2)2, we indeed observe that wε is a solution of (A.10) in L∞([0, T );W +
Hk+1(R2;C)) for some W ∈ Eak if and only if uε is a solution of (1.5) in L∞([0, T );U + Hk+1(R2;C)) for
some U ∈ Ek.

Step 5: local existence for α = 0. In this step, given k ≥ 0, we assume h ∈W k+1,∞(R2), ∇h ∈ Hk(R2)2,
f0, g0 ∈ Hk+1 ∩W k+1,∞(R2), and w◦ ∈W +Hk+1(R2;C) for some W ∈ Eak+1(R2), and we prove that there
exists some T > 0 and a unique solution wε ∈ L∞([0, T );W + Hk+1(R2;C)) of (A.10) on [0, T ) × R2. To
simplify notation, we replace equation (A.10) (with α = 0) by its rescaled version

i∂tw = 4w + w(a− |w|2) + (f0 + ig0)w, w|t=0 = w◦. (A.11)
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We begin with the case k = 0, and comment afterwards on the adaptations needed for k ≥ 1. We argue
by a fixed-point argument in the set EW,w◦(C0, T ) := {w : ‖w −W‖L∞T H1 ≤ C0, w|t=0 = w◦}, for some
C0, T > 0 to be suitably chosen. We denote by C ≥ 1 any constant that only depends on an upper bound
on ‖∇h‖L2 ∩L∞ , ‖(f0, g0)‖H1∩W 1,∞ , ‖(h,W )‖L∞ , ‖a − |W |2‖L2 , ‖∇|W |‖L2 , and ‖4W‖H1 , and we add a
subscript to indicate dependence on further parameters.

Let St denote the kernel of the semigroup operator e−it4. Setting ŵ := w − W , we may rewrite
equation (A.11) as follows:

i∂tŵ = 4ŵ +4W + (ŵ +W )(a− |W |2)− 2(ŵ +W )〈W, ŵ〉 − (ŵ +W )|ŵ|2 + (f0 + ig0)ŵ + (f0 + ig0)W,

with initial data ŵ|t=0 = ŵ◦ := w◦ −W . Any solution ŵ ∈ L∞([0, T );H1(R2;C)) satisfies the Duhamel
formula ŵ = ΞW,ŵ◦(ŵ), where we have set

ΞW,ŵ◦(ŵ)t := St ∗ ŵ◦ − i
ˆ t

0

St−s ∗ ZW,ŵ◦(ws)ds,

ZW,ŵ◦(ŵ
s) := 4W + (ŵs +W )(a− |W |2)− 2(ŵs +W )〈W, ŵs〉 − (ŵs +W )|ŵs|2 + (f0 + ig0)ŵs + (f0 + ig0)W.

Similarly as in Step 1, we find ‖ZW,ŵ◦(ŵs)‖L2 ≤ C(1 + ‖ŵs‖3H1). On the other hand, arguing as in [9,
Lemma 2] by means of various Sobolev embeddings, we have the following version of (A.7) without forcing:
we may decompose ∇ZW,ŵ◦(ŵs) = Z1

W,ŵ◦(ŵ
s) + Z2

W,ŵ◦(w
s), such that for all 1 < r < 2

‖Z1
W,ŵ◦(ŵ

s)‖L2 ≤ C(1 + ‖ŵs‖3H1), ‖Z2
W,ŵ◦(ŵ

s)‖Lr ≤ Cr(1 + ‖ŵs‖3H1). (A.12)

(Recall that we cannot choose r = 2 above because of terms of the form e.g. ‖ŵs∇|ŵs|2‖Lr .) Let us now
examine the map ΞW,ŵ◦ more closely. We have

‖ΞW,ŵ◦(ŵ)t‖H1 ≤ ‖St ∗ (ŵ◦,∇ŵ◦)‖L2 +

∥∥∥∥ˆ t

0

e−i(t−s)4(ZW,ŵ◦(ŵ
s), Z1

W,ŵ◦(ŵ
s), Z2

W,ŵ◦(ŵ
s))ds

∥∥∥∥
L2

,

and hence by the Strichartz estimates for the Schrödinger operator [56], for any 1 < r ≤ 2,

‖ΞW,ŵ◦(ŵ)‖L∞T H1 ≤ C‖ŵ◦‖H1 + C‖(ZW,ŵ◦(ŵ), Z1
W,ŵ◦(ŵ))‖L1

T L2 + Cr‖Z2
W,ŵ◦(ŵ)‖

L
2r/(3r−2)
T Lr

.

