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Abstract

We review results in the literature on asymptotic limits for the Ginzburg-Landau
equations. We then present results where we show, by a modulated energy method,
that solutions of the Gross-Pitaevskii equation converge to solutions of the incom-
pressible Euler equation, and solutions to the parabolic Ginzburg-Landau equations
converge to solutions of a limiting equation which we identify.

We work in the setting of the whole plane (and possibly the whole three-dimensional
space in the Gross-Pitaevskii case), in the asymptotic limit where ε, the character-
istic lengthscale of the vortices, tends to 0, and in a situation where the number of
vortices Nε blows up as ε→ 0. The requirements are that Nε should blow up faster
than | log ε| in the Gross-Pitaevskii case, and at most like | log ε| in the parabolic case.
Both results assume a well-prepared initial condition and regularity of the limiting
initial data, and use the regularity of the solution to the limiting equations.

1 The Ginzburg-Landau model and the equations

We are interested in the Ginzburg-Landau equations

(1.1) −∆u =
u

ε2
(1− |u|2) in R2,

the Gross-Pitaevskii equation

(1.2) i∂tu = ∆u+
u

ε2
(1− |u|2) in R2

and the parabolic Ginzburg-Landau equation

(1.3) ∂tu = ∆u+
u

ε2
(1− |u|2) in R2

in the plane, all in the asymptotic limit ε→ 0. We will also consider the three-dimensional
version of the Gross-Pitaevskii equation

(1.4) i∂tu = ∆u+
u

ε2
(1− |u|2) in R3.
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These equations are variational, associated to the energy (say in a domain Ω)

(1.5) Eε(u) =
1

2

∫
Ω

|∇u|2 +
(1− |u|2)2

2ε2
.

These are famous equations of mathematical physics, which arise in the modeling of
superfluidity, superconductivity, nonlinear optics, etc. The Gross-Pitaevskii equation is
an important instance of a nonlinear Schrödinger equation. These equations also come
in a version with gauge, more suitable for the modeling of superconductivity, but whose
essential mathematical features are similar to these, and which we will discuss briefly below.
There is also interest in the “mixed flow” case, sometimes called complex Ginzburg-Landau
equation

(1.6) (a+ ib)∂tu = ∆u+
u

ε2
(1− |u|2) in R2.

For further reference on these models, one can see e.g. [T, TT, AK, SS5].
In these equations, the unknown function u is complex-valued, and it can exhibit vor-

tices, which are zeroes of u with non-zero topological degree, and a core size on the order of
ε. In the plane and when ε→ 0, these vortices are points, whereas in the three-dimensional
space they are lines. We are interested in one of the main open problems on Ginzburg-
Landau dynamics, which is to understand the dynamics of vortices in the regime in which
their number Nε blows up as ε→ 0.

2 The setting of a bounded number of vortices

2.1 Limits of minimizers and critical points

The asymptotic analysis of vortices in Ginzburg-Landau equations was pioneered by Bethuel-
Brezis-Hélein in [BBH]. They studied the case of a bounded domain with the number N of
vortices bounded as ε→ 0 (hence it can be assumed to be independent of ε), and imposed
via a fixed Dirichlet boundary condition. They showed that vortices for solutions of (1.1),
respectively minimizers of Eε, converge to points which are critical points, respectively
minimizers, of a so-called “renormalized energy” of the form
(2.1)

W (a1, . . . , aN) = −π
∑
i 6=j

didj log |ai − aj|+ other terms related to boundary conditions

where the ai’s are the vortex locations and di’s their degrees. They also showed that
minimizers have only vortices of degree +1 (up to a change of orientation), their number
N being equal to the degree of the Dirichlet boundary condition, and the minimal energy
has the expansion

(2.2) minEε = πN | log ε|+ minW + o(1).
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It was also proven in [Se0] that stability is preserved in the limit i.e. stable critical points
of Eε have vortices which converge to stable critical points of W . The converse question:
i.e. given critical points of W , find solutions of (1.1) whose asymptotic vortices are the
prescribed ones, was answered in details in [PR] via nonlinear local inversion techniques.

