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Abstract

This is the second in a series of papers in which we derive a I'-expansion for the two-
dimensional non-local Ginzburg-Landau energy with Coulomb repulsion known as the
Ohta-Kawasaki model in connection with diblock copolymer systems. In this model,
two phases appear, which interact via a nonlocal Coulomb type energy. Here we focus
on the sharp interface version of this energy in the regime where one of the phases
has very small volume fraction, thus creating small “droplets” of the minority phase
in a “sea” of the majority phase. In our previous paper, we computed the I'-limit of
the leading order energy, which yields the averaged behavior for almost minimizers,
namely that the density of droplets should be uniform. Here we go to the next order
and derive a next order I'-limit energy, which is exactly the Coulombian renormalized
energy obtained by Sandier and Serfaty as a limiting interaction energy for vortices
in the magnetic Ginzburg-Landau model. The derivation is based on the abstract
scheme of Sandier-Serfaty that serves to obtain lower bounds for 2-scale energies and
express them through some probabilities on patterns via the multiparameter ergodic
theorem. Without thus appealing to the Euler-Lagrange equation, we establish for
all configurations which have “almost minimal energy” the asymptotic roundness and
radius of the droplets, and the fact that they asymptotically shrink to points whose
arrangement minimizes the renormalized energy in some averaged sense. Via a kind of
I'-equivalence, the obtained results also yield an expansion of the minimal energy for
the original Ohta-Kawasaki energy. This leads to expecting to see triangular lattices
of droplets as energy minimizers.

1 Introduction

This is our second paper devoted to the I'-convergence study of the two-dimensional Ohta-
Kawasaki energy functional [28] in two space dimensions in the regime near the onset of



non-trivial minimizers. The energy functional has the following form:

5@]:/9( IVl + V(u) )dw+ // ) — D)Golw, ) (uly) — @) dedy,  (1.1)

where (2 is the domain occupied by the material, u :  — R is the scalar order parameter,
V(u) is a symmetric double-well potential with minima at u = +1, such as the usual
Ginzburg-Landau potential V (u) = £5(1 — u?)? (for simplicity, the overall coefficient in V
is chosen to make the associated surface tension constant to be equal to ¢, i.e., we have
f_ll V2V (u)du = 1), e > 0 is a parameter characterizing interfacial thickness, u € (—1,1)
is the background charge density, and Gy is the Neumann Green’s function of the Laplacian,
i.e., Gy solves

—AGo(@,y) = b —y) - Klz‘ /Q Go(a,y) dz =0, (1.2)

where A is the Laplacian in « and 6(z) is the Dirac delta-function, with Neumann boundary
conditions. Note that u is also assumed to satisfy the “charge neutrality” condition
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For a discussion of the motivation and the main quantitative features of this model, see
our first paper [19], as well as [25,26]. For specific applications to physical systems, we
refer the reader to [16,18,22,24,25,27,28,40].

In our first paper [19], we established the leading order term in the I'-expansion of the
energy in (1.1) in the scaling regime corresponding to the threshold between trivial and
non-trivial minimizers. More precisely, we studied the behavior of the energy as ¢ — 0
when

—1+ %3 Ine|'/35, (1.4)

for some fixed § > 0 and when € is a flat two-dimensional torus of side length £, i.e., when
Q = T? = [0,4)?, with periodic boundary conditions. As follows from [19, Theorem 2] and
the arguments in the proof of [19, Theorem 3|, in this regime minimizers of £ consist of
many small “droplets” (regions where u > 0) and their number blows up as ¢ — 0. We
showed that, after a suitable rescaling the energy functional in (1.1) I'-converges in the
sense of convergence of the (suitably normalized) droplet densities, to the limit functional
E°[u] defined for all densities u € M(T%) N H~1(T?) by:

Y ’s
B = 28 4 (528 - 20 / dp + 2 // Gz —y)du(z)duly),  (1.5)
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where G(x) is the screened Green’s function of the Laplacian, i.e., it solves the periodic
problem for the equation

~AG+ k*G =6(z) in T3 (1.6)

and k = 1/,/V"(1) = 2. Here we noted that the double integral in (1.5) is well defined
in the sense ff’ﬂ‘fx?l‘? G(x —y)dp(x)du(y) = fT? vdu, where the latter is interpreted as the
Hahn-Banach extension of the corresponding linear functional defined by the integral on
smooth test functions (see also [34, Sec. 7.3.1] and [9] for further discussion). Indeed,
v := G *dy is the convolution understood distributionally, i.e., (G *xdpu, f) := (G * f,du) =
ng (fo G(x — y)f(y)dy) du(x) for every f € C°°(T%) and, hence, by elliptic regularity
HvHHl(T[g) < CHfHH—l(Tg) for some C > 0, so v € H'(T?).

In particular, for 6 > ., where

o1
b = 532/%2, (1.7)

the limit energy E°[y] is minimized by du(z) = ji dz, where

p=130-3) and  E°[E] = 25(26 —6,). (1.8)

When § < 6., the limit energy is minimized by p = 0, with E°[0] = 62/(2x?). The value of
§ = 6. thus serves as the threshold separating the trivial and the non-trivial minimizers of
the energy in (1.1) together with (1.4) for sufficiently small . Above that threshold, the
droplet density of energy-minimizers converges to the uniform density f.

The key point that enables the analysis above is a kind of I'-equivalence between the
energy functional in (1.1) and its screened sharp interface analog (for general notions of
I'-equivalence or variational equivalence, see [3,8]):

Bl = ¢ [ vl da+ ;/T /TQ(U(;I;) _ @G — ) (uly) — @) drdy.  (1.9)

Here, G is the screened potential as in (1.6), and u € A, where
A:= BV(T%;{-1,1}), (1.10)

and we note that on the level of E° the neutrality condition in (1.3) has been removed.
As we showed in [19], following the approach of [26], for £ given by (1.1) in which @ = u°
and @¢ is defined in (1.4), we have

min £ = min E€ 4+ O(¢” min E°), (1.11)

for some a > 0. Therefore, in order to understand the leading order asymptotic expansion
of the minimal energy min £° in terms of | Ine| ™1, it is sufficient to obtain such an expansion
for min £¢. This is precisely what we will do in the present paper.



In view of the discussion above, in this paper we concentrate our efforts on the analysis
of the sharp interface energy E° in (1.9). An extension of our results to the original diffuse
interface energy £¢ would lead to further technical complications that lie beyond the scope
of the present paper and will be treated elsewhere. Here we wish to extract the next order
non-trivial term in the I'-expansion of the sharp interface energy E* after (1.5). In contrast
to [26], we will not use the Euler-Lagrange equation associated to (1.9), so our results about
minimizers will also be valid for “almost minimizers” (cf. Theorem 2).

We recall that for ¢ < 1 the energy minimizers for £ and § > d,. consist of O(|In¢|)
nearly circular droplets of radius 7 ~ 3/3¢/3|Ine|~1/3 uniformly distributed throughout
T? [26, Theorem 2.2]. This is in contrast with the study of [12,13] for a closely related
energy, where the number of droplets remains bounded as € — 0, and the authors extract
a limiting interaction energy for a finite number of points.

By I'-convergence, we obtained in [19, Theorem 1] the convergence of the droplet density
of almost minimizers (u®) of E*:

1
e (x) = 5572/3]1n£]71/3(1+u5(x)), (1.12)

to the uniform density i defined in (1.8). However, this result does not say anything about
the microscopic placement of droplets in the limit ¢ — 0. In order to understand the
asymptotic arrangement of droplets in an energy minimizer, our plan is to blow-up the
coordinates by a factor of \/|Ine|, which is the inverse of the scale of the typical inter-
droplet distance, and to extract the next order term in the I'-expansion of the energy in
terms of the limits as € — 0 of the blown-up configurations (which will consist of an infinite
number of point charges in the plane with identical charge).

We will show that the arrangement of the limit point configurations is governed by
the Coulombic renormalized energy W, which was introduced in [34]. That energy W
was already derived as a next order I'-limit for the magnetic Ginzburg-Landau model of
superconductivity [34,35], and also for two-dimensional Coulomb gases [37]. Our results
here follow the same method of [35], and yield almost identical conclusions.

