8.2 Lower Bound

We now wish to compute a lower bound for $G_{\varepsilon}(u, A)$ which matches the upper bound of the previous section. In the course of the proof we will see clearly that if (u, A) minimizes G_{ε} , then its energy is accounted for by the vortex-energy.

In what follows we denote $B_{\lambda}^{x} = B(x, \lambda^{-1})$ and we will often omit the subscript ε , where x is the center of the blow-up.

Proposition 8.2. Assume $|\log \varepsilon| \ll h_{ex} \ll 1/\varepsilon^2$ and $(u_{\varepsilon}, A_{\varepsilon})$ minimizes G_{ε} . Then for any K > 0, there exists $1 \ll \lambda \ll \frac{1}{\varepsilon}$ such that for every $x \in \Omega$ such that $B_{\lambda}^x \subset \Omega$, we have

$$G_{\varepsilon}(u_{\varepsilon}, A_{\varepsilon}, B_{\lambda}^{x}) \ge \frac{\alpha_{K} |B_{\lambda}^{x}|}{2} h_{ex} \log \frac{1}{\varepsilon \sqrt{h_{ex}}} \left(1 - o(1)\right), \quad (8.15)$$

where $\lim_{K\to+\infty} \alpha_K = 1$.

Proof. As already mentioned, the proof is achieved by blowing-up at the scale λ .

From Lemma 8.1 (and after translation), dropping the ε subscripts, the left-hand side of (8.15) is equal to

$$\frac{1}{2} \int_{B_1} |\nabla_{A_\lambda} u_\lambda|^2 + \lambda^2 \left(\operatorname{curl} A_\lambda - \frac{h_{\text{ex}}}{\lambda^2} \right)^2 + \frac{\left(1 - |u_\lambda|^2\right)^2}{2(\lambda \varepsilon)^2}$$

thus, letting $u' = u_{\lambda}$, $A' = A_{\lambda}$, $\varepsilon' = \lambda \varepsilon$ and $h'_{\text{ex}} = h_{\text{ex}}/\lambda^2$, the inequality (8.15) that we wish to prove is equivalent to

$$\frac{1}{2} \int_{B_1} |\nabla_{A'} u'|^2 + \lambda^2 \left(\operatorname{curl} A' - h'_{\mathrm{ex}} \right)^2 + \frac{\left(1 - |u'|^2\right)^2}{2\varepsilon'^2} \ge \frac{\alpha_K |B_1|}{2} h'_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}} \left(1 - o(1)\right)$$
(8.16)

Now for any $\varepsilon > 0$ we choose λ such that

$$h_{\rm ex}' = K |\log \varepsilon'|. \tag{8.17}$$

Let us check that this is possible and give the behavior of λ as $\varepsilon \to 0$. Condition (8.17) is equivalent to $\varepsilon^2 h_{\text{ex}} = f(\varepsilon \lambda)$, where $f(x) = Kx^2 \log(1/x)$.

8.2. LOWER BOUND

Since $\varepsilon^2 h_{\text{ex}} \to 0$ as $\varepsilon \to 0$, it is easy to check that for ε small enough, there is a unique $x_{\varepsilon} \in (0, 1/2)$ satisfying $f(x_{\varepsilon}) = \varepsilon^2 h_{\text{ex}}$. Moreover from $|\log \varepsilon| \ll h_{\text{ex}} \ll 1/\varepsilon^2$ we deduce $\varepsilon \ll x_{\varepsilon} \ll 1$. Therefore (8.17) can indeed be verified, and the corresponding λ , ε' satisfy

$$1 \ll \lambda \ll \frac{1}{\varepsilon}, \quad \varepsilon' \ll 1, \quad \log \frac{1}{\varepsilon \sqrt{h_{\text{ex}}}} \approx |\log \varepsilon'|,$$
 (8.18)

the last identity being deduced from $\varepsilon^2 h_{\text{ex}} = f(\varepsilon \lambda) = f(\varepsilon')$ by taking logarithms. Thus with this choice of λ , (8.16) becomes

$$\frac{1}{2} \int_{B_1} |\nabla_{A'} u'|^2 + \lambda^2 \left(\operatorname{curl} A' - h'_{\mathrm{ex}} \right)^2 + \frac{\left(1 - |u'|^2\right)^2}{2\varepsilon'^2} \ge \frac{\alpha_K |B_1|}{2} h'_{\mathrm{ex}} |\log \varepsilon'| \left(1 - o(1)\right)$$
(8.19)

Two cases may now occur, depending on the blow-up origin x. Either

$$\frac{1}{2} \int_{B_1} |\nabla_{A'} u'|^2 + \lambda^2 \left(\operatorname{curl} A' - h'_{\operatorname{ex}} \right)^2 + \frac{\left(1 - |u'|^2 \right)^2}{2{\varepsilon'}^2} \gg {h'_{\operatorname{ex}}}^2$$

as $\varepsilon \to 0$ and then, from (8.17), (8.19) is clearly satisfied, or

$$\frac{1}{2} \int_{B_1} |\nabla_{A'} u'|^2 + \lambda^2 \left(\operatorname{curl} A' - h'_{\operatorname{ex}} \right)^2 + \frac{\left(1 - |u'|^2 \right)^2}{2\varepsilon'^2} \le C h'_{\operatorname{ex}}^2.$$

This way, we have reduced to the case of configurations with a relatively small energy, for which all the analysis of previous chapters apply.