2.2 The dynamics

For the dynamics of (1.2)–(1.3), again in the case of a fixed number of vortices, it was
proven, either in the setting of the whole plane or that of a bounded domain, that, for
“well-prepared” initial data, after suitable time rescaling, their limiting positions obey the
law

(2.3)
dai
dt

= (a+ Jb)∇iW (a1, . . . , aN)

where J is the rotation by π/2 in the plane, and W is in the setting of the plane the
so-called Kirchhoff-Onsager energy

(2.4) W (a1, . . . , aN) = −π
∑
i 6=j

didj log |ai − aj|

where the di’s are the degrees of the vortices and are assumed to be initially in {1,−1}.
In other words, the vortices move according to the corresponding flow (gradient, Hamil-

tonian, or mixed) of their limiting interaction energy W . After some formal results based on
matched asymptotics by Pismen-Rubinstein and E in [PR, E1], these results were proven in
the setting of a bounded domain by Lin [Li1] and Jerrard-Soner [JS1] in the parabolic case,
Colliander-Jerrard [CJ1, CJ2] and Lin-Xin [LX2] with later improvements by Jerrard-Spirn
[JSp1] in the Schrödinger case, and Kurzke-Melcher-Moser-Spirn [KMMS] in the mixed flow
case. In the setting of the whole plane, the analogous results were obtained by Lin-Xin
[LX1] in the parabolic case, Bethuel-Jerrard-Smets [BJS] in the Schrödinger case, and Miot
[Mi] in the mixed flow case. A proof based on the idea of relating gradient flows and Γ-
convergence was also given in [SS4], it was the initial motivation for the abstract scheme of
“Γ-convergence of gradient flows” introduced there. Generalizations to the case with gauge,
pinning terms and applied electric field terms were also studied [Sp1, Sp2, KS1, Ti, ST2].

All these results hold for well-prepared data and for as long as the points evolving
under the dynamical law (2.3) do not collide. In the parabolic case, Bethuel-Orlandi-
Smets showed in the series of papers [BOS1, BOS2, BOS3] how to lift the well-prepared
condition and handle the difficult issue of collisions and extend the dynamical law (2.3)
beyond them. Results of a similar nature were also obtained in [Se1].

2.3 The three-dimensional case

As we mentioned, vortices in three dimensions are lines. These are studied in the framework
of geometric measure theory, using currents and varifolds, cf. [Ri, JS1, ABO]. The leading
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order expansion of the energy replacing (2.2) was then shown to be

minEε = π|d|L| log ε|+ o(| log ε|)

where L is the length (or area) of the vortex line (viewed as an integer multiplicity rectifiable
current), while minimizers, respectively critical points, have vortex lines which converge
to length minimizing, respectively stationary, currents. This was proved in the works
[Ri, LR1, BBO, JS1, ABO, BBM].

Since the leading order to the energy is not trivial (as opposed to the two-dimensional
situation) the dynamics of vortex lines is expected to be driven by it, i.e. by their length.
Indeed, it was shown in [BOS] (see also results in [LR2]) that the limiting flow as ε→ 0 of
vortices for (1.3) in R3 is the gradient flow of length, i.e. mean curvature motion of a curve
in space, to be understood in the sense of Brakke. For (1.2) the expected limiting dynamics
of three-dimensional vortex lines is the binormal flow of a curve (studied in [JS]) but in
contrast to the two-dimensional case there are only partial results towards establishing this
rigorously [J2].

3 Large number of vortices

When the number of points Nε blows up as ε→ 0, then the vortices are studied via their
density (also called vorticity), in a mean-field limit fashion.

More precisely, for a family of functions uε, one introduces the supercurrent jε and the
vorticity (or Jacobian) µε of the map uε which are defined via

(3.1) jε := 〈iuε,∇uε〉 µε := curl jε,

where 〈x, y〉 stands for the scalar product in C as identified with R2 via 〈x, y〉 = 1
2
(x̄y+ ȳx).