The “Coulombic renormalized energy” is a way of computing a total Coulomb inter-
action between an infinite number of point charges in the plane, neutralized by a uniform
background charge (for more details see Section 2). It is shown in [35] that its minimum is
achieved. It is also shown there that the minimum among simple lattice patterns (of fixed
volume) is uniquely achieved by the triangular lattice (for a closely related result, see [10]),
and it is conjectured that the triangular lattice is also a global minimizer. This triangular
lattice is called “Abrikosov lattice” in the context of superconductivity and is observed in
experiments in superconductors [41].

The next order limit of E° that we shall derive below is in fact the average of the
energy W over all limits of blown-up configurations (i.e. average with respect to the
blow up center). Our result says that limits of blow-ups of (almost) minimizers should
minimize this average of W. This permits one to distinguish between different patterns



at the microscopic scale and it leads, in view of the conjecture above, to expecting to see
triangular lattices of droplets (in the limit ¢ — 0), around almost every blow-up center
(possibly with defects). Note that the selection of triangular lattices was also considered in
the context of the Ohta-Kawasaki energy by Chen and Oshita [10], but there they were only
obtained as minimizers among simple lattice configurations consisting of non-overlapping
ideally circular droplets.

It is somewhat expected that minimizers of the Ohta-Kawasaki energy in the macro-
scopic setting are periodic patterns in all space dimensions (in fact in the original paper [28]
only periodic patterns are considered as candidates for minimizers). This fact has never
been proved rigorously, except in one dimension by Miiller [23] (see also [31,42]), and at
the moment seems very difficult. For higher-dimensional problems, some recent results in
this direction were obtained in [2,26,38] establishing equidistribution of energy in various
versions of the Ohta-Kawasaki model on macroscopically large domains. Several other
results [12, 13,15, 39] were also obtained to characterize the geometry of minimizers on
smaller domains. The results we obtain here, in the regime of small volume fraction and in
dimension two, provide more quantitative and qualitative information (since we are able to
distinguish between the cost of various patterns, and have an idea of what the minimizers
should be like) and a first setting where periodicity can be expected to be proved.

The Ohta-Kawasaki setting differs from that of the magnetic Ginzburg-Landau model
in the fact that the droplet “charges” (i.e., their volume) are all positive, in contrast with
the vortex degrees in Ginzburg-Landau, which play an analogous role and can be both
positive and negative integers. It also differs in the fact that the droplet volumes are not
quantized, contrary to the degrees in the Ginzburg-Landau model. This creates difficulties
and the major difference in the proofs. In particular we have to account for the possibility
of many very small droplets, and we have to show that the isoperimetric terms in the energy
suffice to force (almost) all the droplets to be round and of fixed volume. This has to be
done at the same time as the lower bound for the other term in the energy, for example an
adapted “ball construction” for non-quantized quantities has to be re-implemented, and
the interplay between these two effects turns out to be delicate.

Our paper is organized as follows. In Section 2 we formulate the problem and state
our main results concerning the I'-limit of the next order term in the energy (1.9) after
the zeroth order energy derived in [19] is subtracted off. In Section 3, we derive a lower
bound on this next order energy via an energy expansion as done in [19] however isolating
lower order terms obtained via the process. We then proceed via a ball construction as
in [20,33,34] to obtain lower bounds on this energy in Section 4 and consequently obtain an
energy density bounded from below with almost the same energy via energy displacement
as in [35] in Section 5. In Section 6 we obtain explicit lower bounds on this density on
bounded sets in the plane in terms of the renormalized energy for a finite number of points.
We are then in the appropriate setting to apply the multiparameter ergodic theorem as
in [35] to extend the lower bounds obtained to global bounds, which we present at the



end of Section 6. Finally the corresponding upper bound (cf. Part (ii) of Theorem 1) is
presented in Section 7.

Some notations. We use the notation (u¥) € A to denote sequences of functions u® € A
as ¢ = ¢, — 0, where A is an admissible class. We also use the notation p € M(Q)
to denote a positive finite Radon measure dp on the domain 2. With a slight abuse of
notation, we will often speak of p as the “density” on € and set du(x) = pu(x)dx whenever
p € LY(Q). With some more abuse of notation, for a measurable set E we use |E| to
denote its Lebesgue measure, |0F| to denote its perimeter (in the sense of De Giorgi),
and p(E) to denote [, du. The symbols H'(Q), BV (), C*(2) and H~'(Q) denote the
usual Sobolev space, the space of functions of bounded variation, the space of k-times
continuously differentiable functions, and the dual of H'(Q), respectively. The symbol
0:(1) stands for the quantities that tend to zero as ¢ — 0 with the rate of convergence
depending only on ¢, § and k.

2 Problem formulation and main results

In the following, we fix the parameters £ > 0, 6 > 0 and £ > 0, and work with the energy
Ef in (1.9), which can be equivalently rewritten in terms of the connected components
Q2 of the family of sets of finite perimeter Q° := {u® = 41}, where (u°) € A are almost
minimizers of E¢, for sufficiently small ¢ (cf. the discussion at the beginning of Sec. 2
in [19]). The sets ¢ can be decomposed into countable unions of connected disjoint sets,
ie., Q° = (J;QF, whose boundaries 0€); are rectifiable and can be decomposed (up to
negligible sets) into countable unions of disjoint simple closed curves. Then the density u®
in (1.12) can be rewritten as

i (@) = e 2 Ine 3 Y xae (a), (2.1)

where xq: are the characteristic functions of {27. Motivated by the scaling analysis in the
discussion preceding equation (1.12), we define the rescaled areas and perimeters of the
droplets:

AS = 2B me)?P105],  PFi=e Y3 Ine|V/3)008). (2.2)

i -

Using these definitions, we obtain (see [19,26]) the following equivalent definition of the
energy of the family (u®):

52 92
Ef[uf] = e¥/3|Ine)?/3 (i; + Ee[u5]> , (2.3)



where

_“ig‘gz;( _Af)+z//m2 v A @)y, (24)

Also note the relation
A, 2.
To) \ ln €| Z (2:5)

As was shown in [19,26], in the limit ¢ — 0 the minimizers of E° are non-trivial if and
only if 6 > J., and we have asymptotically
de - -
min F° ~ 5 2( 5 — 0.)eY3| Ine)?/30? as € — 0. (2.6)
K

Furthermore, if p° is as in (2.1) and we let v® be the unique solution of
— AV + K2 =t in W2P(T?), (2.7)
for any p < oo, then we have

_ I - < .
v& =0 =52 (0 —dc) in  HY(T?). (2.8)
To extract the next order terms in the I'-expansion of E¢ we, therefore, subtract this

contribution from EF to define a new rescaled energy F© (per unit area):

1
31/3

Felu] := e 3| Ine| V302 E%[u] — | lne\;—;(%—&) (6 —0.)(In|Ine| +1n9). (2.9)
Note that we also added the third term into the bracket in the right-hand side of (2.9)
to subtract the next-to-leading order contribution of the droplet self-energy, and we have
scaled F* in a way that allows to extract a non-trivial O(1) contribution to the minimal
energy (see details in Section 3). The main result of this paper in fact is to establish
I'-convergence of F¢ to the renormalized energy W which we now define.

In [35], the renormalized energy W was introduced and defined in terms of the su-
perconducting current j, which is particularly convenient for the studies of the magnetic
Ginzburg-Landau model of superconductivity. Here, instead, we give an equivalent def-
inition, which is expressed in terms of the limiting electrostatic potential of the charged
droplets, after blow-up, which is the limit of some proper rescaling of v¢ (see below). How-
ever, this limiting electrostatic potential will only be known up to additive constants, due
to the fact that we will take limits over larger and larger tori. This issue can be dealt with
in a natural way by considering equivalence classes of potentials, whereby two potentials
differing by a constant are not distinguished:

] ={p+c|ceR} (2.10)



This definition turns the homogeneous spaces W1» (RY) into Banach spaces of equivalence
classes of functions in VVllof (R9) defined in (2.10) (see, e.g., [29]). Here we similarly define
the local analog of the homogeneous Sobolev spaces as

loc oc

Wit ®2) = {l¢] | ¢ € Wi (R}, (2.11)

with the notion of convergence to be that of the Lf o convergence of gradients. In the
following, we will omit the brackets in [-] to simplify the notation and will write ¢ €
VVll’p (R?) to imply that ¢ is any member of the equivalence class in (2.10).

oc
We define the admissible class of the renormalized energy as follows :

Definition 2.1. For given m > 0 and p € (1,2), we say that ¢ belongs to the admissible
class Ay, if ¢ € I/Vllo’p(RQ) and ¢ solves distributionally

C

—Ap = 2772 dg —m, (2.12)

a€N

where A C R? is a discrete set and

lim 2/ > ba(@)da = m. (2.13)

Remark 2.2. Observe that if p € Ay, then for every x € Br(0) we have

p(x)= > Inlz—al™" +eg(x), (2.14)

a€AR

where Ar := AN Bgr(0) is a finite set of distinct points and pr € C*(R?) is analytic in
Bgr(0). In particular, the definition of Ay, is independent of p.