The above estimates for ZW,ŵ◦ then yield for any 1 < r < 2

‖ΞW,ŵ◦(ŵ)‖L∞T H1 ≤ C‖ŵ◦‖H1 + (CT + CrT
3
2−

1
r )(1 + ‖ŵ‖3L∞T H1).

Choosing r = 4/3, this yields in particular, for all ŵ ∈ −W + EW,ŵ◦(C0, T ),

‖ΞW,ŵ◦(ŵ)‖L∞T H1 ≤ C‖ŵ◦‖H1 + C(T + T 3/4)(1 + C3
0 ).

Similarly, again using Sobolev embeddings and Strichartz estimates, we easily find for all v̂, ŵ ∈ −W +
EW,ŵ◦(C0, T )

‖ΞW,ŵ◦(v̂)− ΞW,ŵ◦(ŵ)‖L∞T H1 ≤ C(T + T 3/4)(1 + C2
0 )‖v̂ − ŵ‖L∞T H1 .

Choosing C0 := 1 + C‖ŵ◦‖H1 and T := 1 ∧ (4C(1 + C3
0 ))−4/3, we may then deduce that ΞW,ŵ◦ maps the

set −W +EW,ŵ◦(C0, T ) into itself, and is contracting on that set. The conclusion follows from a fixed-point
argument.

Let us now briefly comment on the case k ≥ 1 and explain how to adapt the above argument. We again
proceed by a fixed point argument, estimating this time ΞW,ŵ◦(ŵ) hence ZW,ŵ◦(ŵ) in Hk+1(R2;C). Arguing
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similarly as e.g. in [63, Step 1 of the proof of Proposition A.8] by means of various Sobolev embeddings, we
have the following version of (A.8) without forcing: for all k ≥ 1,

‖∇k+1ZW,ŵ◦(ŵ)‖L∞t (L2 + Lr) ≤ Ck(1 + ‖ŵ‖3L∞t Hk+1), (A.13)

for some constant Ck ≥ 1 that only depends on an upper bound on k, ‖∇h‖Hk∩Wk,∞ , ‖(f0, g0)‖Hk+1∩Wk+1,∞ ,
‖(h,W )‖L∞ , ‖a− |W |2‖L2 , ‖∇|W |‖L2 , and ‖∇2W‖Hk+1 . The result then easily follows as above.

Step 6: global existence for α = 0. In this step, we assume h ∈ L∞(R2), f0 ∈ L2 ∩L∞(R2), g0 ∈
H1 ∩W 1,∞(R2), and w◦ ∈W +H1(R2;C) for some W ∈ Ea0 (R2), and we prove that (A.11) admits a unique
global solution w ∈ L∞loc(R+;W + H1(R2;C)). We denote by C > 0 any constant that only depends on an
upper bound on ‖h‖L∞ , ‖f0‖L2 ∩L∞ , ‖g0‖H1∩W 1,∞ , ‖W‖L∞ , ‖1− |W |2‖L2 , and ‖4W‖L2 .

Given a solution w ∈ L∞([0, T );W +H1(R2;C)) of (A.11), we claim that the following a priori estimate
holds for all t ∈ [0, T )

ˆ (
|∇(wt −W )|2 +

1

2
(a− |wt|2)2 + |wt −W |2

)
≤ CeCt(1 + ‖w◦ −W‖2H1). (A.14)

Combining this with the local existence result of Step 5 in the space W + H1(R2;C), we deduce that
local solutions can be extended globally in that space, and the result follows. So it remains to prove the
claim (A.14). For simplicity, we assume in the computations below that w ∈ L∞([0, T );W + H2(R2;C)),
which in particular implies ∂tw ∈ L∞([0, T ); L2(R2;C)) by (A.11). The general result then follows from a
simple approximation argument based on the local existence result of Step 5 in the space W +H2(R2;C).