The vorticity µε plays the same role as the vorticity in classical fluids, the only difference
being that it is essentially quantized at the ε level, as can be seen from the asymptotic
estimate µε ' 2π

∑
i diδai as ε → 0, with {ai} the vortices of uε and di ∈ Z their degrees

(these are the so-called Jacobian estimates, cf [JS2, SS5]).

3.1 The stationary case

The stationary case was studied in [SS2], where it is proven that if uε is a solution to (1.1)
and Nε � 1 then the normalized vorticity µε/Nε converges to a measure µ, solution to the
formal relation

(3.2) µ∇h = 0 h = −∆−1µ.

For µ a general probability measure, the product µ∇h does not make sense, and a weak
formulation à la Delort [De] must instead be used to give a meaning to (3.2): setting

Tµ := −∇h⊗∇h+
1

2
|∇h|2δji
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the stress-energy tensor associated to the vorticity, the weak meaning to (3.2) is

div Tµ = 0

(which in certain settings needs to be understood in “finite parts”, see [SS5]). The formal
relation (3.2) leads to expecting vortex “patches” (as in 2D Euler) with h constant on the
support of µ, and (since µ = −∆h) µ iself of constant density on its support, as illustrated
in the figure below:
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Ω

c1
c2

In other words, the vortices feel a mean field force −∇h, which is the gradient of the
logarithmic potential that they generate, and which must vanish on the support of the
vorticity. The method of the proof consists in passing to the limit in the “conservative
form of the equation” i.e. the vanishing of the stress tensor associated to (1.1), taking
advantage of a good control of the size of the set occupied by vortices. This approach
seems to fail to extend to the dynamical setting for lack of extension of this good control.

3.2 Expected dynamics

In the setting Nε � 1, it is expected that the limiting system of ODEs (2.3) should
be replaced by its mean-field evolution for the vorticity. In other words, the mean-field
evolution for µ = limε→0 µε/Nε can be guessed to be the mean-field limit of (2.3) as
N → ∞. Proving this essentially amounts to showing that the limits ε → 0 and N → ∞
can be interchanged, which is a delicate question.

In the case of the Gross-Pitaevskii equation (1.2)-(1.4), it is well-known that the
Madelung transform formally yields that the limiting evolution equation should be the
incompressible Euler equation (for this and related questions, see for instance the survey
[CDS]). In the case of the parabolic Ginzburg-Landau equation, it was proposed, based on
heuristic considerations by Chapman-Rubinstein-Schatzman [CRS] and E [E2], that the
limiting equation should be

(3.3) ∂tµ− div (µ∇h) = 0 h = −∆−1µ.

where µ is the limit of the vortex density, assumed to be nonnegative. Note that this is the
time-dependent version of (3.2), a dissipative counterpart to the 2D incompressible Euler
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equation in vorticity form. In fact, both papers really derived the equation for possibly
signed densities, [CRS] did it for the very similar model with gauge in a bounded domain,
in which case the coupling h = −∆−1µ is replaced by h = (−∆ + I)−1µ, and [E2] treated
both situations with and without gauge, also for signed densities, without discussing the
domain boundary.

3.3 Study of the Chapman-Rubinstein-Schatzman-E equation

After this model was proposed, the equation (3.3) was studied for its own sake. Its prop-
erties depend greatly on the regularity of the initial data µ. For µ a general probability
measure, the weak formulation à la Delort [De] must be used; also uniqueness of solutions
can fail, although there is always existence of a unique solution which becomes instanta-
neously L∞.

The works [LZ1, DZ, MZ] showed the existence of weak solutions (à la Delort) by the
vortex approximation method, and existence and uniqueness of L∞ solutions, which decay
in 1/t. Their proofs uses pseudo-differential operators.

