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Abstract
We study an evolution equation proposed by Chapman-Rubinstein-Schatzman as

a mean-field model for the evolution of the vortex-density in a superconductor. We
treat the case of a bounded domain where vortices can exit or enter the domain.
We show that the equation can be derived rigorously as the gradient-flow of some
specific energy for the Riemannian structure induced by the Wasserstein distance
on probability measures. This leads us to some existence and uniqueness results
and energy-dissipation identities. We also exhibit some “entropies” which decrease
through the flow and allow to get regularity results (solutions starting in Lp (p > 1)
remain in Lp).

1 Introduction

1.1 Presentation of the problem

We are interested in studying the following “mean-field model” (also called hydrodynamic
limit) for superconductivity which was derived formally by Chapman, Rubinstein and
Schatzman in [CRS] (see also E [E]):

(1)
d

dt
µ(t)− div (∇hµ(t)|µ(t)|) = 0 in Ω,

where for all times µ and hµ are coupled through the relation

(2)

{
−∆hµ + hµ = µ in Ω
hµ = 1 on ∂Ω.
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Type-II superconductors, submitted to an external field (here normalized to be of in-
tensity 1), have a very particular response: they “repel” the applied field, which only pen-
etrates through “vortices”. In the equations above, µ represents the suitably normalized
density of vortices: a priori it should be a signed measure, but here we restrict ourselves to
positive measures. The function hµ represents the intensity of the induced magnetic field
in the sample. This function can be seen as a potential generated by the vortices through
the “London equation” (2). Finally, the domain Ω is a smooth bounded domain of R2,
corresponding to a section of the superconducting material.

Several problems, which we will address later, appear in the formulation (1). First, the
equation does not always have a meaning since, when µ is only a measure, the function ∇hµ

is not continuous in general and therefore the product µ∇hµ is not well defined. Second,
the conditions that should be imposed on ∂Ω, and whether or not the total mass in Ω
should be conserved, are not very clear.

1.2 The equation as a gradient-flow

In this paper we are interested in deriving this equation as a gradient-flow of the energies

(3) Φλ(µ) =
λ

2
µ(Ω) +

1

2

∫
Ω

|∇hµ|2 + |hµ − 1|2,

where λ is a nonnegative parameter. More precisely, we observe that (1) is, at least formally,
the gradient-flow of Φλ, with respect to the Riemannian structure on probability measures
induced by the Wasserstein distance. The introduction of this Riemannian structure goes
back to the seminal paper of Otto [O1], and later on it was extended in many different
directions and made rigorous by Ambrosio-Gigli-Savaré in [AGS] (see also [CMV]), see §1.5
below for a short presentation of these ideas.

The motivation for looking at this specific class of energies is twofold. First, Φλ are
directly connected to the full Ginzburg-Landau model of superconductivity: they were
derived by Sandier-Serfaty [SS1] (see also [SS3], Chapter 7) as the Γ-limit of the Ginzburg-
Landau energy

(4) Gε(u,A) =
1

2

∫
Ω

|∇Au|2 + |curlA− hex|2 +
(1− |u|2)2

2ε2
,

as ε→ 0. More precisely, the Γ-limit that was derived was

λ

2
|µ|(Ω) +

1

2

∫
Ω

|∇hµ|2 + |hµ − 1|2

which reduces to Φλ for positive measures. Here λ equals limε→0 | log ε|/hex, the parameter
hex being the intensity of the applied magnetic field, and µ is the limit of the suitably
normalized vortex-density of the complex function u. Another link to the Ginzburg-Landau
equations was established for steady-states: it was shown in [SS2] (see also [SS3], Chapter
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13) that critical points of Gε have vortex-densities whose limits µ as ε → 0 are (a weak
version of) stationary solutions of (1), formally satisfying ∇hµµ = 0.

Therefore, understanding the evolution equation (1) in the gradient flow framework
provides a good basis for deriving it from the full time-dependent Ginzburg-Landau equa-
tion, gradient flow of Gε. The gradient flow approach also gives, as a byproduct, many
additional results that do not seem immediate at a purely PDE level: they concern, for
instance, energy dissipation identities and entropies associated to the evolution problem.
Furthermore, there might be many solutions to the PDE (1), corresponding to different
possible choices of boundary conditions. Our gradient flow approach selects a steepest-
descent solution and leads to a natural choice of boundary conditions, arising from the
limit of the implicit Euler scheme.

The second main motivation is that this problem provides an interesting application
of the framework developed in [AGS] for gradient flows in the Wasserstein spaces. In
particular, this problem is technically harder than most of the ones already studied (see
for instance [JKO], [O1], [O2]) for two reasons: first, because the restriction to the case
of absolutely continuous (with respect to the Lebesgue measure) measures is not natural
(since the natural energy space for the problem is the Sobolev spaceH−1 dual ofH1

0 (Ω), and
since mass might concentrate on ∂Ω); second, because even with this restriction the energy
Φλ is not α-displacement convex in the sense of McCann (see [MC] and the discussion in
Section 1.5). Therefore, all the results developed in [AGS] and [CMV] for α-displacement
convex functionals do not apply to our case, although we will borrow many technical tools
from [AGS] to study the gradient flow of Φλ.

1.3 Previous studies of the equation

Following the work of Chapman, Rubinstein and Schatzman and E, there were quite many
papers about the equation (1). Notably Schätzle and Styles [SSt] proved the existence of
solutions with a Dirichlet boundary data µ = 0 on ∂Ω, via a vanishing viscosity method.
Also Styles gave a numerical scheme for the approximation of these solutions. Later, Lin-
Zhang [LZ] studied a very analogous equation but in the whole plane R2:

(5)
d

dt
µ(t) + div (µ(t)∇∆−1µ(t)) = 0 in D′((0,+∞)× R2).

Observe that this equation (as well as (1)) has a clear analogy with the vorticity formulation
of the incompressible Euler equation: here the velocity field along which the measure is
transported is ∇∆−1µ instead of the perpendicular one for Euler ∇⊥∆−1µ. As a result (5)
is dissipative, instead of being conservative. Lin and Zhang proved, using a vortex-blob
method and pseudo-differential operators, the existence of weak solutions, and existence
and uniqueness in the class of L∞ solutions. Their result was generalized by Du-Zhang
[DZ] to velocity fields that are combinations of ∇∆−1µ and ∇⊥∆−1µ.

Poupaud studied in [Po] nonnegative solutions to the PDE

d

dt
µ(t) + div (v(t)µ(t)) = 0 in D′((0,+∞)× R2)
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with v(t) := −∇∆−1µ(t). Notice the change of sign with respect to (5): formally, since

(6)
d

dt
µ(t) + v(t) · ∇µ(t) = −µ(t)div v(t) = µ2(t),

this PDE leads to blow-up in finite time and concentration phenomena, contrarily to (5).
For analogous reasons, in our case, for nonnegative solutions, blow-up is not expected.

More recently, the paper of Masmoudi and Zhang [MZ] studied the appropriate analogue
of (5), but with signed measures:

(7)
d

dt
µ(t) + div (∇∆−1µ(t)|µ(t)|) = 0 in D′((0,+∞)× R2).

They show that solutions can blow up in finite time, and thus that distributional solutions
cannot always be found. In turn, they prove the existence of global renormalized solutions
in the sense of Lions.

Observe that working on the whole plane prevents the use of the energy approach and
also suppresses the problems related to the boundary and the possibility of mass exiting
or entering the domain, all issues that we would like to address.

1.4 Weak formulation

In order to make sense of the product µ∇hµ appearing in (1), we use the “stress-energy
tensor”

Tµ :=
1

2

(∂1hµ)2 − (∂2hµ)2 − h2
µ 2∂1hµ∂2hµ

2∂1hµ∂2hµ (∂2hµ)2 − (∂1hµ)2 − h2
µ


Then we observe that, defining div Tµ as the vector

(∑2
i=1 ∂i(Tµ)i1,

∑2
i=1 ∂i(Tµ)i2

)
, we

have, provided µ ∈ L4/3(Ω), that

div Tµ = −µ∇hµ.

On the other hand, div Tµ is well defined in the sense of distributions for every measure
µ such that Φλ(µ) < ∞ (i.e. every measure belonging to H−1). So, an appropriate weak
formulation of (1) will be

(8)
d

dt
µ(t) + div (div Tµ(t)) = 0

(this is also the weak formulation used in [LZ, DZ], with a slightly different tensor, due
to the fact that the velocity is ∇∆−1µ in their case). The apparition of the stress-energy
tensor is also quite natural from the Ginzburg-Landau viewpoint: in [SS2], the authors
passed to the limit in the stress-energy tensor associated to Gε to get div Tµ = 0 for
limiting vorticity measures µ of critical points of Gε.
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Moreover, thanks to Delort’s theorem [De] (a theorem established in order to pass to
the limit in weak solutions to Euler’s equation), although the entries of Tµ are nonlinear
functions of µ, the tensor Tµ is stable under weak convergence of positive measures, which
will allow us to pass to the limit in approximation schemes even when dealing with data
in H−1.

1.5 The Wasserstein space of probability measures

The formal Riemannian structure introduced by Otto is very appropriate to study a large
class of evolution PDE’s, including Fokker-Planck equations and porous medium equations,
see [AGS], [Vi] and the references therein. Let us recall briefly the main features of this
structure.

First, in order to deal with possibly varying mass in Ω, we will consider measures over
Ω. We may also assume without loss of generality that the measures are probabilities over
Ω. We shall denote by P (Ω) these probability measures.

Given µ, ν ∈ P (Ω) we define the set of admissible plans Γ(µ, ν) as the set of probability
measures γ in Ω × Ω whose marginals are µ and ν. The 2-Wasserstein distance is then
defined by

W2(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Ω×Ω

|x− y|2 dγ(x, y)
)1/2

.

The minimum is achieved for optimal plans. It is also well-known since the work of Brenier,
that if µ is absolutely continuous with respect to the Lebesgue measure, there exists a
unique optimal plan, induced by a map t (formally, γ(x, y) = µ(x)δt(x)(y)). The map t
solves the optimal transport problem in Monge’s original formulation:

inf

{(∫
Ω

|s(x)− x|2 dµ(x)

)1/2

: s#µ = ν

}
,

where s#µ = ν denotes the push-forward of µ by s i.e. µ(s−1(A)) = ν(A) for all Borel sets
A.

Let us now describe why our equation is formally the gradient flow of (3) for the
Wasserstein structure on probability measures.

Assume here for simplicity that the mass µ(Ω) is constant along the flow and equal
to 1. This way, we can reduce ourselves to probability measures in Ω. Following [AGS],
absolutely continuous curves µ(t) : [0, T ] → P (Ω) are characterized by the continuity
equation

(9) ∂tµ(t) + div(v(t)µ(t)) = 0

and the integrability condition ‖v(t)‖L2(µ(t)) ∈ L1(0, T ). Different PDE’s arise, choosing
different relations between velocity v(t) at time t and density µ(t); in the case of the gradient
flow of a functional Φ : P (Ω) → R ∪ {+∞}, the coupling is v(t) = −∇W Φ(µ(t)), where
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the “Wasserstein gradient” (strictly speaking, a subdifferential) ∇W Φ(µ) is the vector
ξ ∈ L2(µ; R2) defined by the subdifferential relation

Φ(s#µ)− Φ(µ) ≥
∫
ξ · (s− I) dµ+ o(‖s− I‖2

L2(µ)).

So, the basic difference with respect to the conventional theory of gradient flows is that
the gradient of the functional (or, better, its subdifferential) has to be computed by differ-
entiating Φ along transport maps.

Let us particularize this to our functional (3). Using the representation (see Proposi-
tion 2.1)

(10) Φλ(µ) =
1

2
(λµ(Ω) + |Ω|) + sup

h−1∈H1
0 (Ω)

{∫
Ω

(h− 1) dµ− 1

2

∫
Ω

|∇h|2 + |h|2
}

it is easy to get

Φλ(s#µ)− Φλ(µ) ≥
∫

Ω

(hµ − 1)(s#µ− µ)

=

∫
Ω

(hµ(s(x))− hµ(x)) dµ ∼
∫

Ω

∇hµ(x) · (s(x)− x) dµ

as ‖s − I‖L2(µ) → 0. Hence, the formal Wasserstein gradient of Φλ at µ is ∇hµ, and the
associated gradient flow is

∂tµ(t)− div(∇hµ(t)µ(t)) = 0,

which is our equation.
The representation (10) also tells us how far Φλ is from being α-displacement convex

in McCann’s sense [MC]. Indeed, the functionals µ 7→
∫
V dµ have this property only if

D2V ≥ αI and in our case, having V = hµ − 1, we would need an L∞ bound on second
derivatives of hµ. It is well known that even though µ ∈ L∞, only Lp bounds with p <∞
are available on D2hµ from (2). Therefore we cannot expect α-convexity of Φλ. However,
this property barely fails, and we can still adapt in Theorem 3.2 some tools from [AGS] to
show uniqueness of L∞ solutions inside Ω, valid whenever no mass reaches ∂Ω.