We next define the renormalized energy.

Definition 2.3. For a given ¢ € U Am, the renormalized energy W of ¢ is defined as
m>0

1 1
W) :=limsup lim —— / —|Vy|?*xgrdz + 7lnn xr(a) |, 2.15
() Knl < S 5 Vel > xrla) (2.15)

—0
R—oo 7 ach

where K = [~ R, R)?, xr is a smooth cutoff function with the properties that 0 < xg < 1,
in Kp\ (0KrUKg_1), xg(x) =1 for all x € Kr_1, xr(x) =0 for all v € R*\Kp, and
|IVxgr| < C for some C > 0 independent of R.

Various properties of W are established in [35], we refer the reader to that paper. The
most relevant to us here are



1. mingy,, W is achieved for each m > 0.

2. If p € Ay, and ¢ () := (), then ¢’ € A; and

W) =m (W(!) - {logm). (2.16)

hence .
min W =m <minW - - logm> .
m Ay 4
3. W is minimized over potentials in .4; generated by charge configurations A consisting

of simple lattices by the potential of a triangular lattice, i.e. [35, Theorem 2 and
Remark 1.5],

1
min W(p) = W(p?) = —§ln(\/27rb In(1)[?) ~ —0.2011,
A simple lattice

where 7 = a +ib, n(1) = ¢"/** [[,,,(1 — ¢") is the Dedekind eta function, ¢ = €7,

a and b are real numbers such that A% = \/ﬁ ((1, 0)Z & (a, b)Z) is the dual lattice

to a triangular lattice A® whose unit cell has area 27, and ¢® solves (2.12) with
A=A~

In particular, from property 2 above it is easy to see that the role of m in the definition of
W is inconsequential.

We are now ready to state our main result. Let ¢ := |Ine|'/2£. For a given u € A,
we then introduce the potential (recall that ¢° is a representative in the equivalence class
defined in (2.10))

¢ (x) := 23723 Ine| o5 (x| Ine|~1/?2), (2.17)

where 9° is a periodic extension of v¢ from ’]I‘%E to the whole of R2. We also define P to be

the family of translation-invariant probability measures on Wﬁ;S (R?) concentrated on A,
with m = 372/3(5 — 4.).

Theorem 1. (I'-convergence of F¢) Fiz x>0, 6 > 6., p € (1,2) and £ > 0, and let F*®
be defined by (2.9). Then, as e — 0 we have

32/3(8 — &)
8

L FPop) = 34/3/W(g0)dP(g0) + : (2.18)

where P € P. More precisely:



i) (Lower Bound) Let (u®) € A be such that

lim sup F*[u®] < 400, (2.19)

e—0

and let P® be the probability measure on T/Vli’f(RQ) which is the pushforward of the
normalized uniform measure on T2 by the map x — ¢ (x+-), where ¢° is as in (2.17).

Then, upon extraction of a subsequence, (P¢) converges weakly to some P € P, in
the sense of measures on VV&)’S(RQ) and

liminf F*[uf] > F°[P]. (2.20)

e—0

ii) (Upper Bound) Conversely, for any probability measure P € P, letting Q be its push-
forward under —A, there exists (u¥) € A such that letting Q° be the pushforward
of the normalized Lebesgue measure on T?E by x — —Ap® (x + ), where ¢° is as in
(2.17), we have Q° — @, in the sense of measures on T/Vlgcl’p(]R2), and

lim sup F¢[uf] < FO[P], (2.21)

e—0

as € — 0.

We will prove that the minimum of F© is achieved. Moreover, it is achieved for any P € P
which is concentrated on minimizers of A, with m = 372/3(5 — 4,).

Remark 2.4. The phrasing of the theorem does not exactly fit the framework of I'-convergence,
since the lower bound result and the upper bound result are not expressed with the same
notion of convergence. However, since weak convergence of P. to P implies weak con-
vergence of Q. to Q, the theorem implies a result of I'-convergence where the sense of

convergence from P to P is taken to be the weak convergence of their push-forwards Q¢ to
the corresponding Q.

The next theorem expresses the consequence of Theorem 1 for almost minimizers:

Theorem 2. Let m = 37%/3(5 — 6.) and let (u) € A be a family of almost minimizers of
FO je., let

lim F€[uf] = min F°.

e—0 P
Then, if P is the limit measure from Theorem 1, P-almost every o minimizes W over A,.
In addition

3236 -4
H%nFO =33 minW + (8) (2.22)

m

10



Note that the formula in (2.22) is not totally obvious, since the probability measure con-
centrated on a single minimizer ¢ € A,, of W does not belong to P.

The result in Theorem 2 allows us to establish the expansion of the minimal value of
the original energy £° by combining it with (2.9) and (1.11).

Theorem 3. (Asymptotic expansion of min&®) Let V = £(1 —u?)?, k = 2 and

m =323 —6,). Fix 6 >0, and £ > 0, and let % be defined by (1.1) with @ = @ from
(1.4). Then, as e — 0 we have

2 min &° = 2‘102 (25 — 5.)eM5 | In e 2/3 —

1

YRETE (6 — 0.)e*3|Ine| " /3(In|Ine| + In9)

2/3(5 _ &
+&¥/3|Ing| /3 <34/3 I;lin W+ 3(6866)> + o(e*3| ne|~1/3).
(2.23)

As mentioned above, the I'-limit in Theorem 1 cannot be expressed in terms of a single
limiting function ¢, but rather it effectively averages W over all the blown-up limits of ¢®,
with respect to all the possible blow-up centers. Consequently, for almost minimizers of the
energy, we cannot guarantee that each blown-up potential ¢® converges to a minimizer of
W, but only that this is true after blow-up except around points that belong to a set with
asymptotically vanishing volume fraction. Indeed, one could easily imagine a configuration
with some small regions where the configuration does not ressemble any minimizer of W,
and this would not contradict the fact of being an almost minimizer since these regions
would contribute only a negligible fraction to the energy. Near all the good blow-up centers,
we will know some more about the droplets: it will be shown in Theorem 4 that they are
asymptotically round and of optimal radii.

We finish this section with a short sketch of the proof. Most of the proof consists in
proving the lower bound, i.e. Part (i) of Theorem 1. The first step, accomplished in Section
3 is, following the ideas of [26], to extract from F© some positive terms involving the sizes
and shapes of the droplets and which are minimized by round droplets of fixed appropriate
radius. These positive terms, gathered in what will be called M., can be put aside and
will serve to control the discrepancy between the droplets and the ideal round droplets
of optimal sizes. We then consider what remains when this M, is subtracted off from F*
and express it in blown-up coordinates 2’ = x+/|Ing|. It is then an energy functional,
expressed in terms of some rescaling of ¢° which has no sign and which ressembles that
studied in [35]. Thus we apply to it the strategy of [35]. The main point is to show that,
even though the energy density is not bounded below, it can be transformed into one that
is by absorbing the negative terms into positive terms in the energy in the sense of energy
displacement [35], while making only a small error. In order to prove that this is possible,
we first need to establish sharp lower bounds for the energy carried by the droplets (with
an error o(1) per droplet). These lower bounds contain possible errors which will later be

11



controlled via the M, term. This is done in Section 4 via a ball construction as in [20,33,34].
In Section 5 we use these lower bounds to perform the energy displacement as in [35]. Once
the energy density has been replaced this way by an essentially equivalent energy density
which is bounded below, we can apply the abstract scheme of [35] that serves to obtain
lower bounds for “two-scale energies” which I'-converge at the microscopic scale, via the
multiparameter ergodic theorem. This is achieved is Section 6. Prior to this we obtain
explicit lower bounds at the microscopic scale in terms of the renormalized energy for a
finite number of points. It is then these lower bounds that get integrated out, or averaged
out at the macroscopic scale to provide a global lower bound.