Using equation (A.11), we compute the following time-derivative, suitably regrouping the terms and
integrating by parts,

1

2
∂t

ˆ
|w −W |2 =

ˆ
〈i(w −W ),4w + w(a− |w|2) + f0w + ig0w〉

=

ˆ
〈i(w −W ),4W +W (a− |w|2) + f0W + ig0W 〉+

ˆ
g0|w −W |2

≤ C + C

ˆ
|w −W |2 + C

ˆ
(a− |w|2)2. (A.15)

Likewise, we compute

∂t

ˆ
|∇(w −W )|2 = 2

ˆ
〈∇(w −W ),∇∂tw〉

= −2

ˆ
〈4(w −W ), ∂tw − g0w〉

+ 2

ˆ
〈∇(w −W ), g0∇(w −W ) + g0∇W + (w −W )∇g0 +W∇g0〉

≤ −2

ˆ
〈4(w −W ), ∂tw − g0w〉+ C + C

ˆ
|∇(w −W )|2 + C

ˆ
|w −W |2, (A.16)
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where we have

− 2

ˆ
〈4(w −W ), ∂tw − g0w〉

= − 2

ˆ
〈i(∂tw − g0w)− w(a− |w|2)− f0w −4W,∂tw − g0w〉

= 2

ˆ
〈w(a− |w|2) + f0w +4W,∂tw − g0w〉

= − ∂t
ˆ (1

2
(a− |w|2)2 − f0|w|2 − 2〈4W,w〉

)
+ 2

ˆ
g0(a− |w|2)2 − 2

ˆ
g0(a− |w|2)

− 2

ˆ
f0g0|w|2 − 2

ˆ
g0〈4W,w〉

≤ − ∂t
ˆ (1

2
(a− |w|2)2 − f0|w −W |2 − 2〈w,4W + f0W 〉

)
+ C + C

ˆ
(a− |w|2)2 + C

ˆ
|w −W |2.

Combining this with (A.15) and (A.16), we obtain

∂t

ˆ (
(C − f0)|w −W |2 + |∇(w −W )|2 +

1

2
(a− |w|2)2 − 2〈w,4W + f0W 〉

)
≤ C + C

ˆ (
|w −W |2 + |∇(w −W )|2 + (a− |w|2)2

)
and the result easily follows from the Grönwall inequality, choosing a large enough constant C in the left-hand
side.

Step 7: propagation of regularity for α = 0. In this step, given k ≥ 0, we assume h ∈ W k+1,∞(R2),
∇h ∈ Hk(R2)2, f0, g0 ∈ Hk+1 ∩W k+1,∞(R2), and w◦ ∈W +Hk+1(R2;C) for some W ∈ Eak+1(R2), and we
prove that the global solution w of Step 6 belongs to L∞loc(R+;W +Hk+1(R2;C)). We denote by Ck ≥ 1 any
constant that only depends on an upper bound on k, ‖∇h‖Hk∩Wk,∞ , ‖(f0, g0)‖Hk+1∩Wk+1,∞ , ‖(h,W )‖L∞ ,
‖a−|W |2‖L2 , ‖∇|W |‖L2 , and ‖∇2W‖Hk+1 . We add a subscript to indicate dependence on further parameters.

Let w ∈ L∞([0, T );W +H1(R2;C)) be a solution of (A.1), and let ŵ := w−W . We argue by induction:
as the result is obvious for k = 0, we assume that it holds for some k ≥ 0 and we deduce that it then also
holds for k replaced by k+ 1. By a similar argument as e.g. in [9, Lemma 4] or in [63, Step 1 of the proof of
Proposition A.8], we have the following version of (A.8) without forcing (which generalizes (A.12) to higher
derivatives): for all k ≥ 0 we may decompose ∇k+1ZW,ŵ◦(ŵ

t) = ∇k+1Z1
W,ŵ◦(ŵ

t) + ∇k+1Z2
W,ŵ◦(w

t) such
that for all 1 < r < 2

‖∇k+1Z1
W,ŵ◦(ŵ

t)‖L2 + ‖∇k+1Z2
W,ŵ◦(ŵ

t)‖Lr ≤ Ck,r(1 + ‖ŵt‖3Hk+1),

or even more precisely,

‖∇k+1Z1
W,ŵ◦(ŵ

t)‖L2 + ‖∇k+1Z2
W,ŵ◦(ŵ

t)‖Lr ≤ Ck,r(1 + ‖ŵt‖2Hk)(1 + ‖ŵt‖Hk+1). (A.17)

Using Duhamel’s formula ŵ = ΞW,ŵ◦(ŵ) and applying the Strichartz estimates for the Schrödinger opera-
tor [56] as in Step 5, we find for all k ≥ 0 and 1 < r ≤ 2

