8.2 Lower Bound

We now wish to compute a lower bound for $G_{\varepsilon}(u, A)$ which matches the upper bound of the previous section. In the course of the proof we will see clearly that if (u, A) minimizes G_{ε}, then its energy is accounted for by the vortex-energy.

In what follows we denote $B_{\lambda}^{x}=B\left(x, \lambda^{-1}\right)$ and we will often omit the subscript ε, where x is the center of the blow-up.

Proposition 8.2. Assume $|\log \varepsilon| \ll h_{e x} \ll 1 / \varepsilon^{2}$ and $\left(u_{\varepsilon}, A_{\varepsilon}\right)$ minimizes G_{ε}. Then for any $K>0$, there exists $1 \ll \lambda \ll \frac{1}{\varepsilon}$ such that for every $x \in \Omega$ such that $B_{\lambda}^{x} \subset \Omega$, we have

$$
\begin{equation*}
G_{\varepsilon}\left(u_{\varepsilon}, A_{\varepsilon}, B_{\lambda}^{x}\right) \geq \frac{\alpha_{K}\left|B_{\lambda}^{x}\right|}{2} h_{e x} \log \frac{1}{\varepsilon \sqrt{h_{e x}}}(1-o(1)), \tag{8.15}
\end{equation*}
$$

where $\lim _{K \rightarrow+\infty} \alpha_{K}=1$.
Proof. As already mentioned, the proof is achieved by blowing-up at the scale λ.

From Lemma 8.1 (and after translation), dropping the ε subscripts, the left-hand side of (8.15) is equal to

$$
\frac{1}{2} \int_{B_{1}}\left|\nabla_{A_{\lambda}} u_{\lambda}\right|^{2}+\lambda^{2}\left(\operatorname{curl} A_{\lambda}-\frac{h_{\mathrm{ex}}}{\lambda^{2}}\right)^{2}+\frac{\left(1-\left|u_{\lambda}\right|^{2}\right)^{2}}{2(\lambda \varepsilon)^{2}}
$$

thus, letting $u^{\prime}=u_{\lambda}, A^{\prime}=A_{\lambda}, \varepsilon^{\prime}=\lambda \varepsilon$ and $h_{\text {ex }}^{\prime}=h_{\text {ex }} / \lambda^{2}$, the inequality (8.15) that we wish to prove is equivalent to

$$
\begin{equation*}
\frac{1}{2} \int_{B_{1}}\left|\nabla_{A^{\prime}} u^{\prime}\right|^{2}+\lambda^{2}\left(\operatorname{curl} A^{\prime}-h_{\mathrm{ex}}^{\prime}\right)^{2}+\frac{\left(1-\left|u^{\prime}\right|^{2}\right)^{2}}{2 \varepsilon^{\prime 2}} \geq \frac{\alpha_{K}\left|B_{1}\right|}{2} h_{\mathrm{ex}}^{\prime} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}(1-o(1)) . \tag{8.16}
\end{equation*}
$$

Now for any $\varepsilon>0$ we choose λ such that

$$
\begin{equation*}
h_{\mathrm{ex}}^{\prime}=K\left|\log \varepsilon^{\prime}\right| \tag{8.17}
\end{equation*}
$$

Let us check that this is possible and give the behavior of λ as $\varepsilon \rightarrow 0$. Condition (8.17) is equivalent to $\varepsilon^{2} h_{\mathrm{ex}}=f(\varepsilon \lambda)$, where $f(x)=K x^{2} \log (1 / x)$.

Since $\varepsilon^{2} h_{\text {ex }} \rightarrow 0$ as $\varepsilon \rightarrow 0$, it is easy to check that for ε small enough, there is a unique $x_{\varepsilon} \in(0,1 / 2)$ satisfying $f\left(x_{\varepsilon}\right)=\varepsilon^{2} h_{\text {ex }}$. Moreover from $|\log \varepsilon| \ll h_{\text {ex }} \ll 1 / \varepsilon^{2}$ we deduce $\varepsilon \ll x_{\varepsilon} \ll 1$. Therefore (8.17) can indeed be verified, and the corresponding $\lambda, \varepsilon^{\prime}$ satisfy