Finally, there remains to obtain the corresponding upper bound. This is done via an
explicit construction of a periodic test-configuration, following again the method of [35].

3 Derivation of the leading order energy

In preparation for the proof of Theorem 1, we define

! 1/3
pe 1= 31/351/3|ln8|1/6 and 7. := |Ine] . (3.1)
| In p |

Recall that to leading order the droplets are expected to be circular with radius 3!/3¢!/ 3 Inel
Thus pe is the expected radius, once we have blown up coordinates by the factor of /| In¢|,
which will be done below. Also, we know that the expected normalized area A; is 3%/3x,
but this is only true up to lower order terms which were negligible in [19]; as we show below,
a more precise estimate is A; ~ 772, so 7= above can be viewed as a “corrected” normal-
ized droplet radius. Since our estimates must be accurate up to o-(1) per droplet and the
self-energy of a droplet is of order A?In p., we can no longer ignore these corrections.
The goal of the next subsection is to obtain an explicit lower bound for F. defined by
(2.9) in terms of the droplet areas and perimeters, which will then be studied in Sections

4 and onward. We follow the analysis of [19], but isolate higher order terms.

3.1 Energy extraction

We begin with the original energy E¢ (cf. (2.4)) while adding and subtracting the truncated
self interaction: first we define, for v € (0, 1), truncated droplet volumes by

(3.2)

i

- |43 if AS < 3%37y71,
(32/37r'y_1\Aﬂ)1/2 if A5 > 3237y~

as in [19]. The motivation for this truncation will become clear in the proof of Proposi-

tion 5.1, when we obtain lower bounds on the energy on annuli. In [19] the self-interaction
Az

energy of each droplet extracted from E° was IaTine]

yielding in the end the leading order

12
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energy E[u) in (1.5). A more precise calculation of the self-interaction energy corrects the
coefficient of |A$|2 by an O(In|Ing|/|In¢|) term, yielding the following corrected leading
order energy for E¢:

w=to+(2-3) [ ez f[ G pmn. 6

The energy in (3.3) is explicitly minimized by du(z) = fic dz (again a correction to the
previously known f from (1.8)) where

1 /- 3k2 _ 3k2
ho— - (65— f 5> 2o 4
He 2< 2@) or T (3.4)

5.2 [ (3\YP 3\
. 0o _ Oc
min E, = 52 {25 (7@) — ¢ (7?) : (3.5)

Observing that 7. — 3'/3 we immediately check that

and

e —> [ ase — 0, (3.6)

and in addition that (3.5) converges to the second expression in (1.8). To obtain the next
order term, we Taylor-expand the obtained formulas upon substituting the definition of 7.
After some algebra, we obtain

Se (25— 3.) 1 (g_gc)ln]ln5]+ln9+O<(ln]ln€)2>' (3.7)

(2min EY = —
TR T o2 4.-31/3 |Inel |Ine|?

Recalling once again the definition of F© from (2.9), we then find

In|l 2
Flu®] = | Ing| (874/3‘ ln6|_2/3€*2E5[u5] — 2 minEg) +0 ((n||1;1€£|])> ,

and in view of the definition of E¢ from (2.3), we thus may write

- 5202 (In|Inel)?
er. €1 __ -2 £r,,E _ : 0
Feluf] = |Ine|l (E [u]+—2’€2 mlnE€> +O< e > (3.8)

Thus obtaining a lower bound for the first term in the right-hand side of (3.8) implies, up
to 0:(1), a lower bound for F. This is how we proceed to prove Lemma 3.1 below.
With this in mind, we begin by setting

h 1 /- 3k?
€ _ &€ € hE — 5_7 .
vEu |lne|’ T ( 2@)’ (39)

where ©° is the solution to (2.7) with right side equal to fi. in (3.4).
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3.2 Blowup of coordinates
We now rescale the domain T% by making the change of variables
2’ =xy/|Inel,
h.(z') = he(z), (3.10)
. - 05y /Thne,
¢ = (/| Inel.

Observe that
o (2)=2-372BpL (') V2l eTZ, (3.11)

where ¢ is defined by (2.17). It turns out to be more convenient to work with h. and
rescale only at the end back to ¢°.

3.3 Main result

We are now ready to state the main result of this section, which provides an explicit lower
bound on F¢. The strategy, in particular for dealing with droplets that are too small or
too large is the same as [19], except that we need to go to higher order terms.

Proposition 3.1. There exist universal constants v € (0, %), c1 > 0,c9 >0, c3 >0 and
g0 > 0 such that if 6 > 0. and (u°) € A with Q° := {u® > 0}, then for all ¢ < g9

2 K2 1 i
CFuf] > M + |m€|/ <|Vh;|2 aT |h;|2> da! ——5 > AP +o:(1),
Tee € A=>32/37y
(3.12)

where My > 0 is defined by

Mei= Y (P = A +er Y A

A5>32/37y—1

+ e Z (A5 —772)% + c3 Z A, (3.13)

32/37WSA§S32/37T771 AZ§<32/37T,7

Remark 3.2. Defining 3 := 3%/31~, by isoperimetric inequality applied to each connected
component of QF separately every term in the first sum in the definition of M. in (3.13)
is non-negative. In particular, M. measures the discrepancy between the droplets 25 with
A > 8 and disks of radius 7.
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The proposition will be proved below, but before let us examine some of its fur-
ther consequences. The result of the proposition implies that our a priori assumption
lim sup, _,y F¥[u®] < 400 translates into

) 2
+/ VAL +
[Ine| Jre, |Ine|

for some C' > 0 independent of ¢ < 1, which, in view of (3.1) is also

2 2
M. + / IVRL2 + =
|Inel T3 |Inel

A major goal of the next sections is to obtain the following estimate

5!2> dz' — = Z |A5)2 < C,

E Ae>6

1 .
5|2) dm'—%|lnpg| d AP <c (3.14)
As>p

1 ~
el /TQ (Vh?f? mn ‘!h’F) dr' — o |wpd 3 VAT | > 0w +2), (3.15)
“ Az

for some C' > 0 independent of ¢ < 1, so that the a priori bound (3.14) in fact implies
that M. is uniformly bounded independently of € for small €. This will be used crucially
in Section 6.2.

We note that h.(2') satisfies the equation

2

K
|Inel

—ARL + hL = ul — i in W*P(T%) (3.16)

where we define in TZ

ZA%E (3.17)

and

~ xar _(2')

| 1,€

which will be used in what follows. Notice that each 5f(x’ ) approximates the Dirac delta
concentrated on some point in the support of Q} _ and, hence, u(2")dz" approximates the
measure associated with the collection of point charges with magnitude A;. In particular,
the measure dy. evaluated over the whole torus equals the total charge: ul(T%) =, AS.
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3.4 Proof of Proposition 3.1

- Step 1: We are first going to show that for universally small ¢ > 0 and all v € (0, %) we
have
CFW) > T+ Ty + Ts + Ty + T + 0:(1), (3.19)

where

=3 (P - VA A), (3.20)

’77/2 2
— I3
Ty=-— > (A5 — 772)?, (3.21)
32/3ry<A$<32/37y—1
y5/2
— 6
As< <32/37y
Ty= Y (6797 =1) 45 (3.23)
A5>32/37y—1
1 ~

Ts = Vhe|? + 2| h.|? As2 3.24
= gy fy (VR ) de = 37 1A (321)

To bound F¢[uf] from below, we start from (3.8). In particular, in view of (2.7) we may
rewrite (2.4) as

_ 1 2
Ef[uf] = el Z (PE - 5AE> /2 (IVo°|? + K2|v°|?) dz
i LY

1
= Pf — \/An A7
|Ine| < < m )
20 1 -
VATAS = A7 Az)? 2
|1ns|z( " AT 329
1 -
) €12 21,12 _ A(;Z. 9
+ /T%(wm + w2 0°[?) da W?“ng‘zy f| (3.26)

We start by focusing on (3.25). First, in the case A > 32/374~1 we have \flﬂQ =
32/37y~1A¢ and hence, recalling that 7. = 3/3 + 0.(1), where o.(1) depends only on
€, we have for € universally small and v < %:

|A5)2 A 237y -2 N o L e \?
= (3 3772 + 3772 = A R G (31/3)
31
> A <_ +- (vt - 6)> . (3.27)
e 6
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We conclude that for A5 > 32/374~1, we have

62
( 47TAE+’ | %A*f) (3—25+é( ! 6)>A§. (3.28)
(e

K2 e

On the other hand, when A < 32/374~1 we have fl‘f = A% and we proceed as follows.
Let us begin by defining, similarly to [19], the function

27,
\/5 71'7"3
2

for € (0,400) and observe that f is convex and attains its minimum of % at x = 77,

with 3 /7
" _ ™
f(x) = 5252 > 0.