1.6 The time-discretization scheme and sketch of results

We establish existence of solutions to (1) via a classical time-discretization scheme (see
[JKO] for its first use in a Wasserstein framework): the method consists in taking the
initial data µ0

τ = µ̄ ∈ P (Ω) ∩H−1(Ω), and minimizing recursively

(11) min
ν∈P (Ω)

Φλ(ν) +
1

2τ
W 2

2 (µk
τ , ν).

The first difficulty arising is that µ does not have enough regularity to write down an
Euler equation for this minimization problem. To remedy this, we regularize the problem
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by adding a δ
∫

Ω
ν4 term to the energy to be minimized. We then find an Euler-Lagrange

equation in which we can pass to the limit thanks to the weak continuity of the stress-energy
tensor (Delort’s theorem). We also find several qualitative properties of the minimizers µk

τ :
passing from µk

τ to µk+1
τ , no mass is brought in from ∂Ω to Ω (for λ > 0), and all the mass

that leaves Ω does so along the shortest path connecting to ∂Ω. Moreover, we exhibit a
family of “entropy functions” ϕ which are such that

(12)

∫
Ω

ϕ(µk+1
τ ) ≤

∫
Ω

ϕ(µk
τ ),

see Proposition 5.4. The entropies can be chosen to grow like xp, and this allows to show
that if µ is initially in Lp(Ω), with 1 < p ≤ ∞, then µk

τ and their limits as τ ↓ 0 stay in
the same class.

Once the sequence µk
τ is built, we interpolate in time by µτ (t) = µk

τ in [kτ, (k + 1)τ ].
In a final step we take the limit τ → 0 to find an extracted limit µ(t) which formally
corresponds to a solution of the gradient flow of Φλ. A general result from [AGS] (see
Theorem 6.1 here) ensures that we can derive a continuity equation at the limit:

(13)
d

dt
µ(t) + div(v(t)µ(t)) = 0 in D′((0,+∞)× R2)

where the limit velocity field v(t) can be computed taking suitable limits of the discrete
velocities appearing in the Euler-Lagrange equation of (11). In our case, for general H−1

initial conditions, we prove in Theorem 7.1 that

v(t)µ(t) =

{
div Tµ(t) in Ω

[div Tµ(t)]tan on ∂Ω

In addition, the discrete scheme yields suitable energy-dissipation inequalities, and decrease
of the entropies along the flow.

We present here our existence result in the case when the initial datum µ̄ belongs to Lp,
p ≥ 4/3: in this case we can really obtain a solution of (1), without using the stress-energy
tensor. In the statement of this theorem and in the sequel we use the following notation:
given a measure µ in Ω (or in R2, supported in Ω), we denote by µ̂ its “internal” part
(i.e. µ̂ = χΩµ) and by µ̃ = µ − µ̂ its “boundary” part. Sometimes, with a slight abuse
of notation, we shall identify µ̂ with its density with respect to the Lebesgue measure
whenever µ̂ is absolutely continuous.

Theorem 1.1 (Initial condition in Lp, p ≥ 4/3, and λ ≥ 0). Assume that ˆ̄µ ∈ Lp for
some p ≥ 4/3 and λ ≥ 0. Then there exists a weakly continuous map µ(t) : [0,+∞) →
P (Ω) such that:

(a) ‖µ̂(t)‖p ≤ C, with C depending only on ˆ̄µ (and not on t, λ);

(b) µ(0) = µ̄ and the PDE

(14)
d

dt
µ(t)− div(∇hµ(t)µ̂(t)) = 0 in D′((0,+∞)× R2)

holds;
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(c) t 7→ µ̃(t) is nondecreasing as a measure-valued map and the energy-dissipation in-
equality

(15) Φλ(µ(t)) +

∫ t

s

∫
Ω

|∇hµ(τ)|2 dµ(τ) dτ ≤ Φλ(µ(s)) t ≥ s ≥ 0

holds;

(d) if p = ∞ then µ̃(t) − µ̃(0) = f(t, ·)σ∂Ω with ‖f(t, ·)‖∞ ≤ Ct (here σ∂Ω is the length
measure on ∂Ω).

Furthermore, the inequality (c) is an equality if λ = 0 and p ≥ 3/2.

The paper is organized as follows: in §2 we introduce our main notation and some
preliminary results, and in §3 we present a short-time existence result for our problem, in
the case when the initial condition µ̄ satisfies ˆ̄µ ∈ L∞: even though Theorem 1.1 provides
a much stronger result, the proof of short-time existence (based on an explicit, rather than
implicit, Euler scheme and on a Lagrangian formulation) is much simpler. In the same
section we also present a short-time uniqueness result, based on an adaptation, in the
Wasserstein framework, of Yudovitch’s [Yu1, Yu2] uniqueness result for 2d-incompressible
Euler equations: notice that uniqueness of solutions µ(t) in Theorem 1.1 is an open prob-
lem, even for p = ∞.

In §4 we study the properties of the stress-energy tensor Tµ and the weak formulation
of (1), while §5 contains a detailed analysis of the Euler-Lagrange equation associated to
(11) and a proof that the entropies decrease along the discrete scheme as in (12).

In §6 and §7 we pass to the limit as τ ↓ 0 to obtain existence of a solution µ(t) for
the most general case of initial data µ(0) ∈ H−1(Ω) (see Theorem 7.1). Finally, in §8 we
discuss some open problems and exhibit a “stationary point” µ ∈ H−1 of Φλ which seems
to be a good candidate for nonuniqueness.

Acknowledgements. During the preparation of this paper we took advantage of useful
discussions with Y. Brenier, F. Otto and G. Savaré. Special thanks to G. Savaré for the
introduction of the entropies in §6. A lot of this work was carried out during several
invitations of the second author to the Scuola Normale Superiore in Pisa, to which she
expresses her gratitude.

2 Notation and preliminary results

2.1 Wasserstein distance

Throughout this paper, Ω denotes a bounded open set in R2 with smooth boundary, whose
unit outer normal will be denoted by nΩ and unit tangent (with suitable orientation) by
τΩ. We denote by M+(Ω) the space of finite and nonnegative Radon measures in Ω.
When talking of convergence in M+(Ω) we shall always mean convergence in the duality
with continuous compactly supported functions in Ω. Similarly, we denote by M+(Ω)
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(resp. P (Ω)) the space of finite and nonnegative Radon measures in Ω (resp. probability
measures) in Ω, sometimes thought of as probability measures in R2 concentrated in Ω, and
when talking of convergence in M+(Ω) we shall always mean convergence in the duality
with bounded continuous functions in Ω.

It is well known ([AGS], [Vi]) that convergence in P (Ω) is induced by the 2-Wasserstein
distance W2, defined as follows: for given µ, ν ∈ P (Ω), let us denote by Γ(µ, ν) the set of
probability measures γ in Ω× Ω whose marginals are µ and ν, i.e.

γ(A× Ω) = µ(A), γ(Ω×B) = ν(B)

for any choice of Borel sets A, B ⊂ Ω. The elements of Γ(µ, ν) are called admissible plans.
Then, the Wasserstein distance is defined by

W2(µ, ν) := inf

{(∫
Ω×Ω

|x− y|2 dγ
)1/2

: γ ∈ Γ(µ, ν)

}
.

It is also well-known that the infimum in the definition above is a minimum, and minimiz-
ing γ’s are called optimal plans. We shall denote by Γ0(µ, ν) the class of optimal plans.
Recall that when µ is absolutely continuous with respect to the Lebesgue measure, Γ0(µ, ν)
contains only an element γ induced by a map t: this map satisfies the transport condition
t#µ = ν (i.e. µ(t−1(A)) = ν(A) for all Borel sets A) and is a solution of the optimal
transport problem in Monge’s original formulation:

inf

{(∫
Ω

|s(x)− x|2 dµ(x)

)1/2

: s#µ = ν

}
.

We extend this notion naturally to the case where µ and ν are just positive measures with
same mass.

We will also use the following stability property of optimal transport plans, see for
instance Proposition 7.1.3 in [AGS]: if µn → µ and νn → ν in P (Ω), then

(16) γn ∈ Γ0(µn, νn), γn → γ in P (Ω× Ω) =⇒ γ ∈ Γ0(µ, ν).

Notice that W 2
2 (µ, ·) is convex in P (Ω): indeed, let ν1 and ν2 be in P (Ω), and let

γ1 ∈ Γ0(µ, ν1) and γ2 ∈ Γ0(µ, ν2). It is easy to check that (1−t)γ1+tγ2 ∈ Γ(µ, (1−t)ν1+tν2)
for all t ∈ [0, 1], so that

W 2
2 (µ, (1− t)ν1 + tν2) ≤

∫
Ω×Ω

|x− y|2 d((1− t)γ1 + tγ2)

= (1− t)W 2
2 (µ, ν1) + tW 2

2 (µ, ν2).

2.2 First properties of the energy

Definition 2.1 (The energy functional). Let λ ≥ 0. We consider the functional

(17) Φλ(µ) :=
λ

2
µ(Ω) +

1

2

∫
Ω

|∇hµ|2 + |hµ − 1|2,
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where hµ is the solution of the elliptic PDE

(18)

{
−∆hµ + hµ = µ in Ω
hµ = 1 on ∂Ω.

So the natural domain of Φλ is M+(Ω) ∩H−1(Ω), and we may think of extending Φλ

by the value +∞ to M+(Ω) \H−1(Ω). Unless otherwise stated, we always think of hµ as
an H1

loc function on the whole of R2, extended with the value 1 outside of Ω.

Lemma 2.1 (Convexity and lower semicontinuity of Φλ). We have

Φλ(µ) =
λ

2
µ(Ω) +

1

2

∫
Ω

|∇wµ|2 + w2
µ +

∫
Ω

(h0 − 1) dµ+ C0,

where C0 is an explicit constant, h0 a smooth function, and wµ is the solution to

(19)

{
−∆wµ + wµ = µ in Ω
wµ = 0 on ∂Ω.

Consequently, Φλ is strictly convex and lower semicontinuous along bounded sequences
converging in M+(Ω).

Proof. Introducing h0 as the solution to (18) for µ = 0, we have hµ = wµ + h0, where wµ

is the solution of (19). Hence, we have

1

2

∫
Ω

|∇hµ|2 + |hµ − 1|2 =
1

2

∫
Ω

|∇h0|2 + |h0 − 1|2 +
1

2

∫
Ω

|∇wµ|2 + w2
µ

+

∫
Ω

∇wµ · ∇(h0 − 1) + wµ(h0 − 1)

= C0 +
1

2

∫
Ω

|∇wµ|2 + w2
µ +

∫
Ω

(h0 − 1)(−∆wµ + wµ),

from which the first assertion follows. The strict convexity of Φλ directly follows from
this representation. Finally, lower semicontinuity is easy to prove: if µn → µ in M+(Ω)
and both µn(Ω) and Φλ(µn) are bounded sequences, then we can assume with no loss of
generality that wµn weakly converge in H1

0 (Ω) to some function w. A simple truncation
argument, based on the fact that µn(Ω) are equi-bounded, shows that

(20) lim
n→∞

∫
Ω

f dµn =

∫
Ω

f dµ.

for any f ∈ C(Ω) vanishing on ∂Ω so in particular for f = h0 − 1.
The linearity of (19) gives w = wµ, so lower semicontinuity of Φλ reduces to the lower

semicontinuity of the H1 norm and of µ 7→ µ(Ω).

Next, we want to analyze the convexity properties of Φλ with respect to the Wasserstein
structure.
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Proposition 2.1. For all µ ∈M+(Ω) we have

(21) Φ0(µ)− 1

2
|Ω| = sup

h−1∈H1
0 (Ω)

{∫
Ω

(h− 1) dµ− 1

2

∫
Ω

|∇h|2 + |h|2
}
.

Proof. Standard direct methods imply that the supremum is attained, and that the maxi-
mizer h is unique. The first variation then gives∫

Ω

ϕdµ−
∫

Ω

∇h · ∇ϕ+ hϕ = 0 ∀ϕ ∈ C∞
c (Ω),

and therefore h = hµ. Finally, we can use the identity∫
Ω

(hµ − 1) dµ =

∫
Ω

(hµ − 1)(−∆hµ + hµ) =

∫
Ω

h2
µ − hµ + |∇hµ|2

to obtain (21).

Finally, let us point out a useful “monotonicity” property of Φλ.

Proposition 2.2. For all µ, ν ∈M+(Ω) we have

Φλ(µ)− λ

2
µ(Ω) ≥ Φλ(ν)−

λ

2
ν(Ω) +

∫
Ω

(hν − 1) d(µ− ν).

In particular, if ν ≤ µ we have

(22) Φλ(ν) ≤ Φλ(µ)−
∫

Ω

(h0 − 1 +
λ

2
) d(µ− ν).