‖∇k+1ŵt‖L2 ≤ ‖St ∗ ∇k+1ŵ◦‖L2 +

∥∥∥∥ˆ t

0

St−s ∗ ∇k+1ZW,ŵ◦(ŵ
s)ds

∥∥∥∥
L2

≤ C‖∇k+1ŵ◦‖L2 + C‖∇k+1Z1
W,ŵ◦(ŵ)‖L1

t L2 + Cr‖∇k+1Z2
W,ŵ◦(ŵ)‖

L
2r/(3r−2)
t Lr

,
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and hence, by (A.17), for all k ≥ 0,

‖ŵt‖Hk+1 ≤ Ck‖ŵ◦‖Hk+1 + Ck,r(1 + t)(1 + ‖ŵ‖2L∞t Hk)(1 + ‖ŵ‖
L
2r/(3r−2)
t Hk+1).

The result then follows from the induction hypothesis and the Grönwall inequality.

In the dissipative case, we now prove a well-posedness result for equation (1.5) in the general non-
decaying setting, that is without decay assumption on the coefficients ∇h, F, f . Since the forcing does not
decay, subtle advection forces may occur at infinity, preventing the solution uε from staying in the same
affine space L∞loc(R+;U + H1(R2;C)) for any stationary reference map U . The well-posedness result below
is therefore simply obtained in the space L∞(R+;H1

uloc(R2;C)), which yields no information at all on the
behavior of the constructed solution at infinity. It is in particular completely unclear whether the total
degree of the solution remains well-defined for positive times. In the proof below, the key observation is that
the Grönwall argument for the energy in Step 3 of the proof of Proposition A.1 can be localized by means of
an exponential cut-off. Note that the same argument does not seem applicable to the Gross-Pitaevskii case.

Proposition A.2 (Well-posedness for (1.5) — non-decaying setting). Set a := eh, with h : R2 → R. In the
dissipative case α > 0, β ∈ R, given h ∈ W 1,∞(R2), F ∈ L∞(R2)2, f ∈ L∞(R2), and u◦ε ∈ H1

uloc(R2;C),
there exists a unique global solution uε ∈ L∞loc(R+;H1

uloc(R2;C)) of (1.5) in R+×R2 with initial data u◦ε, and
this solution satisfies ∂tuε ∈ L∞loc(R+; L2

uloc(R2;C)). Moreover, if for some k ≥ 0 we have h ∈ W k+1,∞(R2),
F ∈ W k,∞(R2)2, f ∈ W k,∞(R2), and u◦ε ∈ Hk+1

uloc (R2;C), then uε ∈ L∞loc(R+;Hk+1
uloc (R2;C)) and ∂tuε ∈

L∞loc(R+;Hk
uloc(R2;C)).

Proof. We split the proof into four steps. We denote by ξz(x) := e−|x−z| the exponential cut-off centered at
z ∈ RZ2, and ξ(x) := ξ0(x) = e−|x|. To simplify notation, we replace equation (1.5) by its rescaled version

(α+ iβ)∂tu = 4u+ au(1− |u|2) +∇h · ∇u+ iF⊥ · ∇u+ fu, u|t=0 = u◦. (A.18)

Step 1: global existence with k = 0. In this step, we assume h ∈ W 1,∞(R2), F ∈ L∞(R2)2, f ∈ L∞(R2),
and u◦ ∈ H1

uloc(R2;C), and we prove that there exists a global solution u ∈ L∞loc(R+;H1
uloc(R2;C)) of (A.18)

on R+ × R2 with initial data u◦. We denote by C ≥ 1 any constant that only depends on an upper bound
on α, α−1, |β|, ‖(h,∇h, F, f)‖L∞ , and ‖u◦‖H1

uloc
.

We argue by approximation: for all n ≥ 1, we let χn := χ(·/n) for some fixed cut-off function χ with
χ|B1

≡ 1 and χ|R2\B2
≡ 0, and we set hn := χnh, an := ehn , Fn := χnF , and fn := χnf . Note that by

construction ‖(hn,∇hn, Fn, fn)‖L∞ ≤ C. We also need to approximate the initial data u◦ ∈ H1
uloc(R2;C):

for all n ≥ 1, we let ρn := n2ρ(nx) for some ρ ∈ C∞c (R2) with
´
ρ = 1, and we set u◦n := χn(u◦ ∗ρn)+1−χn.