By a second order Taylor expansion of f around 772, using the fact that f” is decreasing
n (0,400), we then have for all x < xg

=zf(x) >z <E)) + j\é/i (z— 7777?)2> . (3.29)
Lo

Te

fz) =

2

T
drx + —
e

We, hence, conclude that when 32/3777 <A< 32/3777_1, we have

As2 26 26 5/2
e | T' - SA> <:’ - n2> A 43732/3145(14? — mi2)?, (3.30)
T3 e T
and when A% < 3%/37+, we have
|AZ2 26 3 26 y~5/2 -
£ _~7 A€ = 2 A€ .
4T AS + = KZA Ea A + R 32/3A (A; —7r2)7, (3.31)

Combining (3.28), (3.30) and (3.31), summing over all 7, and distinguishing the different
cases, we can now bound (3.25) from below as follows:

2 1 - 3 2
VATAS — S AT+ AP ) > (S - = EA?
;( 7Tz /4;2 z+ﬂ_77§| Z|>_<F5 I<J2> - (3
7/2

Y 2
+ ? Z (A€ — 7T )
32/3my<As<32/37y—1
—5/2
i
+ FRCREYYE Z AS(AS — mi2)?
As<32/3 7y
+ > (o)A (3.32)

A5>32/3y—1

17



We now focus on the term in (3.26). Using (3.9), we can write the integral in (3.26) as:

2/ (Vo |2 + k2v°)?) da
T3

2
L

/(Nh ? + k*h2) dx 42 /hd:c+2/<2|ve|2€2 (3.33)

lln\

Integrating (2.7) over T? and recalling the definition of k. in (3.9), as well as (2.5), leads
to

4K20° 4v°
— = ) Af — 4?0 34
el oo hedx e : s — 4ArR%|0°|*0 (3.34)
Combining (3.33) and (3.34), we then find

2

2 21,2 _ 2, 272
2/’]1‘? (’Vv€| + K |'UE’ )dl’— llng‘z/,]ri (‘thl + K h&) d.ﬁU
1 (3 26
_ _ A —9 2|1=€12 2' .
el (fs /<:2> % $— 2r°|0°|0 (3.35)

Also, by direct computation using (3.5) and (3.9) we have
5202
2K?

Therefore, combining this with (3.8), (3.32) and (3.35), after passing to the rescaled coor-
dinates and performing the cancellations we find that
K
F ) o

1 ~
- 73 Z |‘41€|2 + 08(1)7 (337)

262|5°)20% = — min EC. (3.36)

(PFeu ]>T1+T2+T3+T4+/ <

which is nothing but (3.19).
- Step 2:  We proceed to absorbing the contributions of the small droplets in (3.24) by
(3.21). To that effect, we observe that, for the function

—5/2 1 —5/2 4512
= 2212 2, VT 2
(bg($) = mﬂj(fﬁ — 7TT€) - %I Z W {7[' re — <27T7’ + 7"6 ) ﬂf} y (338)

there exists a universal v € (0, ) such that ®.(z) > = whenever 0 < 2 < 3237y and ¢ is
universally small. Using this observation, we may absorb all the terms with A < 32/3 7y
appearing in the second term in (3.24) into (3.22) by suitably reducing the coefficient in
front of the latter. This proves the result. O
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4 Ball construction

The goal of this section is to show (3.15) using the abstract framework of Theorem 3 in [35].
The difficulty in doing this, as in the case of the Ginzburg-Landau model treated in [35],
is that the energy density el — L|Inp.| > A58 | A5|20¢ is not positive (or bounded below
independently of (uf)). The next two subsections are meant to go around this difficulty
by showing that this energy density can be modified, by displacing a part of the energy
from the regions where the energy density is positive into regions where the energy density
is negative in order to bound the modified energy density from below while making only
a small enough error. This is achieved by obtaining sharp lower bounds on the energy of
the droplets. Since their volumes and shapes are a priori unknown, the terms in M, are
used to control in a quantitative way the deviations from the droplets being balls of fixed
volume.

In this section we perform a ball construction which follows the procedure of [35]. The
goal is to cover the droplets {an} whose volumes are bounded from below by a given
B > 0 with a finite collection of disjoint closed balls whose radii are smaller than 1, on
which we have a good lower bound for the energy in the left-hand side of (3.15). This
is possible for sufficiently small ¢ in view of the fact that ¢ — oo and that the leading
order asymptotic behavior of the energy from (2.6) yields control on the perimeter and,
therefore, the essential diameter of each of Q;E The precise statements are given below.
We will also need the following basic result, which holds for sufficiently small ¢ ensuring
that the droplets are smaller than the sidelength of the torus (see the discussion at the
beginning of Sec. 2 in [19]).

Lemma 4.1. There exists ¢g > 0 depending only on £, r, § and sup,~q F¢[u®] such that
for all e < ey we have

ess diam(Q; ) < c|O€Y; (4.1)

b
for some universal ¢ > 0.

From now on and for the rest of the paper we fix v to be the constant given in Propo-
sition 3.1 and, as in the previous section, we define 3 = 32/37+. We also introduce the
following notation which will be used repeatedly below. To index the droplets, we will use
the following definitions:

Ig:={ieN:A] > B}, Ip:={ieN:|Q N(TE\E)| =0}, Igp:=I3NIg, (4.2)

where E C T%. For a collection of balls B, the number 7(B) (also called the total radius
of the collection) denotes the sum of the radii of the balls in B. For simplicity, we will say
that a ball B covers Q;E? ifi e Ip.

The principle of the ball construction introduced by Jerrard [20] and Sandier [33] and

adapted to the present situation is to start from an initial set, here [ J,. I Q) _ for a given
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U C T%E and cover it by a union of finitely many closed balls with sufficiently small radii.
This collection can then be transformed into a collection of disjoint closed balls by the
procedure, whereby every pair of intersecting balls is replaced by a larger ball whose radius
equals the sum of the radii of the smaller balls and which contains the smaller balls. This
process is repeated until all the balls are disjoint. The obtained collection will be denoted
By, its total radius is r(By). Then each ball is dilated by the same factor with respect to
its corresponding center. As the dilation factor increases, some balls may touch. If that
happens, the above procedure of ball merging is applied again to obtain a new collection of
disjoint balls of the same total radius. The construction can be stopped when any desired
total radius r is reached, provided that r is universally small compared to ¢¢. This yields
a collection B, covering the initial set and containing a logarithmic energy [20, 33].

We now give the statement of our result concerning the ball construction and the
associated lower bounds. Throughout the rest of the paper we use the notation f* :=
max(f,0) and f~ := —min(f,0).

Proposition 4.2. Let U C T% be an open set such that Igy # @, and assume that (2.19)
holds.

- There ezists eg > 0, 19 € (0,1) and C > 0 depending only on ¢, k, § and sup,~q F€[uf]
such that for all € < gg there exists a collection of finitely many disjoint closed balls
By whose union covers Q. _ and such that

iEIﬁyU 1,€

r(Bo) < ce'*|nelV/S " PF <y, (4.3)
i€lg U

for some universal ¢ > 0. Furthermore, for every r € [r(By),ro] there is a family of
disjoint closed balls B, of total radius r covering By.