Proof. The first stated inequality follows combining the equality

Φλ(ν)−
λ

2
ν(Ω)− 1

2
|Ω| =

∫
Ω

(hν − 1) dν − 1

2

∫
Ω

|∇hν |2 + |hν |2

and the inequality

Φλ(µ)− λ

2
µ(Ω)− 1

2
|Ω| ≥

∫
Ω

(hν − 1) dµ− 1

2

∫
Ω

|∇hν |2 + |hν |2,

that both follow from Proposition 2.1 and its proof. The second stated inequality follows
from the first one, simply using the fact that hν = h0 + wν , with wν as in (19), and wν is
nonnegative.
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3 Some existence and uniqueness results on Lp solu-

tions

In this section we present some results on Lp solutions to our evolution problem which
are independent of the Wasserstein gradient flow approach. Notice that if µ̂ ∈ Lp for
some p ∈ (1, 2), by standard elliptic regularity theory and Sobolev embedding we get
∇hµ ∈ L2p/(2−p), with (thanks to the linear dependence of hµ on µ− 1)

(23) ‖∇hµ‖2p/(2−p) ≤ C‖µ̂− 1‖p.

In particular, for p ∈ [4/3, 2), we have

(24) ‖∇hµµ̂‖2p/(4−p) ≤ C‖µ̂− 1‖p‖µ̂‖p.

Motivated by the heuristics in Section 1.5, we give the following definition:

Definition 3.1 (Gradient flow in Lp). Let T > 0 and µ(t) ∈ P (Ω) with ‖µ̂(t)‖3/2 ∈
Lq(0, T ) for some q ≥ 3. We say that µ(t) is a gradient flow of Φλ if

(25)
d

dt
µ(t)− div (∇hµ(t)µ̂(t)) = 0 in D′((0, T )× R2)

and t 7→ µ̃(t) is nondecreasing as a measure-valued map (where we recall µ̃ is the boundary
part of µ).

Observe that in this definition the velocity field is ∇hµ(t)χΩ, hence is 0 on ∂Ω. This
fact, and that t 7→ µ̃(t) is monotone are motivated, at least when λ > 0, by Proposition 2.2:
indeed, if µ = ν + σ with σ ≥ 0 supported in a small neighbourhood (depending on λ) of
∂Ω, then (22) gives Φλ(ν) ≤ Φλ(ν + σ), with equality only if σ = 0. Therefore, while some
leaking of mass to ∂Ω might be energetically favourable, the entrance of mass (at least in
a continuous way) is not. Our formulation of the PDE corresponds to the idea that mass
can reach the boundary from the inside, and then stop.

From (25) and (24) with p = 3/2 we get a useful formula for the increments of t 7→∫
φ dµ(t): ∣∣∣∣∫

Ω

φ d(µ(s)− µ(t))

∣∣∣∣ =

∣∣∣∣∫ t

s

∫
Ω

∇hµ(τ) · ∇φ dµ(τ)dτ

∣∣∣∣(26)

≤ C‖∇φ‖6

∣∣∣∣∫ t

s

‖µ̂(τ)‖3/2‖µ̂(τ)− 1‖3/2 dτ

∣∣∣∣ .
Our terminology is also justified by the following result, showing that t 7→ Φ0(µ(t)) is

nonincreasing along the flow, and an explicit formula for its derivative. Since t 7→ λµ(Ω)
is also nonincreasing along the flow (by the monotonicity of t 7→ µ̃(t)) we also obtain that
the whole energy Φλ(µ(t)) is nonincreasing.

12



Proposition 3.1 (Energy dissipation identity). Let µ(t) : [0, T ] → P (Ω) be as in
Definition 3.1. Then Φ0(µ(t)) ∈ W 1,q/3(0, T ), and

(27)
d

dt
Φ0(µ(t)) = −

∫
Ω

|∇hµ(t)|2 dµ(t) for a.e. t.

Proof. We will use the following criterion for absolute continuity: if f : [0, T ] → R is a
continuous map satisfying

|f(s)− f(t)| ≤ (g(s) + g(t))

∣∣∣∣∫ t

s

ρ(τ) dτ

∣∣∣∣
for some Borel functions g, ρ with gρ ∈ Lr, then f ∈ W 1,r(0, T ). This is proved, in the
case when ρ is constant and r = 1, in of Lemma 1.2.6 of [AGS], and the proof in the more
general case requires only minor variants.

We are going to apply this criterion with f(t) = Φ0(µ(t)), g(t) = ‖∇hµ(t)‖6, and ρ(t) =
‖∇hµ(t)µ̂(t)‖5/6 (notice that with the assumption ‖µ̂(t)‖ ∈ Lq(0, T ), fρ ∈ Lq/3 thanks to
(24)): integrating by parts the difference |∇hµ|2 − |∇hν |2 as ∇(hµ + hν − 2) · ∇(hµ − hν),
we obtain the identity

Φ0(µ)− Φ0(ν) =
1

2

∫
Ω

(hµ + hν − 2)(∆hν −∆hµ) +
1

2

∫
Ω

(hµ − 1)2 − (hν − 1)2(28)

=
1

2

∫
Ω

(hµ + hν − 2)(µ− ν − hµ + hν) +
1

2

∫
Ω

(hµ − 1)2 − (hν − 1)2

= ν(Ω)− µ(Ω) +
1

2

∫
Ω

(hµ + hν)(µ− ν)

=
1

2

∫
Ω

(hµ + hν)(µ− ν).

Using this identity with µ = µ(t) and ν = µ(s), and (26) with φ = hµ(t) and φ = hµ(s), we
get

|Φ0(µ(s))− Φ0(µ(t))| ≤ C(g(s) + g(t))

∣∣∣∣∫ t

s

ρ(τ) dτ

∣∣∣∣ .
This proves that Φ0(µ(t)) ∈ W 1,q/3(0, T ). At any differentiability point t, (27) can be
proved by applying (28) with µ = µ(t), ν = µ(t+ s), and letting s→ 0.

The following result provides some control on the mass dissipated on ∂Ω when p > 2,
showing that it is absolutely continuous with respect to σ∂Ω.

Proposition 3.2 (Boundary mass dissipation). Let µ(t) : [0, T ] → P (Ω) be as in
Definition 3.1, and assume that ‖µ̂(t)‖∞ ∈ L∞(0, T ). Then µ̃(t) − µ̃(0) = f(t, ·)σ∂Ω with
‖f(t, ·)‖∞ ≤ Ct.
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Proof. Let C be the least upper bound in [0, T ] of ‖∇hµ(t)µ̂(t)‖∞. Let Ωε ⊂ Ω be the set
of all points with distance from ∂Ω greater than ε, with ε small enough; inserting into the
PDE a test function χφ, where χ ∈ C1

c (R2) and φ is a smooth approximation of 1 − χΩε ,
we find

d

dt

∫
Ω\Ωε

χdµ(t) = −
∫

Ω\Ωε

∇hµ(t) · ∇χdµ(t)−
∫

∂Ωε

χ
∂hµ(t)

∂ν
µ̂(t)

for a.e. ε > 0. Now we can bound the last integral with C
∫

∂Ωε
|χ| and pass to the limit as

ε ↓ 0 to obtain ∣∣∣∣ ddt
∫

∂Ω

χdµ(t)

∣∣∣∣ ≤ C

∫
∂Ω

|χ| dσ∂Ω.

By integration we get ∣∣∣∣∫
∂Ω

χdµ(t)−
∫

∂Ω

χdµ(0)

∣∣∣∣ ≤ Ct

∫
∂Ω

|χ| dσ∂Ω.

Since χ is arbitrary, the statement is proved.

Although we will obtain later on more general global existence results for the PDE, via
implicit time discretization and a-priori estimates, we sketch here the proof of a weaker
short-time existence result based on a Lagrangian formulation, in the case p = ∞. We are
going to use in particular the DiPerna-Lions theory of flows associated to Sobolev vector
fields, see [DPL].

Theorem 3.1 (Short-time existence). Assume that µ̄ ∈ P (Ω) and that ˆ̄µ ∈ L∞(Ω).
Then for T > 0 sufficiently small there exists a solution µ(t) of (25) with µ(0) = µ̄ and
µ̂(t) ∈ L∞(0, T ).

Proof. We use an explicit Euler scheme. To begin with, we fix an auxiliary domain Ω̃ with
Ω ⊂ Ω̃. Then, we fix an initial velocity v(0) ∈ W 1,2(Ω̃; R2) equal to −∇hµ̄ in Ω, equal to
0 in a neighbourhood of ∂Ω̃ and satisfying(

‖∇v(0)‖L2(Ω̃) + ‖v(0)‖∞
)
≤ C‖µ̄‖∞

for some constant C. This is possible, thanks to a reflection argument near ∂Ω and
multiplication with a cut-off function near ∂Ω̃, because hµ can be estimated both in C1(Ω)
and W 2,2(Ω) with ‖µ̄‖∞. Furthermore, as

−∆hµ̄ = µ̄− hµ̄ ≥ −hµ̄

we can, by the same argument, assume that

(29) div v(0) ≥ −C‖µ̄‖∞.

Then, we denote by X(t, x) : R+ × Ω̃ → Ω̃ the DiPerna-Lions flow associated to v(0)
and we modify it with a stopping time argument as follows: for x ∈ Ω fixed, we define
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X̃(t, x) = X(t, x) until X(t, x) reaches ∂Ω; if this happens at some minimal time t(x)
(t(x) = 0 if x ∈ ∂Ω), we define X̃(t, x) = X(t(x), x) for all t ≥ t(x). Then, we build an
approximate solution in [0, τ ], setting

µ(t) := X̃(t, ·)#µ̄ t ∈ [0, τ ].

It is immediate to check that µ(t) ∈ P (Ω) and that the continuity equation

d

dt
µ(t) +∇ · (v(0)µ̂(t)) = 0 in D′((0, τ)× R2)

is satisfied. By construction, we also have that t 7→ µ̃(t) is nondecreasing. From the
DiPerna-Lions theory we have that X(t, ·)# ˆ̄µ have a bounded density in Ω̃, with

‖X(t, ·)# ˆ̄µ‖∞ ≤ et‖[div v(0)]−‖∞‖ ˆ̄µ‖∞ ≤
(
1 + 2Cτ‖ ˆ̄µ‖∞

)
‖ ˆ̄µ‖∞

for τ sufficiently small. Since µ̂(t) ≤ X(t, ·)# ˆ̄µ we obtain also

(30) ‖µ̂(t)‖∞ ≤ (1 + 2Cτ‖ ˆ̄µ‖∞)‖ ˆ̄µ‖∞.

Therefore, we can iterate this construction, taking τ as an initial time, using a suitable
extension of −∇hµ(τ) as an initial velocity and then a new stopping time argument. This
way we extend the solution to [τ, 2τ ], [2τ, 3τ ] and so on, obtaining a discrete solution µτ

of the delayed equation

(31)
d

dt
µτ (t) +∇ · (vτ (t)µ̂τ (t)) = 0 in D′((0,+∞)× R2)

with (here [s] denotes the integer part of s)

(32) vτ (t) = −∇hµτ (τ [t/τ ]) in Ω.

Using (30) one can check that in a sufficiently small time interval [0, T ] (depending only on
‖ ˆ̄µ‖∞) the L∞ norm of µ̂τ remains bounded. Notice also that, by construction, t 7→ µ̃τ (t)
is nondecreasing. By a routine argument (see for instance [AG]) we can pass to the limit in
(31), (32), at least along subsequences, as τ → 0 to obtain a solution µ(t) of the gradient
flow.

The reason why existence results are global when the coupling between velocity v and
density µ is v = −∇∆−1µ, and µ ≥ 0, is due to the fact that (29) in this case is replaced
by the nonnegativity of the divergence: this yields a global estimate in time of the L∞

norm of µ. In any case, the Lagrangian approach does not seem to be applicable in the
case when p <∞ or µ is a signed measure.

Next, we are going to present, still in the case p = ∞, a partial result concerning
uniqueness of gradient flows. To this aim, we will first prove a sub-differentiability property
of Φλ at measures µ ∈ L∞, involving a logarithmic modulus of continuity depending on
the L∞ norm of µ.
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Proposition 3.3. Let M ≥ 1. There exists a constant C = C(Ω) such that, setting

ω(t) = CM2t| ln t|,

the functional Φλ satisfies

Φλ(ν) ≥ Φλ(µ) +

∫
Ω

∇hµ · (t− I) dµ− ω(W 2
2 (µ, ν))

for all µ, ν ∈ L∞ with µ(Ω) = ν(Ω), ‖µ̂‖∞ ≤M , ‖ν̂‖∞ ≤M and W 2
2 (µ, ν) ≤ e−4, where t

is the optimal transport map between µ and ν.

Proof. Let us use Proposition 2.2 to obtain

Φλ(ν) ≥ Φλ(µ) +

∫
Ω

hµ d(ν − µ).

Next we use the fact that ν = t#µ to obtain

Φλ(ν) ≥ Φλ(µ) +

∫
Ω

(hµ ◦ t− hµ) dµ.

In this proof we shall extend hµ to a ball B containing Ω in such a way that

(33) ‖∇2hµ‖Lp(B) ≤ c(Ω)‖∇2hµ‖Lp(Ω),

with c(Ω) independent of p. This can be achieved in a canonical way, locally straightening
∂Ω and using a reflection argument. Now we can do a first-order Taylor expansion of hµ,
writing the remainder in integral form, to obtain

Φλ(ν) ≥ Φλ(µ)+

∫
Ω

∇hµ·(t−I) dµ+
1

2

∫ 1

0

(∫
Ω

∇2hµ((1− θ)I + θt)(t− I) · (t− I)

)
dµ dθ.