It also turns out that (3.3) can be interpreted as the gradient flow (as in [O, AGS]) in
the space of probability measures equipped with the 2-Wasserstein distance, of the energy
functional

(3.4) Φ(µ) =

∫
|∇h|2 h = −∆−1µ,

which is also the mean field limit of the usual Ginzburg-Landau energy. The equation (3.3)
was also studied with that point of view in [AS] in the bounded domain setting (where the
possible entrance and exit of mass creates difficulties). This energy point of view allows
one to envision a possible (and so far unsuccessful) energetic proof of the convergence of
(1.3) based on the scheme of Gamma-convergence of gradient flows, as described in [Se2].

A PDE approach valid in all dimension was proposed in [SV], showing existence via
limits in fractional diffusion ∂tµ+ div (µ∇∆−sµ) when s→ 1, uniqueness in the class L∞,
propagation of regularity, and the existence of the asymptotic self-similar profile

µ(t) =
1

πt
1B√

t
.

3.4 Rigorous convergence of (1.3) and (1.2)

After studying (3.3), the main question remains to prove the convergence of solutions to
(1.3) to (3.3) and (1.2) to Euler, as ε → 0 and Nε → ∞. The only available results until
now were due to Kurzke and Spirn and Jerrard and Spirn, both in the case of very dilute
limits: it is proved in [KS2] for (1.3) that convergence to (3.3) holds in the case where Nε

grows slower than (log log | log ε|)1/4, and in [JS2] for (1.2) that convergence to the Euler
equation in vorticity form holds in the case where Nε grows slower than log | log ε|1/2,
assuming in each case some specific well-preparedness conditions on the initial data. To
do so, relying on their previous work [KS1, JSp1], they showed that the method of proof
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for finite number of vortices can be made more quantitative and pushed beyond bounded
Nε, controlling the vortex distances and proving that their positions remain close to those
of the Nε points solving the ODE system (2.3), and then finally passing to the limit for
that system by applying classical “point vortex methods”, in the manner of, say, Schochet
[Sch]. There is however very little hope for extending such an approach to larger values of
Nε.

4 Main new results

4.1 The method

In order to treat a broader regime for Nε � 1, we introduce in [Se3] an alternate method,
based on a “modulated energy”, which exploits the (assumed) regularity and stability of
the solution to the limit equation. The method is robust and works for dissipative as well
as conservative equations, as well as for variants with gauge [Se3] or with “pinning” weight
[DS]. It avoids the question of understanding the detailed dynamics of the vortices (their
distances, etc).

Letting v(t) be the expected limiting velocity field (such that 1
Nε
〈∇uε, iuε〉 ⇀ v and

curl v = 2πµ), then the modulated energy is defined as

Eε(u, t) =
1

2

∫
R2

|∇u− iuNεv(t)|2 +
(1− |u|2)2)

2ε2
.

It is an energy modelled on the Ginzburg-Landau energy, and the proof relies on showing,
via a Gronwall relation, that if it is initially small it remains small. The idea of prov-
ing convergence via a Gronwall argument on the modulated energy, while assuming and
using the regularity of the limiting solution is similar to the relative entropy method for
establishing (the stability of) hydrodynamic limits, first introduced in [Yau] and used for
quantum many body problems, mean-field theory and semiclassical limits, one example of
the latter arising precisely for the limit of the Gross-Pitaevskii equation in [LZ2]; or Bre-
nier’s modulated entropy method to establish kinetic to fluid limits such as the derivation
of the Euler equation from the Boltzmann or Vlasov equations (see for instance [SR] and
references therein).

4.2 Statements of results

Here, for simplicity we omit a few assumptions dealing with the behavior at infinity, the
full statements can be found in [Se3].

Theorem 1 (cf. [Se3]). Assume uε solves (1.2) or (1.4) and let Nε be such that | log ε| �
Nε � 1

ε
. Let v be a L∞(R+, C

0,1) solution to the incompressible Euler equations{
∂tv = 2div (v ⊗ v − 1

2
|v|2I) +∇p in Rn

div v = 0 in Rn,
(IE)
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n = 2, 3 with curl v ∈ L∞(L1).
Let {uε}ε>0 be solutions associated to initial conditions u0

ε, with Eε(u0
ε, 0) ≤ o(N2

ε ).
Then, for every t ≥ 0, we have Eε(uε(t), t) ≤ o(N2

ε ), and in particular

1

Nε

〈∇uε, iuε〉 → v in L1
loc(Rn).