- For every B € B, such that B C U we have

/ |Vh’|2dx’+’{72|h’\2 do' >+ (n—" e ' > AP
B c 4| Ine|" ~ 27 r(Bo) v

i€lg B

for some ¢ > 0 depending only on k and §.
- If B € B,., for any non-negative Lipschitz function x with support in U, we have

/ |Vh’|2d’+*”"72|h’|2 o' — = (- +Z WHE
BX el &% 4| Ine|" * T o r(Byp) “ il

i€l p

> —C||Vxllo Y |4

iEIB,B

where x; = I ngda;’, with Sf(x’) defined in (3.18), for some ¢ > 0 depending only
on k and §, and a universal C > 0.
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Remark 4.3. The explanation for the factor ofi i front of “";25||h’8|2 s that we must

‘save’ a fraction of this term for the mass displacement argument in Section 5 and in the
convergence result in Section 6.

Proof of the first item. Choose an arbitrary ro € (0,1). As in [19], from the basic lower
bound on E¢ (see [19, Equations (2.12) and (2.15)]):

_ 2

_ 1 26 2

Ef[uf] > E ) o —— E A5+ ————— E AS 4.4
] = |Ingl - ' K?|Ing| - it k202 Ine|? < - Z> ’ (44)

where A5 and P7 are defined in (2.2), we obtain with the help of (2.19) that

. 1 ) 1
lim sup e Z A; < C, lim sup Tl Z PE<C, (4.5)

e—0 e—0

for some C' > 0 depending only on /, k, § and sup,-q F*[u?].

As is well-known, the essential diameter of a connected component of a set of finite
perimeter on a torus can be bounded by its perimeter, provided that the latter is universally
small compared to the size of the torus (see, e.g., [4]). Therefore, in view of the the definition
of Pf in (2.2) and the second of (4.5), for sufficiently small € it is possible to cover each Qg’g
with ¢ € Ig by a closed ball B;, so that the collection By consisting of all B;’s (possibly
intersecting) has total radius

ro(Bo) < Ce/?|Ine|'/6 Z P;, (4.6)

1i€lg

for some universal C' > 0. Furthermore, by the first inequality in (4.5) and the fact that
A; > B for all i € Ig 17 the collection By consists of only finitely many balls. Therefore, we
can apply the construction a la Jerrard and Sandier outlined at the beginning of this section
to obtain the desired family of balls By and B,, with r(By) = 7(Bo). The estimate on the
radii follows by combining the second of (4.5) and (4.6) and the fact that ¢ — oo with the
rate depending only on ¢, for sufficiently small € depending on ¢, &, 6, sup,~q F¢[u°] and
Q. ]

Proof of the second item. Let B C U be a ball in the collection B,.. Denote the radius of

B by rp and set
X /h’d’
= — T
© el Jp ®

Integrating (3.16) over B and applying the divergence theorem, we have

OhL 1
dH (2') = mpe — X, (4.7)
OB 61/
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where
maei= [ (i)~ p)da' = 3 45+ Y 005 - (B,
B iclp i¢lp

for some 6; € [0,1) representing the volume fraction in B of those droplets that are not
covered completely by B, and v is the inward normal to dB. Using the Cauchy-Schwarz
inequality, we then deduce from (4.7) that

2
1 mp . —2mpXe
VAL dH (') > —— - X.)? > —=F ’ 4.8
| IVHR ) 2 g - X > TR (4.9
By another application of the Cauchy-Schwarz inequality, we may write

X2 |Ing|
h|*d : 4.9
4lne|/ (hel” da = 47TTB K2 (4.9)

We now add (4.8) and (4.9) and optimize the right-hand side over X.. We obtain

12 12 3./ B,e Crp
4.1
/ |Vh| d?-[ |/\h\ dx _27rrB( ]1115\)’ (4.10)

for C = k*. Recalling that rg < r < 79 < 1, we can choose ¢ sufficiently small depending
only on k so that the term in parentheses above is positive.
Inserting the definition of mp . into (4.10) and discarding some positive terms yields

h.|%d /h’2d
| vnpat @)« i [ s

~ 2 Crp
QWTB(ZAE—FZeAg M€|B|) ( |ln€|>

i€lp

QWB ( dA+> 0 AE) 1— W!BI( > A?)_1 — ﬁ;; . (4.11)

i€l 7,€IB i€l

We now use the fact that by construction B covers at least one Q;,s with A7 > . This

leads us to
Vh’ 2d h.|? da’

2 ifr2 Crp
> ( A+ Ny, AE) (1 _ B _
27r7'B Z Z;;B B |Ine|
1 -
> AsP2 (1 - 4.12
_QWB.Z |47 |17 (1 —crp), (4.12)
lGIB,B
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for some ¢ > 0 depending only on s and J, where in the last line we used that AS > flf .
Hence there exists 7o € (0,1) depending only on &, and § such that the right-hand side of
(4.12) is positive.

Finally, let us define F(z,r) := fB () | VI 2 da’ + 4|1n€| fB () 11E 2 da’, where B(z,7)

is the ball centered at x of radius . The relation (4.12) then reads for B(x,r) = B € B,
and a.e. r € (r(By), rol:

- > R 5 .
37‘ 27r Z 4P (4.13)

ZEIB B

with ¢ as before. Then using [34, Proposition 4.1}, for every B € B(s) := B, with r =
e®r(By) (using the notation of [34, Theorem 4.2]) we have

12 "'BK / € —cr
/B\Boyvmd+ |/|hd:c>/ Z Z|A (1= er(B(L)) dt

BeB(t) " iEl,
B'CB
/ Z Z AP (1 — ce'r(Bo)) dt
0 pieB) " i€l,
B’CB
o SR (o) )
ZEIEB )

where we observed that the double summation appearing in the first and second lines is
simply the summation over Ig p. Once again, in view of the fact that rp < 1 and that
both terms in the integrand of the left-hand side of (4.14) are non-negative, this completes
the proof of the second item. O

Proof of the third item. This follows [35]. Let x be a non-negative Lipschitz function with
support in U. By the “layer-cake” theorem [21], for any B € B, we have

R G L A A (LA
P T L “Joo Jees U T dlng]

where E; := {x > t}. If i € I3 g, then by construction for any s € [r(By),r] there exists a
unique closed ball B; ; € By containing Q;E Therefore, for ¢ > 0 we can define

6|2> dx'dt, (4.15)

s(i,t) :=sup{s € [r(Bo),r] : Bis C Ei},

with the convention that s(i,t) = r(By) if the set is empty. We also let B! := B; s(it)
whenever s(i,t) > r(By). Note that for each i € Ig g we have that t — s(4,t) is a non-
increasing function. In particular, we can define t; > 0 to be the supremum of the set of
t’s at which s(i,t) = r (or zero, if this set is empty).
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If t > t; and s(i,t) > r(Bo), then for any z € Q;_ and any y € B!\ E; (which is not
empty) we have
x(x) =t < x(x) = x(y) < 25(0, 1) [|Vx|oo- (4.16)

Averaging over all z € 2, _, we hence deduce

7/57
Xi —t < 25(4, 1) || V]| co- (4.17)

Now, for any ¢ > 0 the collection {B}icr, ,,, where Ig gy := {i € Igp : s(i,t) > r(Bo)}
is disjoint. Indeed if 7, j € Ig g and s(i,t) > s(j,t) then, since By is disjoint, the balls
B; 4,y and Bj g 1) are either equal or disjoint. If they are disjoint we note that s(i,t) >
s(j,t) implies that B, ;4 < Bjsau, and, therefore, Bt = Bj () and B = B ;)
are disjoint. If they are equal and s(i,t) > s(], t), then B sty C B contradlctmg the

definition of s(j,t). So s(j,t) = s(i,t) and then B} = B}.
Now assume that B" € {B]}ici, 5, and let s be the common value of s(i,t) for i’s in

Ig p/. Then, the previous item of the proposition yields

//(\Vh 2+ 4| | |2)dx 21 <1nr(;0)—cs)+ S 14

i€lg pr g
. / t
Summing over B’ € {B; }ic1, 5 ,, we deduce

/ <|Vh/|2 Lo 2 |h/|2> dCC > i Z ’A~€|2 <1n S(i,t) —Cs(i t)>+
BNE, : 4Inel 27 ’ 7(Bo) ’

ZGIB Bt

= Z |As‘2( i ; cs(z‘,t)>+, (4.18)