$$
\begin{equation*}
1 \ll \lambda \ll \frac{1}{\varepsilon}, \quad \varepsilon^{\prime} \ll 1, \quad \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}} \approx\left|\log \varepsilon^{\prime}\right|, \tag{8.18}
\end{equation*}
$$

the last identity being deduced from $\varepsilon^{2} h_{\mathrm{ex}}=f(\varepsilon \lambda)=f\left(\varepsilon^{\prime}\right)$ by taking logarithms. Thus with this choice of λ, (8.16) becomes

$$
\begin{equation*}
\frac{1}{2} \int_{B_{1}}\left|\nabla_{A^{\prime}} u^{\prime}\right|^{2}+\lambda^{2}\left(\operatorname{curl} A^{\prime}-h_{\mathrm{ex}}^{\prime}\right)^{2}+\frac{\left(1-\left|u^{\prime}\right|^{2}\right)^{2}}{2 \varepsilon^{\prime 2}} \geq \frac{\alpha_{K}\left|B_{1}\right|}{2} h_{\mathrm{ex}}^{\prime}\left|\log \varepsilon^{\prime}\right|(1-o(1)) . \tag{8.19}
\end{equation*}
$$

Two cases may now occur, depending on the blow-up origin x. Either

$$
\frac{1}{2} \int_{B_{1}}\left|\nabla_{A^{\prime}} u^{\prime}\right|^{2}+\lambda^{2}\left(\operatorname{curl} A^{\prime}-h_{\mathrm{ex}}^{\prime}\right)^{2}+\frac{\left(1-\left|u^{\prime}\right|^{2}\right)^{2}}{2{\varepsilon^{\prime}}^{2}} \gg h_{\mathrm{ex}}^{\prime 2}
$$

as $\varepsilon \rightarrow 0$ and then, from (8.17), (8.19) is clearly satisfied, or

$$
\frac{1}{2} \int_{B_{1}}\left|\nabla_{A^{\prime}} u^{\prime}\right|^{2}+\lambda^{2}\left(\operatorname{curl} A^{\prime}-h_{\mathrm{ex}}^{\prime}\right)^{2}+\frac{\left(1-\left|u^{\prime}\right|^{2}\right)^{2}}{2 \varepsilon^{\prime 2}} \leq C h_{\mathrm{ex}}^{\prime}{ }^{2} .
$$

This way, we have reduced to the case of configurations with a relatively small energy, for which all the analysis of previous chapters apply.

In this case, replacing ε by ε^{\prime} and h_{ex} by h_{ex}^{\prime}, the hypotheses of Theorem 7.1, item 1) are satisfied and we deduce from (7.6), (7.8) that

$$
\liminf _{\varepsilon^{\prime} \rightarrow 0} \frac{1}{2{h_{\mathrm{ex}}^{\prime}}^{2}} \int_{B_{1}}\left|\nabla_{A^{\prime}} u^{\prime}\right|^{2}+\left(\operatorname{curl} A^{\prime}-h_{\mathrm{ex}}^{\prime}\right)^{2}+\frac{\left(1-\left|u^{\prime}\right|^{2}\right)^{2}}{2 \varepsilon^{\prime 2}} \geq \min _{\mu} E_{K}(\mu),
$$

where E_{K} is defined in (7.6) (K plays now the role of λ in (7.6)). But, from the description of the minimizer μ_{*} following Corollary 7.1, we have, using the notations there, that $\mu_{*}=\left(1-\frac{1}{2 K}\right) \mathbf{1}_{\omega_{K}}$, and that

$$
E_{K}\left(\mu_{*}\right) \geq \frac{1}{2 K}\left(1-\frac{1}{2 K}\right)\left|\omega_{K}\right|,
$$

where $\left|\omega_{K}\right| \rightarrow\left|B_{1}\right|$ as $K \rightarrow+\infty$. Therefore, replacing above, we find

$$
\liminf _{\varepsilon^{\prime} \rightarrow 0} \frac{1}{2 h_{\mathrm{ex}}^{\prime}}{ }^{2} \int_{B_{1}}\left|\nabla_{A^{\prime}} u^{\prime}\right|^{2}+\left(\operatorname{curl} A^{\prime}-h_{\mathrm{ex}}^{\prime}\right)^{2}+\frac{\left(1-\left|u^{\prime}\right|^{2}\right)^{2}}{2 \varepsilon^{\prime 2}} \geq
$$