So, we have to bound the remainder term by ω(W 2
2 (µ, ν)).

Setting tθ := (1− θ)I + θt and µθ := tθ#µ, our assumptions on µ and ν give that still
µθ ∈ L∞ and ‖µθ‖∞ ≤M (see [Ag], [O1]). Changing variables, for p > 1 we obtain∫

Ω

∣∣∇2hµ((1− θ)I + θt)(t− I) · (t− I)
∣∣ dµ ≤ 1

θ2

∫
B

|∇2hµ||I − t−1
θ |2 dµθ

≤ 1

θ2
‖∇2hµ‖Lp(B,µθ)‖|I − t−1

θ |2‖Lp′ (µθ)

≤ M1/p[diam (Ω)]2−2/p′

θ2
‖∇2hµ‖Lp(B)W

2/p′

2 (µθ, µ).

Now, M1/p ≤M , [diam (Ω)]2−2/p′ can be bounded uniformly in p, say by C1, and it is well
known that W2(µθ, µ) = θW2(ν, µ), therefore we get that for p > 2 the remainder term can
be estimated by

C1MW
2/p′

2 (µ, ν)‖∇2hµ‖Lp(B)

∫ 1

0

θ2/p′−2 dθ =
C1M‖∇2hµ‖Lp(B)

1− 2/p
W

2/p′

2 (µ, ν).
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Furthermore, we know by elliptic regularity theory and (33) that ‖∇2hµ‖Lp(B) ≤ C2p‖µ‖∞,
with C2 depending only on Ω, so eventually we can estimate for p ≥ 4 the remainder term

by 2C1C2pM
2W

2/p′

2 (µ, ν).
Now, as in Yudovitch proof [Yu1, Yu2] of uniqueness of L∞ solutions to 2-d Euler

equations, we can minimize with respect to p ≥ 4 the function p 7→ pW
2/p′

2 (µ, ν) (the
minimum is attained at p = − lnW 2

2 (µ, ν)) to obtain the logarithmic bound stated in the
theorem, with C = 2eC1C2.

Now we combine ideas coming from the theory of optimal transportation with Yudovitch
proof for uniqueness of 2-d solutions of incompressible Euler equations with bounded vor-
ticity to obtain the following uniqueness result, valid until the solution has a bounded
density in Ω and no mass is present on ∂Ω (see also [Lo] for a uniqueness result based on
optimal transportation tools). In particular, in the case when the velocity is bounded, it
gives uniqueness for short time when the initial datum µ(0) has compact support in Ω.

Theorem 3.2 (Uniqueness). Let µi, i = 1, 2 be solutions of (25) with ‖µ̂i(t)‖∞ ∈
L∞(0, T ) and µ̃i(t) = 0. Then µ1(0) = µ2(0) implies µ1(t) = µ2(t) for all t ∈ [0, T ].

Proof. We first check that any solution µ(t) ∈ P (Ω) of the PDE with µ̃(t) = 0 satisfies
the family of evolution inequalities (analogous to Benilan’s formulation [Be] of evolution
PDE’s in Banach spaces)

(34)
d

dt

1

2
W 2

2 (µ(t), ν)− ω(W 2
2 (µ(t), ν)) ≤ Φλ(ν)− Φλ(µ(t))

for any ν ∈ P (Ω) with ν(Ω) = 1, where ω(t) = Lt| ln t| for t sufficiently small (here L
depends only on Ω and the L∞ bounds on µ(t) and ν). To obtain this we first apply
Theorem 8.4.7 of [AGS], that gives the explicit formula for the derivative of W 2

2 (·, ν) along
a solution µ(t) of the continuity equation with velocity field vt = −∇hµ(t):

d

dt

1

2
W 2

2 (µ(t), ν) =

∫
Ω

∇hµ(t) · (tt − I) dµ(t).

Here tt is the optimal transport map between µ(t) and ν. Combining this with Proposi-
tion 3.3 we obtain (34).

Let µ1(t) and µ2(t) be as in the statement of the theorem. By applying (34) first to
µ = µ1, with ν = µ2(s), and then reversing the roles of µ1 and µ2 (this is reminiscent
of Kruzhkov’s doubling of variables argument, see for instance Lemma 4.3.4 of [AGS] for
details) we get

d

dt
W 2

2 (µ1(t), µ2(t)) ≤ 4ω(W 2
2 (µ1(t), µ2(t)))

for almost every t. Since
∫ 1

0
1/ω(s) ds = ∞ we can apply Gronwall’s lemma and obtain

that µ1(t) = µ2(t) for all t ≥ 0.
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4 The stress-energy tensor and the weak formulation

of the equation

We introduce the stress-energy tensor Tµ : R2 → R2×2 associated to µ (or, better, to hµ),
as the symmetric 2× 2 tensor defined by

(35) Tµ :=
1

2

(∂1hµ)2 − (∂2hµ)2 − h2
µ 2∂1hµ∂2hµ

2∂1hµ∂2hµ (∂2hµ)2 − (∂1hµ)2 − h2
µ


(see [SS2] for example). Recall that hµ is thought as a function on the whole of R2. This
is the tensor associated to inner variations of a modification of Φ0 seen as a function of h,
i.e.

d

dt

1

2

∫
Ω

|∇(h(x+ tφ(x)))|2 + |h(x+ tφ(x))|2
∣∣∣∣
t=0

=

∫
Ω

∑
i,j

∂iφjTij.

Notice that, due to the fact that hµ has zero tangential derivative on ∂Ω and hµ = 1 on
∂Ω; when hµ ∈ C1(Ω) the tensor Tµ has a special structure on ∂Ω, namely

(36) Tµ =
1

2

(
|∇hµ|2nΩ ⊗ nΩ − |∇hµ|2τΩ ⊗ τΩ − I

)
on ∂Ω.

In what follows we denote by div Tµ the vector(
2∑

i=1

∂i(Tµ)i1,
2∑

i=1

∂i(Tµ)i2

)
.

Lemma 4.1. If µ̂ ∈ L4/3(Ω) then

(37) div Tµ = −µ̂∇hµ −
1

2
(|∇hµ|2 − 1)nΩσ∂Ω in D′(R2),

where σ∂Ω is the surface measure on ∂Ω.

Proof. If µ is smooth, this follows by a direct calculation and (36), using the chain rule.
If µ̂ ∈ L4/3 we obtain from (24) that ∇hµµ ∈ L1. Moreover, since the trace of a W 1,p

function belongs to Lp/(2−p), by applying this property to ∇hµ with p = 4/3 we find that
|∇hµ|2 is well defined and integrable on ∂Ω. The relation can thus be deduced by a density
argument, using the strong continuity of the trace operator.

The previous lemma plays an important role in the paper, as it allows to define, at
least as a distribution, the product µ∇h even when µ is only in H−1. This definition is
consistent in the case when µ is sufficiently regular. Furthermore, Delort’s theorem shows
that the map µ 7→ Tµ is sequentially weakly continuous even though Tµ depends on µ in
a nonlinear way.
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Proposition 4.1 (Delort’s Theorem). If µn ∈ M+(Ω) converge to µ ∈ M+(Ω) and
(µn) is bounded in H−1, then Tµn ⇀ Tµ in D′(Ω).

Proof. The proof of Delort’s theorem can be found in [De], or in a simplified form in
[Ch, BM]. For our particular situation one may apply the version stated in [Ch]: since
∆hµn = hn − µn we have that ∆hµn is the sum of a part which is a negative measure,
bounded as measures, and a part which is bounded in Lp for some p > 1. Then Chemin’s
result applies and gives us the weak convergence of the quadratic functions appearing in
the stress-energy tensor.

We conclude the section showing that Φ0 is continuous whenever we have bounds on
the total variation in R2 of div Tµ.

Proposition 4.2 (Continuity of Φ0). Let µn be a sequence converging to µ in M+(Ω)
such that µn is bounded in H−1 and |div Tµn| is bounded in M+(R2). Then hµn → hµ

strongly in W 1,2(Ω) and, in particular, Φ0(µn) → Φ0(µ) as n→∞.

Proof. We denote by Xµ : R2 → R2 the vector field

(38)
(
(∂1hµ)2 − (∂2hµ)2, 2∂1hµ∂2hµ

)
.

It is easy to check that, because of our assumption on div Tµn, we can bound uniformly
as measures both the divergence and the curl of Xµn .

Let Ω̃ be a bounded smooth domain strictly containing Ω. Let us define ϕn as the
solution to

(39)

{
−∆ϕn = div Xµn in Ω̃

ϕn = 0 on ∂Ω̃,

and ψn as the solution to

(40)

{
−∆ψn = curlXµn in Ω̃

ψn = 0 on ∂Ω̃.

Since div Xµn and curlXµn remain bounded in M(Ω̃), we have by elliptic regularity that
∇ϕn and ∇ψn are compact in Lp(Ω̃) for every p < 2.

In particular Yn = Xµn + ∇ϕn + ∇⊥ψn is bounded in L1(Ω̃). Moreover, Yn is both
divergence-free and curl-free in Ω̃, thus is harmonic in Ω̃. We deduce that interior estimates
hold, i.e. for every compact subset K of Ω̃ and for every k, p we have

‖Yn‖W k,p(K) ≤ Ck,p,K‖Yn‖L1(Ω̃).

Consequently, Yn is compact in Lp(K) for any p, and from the compactness of ∇ϕn and
∇ψn, we deduce that Xµn is compact in Lp

loc(Ω̃) for every p < 2. This implies directly that
Xµn is compact in Lp(Ω), p < 2. On the other hand, from Proposition 4.1, we know that
Xµn ⇀ Xµ in the sense of distributions. We deduce that Xµn → Xµ in Lp(Ω) for all p < 2.
Since 2|Xµn| = |∇hµn|2 we find |∇hµn|2 → |∇hµ|2 in L1(Ω). Since weak convergence plus
convergence of the norms implies strong convergence, we find ∇hµn → ∇hµ in L2(Ω), and
the result follows.
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5 The one step minimization

We recall that we consider measures in M+(Ω) which have masses different from 1 (due
to leaking of mass through the boundary, or entrance of mass through the boundary).
Observe that Φ (originally defined on M+(Ω)) can be extended as a functional on P (Ω)
by setting Φ(µ) := Φ(µ̂).

Given τ > 0 and µ ∈ P (Ω), we denote by µτ a minimizer of

(41) min
ν∈P (Ω)

ν 7→ Φλ(ν̂) +
1

2τ
W 2

2 (ν, µ).

Since P (Ω) is compact for the weak convergence, existence is an easy consequence of the
lower semicontinuity of Φ in P (Ω), proved in Lemma 2.1, and of the continuity of W 2

2 (·, µ).
Uniqueness of minimizers, on the other hand, is not completely clear, since the strictly
convex part of the energy, namely Φ0, depends only on the mass of µ̂, while the other part
of the energy need not be strictly convex. However, this argument suffices to prove that
µ̂τ is unique.

5.1 Euler-Lagrange equation

We first prove some simple property of all minimizers µτ that can be achieved by non-
differential variations: no mass is moved within ∂Ω, and if some mass in Ω is moved to ∂Ω,
in passing from µ to µτ , it has to be moved along a shortest connection to ∂Ω. Furthermore,
if λ > 0, for τ sufficiently small no mass moved on ∂Ω returns to Ω, i.e. no new mass enters
Ω.

Lemma 5.1. For any minimizer µτ of (41) and any η ∈ Γ0(µ, µτ ) we have

(42) |y − x| = dist(x, ∂Ω) for η-a.e. (x, y) ∈ Ω× ∂Ω.

In addition, if λ > 0 and τ > 0 is sufficiently small (depending only on Ω and λ), we have
that η(∂Ω× Ω) = 0.

Proof. Let χ be the characteristic function of the set of points (x, y) where (42) fails, i.e.
x ∈ Ω, y ∈ ∂Ω and |y − x| > dist(x, ∂Ω). Let us choose (in a Borel way) for any x ∈ Ω a
point s(x) ∈ ∂Ω with shortest distance, set

σ := (1− χ)η

and let ν and ρ be respectively its first and second marginals; notice that ν ≤ µ and that
ρ̂ = µ̂τ , because χ(x, y) can be nonzero only when y ∈ ∂Ω. Defining

η′ := σ + (I, s)#(µ− ν)
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and µ′τ as the second marginal of η′, we have that η′ still has µ as first marginal, and
therefore η′ ∈ Γ(µ, µ′τ ). Taking into account that µ− ν is the first marginal of χη, we also
have

W 2
2 (µ, µ′τ ) ≤

∫
Ω×Ω

|x− y|2(1− χ) dη +

∫
Ω

|s(x)− x|2 d(µ− ν)(43)

= W 2
2 (µ, µτ ) +

∫
Ω×∂Ω

(|s(x)− x|2 − |y − x|2)χ η

≤ W 2
2 (µ, µτ ),

with strict inequality whenever
∫
χdη > 0. On the other hand, since the second marginal

of (I, s)#(µ− ν) is concentrated on ∂Ω (because s is ∂Ω-valued) we have

µ̂′τ = ρ̂ = µ̂τ ,

and therefore Φλ(µ̂
′
τ ) = Φλ(µ̂τ ). The minimality of µτ then gives that (42) holds.