Note that the result immediately implies the convergence of the vorticity µε/Nε →
curl v.

Theorem 2 (cf. [Se3]). Assume uε solves (1.3) and let Nε be such that 1 � Nε ≤
O(| log ε|). Let v be a L∞([0, T ], C1,γ) solution to

• if Nε � | log ε|

{
∂tv = −2vcurl v +∇p in R2

div v = 0 in R2,
(L1)

• if Nε ∼ λ| log ε| ∂tv =
1

λ
∇div v − 2vcurl v in R2. (L2)

Assume Eε(u0
ε, 0) ≤ πNε| log ε|+ o(N2

ε ) and curl v(0) ≥ 0. Then ∀t ≤ T we have

1

Nε

〈∇uε, iuε〉 → v in L1
loc(R2).

Again, this implies convergence of the vorticity. One observes that taking the curl of
the equation yields back (3.3) if Nε � | log ε|, but not if Nε ∝ | log ε|. Long-time existence
for the new type of limiting equation (L2) is proven in [Du].

The assumptions placed on the initial data are well-preparedness assumptions.
One of the difficulties in the proof is that the convergence of jε/Nε to v is not strong in

L2, in general, but rather weak in L2, due to a concentration of an amount π| log ε| of energy
at each of the vortex points (this energy concentration can be seen as a defect measure in
the convergence of jε/Nε to v). In order to take that concentration into account, we need to
subtract off of Eε the constant quantity πNε| log ε|. In the regime where Nε � | log ε|, then
πNε| log ε| = o(N2

ε ) and this quantity (or the concentration) happens to become negligible,
which is what will make the proof in the Gross-Pitaevskii case much simpler and applicable
to the three-dimensional setting as well, but restricted to the regime Nε � | log ε|. In
the parabolic case, the factor of growth of the modulated energy in Gronwall’s lemma is
bounded by CNε/| log ε| hence the restriction to the regime Nε ≤ O(| log ε|). We are not
sure whether the formal analogue of (L2), i.e. the equation with λ = ∞ (shown to be
locally well-posed in [Du]), is the correct limiting equation.
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4.3 Sketch of the proofs

The proof consists in computing the time derivative of the modulated energy to show that
Gronwall’s lemma applies. It relies on algebraic identities which reveal only quadratic
terms in this time-derivative. Returning to our definitions of the modulated energy Eε, the
current jε, and the vorticity µε, we also define the velocity

Vε = 2〈i∂tuε,∇uε〉

for which we have the identities

∂tjε = ∇〈iuε, ∂tuε〉+ Vε

∂tcurl jε = ∂tµε = curlVε.

We also define the stress tensor

Sε := 〈∂kuε, ∂luε〉 −
1

2

(
|∇uε|2 +

1

2ε2
(1− |uε|2)2

)
δkl

and the “modulated stress-tensor”

S̃ε = 〈∂kuε − iuεNεvk, ∂luε − iuεNεvl〉

− 1

2

(
|∇uε − iuεNεv|2 +

1

2ε2
(1− |uε|2)2

)
δkl.

4.3.1 The Gross-Pitaevskii case

We start with the Gross-Pitaevskii case for which the proof is very simple. If uε solves
(1.2) and v solves (IE), the time-derivative of the modulated energy can be computed to
be

(4.1)
dEε(uε(t), t))

dt
=

∫
R2

Nε(Nεv − jε) · ∂tv︸︷︷︸
2v⊥curl v+∇p

−NεVε · v.

A linear term in the error Nεv− jε appears. This term is a priori controlled by
√
E which

is unsufficient to apply Gronwall’s lemma. To remedy this, we use the stress-energy tensor
and observe the relation

div S̃ε = −Nε(Nεv − jε)⊥curl v −Nεv
⊥µε +

1

2
NεVε.

Multiplying it by 2v we are led to∫
R2

2v · div S̃ε =

∫
R2

−Nε(Nεv − jε) · 2v⊥curl v +NεVε · v.
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Thus, (4.1) can be rewritten as

dEε
dt

=

∫
R2

2S̃ε : ∇v.