and we note now that

$$
h_{\mathrm{ex}}^{\prime}{ }^{2}=K \frac{h_{\mathrm{ex}}}{\lambda^{2}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}},
$$

therefore

$$
\left.\int_{B_{1}}\left|\nabla_{A^{\prime}} u^{\prime}\right|^{2}+\left(\operatorname{curl} A^{\prime}-h_{\mathrm{ex}}^{\prime}\right)^{2}+\frac{\left(1-\left|u^{\prime}\right|^{2}\right)^{2}}{\geq} \frac{h_{\mathrm{ex}}}{2} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}} \right\rvert\,\left(1-\frac{1}{2 K}\right) \frac{\left|\omega_{K}\right|}{\lambda^{2}},
$$

which proves the desired result with

$$
\alpha_{K}=\left\lvert\,\left(1-\frac{1}{2 K}\right) \frac{\left|\omega_{K}\right|}{\left|B_{1}\right|} .\right.
$$

Clearly this tends to 1 as K tends to $=\infty$.
To conclude the proof of Theorem 8.1, we integrate (8.15) with respect to x. Letting U be any open subdomain of Ω, using Fubini's theorem, we have

$$
\begin{aligned}
& \int_{\substack{x \in U}} G_{\varepsilon}\left(u, A, B_{\lambda}^{x} \cap U\right)=\iint_{\substack{x \in U \\
y \in B_{\lambda}^{x} \cap U}} g_{\varepsilon}(u, A)(y) d y d x \\
= & \iint_{\substack{x \in U \\
y \in B_{\lambda}^{x} \cap U}} g_{\varepsilon}(u, A)(y) d x d y=\int_{y \in U}\left|B_{\lambda}^{y} \cap U\right| g_{\varepsilon}(u, A)(y) d y \leq \frac{\pi}{\lambda^{2}} G_{\varepsilon}(u, A, U)
\end{aligned}
$$

We deduce that

$$
\begin{align*}
\liminf _{\varepsilon \rightarrow 0} \frac{G_{\varepsilon}(u, A, U)}{h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} & \geq \liminf _{\varepsilon \rightarrow 0} \int_{x \in U} \frac{\lambda^{2} G_{\varepsilon}\left(u, A, B_{\lambda}^{x} \cap U\right)}{\pi h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} \\
& \geq \operatorname{limin}_{\varepsilon \rightarrow 0} \int_{x \in U, B_{\lambda}^{x} \subset U} \frac{\lambda^{2} G_{\varepsilon}\left(u, A, B_{\lambda}^{x} \cap U\right)}{\pi h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} \\
& \geq \int_{x \in U} \liminf _{\varepsilon \rightarrow 0}\left(\mathbf{1}_{B_{\lambda}^{x} \subset U} \frac{G_{\varepsilon}\left(u, A, B_{\lambda}^{x}\right)}{h_{\mathrm{ex}}\left|B_{\lambda}^{x}\right| \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}}\right) \\
& \geq \alpha_{K} \frac{|U|}{2}, \tag{8.20}
\end{align*}
$$

where we have used Fatou's lemma and (8.15). Since this is true for any $K>0$, we may take the limit $K \rightarrow+\infty$ on the right-hand side and find

$$
\liminf _{\varepsilon \rightarrow 0} \frac{G_{\varepsilon}(u, A, U)}{h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}} \geq \frac{|U|}{2} .
$$

In view of Proposition 8.1, we know that $\left(h_{\mathrm{ex}} \log \frac{1}{\varepsilon \sqrt{h_{\mathrm{ex}}}}\right)^{-1} g_{\varepsilon}\left(u_{\varepsilon}, A_{\varepsilon}\right)$ is bounded in $L^{1}(\Omega)$, hence has a weak limit g in the sense of measures. Since continuous functions on Ω can be uniformly approximated by characteristic functions, (8.20) allows to say that $g \geq \frac{d x}{2}$. But since (8.5) holds, there must be equality, which proves (8.1), and (8.2) immediately follows.

Bibliographic notes on Chapter 8: The result of this chapter was obtained in [180], but the proof is presented here under a much simpler form. The case of higher h_{ex}, of order b / ε^{2} with $b<1$, was studied in [182].