ZGIB B

where in the last inequality we took into consideration that all the terms corresponding
toi € Iz g\ Ig B give no contribution to the sum in the right-hand side. Integrating the
above expression over ¢ and using the fact that ro(By) < s(i,t) < r yields

/+00/ (’Vhl |2 + |2> dr dt > Z ’A€’2/ : <1 S(i,t) >+dt
. — n —cr
0 E:NB | | r(Bo)

ZEI@
> LS Az (o Z |AE|2/ RETECUFRT
~ 2 e r(By) T

iGI&B lEI B

We now concentrate on the last term in (4.19). Using the estimate in (4.17) and the
definition of t;, we can bound the integral in this term as follows

Xi it Xi i — t
/ n 200 gy > / In <X) dt > —C|| Vx| o, (4.20)
0 t;

r 2r||IVx|loo
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for some universal C' > 0, which is obtained by an explicit computation and the fact that
r < rp < 1. Finally, combining (4.20) with (4.19), the statement follows from (4.15). O

Remark 4.4. Inspecting the proof, we note that the statements of the proposition are still
2

true with the left-hand sides replaced by fB\Bo X|VRL? da’ + el [ x|hLPda (with x = 1

or x Lipschitz, respectively).

5 Energy displacement

In this section, we follow the idea of [35] of localizing the ball construction and combine
it with a “energy displacement” which allows to reduce to the situation where the energy
density in (3.15) is bounded below. For the proposition below we define for all 2’ € T%:

v(a') =) JATPE (), (5.1)

iEIﬁ

where 8¢ (2') is given by (3.18). We also recall that p. defined in (3.1) is the expected radius
of droplets in a minimizing configuration in the blown up coordinates.

We cover "JI‘%E by the balls of radius %ro whose centers are in %OZQ. We call this cover
{Ua}a and {z4}q the centers. We also introduce D, := B(zq, ?j%)

Proposition 5.1. Let h. satisfy (3.16), assume (2.19) holds, and set

K2

= |Vh. 2
/ Vhel” + 2|Ine¢]

1
B = g e, (5.2)

Then there exist €9 > 0 as in Proposition 4.2 and constants ¢,C > 0 depending only on &
and k such that for all € < g¢, there exists a family of integers {ny}o and a density g. on
']I'%‘E with the following properties.

- ge 18 bounded below:
ge > —cln* (M. +2) on T.

- For any a,
n% < C (g:(Da) + cln®(M. +2)) .

- For any Lipschitz function x on ']I'%E we have

/w X(fe — ge)da'

Y22

< CZ (¥ (Ua) + (na + Me) In(na + M: +2)) HVX”LOO(DQ)-

(5.3)
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Proof. The proof follows the method of [32], involving a localization of the ball construction
followed by energy displacement. Here we follow [35, Proposition 4.9]. One key difference
is the restriction to Ig which means we cover only those Q%E satisfying A5 > [ as in
Proposition (4.2).

- Step 1: Localization of the ball construction.

We use U, defined above as the cover on T%E. For each U, covering at least one droplet
whose volume is greater or equal than 3 and for any r € (r(By), 1r9) we construct disjoint
balls BY covering all Q;E with ¢ € Igy,, using Proposition 4.2. Then choosing a small
enough p € (r(By), %ro) independent of € (to be specified below), we may extract from
UaBy a disjoint family which covers U;e IBQ;@ as follows: Denoting by C a connected
component of Uy By, we claim that there exists g such that C C Uy, Indeed if z € C and
letting A be a Lebesgue number! of the covering of T% by {Us}a (it is easy to see that
in our case 3rg < A < irg), there exists ag such that B(x,\) C Ua,. If C intersected the
complement of Uy, there would exist a chain of balls connecting x to (Uy, )¢, each of which
would intersect U,,. Each of the balls in the chain would belong to some Bg‘/ with o’ such
that dist (Us/,Us,) < 2p < 379. Thus, calling k the universal maximum number of o’
such that dist (Uy/,Uq,) < %ro, the length of the chain is at most 2kp and thus A < 2kp.
If we choose p < A/(2k), this is impossible and the claim is proved. Let us then choose
p = A\/(4k). By the above, each C is included in some U,,.

We next obtain a disjoint cover of Ujej, Q;E from Uy Bj. Let C be a connected component
of UQBS‘. By the discussion of the preceding paragraph, there exists an index g such that
C C Uq,. We then remove from C all the balls which do not belong to Bj° and still denote
by Bj° the obtained collection. We repeat this process for all the connected components
and obtain a disjoint cover B, = UaBj of Uie IBQ’/i,E' Note that this procedure uniquely
associates an « to a given B € B, as well as to each Q;,e for a given i € Ig by assigning
to it the ball in B, that covers it, and then the « of this ball. We will use this repeatedly
below. We also slightly abuse the notation by sometimes using By to denote the union of
the balls in the family By.

We now proceed to the energy displacement.

- Step 2: Energy displacement in the balls.

Note that by construction every ball in BY is included in U,. From the last item of
Proposition 4.2 applied to a ball B € By, if € is small enough then, for any Lipschitz
non-negative x we have for some ¢ > 0 depending only on x and ¢ and a universal C' > 0

/ ’Vh/’2+"€72’h/|2 d /_i 1 P " Z "AEP
5\ T e e ) T \ Mgy T e

i€lg B

> —Cv*(B)IVxl L= (B)

! A Lebesgue number of a covering of a compact set is a number A > 0 such that every subset of diameter
less than A is contained in some element of the covering.
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where v is defined by (5.1). Rewriting the above, recalling the definition (3.1) and defining
No > 1 to be the number of droplets included in U, D B and satisfying A > 3, we have

2
112 K /12 ! 1 p n€2 !
v _ _ | A2
Lo (19 i) ao o (2] 30wl + [ s

iEIﬁ,B

> —Cv*(B)[|Vx| L~y

where we set 7y 1= % and define (recall that « implicitly depends on i € Ig)

o) = 5 DA (W00 5 = o AP (2 ) @) 6

iGIB ’iGIB

The quantity w. in some sense measures the discrepancy between the droplets QLE and
balls of radius p.. We will thus naturally use M, in (3.13) to control it. Note also that it
is only supported in the droplets, hence in the balls of B,,.

Applying Lemma 3.1 of [32] to

2

K 1 P 0%

= | VAL h? — — (1 —c) > AP 1
fB,E | 5| +4’1n€’| a| ot npena ¢ 5 | z| i T We B
eig,B

we deduce the existence of a positive measure gp . such that

”fB,E - gB,EHLip* S CVE(B)) (55)

where Lip* denotes the dual norm to the space of Lipschitz functions and C' > 0 is universal.

- Step 3: Energy displacement on annuli and definition of g..

We define a set C, as follows: recall that p was assumed equal to \/(4k), where A < Irg
and k bounds the number of s such that dist (Uy, Us) < 370 for any given a.. Therefore
the total radius of the balls in B, which are at distance less than ry from U, is at most
kp = %m. In particular, letting T;, denote the set of t € (3, ?Q%) such that the circle of
center x, (where we recall x, is the center of U,) and radius ¢ does not intersect Bz‘, we
have |T,| > ro. We let Co = {2 | |z — 24| € To} and recall that Dy = B(zq, 22).

Let t € T,. Arguing exactly as in the proof of (4.10), we find that

2 m2 K2t
VA2 dH (2 K / W2de > et (1 —
/BB(aca,t) ‘ E’ 7 (.T ) + 4| 1Il€| B(za,t) | E| = 27t 4| 1118|

with mg 4 := fB(xa 9 (uL(z")—pf) da’. Arguing as in (4.12) and using the fact that B(zq, 570)
contains all the droplets with ¢ € Igy,, we find that we can take e sufficiently small
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depending on k, and g sufficiently small depending on & and § such that for all t € T},

/ |VRL |2 dH( / \hL|? da’ > o437
OB(za,t) 4‘ 1 ‘ B(zast i€lg v,
Integrating this over t € Ty, using that |T,| > 1%7“0, we obtain that

/ |Vh;|2dx’+ |/ |hL|2da’ >c< > A5> : (5.6)
Ca

lEIg Ua

with ¢ > 0 depending only on 7, hence on & and 6.