But S̃ε is bounded pointwise by Eε while ∇v is bounded by assumption on v, so we obtain
a Gronwall relation and conclude that if Eε(uε(0)) ≤ o(N2

ε ) it remains true. Here we use
crucially that the vortex energy is πNε| log ε| � hence negligible in the regime Nε � | log ε|.

4.3.2 The parabolic case

If uε solves (PGL) and v solves (L1) or (L2), then we compute

(4.2)
dEε(uε(t), t))

dt
= −

∫
R2

Nε

| log ε|
|∂tuε|2 +

∫
R2

(Nε(Nεv − jε) · ∂tv −NεVε · v)

The same problem as above appears, and again we use an identity of the modulated stress-
energy tensor:

(4.3) div S̃ε =
Nε

| log ε|
〈∂tuε − iuεNεφ,∇uε − iuεNεv〉+Nε(Nεv − jε)⊥curl v −Nεv

⊥µε.

where

φ = p if Nε � | log ε| φ =
1

λ
div v if not.

Multiplying (4.3) by v⊥ and inserting into (4.2), we obtain

(4.4)
dEε
dt

=

∫
R2

2S̃ε : ∇v⊥ −NεVε · v − 2Nε|v|2µε

−
∫
R2

Nε

| log ε|
|∂tuε − iuεNεφ|2 + 2v⊥ · Nε

| log ε|
〈∂tuε − iuεNεφ,∇uε − iuεNεv〉.

The vortex energy πNε| log ε| is no longer negligible with respect to N2
ε . We now need

to prove
dEε
dt
≤ C(Eε − πNε| log ε|) + o(N2

ε )

and to conclude from (4.4), we need many of the tools on vortex analysis that have been
developed over the years:

• the vortex ball construction [J1, Sa] which allows to bound the energy of the vortices
from below in disjoint vortex balls Bi by π|di|| log ε| and deduce that the energy
outside of ∪iBi is controlled by the excess energy Eε − πNε| log ε|

• the “product estimate” of [SS3] allows to control the velocity:∣∣∣∣∫ Vε · v
∣∣∣∣ ≤ 2

| log ε|

(∫
|∂tuε − iuεNεφ|2

∫
|(∇uε − iuεNεv) · v|2

) 1
2

≤ 1

| log ε|

(
1

2

∫
|∂tuε − iuεNεφ|2 + 2

∫
|(∇uε − iuεNεv) · v|2

)
10



Thanks to these tools, we may write

dEε
dt

=

∫
R2

2 S̃ε︸︷︷︸
≤ C(Eε − πNε| log ε|)

: ∇v⊥︸︷︷︸
bounded by assumption

− NεVε · v︸ ︷︷ ︸
controlled by product estimate

−2Nε|v|2µε

−
∫
R2

Nε

| log ε|
|∂tuε − iuεNεφ|2 + 2v⊥ · Nε

| log ε|
〈∂tuε − iuεNεφ,∇uε − iuεNεv〉︸ ︷︷ ︸

bounded by Cauchy-Schwarz

and so

dEε
dt
≤ C(Eε − πNε| log ε|) +

∫
R2

Nε

| log ε|
(
1

2
+

1

2
− 1)|∂tuε − iuεNεφ|2

+
2Nε

| log ε|

∫
R2

|(∇uε − iuεNεv) · v⊥|2 + |(∇uε − iuεNεv) · v|2 − 2Nε

∫
R2

|v|2µε

= C(Eε − πNε| log ε|) +
2Nε

| log ε|

∫
R2

|∇uε − iuεNεv|2|v|2 − 2Nε

∫
R2

|v|2µε︸ ︷︷ ︸
bounded by C(Eε − πNε| log ε|) by ball construction estimates

.

Again we may conclude by Gronwall’s lemma.
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