Let us prove that η(∂Ω × Ω) = 0, for τ sufficiently small, in an informal way (the
argument can be easily made rigorous using the same formalism used to show (42)). First,
we can find r > 0 such that h0 − 1 + λ/2 ≥ λ/4 for all x ∈ Ω with dist(x, ∂Ω) < r. As a
consequence, Proposition 2.2 shows that Φλ(ν) − Φλ(µ) ≤ −λ(µ̂(Ω) − ν̂(Ω))/4 whenever
ν̂ ≤ µ̂. This shows that, for any τ > 0, if an amount δ of mass in ∂Ω is sent by η inside Ω,
it has to be sent at a distance larger than r (the energy would decrease leaving steady on
∂Ω the mass sent at a smaller distance). Then, let us compare the energy of µτ with the
energy of the new measure µ′τ obtained by leaving this mass at rest: the term W 2

2 (µτ , µ)
decreases at least by δr2, while (still by Proposition 2.2), the term Φλ(µτ ) increases at
most by Cδ, with C = sup (h0 − 1 + λ/2)−. By the inequality δr2/(2τ) ≤ Cδ it follows
that δ = 0 for τ < r2/(2C).

In order to derive the Euler-Lagrange equation associated to (41), we consider a family
of approximating variational problems in P (Ω).

Lemma 5.2. Let δ > 0, let Φδ
λ : P (Ω) → [0,+∞] be defined by

(44) Φδ
λ(ν) = Φλ(ν̂) + δ

∫
Ω

ν̂4,

with the convention Φδ(ν) = +∞ if ν̂ is not absolutely continuous with respect to the
Lebesgue measure, and let us consider the minimization problem

(45) min
ν∈P (Ω)

Φδ
λ(ν) +

1

2τ
W 2

2 (µ, ν).

Then this problem has a solution µδ
τ , the family µδ

τ has limit points both for the strong H−1

topology and the P (Ω) topology,
∫

Ω
(µ̂δ

τ )
4 → 0 as δ → 0, and any limit point µτ as δ → 0

solves (41).
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Proof. The existence of µδ
τ follows by the same argument used to prove the existence of

µτ . Let us prove the convergence of µδ
τ . Let Mδ be the minimum in (45) and let M be

the minimum of the functional in (41). It is clear that Mδ ≥ M ; on the other hand, since
Φδ

λ → Φλ pointwise on {
ν ∈ P (Ω) : ν̂ ∈ L4(Ω)

}
,

we have

lim sup
δ↓0

Mδ ≤ Φλ(ν) +
1

2τ
W 2

2 (ν, µ)

for all ν in this subspace. By a density argument we obtain that lim supδ Mδ ≤ M , and
therefore Mδ →M as δ → 0.

If µτ is a limit point, in the weak P (Ω) topology, of µδ
τ along some sequence δi → 0,

the lower semicontinuity of Φλ gives

Φλ(µτ ) +
1

2τ
W 2

2 (µτ , µ) ≤ lim inf
i→∞

Φλ(µ
δi
τ ) +

1

2τ
W 2

2 (µδi
τ , µ) ≤ lim inf

i→∞
Mδi

= M,

therefore µτ is a solution of (41). Finally, taking into account the continuity of ν 7→
W 2

2 (ν, µ), the convergence of Mδ to M gives

lim sup
i→∞

Φλ(µ̂
δi
τ ) + δi

∫
Ω

(µ̂δi
τ )4 ≤ Φλ(µτ ).

By the lower semicontinuity of Φλ it follows that Φλ(µ
δi
τ ) → Φλ(µτ ) and δi

∫
Ω
(µ̂δi

τ )4 → 0.
Now, taking into account that Φλ(ν) is the sum of two lower semicontinuous terms, namely
Φ0(ν) and λν(Ω)/2, we obtain that

(46) lim
i→∞

λµδi(Ω) = λµτ (Ω) and lim
i→∞

∫
Ω

|∇h
µ

δi
τ
|2 + (h

µ
δi
τ
− 1)2 =

∫
Ω

|∇hν |2 + (hν − 1)2.

In particular µ̂δi
τ → ν̂ strongly in H−1(Ω).

Since µδ
τ has L4 regularity inside Ω, we can write down an Euler-Lagrange equation for

(45). Here and in the sequel we extend µ̂δ
τ with the 0 value 0 outside Ω: this is natural,

thinking that the measure µδ
τ is supported in Ω.

Proposition 5.1. Any minimizer µδ
τ of (45) satisfies

(47) −3δ∇((µ̂δ
τ )

4)−∇hµδ
τ
µ̂δ

τ =
1

τ
πx# (χΩ(x)(x− y)γ) in D′(R2),

where γ is any optimal plan between µδ
τ and µ and πx : R2×R2 → R2 denotes the projection

on the first factor.

Proof. We perform variations around µδ
τ in (45). To this aim, it is useful to notice that

we can equivalently minimize in (45) among all probability measures ν in R2 with finite
second moment, due to the fact that, for any such ν, there exists ν ′ with support contained
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in Ω with ν̂ = ν̂ ′ and W 2
2 (µ, ν ′) ≤ W 2

2 (µ, ν). Indeed, given any optimal plan η between
µ and ν, it suffices to consider the map Φ(x, y) = (x, y′), where y′ is equal to y if y ∈ Ω,
and is equal to the first point on the segment from x to y hitting ∂Ω otherwise; then, the
second marginal of Φ#η gives us ν ′. Also recall that the result of Lemma 5.1 also holds for
(45).

For simplicity, let us denote ν = µδ
τ . Then, we write

νε = ν̃ + (I + εξ(x))#ν̂,

where ξ is a smooth vector field compactly supported in R2 (so, we move only the mass of
ν inside Ω). We set

Ωε := {x ∈ Ω : x+ εξ(x) ∈ Ω} .
By minimality of ν and the previous remark, we have

(48) Φδ
λ(νε) +

1

2τ
W 2

2 (µ, νε) ≥ Φδ
λ(ν) +

1

2τ
W 2

2 (µ, ν).

Let us evaluate
1

2τε

(
W 2

2 (µ, νε)−W 2
2 (µ, ν)

)
.

Since νε = ν̃ + (I + εξ)#ν̂, defining

γε = (I + εξ, I)#(χΩ(x)γ) + χ∂Ω(x)γ,

we have that γε ∈ Γ(νε, µ). Therefore, by the definition of W2, we have

W 2
2 (νε, µ) ≤

∫
R2×Ω

|y − x|2 dγε(x, y)(49)

=

∫
Ω×Ω

|x+ εξ(x)− y|2 dγ(x, y) +

∫
∂Ω×Ω

|x− y|2 dγ(x, y).

A Taylor expansion then gives

(50)
1

2ε

(
W 2

2 (νε, µ)−W 2
2 (ν, µ)

)
≤
∫

Ω×Ω

(x− y) · ξ(x) dγ(x, y) +O(ε).

Secondly, let us evaluate Φδ(νε)− Φδ(ν); since ν̂ε = (I + εξ)#(χΩε ν̂), we have that

ν̂ε(Ω) = ν̂(Ωε) = ν(Ωε).

Furthermore, the change of variables formula gives

(51) ν̂ε(x) =
ν̂

det(I + εDξ)
◦
[
(I + εDξ)

∣∣
Ωε

]−1

,

so that

(52)

∫
Ω

ν̂p
ε =

∫
Ωε

ν̂p

detp−1(I + εDξ)
∀p > 0.
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In particular ν̂ε → ν̂ in L4(Ω) as ε → 0, hence hνε → hν in W 2,4(Ω), and in particular in
C1(Ω). This convergence holds also in a small neighbourhood Ω̃ of Ω, considering suitable
extensions of these functions. By (28) we obtain that Φλ(νε)− Φλ(ν) equals

2− λ

2
ν(Ω \ Ωε) +

1

2

∫
Ω

(hνε + hν)(νε − ν)

=
2− λ

2
ν(Ω \ Ωε) +

1

2

∫
Ωε

(hνε ◦ (I + εξ) + hν ◦ (I + εξ)) dν −
∫

Ω

(hνε + hν) dν

=
2− λ

2
ν(Ω \ Ωε) +

1

2

∫
Ω

(hνε ◦ (I + εξ)− hνε + hν ◦ (I + εξ)− hν) dν

− 1

2

∫
Ω\Ωε

(hνε ◦ (I + εξ) + hν ◦ (I + εξ)) dν.

Now, by C1 regularity and the fact that hν = 1 on ∂Ω, we have∫
Ω\Ωε

(hνε ◦ (I + εξ) + hν ◦ (I + εξ)) dν = 2ν(Ω \Ωε) +O(ε)ν(Ω \Ωε) = 2ν(Ω \Ωε) + o(ε).

We deduce that Φλ(νε)−Φλ(ν) = −λ
2
ν(Ω\Ωε) + ε

2

∫
Ω
∇hν · ξ dν + o(ε), taking into account

the strong C1(Ω̃) convergence of hνε to hν . Therefore, neglecting the term −λ
2
ν(Ω \Ωε) we

get

lim sup
ε→0+

Φλ(νε)− Φλ(ν)

ε
≤
∫

Ω

∇hν · ξ dν.

On the other hand,

(53)
δ

ε

[∫
Ω

ν̂4
ε −

∫
Ω

ν̂4

]
=
δ

ε

[∫
Ωε

ν̂4

det3(I + εDξ)
−
∫

Ω

ν̂4

]
≤ −3δ

∫
Ω

ν̂4div ξ + o(1),

as ε→ 0+. We deduce

(54) lim sup
ε→0+

1

ε

(
Φδ

λ(νε)− Φδ
λ(ν)

)
≤
∫

Ω

∇hν · ξ dν̂ − 3δ

∫
Ω

ν̂4div ξ.

Inserting this and (50) into (48), and passing to the limit as ε→ 0, we find

1

τ

∫
Ω×Ω

(x− y) · ξ(x) dγ(x, y) +

∫
Ω

∇hν · ξ dν̂ − 3δ

∫
Ω

ν̂4div ξ ≥ 0,

and changing ξ to −ξ, we have

(55)
1

τ

∫
Ω×Ω

(x− y) · ξ(x) dγ(x, y) +

∫
Ω

∇hν · ξ dν̂ − 3δ

∫
Ω

ν̂4div ξ = 0.

This proves (47).
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Passing to the limit as δ → 0 in the previous result, and using the stress-energy tensor,
we are led to:

Proposition 5.2. Assume that λ > 0. Then there exist a minimizer µτ of (41) and
γ ∈ Γ0(µτ , µ) satisfying

(56) div Tµτ = −1

2
Z(µτ )nΩ +

1

τ
(πx)#(χΩ(x)(x− y)γ) in D′(R2),

with Z(µτ ) + σ∂Ω nonnegative and concentrated on ∂Ω.

Proof. We consider a limit point (in the weak P (Ω) topology) µτ = limi µ
δi
τ as in Lemma 5.2,

and consider plans γi ∈ Γ0(µ
δi
τ , µ). Recall that δi

∫
Ω
(µ̂δi

τ )4 → 0, that µ̂δi
τ converge to µ̂τ in

H−1(Ω) and that µ̂δi
τ (Ω) converges to µ̂τ (Ω) (this follows from (46)).

Returning to (55) and taking into account Lemma 4.1 we obtain

1

τ

∫
Ω×Ω

(x− y) · ξ(x) dγi(x, y) +

∫
Ω

Tµδi
τ ·Dξ dµ̂δi

τ(57)

− 3δi

∫
Ω

(µ̂δi
τ )4div ξ =

1

2

∫
∂Ω

(|∇hi|2 − 1)ξ · nΩ

for all smooth ξ, with hi := h
µ

δi
τ
. In particular, choosing ξ equal to nΩ on ∂Ω with |ξ| ≤ 1,

we obtain that (|∇hi|2 − 1) are uniformly bounded in L1(σ∂Ω), so we can assume that
they converge, as measures, to some measure Z(µτ ) supported on ∂Ω, with Z(µτ ) + σ∂Ω

obviously nonnegative.
Next, we pass to the limit in (57) as i → ∞, possibly along a subsequence: we know

that δi
∫

Ω
(µ̂δi

τ )4div ξ → 0 and that, by strong H−1 convergence,
∫

Ω
Tµδi

τ ·Dξ →
∫

Ω
Tµτ ·Dξ.

Let us see how the first term in the left hand side can be handled: we can assume, by the
stability properties of optimal plans, that γi weakly converges in P (Ω × Ω) to some γ ∈
Γ0(µτ , µ), and the fact that µδi

τ (Ω) converges to µτ (Ω) tells us that there is no concentration
of mass near ∂Ω; using this fact we easily obtain that χΩ(x)γi still weakly converge to
χΩ(x)γ, so that also the first term in the left-hand side goes to the limit.

We conclude this analysis of the one-step minimization noticing that the second measure
appearing in the right hand side of (56) is concentrated on Ω and absolutely continuous
with respect to µτ , with an L2 density. This directly follows from the next lemma.