By definition, we have u◦n ∈ E0, the sequence (u◦n)n is bounded in H1
uloc(R2;C), and as n ↑ ∞ we obtain

u◦n → u◦ in H1
loc(R2;C), and an → a, ∇hn → ∇h, and Fn → F in L∞loc(R2)2. By Proposition A.1, there

exists a unique global solution un ∈ L∞loc(R+;U+H1(R2;C)) of the following truncated equation on R+×R2,

(α+ iβ)∂tun = 4un + anun(1− |un|2) +∇hn · ∇un + iF⊥n · ∇un + fnun, un|t=0 = u◦n. (A.19)

In order to pass to the limit n ↑ ∞ in (the weak formulation of) this equation, we prove the boundedness of
the sequence (un)n in L∞loc(R+;H1

uloc(R2;C)), that is, we claim that the following a priori estimate holds for
all t ≥ 0,

‖utn‖H1
uloc
≤ sup

z
‖utn‖H1(B(z)) + α1/2 sup

z
‖∂tun‖L2

t L2(B(z)) ≤ CeCt. (A.20)

Before proving this estimate, we show how to conclude from this. Up to a subsequence, the sequence un con-
verges weakly-* to some u in L∞loc(R+;H1

uloc(R2;C)). Since moreover ∂tun is bounded in L2
loc(R+; L2(B(z);C)),
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uniformly in z, and as H1(B(z);C) is compactly embedded into L2(B(z);C), we deduce from the Aubin-
Simon lemma that un → u strongly in L∞loc(R+;H1

uloc(R2;C)). This allows to pass to the limit in the weak
formulation of equation (A.19), and deduce that the limit u is a global solution of (A.18) on R+ × R2 with
initial data u◦.

It remains to prove (A.20). We set for simplicity (α + iβ)−1 = α′ + iβ′, α′ > 0. Using equation (A.19),
integrating by parts, and using |∇ξz| ≤ ξz, we compute the following time-derivative, for all z ∈ RZ2,

1

2
∂t

ˆ
ξz|un|2 =

ˆ
ξz〈un, (α′ + iβ′)(4un + anun(1− |un|2) +∇hn · ∇un + iF⊥n · ∇un + fnun)〉

≤
ˆ
ξz〈un, (α′ + iβ′)4un〉+ α′

ˆ
anξ

z|un|2(1− |un|2) + C

ˆ
ξz|un||∇un|+ C

ˆ
ξz|un|2

≤ −α′
ˆ
ξz|∇un|2 + C

ˆ
ξz|un||∇un|+ C

ˆ
ξz|un|2,

and hence

1

2
∂t

ˆ
ξz|un|2 ≤ −

α′

2

ˆ
ξz|∇un|2 + C

ˆ
ξz|un|2.

On the other hand, integration by parts yields

1

2
∂t

ˆ
ξz|∇un|2 =

ˆ
ξz〈∇un,∇∂tun〉 = −

ˆ
ξz〈4un, ∂tun〉 −

ˆ
∇ξz · 〈∇un, ∂tun〉,

hence, inserting equation (A.19) in the first right-hand side term,

1

2
∂t

ˆ
ξz|∇un|2

= −
ˆ
ξz〈(α+ iβ)∂tun − anun(1− |un|2)−∇hn · ∇un − iF⊥n · ∇un − fnun, ∂tun〉 −

ˆ
∇ξz · 〈∇un, ∂tun〉

≤ − α
ˆ
ξz|∂tun|2 −

1

4
∂t

ˆ
anξ

z(1− |un|2)2 + C

ˆ
ξz(|un|+ |∇un|)|∂tun|,

and thus
1

2
∂t

ˆ
ξz|∇un|2 +

1

4
∂t

ˆ
anξ

z(1− |un|2)2 ≤ −α
2

ˆ
ξz|∂tun|2 + C

ˆ
ξz(|un|2 + |∇un|2).

We may then conclude

1

2
∂t

ˆ
ξz(|un|2 + |∇un|2) +

1

4
∂t

ˆ
anξ

z(1− |un|2)2 +
α

2

ˆ
ξz|∂tun|2 ≤ C

ˆ
ξz(|un|2 + |∇un|2).