In this case, replacing ε by ε' and h_{ex} by h'_{ex} , the hypotheses of Theorem 7.1, item 1) are satisfied and we deduce from (7.6), (7.8) that

$$\liminf_{\varepsilon' \to 0} \frac{1}{2h_{\rm ex}'^2} \int_{B_1} |\nabla_{A'} u'|^2 + \left(\operatorname{curl} A' - h_{\rm ex}'\right)^2 + \frac{\left(1 - |u'|^2\right)^2}{2{\varepsilon'}^2} \ge \min_{\mu} E_K(\mu),$$

where E_K is defined in (7.6) (K plays now the role of λ in (7.6)). But, from the description of the minimizer μ_* following Corollary 7.1, we have, using the notations there, that $\mu_* = \left(1 - \frac{1}{2K}\right) \mathbf{1}_{\omega_K}$, and that

$$E_K(\mu_*) \ge \frac{1}{2K} \left(1 - \frac{1}{2K} \right) |\omega_K|,$$

where $|\omega_K| \to |B_1|$ as $K \to +\infty$. Therefore, replacing above, we find

$$\liminf_{\varepsilon' \to 0} \frac{1}{2h'_{\text{ex}}^2} \int_{B_1} |\nabla_{A'} u'|^2 + \left(\operatorname{curl} A' - h'_{\text{ex}}\right)^2 + \frac{\left(1 - |u'|^2\right)^2}{2\varepsilon'^2} \ge,$$

and we note now that

$${h'_{\rm ex}}^2 = K \frac{h_{\rm ex}}{\lambda^2} \log \frac{1}{\varepsilon \sqrt{h_{\rm ex}}},$$

therefore

$$\int_{B_1} |\nabla_{A'}u'|^2 + \left(\operatorname{curl} A' - h_{\mathrm{ex}}'\right)^2 + \frac{\left(1 - |u'|^2\right)^2}{\geq} \frac{h_{\mathrm{ex}}}{2} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}} \left| \left(1 - \frac{1}{2K}\right) \frac{|\omega_K|}{\lambda^2},$$

which proves the desired result with

$$\alpha_K = \left| \left(1 - \frac{1}{2K} \right) \frac{|\omega_K|}{|B_1|} \right|.$$

Clearly this tends to 1 as K tends to $=\infty$.

To conclude the proof of Theorem 8.1, we integrate (8.15) with respect to x. Letting U be any open subdomain of Ω , using Fubini's theorem, we have

$$\begin{split} &\int\limits_{x\in U} G_{\varepsilon}(u,A,B_{\lambda}^{x}\cap U) = \iint\limits_{\substack{x\in U\\ y\in B_{\lambda}^{x}\cap U}} g_{\varepsilon}(u,A)(y)\,dy\,dx\\ &= \iint\limits_{\substack{x\in U\\ y\in B_{\lambda}^{x}\cap U}} g_{\varepsilon}(u,A)(y)\,dx\,dy = \int\limits_{y\in U} |B_{\lambda}^{y}\cap U|g_{\varepsilon}(u,A)(y)\,dy \leq \frac{\pi}{\lambda^{2}}G_{\varepsilon}(u,A,U) \end{split}$$

We deduce that

$$\begin{split} \liminf_{\varepsilon \to 0} \frac{G_{\varepsilon}(u, A, U)}{h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} &\geq \liminf_{\varepsilon \to 0} \int_{x \in U} \frac{\lambda^2 G_{\varepsilon}(u, A, B_{\lambda}^x \cap U)}{\pi h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} \\ &\geq \liminf_{\varepsilon \to 0} \int_{x \in U, B_{\lambda}^x \subset U} \frac{\lambda^2 G_{\varepsilon}(u, A, B_{\lambda}^x \cap U)}{\pi h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} \\ &\geq \int_{x \in U} \liminf_{\varepsilon \to 0} \left(\mathbf{1}_{B_{\lambda}^x \subset U} \frac{G_{\varepsilon}(u, A, B_{\lambda}^x)}{h_{\mathrm{ex}} |B_{\lambda}^x| \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} \right) \\ &\geq \alpha_K \frac{|U|}{2}, \end{split}$$
(8.20)

where we have used Fatou's lemma and (8.15). Since this is true for any K > 0, we may take the limit $K \to +\infty$ on the right-hand side and find

$$\liminf_{\varepsilon \to 0} \frac{G_{\varepsilon}(u, A, U)}{h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} \ge \frac{|U|}{2}.$$

In view of Proposition 8.1, we know that $\left(h_{\text{ex}}\log\frac{1}{\varepsilon\sqrt{h_{\text{ex}}}}\right)^{-1}g_{\varepsilon}(u_{\varepsilon}, A_{\varepsilon})$ is bounded in $L^{1}(\Omega)$, hence has a weak limit g in the sense of measures. Since continuous functions on Ω can be uniformly approximated by characteristic functions, (8.20) allows to say that $g \geq \frac{dx}{2}$. But since (8.5) holds, there must be equality, which proves (8.1), and (8.2) immediately follows.

BIBLIOGRAPHIC NOTES ON CHAPTER 8: The result of this chapter was obtained in [180], but the proof is presented here under a much simpler form. The case of higher h_{ex} , of order b/ε^2 with b < 1, was studied in [182].