Lemma 5.3. Let γ ∈ Γ(µ, ν) and set

σ := (πx)# ((x− y)γ) .

Then σ � µ and the density f ∈ L2(µ; R2) of σ with respect to µ satisfies

(58) ‖f‖2
L2(µ) ≤

∫
Ω×Ω

|x− y|2 dγ(x, y).
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Proof. It is immediate to check that |σ| ≤ (diam Ω)µ, therefore σ � µ. Denoting by
f ∈ L∞(µ; R2) the density and by ‖ · ‖ the L2(µ) norm, we have

‖f‖L2(µ) = sup
ξ∈Cc, ‖ξ‖=1

∫
Ω

f · ξ dµ = sup
ξ∈Cc, ‖ξ‖=1

∫
Ω×Ω

(x− y) · ξ dγ(x, y)

≤ sup
ξ∈Cc, ‖ξ‖=1

(∫
Ω×Ω

|x− y|2 dγ(x, y)
) 1

2
(∫

Ω×Ω

|ξ(x)|2 dγ(x, y)
) 1

2

=

(∫
Ω×Ω

|x− y|2 dγ(x, y)
) 1

2

.

Choosing a smooth vector field ξ : Ω → R2 with |ξ| ≤ 1 and ξ = nΩ on ∂Ω, we can
combine (56) and (58) to obtain

(59)
1

2
Z(µτ )(∂Ω) ≤ C(Ω)

∫
Ω

|Tµτ | dx+
W2(µ, µτ )

τ
,

with C(Ω) = ‖∇ξ‖∞.

5.2 A class of entropies for the discrete scheme

We prove here that
∫

Ω
ϕ(µ̂) decreases along the discrete flow, for a suitable family of

“entropies” ϕ. The idea of the proof was suggested to us by G. Savaré for the case of
absolutely continuous measures. Our measures are not a priori absolutely continuous, but
fortunately it turns out that the δ-approximant µδ

τ provides a good approximation which
is stable for the inequality we wish to prove.

Let ϕ be a C1 function from [0,+∞) to R. We say ϕ is an “entropy” for the flow, if:

(a) ϕ is convex nondecreasing, C1, and xϕ′(x) = ϕ(x) for all x ∈ [0, 1];

(b) the following inequality holds:

(60) 2xϕ′′(x) ≥ xϕ′(x)− ϕ(x).

Notice that since ϕ(0) = 0 the right-hand side in (60) is nonnegative, so that the inequality
can be considered as a stronger convexity requirement on ϕ. It corresponds indeed to the
convexity of the map s 7→ s2ϕ(s−2), yielding the so-called displacement convexity of the
map µ 7→

∫
Ω
ϕ(µ) dx [MC].

Proposition 5.3. Let ϕ be an entropy and let µ ∈ P (Ω) be such that
∫

Ω
ϕ(µ) <∞. Then,

for any minimizer µδ
τ of (45), we have∫

Ω

ϕ(µ̂δ
τ ) ≤

∫
Ω

ϕ(µ).
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Proof. We are going to consider a function ψ such that

(61) ψ′(x) = xϕ′(x)− ϕ(x).

Notice that ψ′′(x) = xϕ′′(x), so that ψ is also convex and ψ′(x) ≡ 0 on [0, 1].
- Step 1: The first step consists in deriving some regularity for ρ := µ̂δ

τ from (47). More

precisely, we show that the function ρ4 belongs to W 1,4(R2) and that ∇ρ4

ρ
coincides ρ-a.e.

with a BV ∩ L∞ vector field G on Ω.
For simplicity we write h for hµδ

τ
. Recall that ρ ∈ L4, hence by Sobolev embedding, we

have h ∈ W 2,4 hence h ∈ C1,1/2. Therefore ρ∇h ∈ L4.
On the other hand, since µ̂δ

τ is absolutely continuous, the optimal transport plan γ from
µδ

τ to µ is induced, inside Ω, by the gradient r of a Lipschitz convex function defined on
R2 (see for instance §6.2.3 in [AGS]); in particular r ∈ BVloc(R2) ∩ L∞(R2). Thus

(πx)# (χΩ(x)(x− y)γ) = (I − r)ρ ∈ BV (R2) ∩ L∞(R2).

Inserting all this information into (47) we find that∇ρ4 ∈ L4(R2). Therefore ρ4 ∈ W 1,4(R2)
and ρ is thus continuous. Observe that by definition ρ = 0 outside Ω, hence µ̂δ

τ is a
continuous function which vanishes on ∂Ω.

Returning to (47), dividing by ρ we may write

(62) 3δ
∇ρ4

ρ
+∇h =

1

τ
(r − I) ρ-a.e. in Ω.

We deduce that ∇ρ4

ρ
can be extended to the whole of Ω as a BV ∩ L∞ vector-field G.

- Step 2: Let now ϕ be an entropy and let ψ be a convex function such that ψ′ satisfies
(61). We show that

(63)

∫
Ω

ψ(h) +

∫
Ω

ψ′′(h)|∇h|2 ≤
∫

Ω

ψ(ρ).

Indeed, recall {
−∆h+ h = ρ in Ω
h = 1 on ∂Ω,

hence multiplying this equation by ψ′(h), which belongs to H1
0 (Ω) since ψ′ is continuous

and h = 1 on ∂Ω, we find, after an integration by parts,

(64)

∫
Ω

ψ′′(h)|∇h|2 + ψ′(h)(h− ρ) = 0

But the convexity of ψ gives ψ(ρ) ≥ ψ(h) + ψ′(h)(ρ− h), thus inserting this into (64) we
obtain (63).
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- Step 3: Let us now evaluate
∫

Ω
ϕ(µ̂)−

∫
Ω
ϕ(µ̂δ

τ ) =
∫

Ω
ϕ(µ̂)−ϕ(ρ). Since γ(Ω×∂Ω) = 0,

r#ρ is concentrated on Ω and therefore r#ρ ≤ µ̂. Using that ϕ is nondecreasing, we find
that ∫

Ω

ϕ(µ̂)− ϕ(ρ) ≥
∫

Ω

ϕ(r#ρ)−
∫

Ω

ϕ(ρ).

By (60), ϕ is displacement convex, therefore (see Lemma 10.4.4 in [AGS])∫
Ω

ϕ(r#ρ)−
∫

Ω

ϕ(ρ) ≥ −
∫

Ω

ψ′(ρ)trace∇(r − I).

Here the gradient ∇r is understood in the pointwise sense (i.e. the absolutely continuous
part of the distributional derivative of r). Moreover, since r is the gradient of a convex
function, we can bound from above the trace in the pointwise sense by div (r − I), the
divergence being in the distributional sense.

Recalling that from (62) we have

div (r − I) = τ∆h+ 3δτdiv G,

we are thus led to the inequality

(65)

∫
Ω

ϕ(µ̂)−
∫

Ω

ϕ(µ̂δ
τ ) ≥ −τ

∫
Ω

ψ′(ρ) d (∆h+ 3δdivG) .

Notice that ψ′(ρ) is continuous and compactly supported in Ω, because ψ′(t) = 0 for
t ∈ [0, 1] and ρ = 0 on ∂Ω. Moreover, writing g(t) = ψ′(t1/4), we have that ψ′(ρ) = g(ρ4) ∈
W 1,1(Ω). Therefore, integrating by parts, we get

(66)

∫
Ω

ψ′(ρ) ddiv G = −
∫

Ω

G · ∇
(
g(ρ4)

)
= −

∫
Ω

|∇ρ4|2

ρ
g′(ρ4) ≤ 0

because 4g′(t) = t−3/4ψ′′(t1/4) ≥ 0. On the other hand

(67)

∫
Ω

ψ′(ρ)∆h =

∫
Ω

ψ′(ρ)(h− ρ) ≤
∫

Ω

ψ(h)− ψ(ρ)

by convexity of ψ, and the right-hand side is less than −
∫

Ω
ψ′′(h)|∇h|2 by (63). Combining

(65)-(66)-(67), we conclude that

(68)

∫
Ω

ϕ(µ̂)−
∫

Ω

ϕ(µ̂δ
τ ) ≥ τ

∫
Ω

ψ′′(h)|∇h|2

Using again the fact that ψ′′ ≥ 0, the proposition follows.

Let us now draw consequences of this result. We may choose as particular ϕ the
functions

(69)

{
ϕ(x) = x for x ≤ 1
ϕ(x) = xp + (p− 1)(1− x) for x ≥ 1,

where p > 1. By straighforward calculations one may check that ϕ satisfies all the con-
ditions to be an “entropy”. The following result does not really require that ϕ takes
specifically the form (69), but just is an entropy with sufficient growth at infinity.
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Proposition 5.4. Let p ∈ (1,∞], µ ∈ P (Ω) with µ̂ ∈ Lp(Ω). Then there exists a minimizer
µτ of (41) satisfying Proposition 5.2 and

(i) If p <∞ and ϕ is defined as in (69), then

(70)

∫
Ω

ϕ(µ̂τ ) ≤
∫

Ω

ϕ(µ̂) <∞,

hence µ̂τ ∈ Lp(Ω).

(ii) If p = ∞ and M = max {1, ‖µ̂‖∞}, we have

‖µ̂τ‖∞ ≤M, 0 ≤ hµτ ≤M.

Proof. Applying Proposition 5.3 to the particular ϕ given in (69), we find

(71)

∫
Ω

ϕ(µ̂δ
τ ) ≤

∫
Ω

ϕ(µ̂)

for any minimizer µδ
τ of (45). In view of the growth of ϕ in (69), we deduce that µ̂δ

τ are
bounded in Lp uniformly with respect to δ. So, for any weak limit µτ of µδi

τ we have that
µ̂δi

τ weakly converge in Lp to µ̂, hence (70) follows by the weak lower semicontinuity of
µ 7→

∫
Ω
ϕ(µ) in Lp.

For the L∞ case, let M ≥ 1 be such that |µ̂| ≤M and let us consider instead of (69) a
sequence of entropies ϕn converging monotonically to

ϕ(x) :=

{
x for x ≤M
+∞ for x > M

(this is possible because M ≥ 1). We may also assume that ψ′′n(x) = xϕ′′n(x) converge
monotonically to +∞ if x > M .

Using now (68) instead of Proposition 5.3, we find∫
Ω

ϕn(µ̂δ
τ ) + τ

∫
Ω

ψ′′n(hµδ
τ
)|∇hµδ

τ
|2 ≤

∫
Ω

ϕn(µ̂).

Passing to the limit δi → 0 as above we find∫
Ω

ϕn(µ̂τ ) + τ

∫
Ω

ψ′′n(hµτ )|∇hµτ |2 ≤
∫

Ω

ϕ(µ̂).

Passing to the limit n→ +∞ we find by monotone convergence theorem∫
Ω

ϕ(µ̂τ ) + τ

∫
{hµτ >M}

|∇hµτ |2 ≤
∫

Ω

ϕ(µ̂) <∞.

We deduce that |µ̂τ | ≤ M a.e. by definition of ϕ, and that ∇hµτ ≡ 0 on the open set
{hµτ > M}. It follows that this set is empty and hµτ ≤M . The inequality hµτ ≥ 0 is just
a simple consequence of the maximum principle and (18).
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6 Convergence of the implicit time discretization scheme

In this section we consider the convergence of the implicit time discretization scheme
associated to Φλ. Let us first describe this problem in a more general context: given a
lower semicontinuous functional Ψ : P (Ω) → R∪ {+∞}, an initial condition µ̄ and a time
step τ > 0, for k ≥ 0 integer we define µk

τ in such a way that µ0
τ = µ̄ and, for any k, µk+1

τ

is a minimizer of

(72) ν 7→ Ψ(ν) +
1

2τ
W 2

2 (ν, µk
τ )

in P (Ω). The minimality of µk+1
τ gives the inequality

Ψ(µk+1
τ ) +

1

2τ
W 2

2 (µk+1
τ , µk

τ ) ≤ Ψ(µk
τ ),

whence

(73)
N∑

k=0

W 2
2 (µk+1

τ , µk
τ ) + 2τΨ(µN+1

τ ) ≤ 2τΨ(µ̄) ∀N ≥ 0

and, in particular, the energy bound

(74) Ψ(µk
τ ) ≤ Ψ(µ̄).

We can define piecewise constant continuous trajectories and rescale in time, setting

(75) µ̄τ (t) := µk+1
τ if t ∈ (kτ, (k + 1)τ ],

and investigate the behaviour of µ̄τ (t) as τ ↓ 0.
If Ψ(µ̄) < +∞ and m := inf Ψ > −∞, using (73) it is immediate to obtain, from the

triangle inequality, the uniform discrete C0,1/2 estimate

(76) W2(µ̄τ (t), µ̄τ (s)) ≤
√

2(Ψ(µ̄)−m)
√
|t− s|+ τ ∀s, t ∈ [0,∞).

Since for fixed t, the family µ̄τ (t) is sequentially compact in P (Ω), a standard diagonal
argument based on (76) ensures the existence of limit points of µ̄τ (t) as τ ↓ 0 in this sense:
given any sequence (τn) ↓ 0 we can extract a subsequence (that we don’t relabel, just for
notational simplicity) such that

(77) lim
n→∞

µ̄τn(t) = µ(t) ∀t ≥ 0.