By the Grönwall inequality, this yields for all t ≥ 0 and z ∈ RZ2,
ˆ
ξz(|utn|2 + |∇utn|2) +

1

2

ˆ
anξ

z(1− |utn|2)2 + α

ˆ t

0

ˆ
ξz|∂tun|2

≤ eCt
(ˆ

ξz(|u◦n|2 + |∇u◦n|2) +
1

2

ˆ
anξ

z(1− |u◦n|2)2
)
,

and hence, using the Sobolev embedding of H1
uloc(R2) into L4

uloc(R2) (see e.g. (A.23) below),
ˆ
ξz(|utn|2 + |∇utn|2) +

1

2

ˆ
anξ

z(1− |utn|2)2 + α

ˆ t

0

ˆ
ξz|∂tun|2 ≤ eCt

(
1 +

ˆ
ξz(|u◦n|2 + |∇u◦n|2)

)2

.
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The claim (A.20) then follows from the boundedness of u◦n in H1
uloc(R2;C), noting that

‖ζ‖2L2
uloc
' sup
z∈R2

ˆ
ξz|ζ|2. (A.21)

Step 2: global existence with k ≥ 0. In this step, given k ≥ 0, we assume h ∈ W k+1,∞(R2), F ∈
W k,∞(R2)2, f ∈ W k,∞(R2), and u◦ ∈ Hk+1

uloc (R2;C), and we prove that the global solution u constructed in
Step 1 then belongs to L∞loc(R+;Hk+1

uloc (R2;C)). We denote by Ck ≥ 1 any constant that only depends on
an upper bound on k, α, α−1, |β|, ‖(h,∇h, F, f)‖Wk,∞ , and ‖u◦‖Hk+1

uloc
, and we write Ck,t if it additionally

depends on an upper bound on t.
We argue again by approximation. We consider the truncations hn, an, Fn, fn, u◦n defined in Step 1, as

well as the solution un to the corresponding equation (A.19). We claim that for all k ≥ 0, for all t ≥ 0,

‖utn‖Hk+1
uloc

+ ‖∂tutn‖Hkuloc ≤ Ck,t. (A.22)

The desired result then follows by passing to the limit n ↑ ∞. This result is proved by induction on k. As
for k = 0 the result already follows from Step 1, we assume that ‖utn‖Hkuloc ≤ Ck,t holds for some k ≥ 1, and
we deduce that (A.22) also holds for this k. Integrating by parts, we find

1

2
∂t

ˆ
ξz|∇k+1un|2 =

ˆ
ξz〈∇k+1un,∇k+1∂tun〉 ≤ C

ˆ
ξz|∇k+1un||∇k∂tun| −

ˆ
ξz〈∇k4un,∇k∂tun〉,

hence, inserting equation (A.19) in the first right-hand side term, and developing the terms,

1

2
∂t

ˆ
ξz|∇k+1un|2 ≤ −α

ˆ
ξz|∇k∂tun|2 + C

ˆ
ξz|∇k+1un||∇k∂tun|

+

ˆ
ξz
〈
∇k
(
anun(1− |un|2) +∇hn · ∇un + iF⊥n · ∇un + fnun

)
,∇k∂tun

〉
≤ −α

ˆ
ξz|∇k∂tun|2 + Ck

k+1∑
j=0

ˆ
ξz|∇jun||∇k∂tun|+ Ck

k−1∑
j=0

ˆ
ξz|∇jun|3|∇k∂tun|

+ C

ˆ
ξz|un|2|∇kun||∇k∂tun|

≤ −α
2

ˆ
ξz|∇k∂tun|2 + Ck

k+1∑
j=0

ˆ
ξz|∇jun|2 + Ck

k−1∑
j=0

ˆ
ξz|∇jun|6 + C

ˆ
ξz|un|4|∇kun|2.

Note that the Sobolev embedding in the balls B2(x) yields
ˆ
ξz|∇jun|6 .