Furthermore, the energy bound (74) ensures that Ψ(µ(t)) <∞ for all t ≥ 0.
If we choose γk+1

τ ∈ Γ0(µ
k+1
τ , µk

τ ), we may think that (x− y)/τ , for (x, y) ∈ supp γk+1
τ ,

gives us a sort of discrete velocity for the scheme (72). This motivates the following
definition.
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Definition 6.1 (Limiting velocity of the scheme). Let (τn), µ(t) be as in (77). We say
that w ∈ L2(µ(t); R2) is a limiting velocity at µ(t) if there exists a subsequence τn(l) → 0
such that, denoting by k(l) the integer part of t/τn(l), we have

(a) lim inf
l→∞

W2(µ
k(l)+1
τn(l) , µ

k(l)
τn(l))/τn(l) <∞;

(b) 1
τn(l)

(πx)#((x− y)γ
k(l)+1
τn(l) ) weakly converge to wµ(t).

We shall denote by VlΨ(µ(t)) ⊂ L2(µ(t); R2) the limiting velocities.

Notice that the definition of k(l) and the equi-continuity estimate (76) give

(78) lim
l→∞

µk(l)+1
τn(l)

= lim
l→∞

µk(l)
τn(l)

= µ(t) in P (Ω).

We also observe that, according to Lemma 5.3, 1
τn(l)

(πx)#((y−x)γk(l)+1
τn(l) ) have an L2 density

with respect to µ
k(l)+1
τn(l) whose norm is bounded by 1

τn(l)
W2(µ

k(l)+1
τn(l) , µ

k(l)
τn(l)). Therefore, a

general lower semicontinuity argument, illustrated in Lemma 6.1 below, gives

(79) ‖w‖L2(µ(t)) ≤ lim inf
l→∞

1

τn(l)

W2(µ
k(l)+1
τn(l)

, µk(l)
τn(l)

)

for all w as in (b).

Lemma 6.1. Let µn be converging to µ in P (Ω), and let wnµn be converging to σ, with
wn ∈ L2(µn; R2) and ‖wn‖L2(µn) bounded. Then σ = wµ for some w ∈ L2(µ; R2) and∫

|w|2 dµ ≤ lim inf
n→∞

∫
|wn|2 dµn.

Proof. Let C = lim infn ‖wn‖L2(µn). For every η > 0 and for every smooth test-vector field
ξ compactly supported in Ω,

(80)

∣∣∣∣∫
Ω

wn · ξ dµn

∣∣∣∣ ≤ (C + η)

(∫
Ω

|ξ|2 dµn

) 1
2

,

for infinitely many n. We can pass to the limit first as n→∞ and then as η ↓ 0 to get

|〈ξ, σ〉| ≤ C

(∫
Ω

|ξ|2 dµ
) 1

2

.

Therefore, by the density of smooth functions, the linear map ξ 7→ 〈ξ, σ〉 can be uniquely
extended to a linear map on L2(µ; R2) with norm less than C. By the Riesz representation
theorem we can represent this linear map by some w ∈ L2(µ; R2) with ‖w‖L2(µ;R2) ≤ C and
we conclude.
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The following result, borrowed from Theorem 11.1.6 of [AGS], provides us with a gen-
eral scheme, totally independent of the specific functional Ψ under consideration, for the
construction of a velocity field v(t) associated to µ(t) and its relation with the implicit
scheme (72).

Theorem 6.1 (Limiting velocity field [AGS]). Assume that Ψ : P (Ω) → R∪{+∞} is
lower semicontinuous and bounded from below, and let µk

τ ∈ P (Ω) be minimizers obtained
from the recursive minimization of (72) starting from µ̄, with Ψ(µ̄) <∞. Let µ̄τn(t), µ(t)
be as in (75)–(77). Then:

(i) there exist v(t) ∈ L2(µ(t); R2) such that ‖v(t)‖L2(µ(t)) ∈ L2(0,+∞) and

(81)
d

dt
µ(t) + div (v(t)µ(t)) = 0 in D′(R2 × (0,+∞));

(ii) The following energy dissipation inequality at time 0 holds:

(82) Ψ(µ(t)) +

∫ t

0

‖v(r)‖2
L2(µ(r)) dr ≤ Ψ(µ̄) ∀t ≥ 0;

(iii) for a.e. t > 0, v(t) belongs to the closed convex hull in L2(µ(t); R2) of VlΨ(µ(t)).

Finally, if for some s ≥ 0 the implication

(83) lim
l→∞

W2(µ
k(l)+1
τn(l) , µ

k(l)
τn(l))

τn(l)

<∞ =⇒ lim
l→∞

Ψ(µk(l)+1
τn(l)

) = Ψ(µ(s))

is fulfilled for any subsequence n(l), with k(l) equal to the integer part of s/τn(l), then the
energy dissipation inequality at time s holds:

(84) Ψ(µ(t)) +

∫ t

s

‖v(r)‖2
L2(µ(r)) dr ≤ Ψ(µ(s)) ∀t ≥ s.

So, in specific cases one has to look for the properties of the closed convex hull of the
limiting subdifferential. In the case when Ψ = Φλ, this task can be achieved by choosing
in the discrete scheme particular minimizers and optimal plans, whose existence is ensured
by Proposition 5.2, and passing to the limit in (56). We use in the sequel this notation:
given some R2-valued measure σ in ∂Ω, we may write it as σ = f |σ| for some S1-valued
Borel map f (the so-called polar decomposition of σ); then, we write

σtan := f · n⊥Ω|σ|, σ⊥ := f · nΩ|σ|,

so that ∫
g dσtan =

∫
g · n⊥Ω dσ,

∫
g dσ⊥ =

∫
g · nΩ dσ.

The following theorem provides an almost complete characterization of the limiting
velocities, up to some term concentrated on ∂Ω and normal to ∂Ω (the characterization is
indeed complete if µ̄ ∈ Lp, p ≥ 4/3).
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Proposition 6.1 (Characterization of limiting velocities). Let µk
τ ∈ P (Ω), γk+1

τ ∈
Γ0(µ

k+1
τ , µk

τ ) be minimizers obtained from Proposition 5.2, starting from µ̄, with Φλ(µ̄) <∞
and λ > 0. Let µ̄τn(t), µ(t) as in (75)–(77). Then, for a.e. t and for all w ∈ VlΨλ(µ(t))
we have that div Tµ(t) is a finite measure in R2 and

(85) wµ(t) = div Tµ(t) +
1

2
Z(w)nΩ,

with Z(w) ≥ −σ∂Ω concentrated on ∂Ω. We also have

(86) Z(w) =
1

2
(|∇hµ(t)|2 − 1)σ∂Ω

if ˆ̄µ ∈ Lp for some p ≥ 4/3.

Proof. We first recall that, by Lemma 5.1, γk+1
τ (Ω× ∂Ω) = 0 for τ small enough, hence

µk+1
τ (∂Ω) = γk+1

τ (∂Ω× Ω) = γk+1
τ (∂Ω× Ω) + γk+1

τ (∂Ω× ∂Ω)(87)

= γk+1
τ (∂Ω× Ω) + γk+1

τ (Ω× ∂Ω)

= γk+1
τ (∂Ω× Ω) + µk

τ (∂Ω).

By the monotonicity of k 7→ µk
τ (∂Ω) we can assume, thanks to Helly’s compactness theorem,

that µ
[t/τn(l)]
τn(l) (∂Ω) converge as l→∞ for all t ≥ 0 to some nondecreasing function f .

Let us fix t such that f is continuous at t and let us rewrite (56) as follows:

−
∫

Ω

Tµτ ·Dξ = −1

2

∫
∂Ω

ξ ·nΩ dZ(µτ ) +
1

τ

∫
Ω×Ω

ξ(x) · (x− y)dγ− 1

τ

∫
∂Ω×Ω

ξ(x) · (x− y)dγ.

Set now τ = τn(l) and µτ = µ
k(l)+1
τn(l) , in accordance with Definition 6.1 of a limiting velocity,

and assume that conditions (a) and (b) are fulfilled for some w ∈ L2(µ(t); R2). Denoting

γl := γk(l)+1
τn(l)

∈ Γ0(µ
k(l)+1
τn(l)

, µk(l)
τn(l)

), Zl := Z(µk(l)+1
τn(l)

),

we obtain
(88)

−
∫

Ω

Tµk(l)+1
τn(l)

·Dξ = −1

2

∫
∂Ω

ξ·nΩ dZl+
1

τn(l)

∫
Ω×Ω

ξ(x)·(x−y)dγl−
1

τn(l)

∫
∂Ω×Ω

ξ(x)·(x−y)dγl.

By the continuity of f at t, (87) with τ = τn(l) and k = k(l) give

(89) lim
l→∞

γl(∂Ω× Ω) = 0.

Recall also that (59) gives

(90)
1

2
Zl(∂Ω) ≤ C(Ω)

∫
Ω

|Tµk(l)+1
τn(l)

|+
W2(µ

k(l)+1
τn(l) , µ

k(l)
τn(l))

τn(l)

,
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so that the energy bound (74) ensures that Zl(∂Ω) is bounded (the energy controls
∫

Ω
|Tµ|).

As a consequence (88) gives that |div Tµ
k(l)+1
τn(l) |(R2) is bounded.

Let us take limits as l→∞ in (88): the convergence of the left hand side follows by the
strong H1(Ω) convergence of h

µ
k(l)+1
τn(l)

to hµt , ensured by Proposition 4.2. By compactness,

taking again into account (90) and the lower bound Zl ≥ −σ∂Ω, we can assume that the
first term in the right hand side converges to −1

2

∫
∂Ω
ξ · nΩ dZ for some signed measure

Z(w), still concentrated on ∂Ω and such that Z(w) ≥ −σ∂Ω and

(91)
1

2
Z(w)(∂Ω) ≤ C(Ω)

∫
Ω

|Tµ(t)|+ lim inf
l→∞

W2(µ
k(l)+1
τn(l) , µ

k(l)
τn(l))

τn(l)

.

By assumption (b) the second term converges to
∫

Ω
ξ · w dµ(t).

It remains to analyze the behaviour of the third term in the right hand side in (88).
Using Lemma 5.1 we see that the integration can also be done on ∂Ω×Ω only; then, using
Hölder’s inequality and (89) we immediately see that this term gives no contribution to
the limit.

Summing up, upon passing to the limit as l→∞ in (88) we get

(92) −
∫

Ω

Tµ(t) ·Dξ = −1

2

∫
∂Ω

ξ · nΩ dZ(w) +

∫
Ω

ξ · w dµ(t).

7 Proof of the main existence results

In this section we are going to show our main global existence result for the PDE

(93)
d

dt
µ(t) + div(v(t)µ(t)) = 0 in D′(R2 × (0,+∞)),

where v(t) = −∇hµ(t) if µ(t) is sufficiently regular inside Ω (otherwise the coupling will be
based on div Tµ(t), see (95)), with the initial condition µ(0) = µ̄.

We are also going to show that our solution also satisfies suitable energy dissipation
inequalities. To this aim, as in the statement of Theorem 6.1, we say that µ(t) satisfies the
energy dissipation inequality at time s if

(94) Φλ(µ(t)) +

∫ t

s

∫
Ω

|v(τ)|2 dµ(τ) dτ ≤ Φλ(µ(s)) ∀t ≥ s.

Theorem 7.1 (Initial condition in H−1 and λ > 0). Assume that Φλ(µ̄) < ∞ and
λ > 0. Then there exists a weakly continuous map µ(t) : [0,+∞) → P (Ω) such that:

(a) for a.e. t, div Tµ(t) is a finite measure in R2;
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(b) µ(0) = µ̄ and the PDE (93) holds for a velocity field v(t) ∈ L2(µ(t); R2) satisfying

(95) v(t)µ(t) =

{
div Tµ(t) in Ω

[div Tµ(t)]tan on ∂Ω
for a.e. t ≥ 0;

(c) the energy dissipation inequality at time 0 holds.

Furthermore, if ˆ̄µ ∈ Lp(Ω) for some p > 1 we have that ‖µ̂(t)‖p ∈ L∞(0,+∞), t 7→ µ̃(t) is
nondecreasing, and the energy dissipation inequality holds at a.e. time s ≥ 0.

Proof. Let µk
τ ∈ P (Ω), γk+1

τ ∈ Γ0(µ
k+1
τ , µk

τ ) be minimizers obtained from Proposition 5.2,
starting from µ̄. We interpolate in time between the discrete solutions, to build maps µτ (t)
and find a subsequence (τn) with τn ↓ 0 and µτn(t) → µ(t) weakly in P (Ω) for all t ≥ 0.

Then, Theorem 6.1 provides us with a velocity field v(t) for which the continuity equa-
tion (81) holds, which belongs for a.e. t to the closed convex hull of limiting velocities.
Now, Proposition 6.1 gives that div Tµ(t) is a finite measure in R2 for a.e. t, and the
characterization (85) of limiting velocities shows that

v(t)µ(t) = div Tµ(t) + ZnΩ,

for some measure Z concentrated on ∂Ω with Z ≥ −σ∂Ω. Eventually we use the fact
that the velocity field v(t) preserves the domain to show (see Lemma 7.1 below) that
ZnΩ = − [div Tµ(t)]⊥: this leads to (95).

Finally, the energy dissipation inequality (94) at time 0 follows from (82) and statement
(iii) in Theorem 6.1.

Now, let us assume that ˆ̄µ ∈ Lp for some p > 1. Choosing an entropy with p growth as
in (69) we obtain that µ̂k

τ is uniformly bounded in Lp. This, together with the monotonicity
of k 7→ µ̃k

τ yields the monotonicity of t 7→ µ̃(t), because the uniform Lp bound provides

a separate convergence of µ̂
[t/τn]
τn to µ̂(t) (weakly in Lp) and of µ̃

[t/τn]
τn to µ̃(t) (weakly in

P (Ω)).
In order to prove the energy dissipation inequality at a.e. s ≥ 0, we have to check

condition (83) with Ψ = Φλ. The continuity of the term µ 7→ λµ(Ω) is trivial, for the
reasons illustrated above. The continuity of Φ0 follows directly from Proposition 4.2,
taking into account the formula (56) for div Tµτ and the bound (59).

Proof of Theorem 1.1. In the case λ > 0 the proof follows the same scheme as that of
Theorem 7.1, but using the information coming from the uniform Lp bounds on µk

τ provided
by Proposition 5.4: the characterization of v(t) is in this case simpler, because (86) shows
that VlΨλ(µ(t)) is a singleton. Moreover, under the L4/3 integrability assumption we know
from Lemma 4.1 that div Tµ(t) has no tangential component on ∂Ω, so that (95) simply
gives that v(t) = 0 µ(t)-a.e. on ∂Ω: this leads to (14). The proof of the energy dissipation
inequality (15), now for all times s, is also similar. Statement (d) follows by Proposition 3.2.

In the case λ = 0 the proof can be achieved by a standard approximation argument,
taking into account the uniform Lp bounds on the solutions µλ(t) built with λ > 0. Notice
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that the inequalities µ̃λ(t) ≥ µ̃λ(s) for t ≥ s are retained in the limit, because the uniform
Lp bounds force a separate weak convergence of the interior and boundary parts. Finally,
when p ≥ 3/2 the inequality (15) becomes an equality thanks to Proposition 3.1.

Lemma 7.1 (Tangential velocity). Let µ(t) : [0, T ] → P (Ω) be solving the continuity
equation

d

dt
µ(t) +∇ · (v(t)µ(t)) = 0 in D′(R2 × (0,+∞))

for some velocity field v(t) with ‖v(t)‖2
L2(µ(t)) ∈ L1(0, T ). Then, for a.e. t, we have that

the normal component of v(t) vanishes µ(t)-a.e. on ∂Ω.

Proof. Assume first that µ(t) = δγ(t), with γ : [0, T ] → Ω absolutely continuous, so that
v(t)µ(t) = γ′(t)µ(t) for a.e. t. In this case the statement is trivial, as for any point t of
differentiability of γ such that γ(t) ∈ ∂Ω the normal component of γ′(t) has to vanish.

In the general case, it is proved in Theorem 8.2.1 [AGS] that we can represent µt as

(96) µ(t) = (et)#η ∀t ∈ [0, T ],

where et : C([0, T ]; R2) → R2 is the evaluation map at time t (i.e. et(γ) = γ(t)), for a suit-
able positive and finite measure η in C([0, T ]; R2), concentrated on the class of absolutely
continuous maps γ solutions to the ODE γ′ = v(t, γ) for a.e. t (here we use the notation
v(t, x) = v(t)(x)). By Fubini’s theorem we obtain that, for a.e. t, there exists a Borel set
Et ⊂ C([0, T ]; R2) where η is concentrated and γ is differentiable, with γ′(t) = v(t, γ(t))
for all γ ∈ Et. Fix a time t with this property, and use the previous remark to obtain that

v(t, γ(t)) · nΩ(γ(t)) = γ′(t) · nΩ(γ(t)) = 0

for all γ ∈ Et with γ(t) ∈ ∂Ω. By (96) we infer that v(t, x)) · nΩ = 0 for µ(t)-a.e.
x ∈ ∂Ω.

8 Open problems and an example

We conclude this paper by pointing out some open problems, comments and possible
extensions.

[The case of signed measures] The extension of our results to the case of measures of
varying sign presents several difficulties: first, in this case there is no reason to rule out
the possibility of mass entering the domain; second, many estimates (even in the short-
time existence result) seem to be of difficult extension; third, the Wasserstein framework
should be adapted to this more general situation. However, the restriction to nonnegative
measure is not so unrealistic, in view of the fact that minimizers of Φλ, even among signed
measures, are known to be unique, nonnegative and compactly supported [SS1].

[The role of energy dissipation inequalities] Notice that, although Φλ depends on λ,
the PDE (1) does not. This is not surprising, since the λ term appears only as a multiplier
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of the “null Lagrangian” µ 7→ µ(Ω). However, the time-discrete version of our problem
does depend on λ, and λ appears in the energy dissipation inequalities (15) and (94), which
should be considered as a nontrivial part of the existence result. At least for Lp solutions
with p ≥ 3/2, for which the energy identity

Φ0(µ(t)) +

∫ t

s

∫
Ω

|∇hµ(τ)|2 dµ(τ) dτ = Φ0(µ(s)) t ≥ s ≥ 0

is available (see Theorem 3.1), it would be interesting to do a more refined analysis of
the mechanism of mass dissipation through ∂Ω, possibly adding a new term to the energy
dissipation rate

∫
Ω
|∇hµ(t)|2 dµ(t).

[Uniqueness and asymptotic behaviour of solutions] The results presented in The-
orem 7.1 and Theorem 1.1 are only concerned with existence of solutions. It would be nice
to extend Theorem 3.2, valid only until some mass reaches the boundary, to more general
situations. In this connection, notice that for any η and λ, the minimizer µη of Φη is also a
stationary point of Φλ (being compactly supported, and because the two functionals differ
by a null-lagrangian). So, given an initial compactly supported measure µ̄, it is natural to
conjecture that the solution µ(t) starting from µ̄ should remain compactly supported (and
therefore unique) and converge as t→∞ to some µη, where η is chosen in such a way that
µη(Ω) = µ̄(Ω).

On the other hand, if µ̄ is not compactly supported then the mass dissipation rate
through the boundary should probably depend on λ, causing nonuniqueness for solutions
to the PDE (which again is independent of λ) as soon as some mass reaches the boundary.
In other words, in Theorem 3.2 the restriction to measures µ satisfying µ̃ = 0 might be
necessary.

[Structure of the measure div Tµ] The main difference between the PDE’s in Theo-
rem 1.1 and Theorem 7.1 is that in the former the velocity is 0 on ∂Ω (while, of course,
the normal trace of the velocity from inside might well be nonzero) and in the latter the
velocity is [div Tµ(t)]tan. However, having in mind the identity (37), we conjecture that
div Tµ has no tangential component on ∂Ω whenever µ ∈ H−1 and div Tµ is a finite
measure in R2. Were this result true, the velocity would be 0 also in the general H−1 case.

[Slope and stationary points] In the variational theory of gradient flows (see [AGS]) a
key role is played by De Giorgi’s (descending) metric slope:

(97) |∂Ψ|(µ) := lim sup
ν→µ

(Ψ(µ)−Ψ(ν))+

W2(µ, ν)
.

Indeed, points µ where the metric slope vanishes correspond somehow to critical points,
i.e. points where the gradient flow is allowed to stop. The slope can also be computed (see
Lemma 3.1.5 in [AGS]) by

|∂Ψ|(µ) = lim
n→∞

W2(µτn , µ)

τn
,
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for a suitable sequence (τn) ↓ 0, where µτ are minimizers of ν 7→ Ψ(ν) +W 2
2 (ν, µ)/(2τ). In

the case when Ψ = Φλ, using Lemma 6.1 and (56) one can obtain

(98) |∂Φλ|(µ) ≥
∥∥∥∥div Tµ

µ̂

∥∥∥∥
L2(µ̂)

.

This relation shows somehow that, being a critical point from the metric viewpoint is a
stronger property, compared to having a divergence-free stress-energy tensor. We give here
an example (mentioned in [SS2]) of a measure µ supported on a curve in Ω (hence not
belonging to Lp) such that the metric slope at µ is not zero but div Tµ vanishes. Taking
µ̄ = µ as initial condition, this example should probably lead to nonuniqueness, as we
may reasonably expect that the solution built by the implicit Euler scheme should not be
constant but rather have decreasing energy.

The example mentioned in [SS2] is built as follows. Let c ∈ R, 0 < R1 < R2, and let
us solve{

−∆h1 + h1 = 0 in BR1(0)
h1 = c on ∂BR1(0),

 −∆h2 + h2 = 0 in BR2(0) \BR1(0)
h2 = c on ∂BR1(0)
h2 = 1 on ∂BR2(0).

Both functions are radial, and we can adjust c, R1 and R2 in such a way that

∂h1

∂r
(R1) = −∂h2

∂r
(R1) =

1

4πR1

.

A rigorous treatment of this using modified Bessel functions can be found in [Ay] Chapter
8.

Now, we can take Ω = BR2(0) and

h :=

{
h1 on BR1(0)

h2 on Ω \BR1(0),

so that h ∈ H1(Ω), ∇h is discontinuous on ∂BR1(0), while |∇h| remains continuous. This
ensures that, letting µ = −∆h + h, which is a measure supported on the circle ∂BR1(0),
we have div Tµ = 0 in Ω and µ(Ω) = 1.

Proposition 8.1. For the measure µ constructed above, we have |∂Φλ|(µ) > 0 while
div Tµ = 0, hence there is strict inequality in (98).

Proof. Since h is radial, we can identify it with a function of r only which solves

(99) −h′′ − h′

r
+ h = 2αδR1

in (0, R2), where

(100) α = h′−(R1) = −h′+(R1) =
1

4πR1

,
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see again [Ay]. We introduce a perturbation of h as follows. First let ε > 0 be small and
let hε be the function h truncated in a neighborhood of ∂BR1(0) at the level h(R1 − ε).
More precisely, let Rε > R1 be the infimum of all r > R1 such that h(r) = h(R1 − ε) and
set hε(r) = h(R1 − ε) for R1 − ε ≤ r ≤ Rε and hε = h elsewhere.

From (99), we have

lim
r→R−1

h′′(r) = c− α

R1

, lim
r→R+

1

h′′(r) = c+
α

R1

,

so that

(101) h′(R1 − ε) = α− ε(c− α

R1

) +O(ε2), h′(Rε) = −α+ ε(c+
α

R1

) +O(ε2).

Also, since (100) holds and h is smooth in (0, R1) ∪ (R1, R2), we must have

(102) Rε = R1 + ε+O(ε2), h(R1 − ε) = c− αε+O(ε2).

By construction, −∆hε + hε is a radial measure which is supported only in BRε(0) \
BR1−ε(0). It is equal to the positive constant h(R1− ε) in the interior of that annulus, and
it has a singular part on the boundary of the annulus which can easily seen to be positive.
In total µε := −∆hε + hε ≥ 0. Let us now evaluate mε :=

∫
Ω
−∆hε + hε; clearly m0 = 1,

and let us prove that mε = 1 +O(ε2). Indeed, the first order terms in ε in the identity

mε = h1(R1 − ε)π(R2
ε − (R1 − ε)2) + 2π(R1 − ε)h′(R1 − ε)− 2πRεh

′(Rε)

are given by (taking into account (101) and (102)) 4πR1c for the first summand, −2πR1α−
2πR1(c−α/R1) for the second, and 2πR1α− 2πR1(c+α/R1) for the third, and their sum
is 0.

Now, we define h0 to be the solution of (2) for µ = 0, hence −∆h0 + h0 = 0 and we set

gε :=
hε

mε

+

(
1− 1

mε

)
h0, µ̃ε := −∆gε + gε,

so that gε = 1 on ∂Ω, µ̃ε = µε

mε
≥ 0 and µ̃ε is a probability measure on Ω. Let us now

evaluate Φλ(µ̃ε). We easily check that∫
Ω

|∇gε|2 + |gε − 1|2 = (1 +O(ε2))

∫
Ω

|∇hε|2 + |hε − 1|2 +O(ε2).

But∫
Ω

|∇hε|2 + |hε − 1|2 − |∇h|2 − |h− 1|2

=

∫
BRε (0)\BR1−ε(0)

−|∇h|2 − |h− 1|2 + |hε − 1|2 = −4πR1α
2ε+ o(ε).

We conclude that Φλ(µ̃ε)−Φλ(µ) = −α
2
ε+ o(ε). Moreover, by construction µ̃ε = µε/mε is

supported on BRε(0) \ BR1−ε(0), hence it is clear that W2(µ̃ε, µ) ≤ ε+ o(ε). Recalling the
definition (97), this proves that |∂Φλ|(µ) ≥ α/2 > 0.
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Verlag, Basel, (2005).

[AG] L. Ambrosio and W. Gangbo: Hamiltonian ODE’s in the space of probability
measures. Comm. PDE, to appear.
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