∑
x∈Z2

ξz(x)

ˆ
B2(x)

|∇jun|6

.
∑
x∈Z2

ξz(x)
(ˆ

B2(x)

(|∇jun|2 + |∇j+1un|2)
)3

.
( ∑
x∈Z2

ξz(x)

ˆ
B2(x)

(|∇jun|2 + |∇j+1un|2)
)3

.
(ˆ

ξz(|∇jun|2 + |∇j+1un|2)
)3

, (A.23)

and similarly
ˆ
ξz|un|4|∇kun|2 ≤

(ˆ
ξz|un|8

)1/2( ˆ
ξz|∇kun|4

)1/2

.
(ˆ

ξz|∇un|2
)2( ˆ

ξz(|∇kun|2 + |∇k+1un|2)
)
.
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Inserting these estimates in the above, and using (A.21), we obtain

∂t

ˆ
ξz|∇k+1un|2 + α

ˆ
ξz|∇k∂tun|2 ≤ Ck

k∑
j=0

(
1 +

ˆ
ξz|∇jun|2

)3

+ Ck

(
1 +

ˆ
ξz|∇un|2

)2
ˆ
ξz|∇k+1un|2

≤ Ck
(
1 + ‖un‖6Hkuloc) + Ck

(
1 + ‖un‖4H1

uloc
)

ˆ
ξz|∇k+1un|2.

By the induction hypothesis, we deduce for all t ≥ 0

∂t

ˆ
ξz|∇k+1utn|2 + α

ˆ
ξz|∇k∂tutn|2 ≤ Ck,t + Ck,t

ˆ
ξz|∇k+1utn|2,

and the result (A.22) follows from the Grönwall inequality, taking the supremum over z.

Step 3: uniqueness. In this step, we assume h ∈ W 1,∞(R2), F ∈ L∞(R2)2, and f ∈ L∞(R2), and we
prove that there exists at most one global solution u ∈ L∞loc(R+;H1

uloc(R2;C)) of (A.18) on R+ × R2 with
given initial data u◦. We denote by C ≥ 1 any constant that only depends on an upper bound on α, α−1,
|β|, and ‖(h,∇h, F, f)‖L∞ .

Let u1, u2 ∈ L∞loc(R+;H1
uloc(R2;C)) denote two solutions as above. We set for simplicity (α + iβ)−1 =

α′ + iβ′, α′ > 0. Using equation (A.18) and integrating by parts, we find

1

2
∂t

ˆ
ξz|u1 − u2|2 ≤ −α′

ˆ
ξz|∇(u1 − u2)|2 + C

ˆ
ξz|u1 − u2||∇(u1 − u2)|+ C

ˆ
ξz|u1 − u2|2

+

ˆ
aξz
〈
u1 − u2, (α

′ + iβ′)
(
u1(1− |u1|2)− u2(1− |u2|2)

)〉
≤ −α

′

2

ˆ
ξz|∇(u1 − u2)|2 + C

ˆ
ξz|u1 − u2|2(1 + |u1|+ |u2|)2. (A.24)

It remains to estimate the last integral. For that purpose, we decompose
ˆ
ξz|u1 − u2|2(|u1|+ |u2|)2 .

∑
x∈Z2

ξz(x)

ˆ
B2(x)

|u1 − u2|2(|u1|+ |u2|)2

.
∑
x∈Z2

ξz(x)
( ˆ

B2(x)

|u1 − u2|4
)1/2(ˆ

B2(x)

(|u1|+ |u2|)4
)1/2

,

hence, using the Sobolev embedding of H3/4(B2(x)) (and of H1(B2(x))) into L4(B2(x)),
ˆ
ξz|u1 − u2|2(|u1|+ |u2|)2 . ‖(u1, u2)‖2H1

uloc

∑
x∈Z2

ξz(x)‖u1 − u2‖2H3/4(B2(x)).

Using interpolation and Young’s inequality then yields, for any K ≥ 1,
ˆ
ξz|u1 − u2|2(|u1|+ |u2|)2 . ‖(u1, u2)‖2H1

uloc

∑
x∈Z2

ξz(x)‖u1 − u2‖3/2H1(B2(x))‖u1 − u2‖1/2L2(B2(x))

. K−1
∑
x∈Z2

ξz(x)

ˆ
B2(x)

|∇(u1 − u2)|2 +K3(1 + ‖(u1, u2)‖8H1
uloc

)
∑
x∈Z2

ξz(x)

ˆ
B2(x)

|u1 − u2|2

. K−1

ˆ
ξz|∇(u1 − u2)|2 +K3(1 + ‖(u1, u2)‖8H1

uloc
)

ˆ
ξz|u1 − u2|2.
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Inserting this into (A.24) with K ' 1 large enough, we find

1

2
∂t

ˆ
ξz|u1 − u2|2 ≤ C

(
1 + ‖(u1, u2)‖8H1

uloc

)ˆ
ξz|u1 − u2|2,

and the conclusion u1 = u2 follows from the Grönwall inequality.
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