We now trivially extend the estimate in (5.6) to all s, including those U, that contain
no droplets of size greater or equal than 5. The overlap number of the sets {Cy, }4, defined
as the maximum number of sets to which a given 2’/ € ']I‘%8 belongs is bounded above by
the overlap number of the sets {D,}q, call it k’. Since the latter collection of balls covers
the entire T2, we have k' > 1. Then, letting

2
fé = f& Z fBE_ (‘vh/2+ 2|1 |’ :—:’2> ZE\B + | |’ 6’2
BeB,
1 p AEI2 e
+%Z 1nn—fc |AS 205 — we, (5.7)
i€lg «

and

1
fa,a = ﬁ <|Vh/s‘2 +

1 . p -
2 2
<l > 1o, + 5 E |AS| <ln T c) 6 —welpy, (5.8)

iEIB,Bf," «

12
4|1Ine]

we have

2
12 K 12
_ }a:fw > <\Vha\ + 2|ln€’\h51 ) Ir2.\5,
— 1 Z ‘Vh/’2—|- ’h/’2 L+ K> ‘h/’21
2k' & c 4\1 | A[Ine| "= TP

> (jwnpe + a B2 ) 12 +”—2Wy218 >0 (5.9)
— 2 c 2|lne| " © ©\Bo T y|Ine|E TP =

and from (5.6)
1 K2
a Da = h/ 2
f ,5( ) 2k/ Lﬁ <|v E| +4|1n€|

2
_c( 3 Ag) —%lnna S AR —w(D)—C Y AR (5.10)

i€lp,u, i€lg, 5y i€lp 5y

1 P ~
2 / 2
<l >d:c + 5 <lnn —c) g |AS |7 — we(Dy)

« ie[ﬁ,Bg‘
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for some C,c¢ > 0 depending only on x and 6. Now we combine the middle two terms,
using the definition of w. o in (5.4), to obtain

€ 1 = A€ A€
fae(D ( > A) —5-Infa SAP-C ) AR (5.11)

lEIB Ua iGI&B% ieIB,BS‘

The next step is to bound 7,. We separate those Q;E with A > 32374~ and those
with A5 < 32/37y~1. We denote (with s for “small” and b for “big”)

., = {z €Iy, : AS < 32/37w‘1} ,
Ig,a = IﬂaUa\IE,OU
= #1; o
For the small droplets, we use the obvious bound
>4 < eng,, (5.12)
i€l
with a universal ¢ > 0, while for the large droplets we use that in view of the definition of
M, in (3.13) we have
Sa <o Y A <O, (5.13)
el ielf
for some universal C,C" > 0. We can now proceed to controlling 7,. By (3.1) and (4.3),
for universally small € we have
Ta<C > P (5.14)
1€lg v,

for some universal C' > 0. In view of (3.13), (5.13) and (5.12), we deduce from Remark 3.2
that for universally small € we have

Fa < C(Mo+Var > |471?)

1€lg,u,
< C(ME ¥ o, + C’ME) < O (g, + M2) < C"(1 + 1o, + M), (5.15)
where ¢,C,C’,C"” > 0 are universal. Therefore, (5.11) becomes

2 2
fae(D <Z A5> —i—c( > Af) —Clnrg Y |AP-C" Y AP,

i€l ity i€lp gy i€l g

2
> cf*nl + c( Z Af) — C'In(C"(1 + ng, + M) (nas + Z A5> (5.16)

i=Tb b
Ze[ﬁ,a ZGI 8,0
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where C, C: > 0 are universal, ¢, C”,C" > 0 depend only on s and 6, and C’ was chosen
so that C|A5|? < C'(A5 +1).
We now claim that this implies that

2
fae(Da) 2 5572, + ;( 3 A?) — " I?(M: + 2), (5.17)

; b
i€l o

where C” > 0 depends only on x and 6. This is seen by minimization of the right-hand
side, as we now detail. For the rest of the proof, all constants will depend only on x and
0. For shortness, we will set X := Eiel}; A,

First assume n,, = 0. Then (5.16) can be rewritten
fae(Da) > cX? — C'In(C"(1 + M.))) X,

By minimization of the quadratic polynomial in the right-hand side, we easily see that an
inequality of the form (5.17) holds. Second, let us consider the case n,, > 1. We may use
the obvious inequality log(1+ x +y) < log(1 + x) +log(1 + y) that holds for all x > 0 and
y > 0 to bound from below

C C C &
e, 45X = C'In(C7(1+ ng, + M) (na, + X) > o5, + 5 X

—C(na, + X) — Cnq,In(ng, +1) = CX In(ng, +1) — Cln(M + 1)(nq, + X). (5.18)

It is clear that the first three negative terms on the right-hand side can be absorbed into
the first two positive terms, at the expense of a possible additive constant, which yields
SA%, + S X2 = C'In(C” (na, + M.)) (na, + X)
> EBQniS + ZX2 — Cn(M. + 1)(na, + X) — C. (5.19)

Then by quadratic optimization the right hand side of (5.19) is bounded below by —C'In?(M_+
2) (after possibly changing the constant). Inserting this into (5.16), we obtain (5.17).

We then apply [32, Lemma 3.2] over Dy t0 foc + C"|Dy| ! In? (M. + 2), where C" is
the constant in the right-hand side of (5.17). We then deduce the existence of a measure
gae on T% supported in D, such that goc > —C"'|Dqo| ™! In?(M. + 2) and such that for
every Lipschitz function y

‘ /D o — goe) da’| < 2diam (D) [V !l (o S (D)

< Cl(na, + M: +2)|[Vxllenyy Y |Af% (5.20)

ie[ﬂ,Bg

30



and we have used the observation that

1 2 2 1 P ie|2
e = 5 (VP4 o) 1e 52 3 (wf )P, G

-2k
iGIB,B;)x o

K
4|Ine|

and (5.15) to bound the negative part of f, .. In particular, taking x = 1, we deduce, in
view of (5.17), that

Joe(Da) = fare(Ds) > 62n2+ (ZAE) — C""1n? (M, +2), (5.22)

zelb

from which it follows that

Gae(Da) > ¢ (n2, + (#154)%) — C"In*(M. +2) > =c'n2 — C" In*(M. +2).  (5.23)

1,
2°¢
Recalling the positivity of gp . introduced in Step 2, we now let

Z gBa+Zgae (fé_Zfaﬁ) ) (5.24)

BepB,

and observe that since f. — Y fa. is also non-negative by (5.9), and since >, ga,c is
bounded below by —k'C"'|D,| ™' In?(M. + 2), where, as before, k' is the overlap number
of {Dy}a, we have g. > —cln?(M. + 2) for some ¢ > 0 depending only on x and &, which
proves the first item. The second item follows from (5.23), (5.24) and the positiveness of

9B and (fé - Za fa,e)-

- Step 4: Proof of the last item.
Using the definition of g. in (5.24), for any Lipschitz y we have

/ xgedz' = Z/ X9B da’ +Z/ X(9ae = fae)dr’ +/ X feda'.
The BeB,

Hence, in view of (5.5), (5.7) and (5.20) we obtain for some C' > 0

/T2 X(f: = ge)da'| < Y </E X(9B, — fB.e)d >+Z

BeB,

<C Y V(B)Vxllreo )+cz In(ne, + Mz +2)|Vxllzep.y Y AP (5.25)
BEBP ’61[3,6;}

ga@ _’faﬁ)dx/

Using that |AS|> < C(AS + 1) for a universal C' > 0 and (5.13), we have
Z |Af|2 < C(na, + Me).

Z'EI&B%

Since nq, < ng, the third item follows from (5.25). O
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We now apply Proposition 5.1 to establish uniform bounds on M., which characterizes
the deviation of the droplets from the optimal shape.

Proposition 5.2. If (2.19) holds, then M, is bounded by a constant depending only on
sup,~q Fe[uf], k, 0 and (.

Proof. From the last item of Proposition 5.1 applied with xy = 1 together with the first
item, we have

fedx' = / gedz’ > —C|Ine|In? (M. + 2),
2

T?E T5e

with some C' > 0 depending only on &, § and ¢, while from (2.19), (3.12) and (5.2), we
have

2
C' > PF[uf] > M, + e /2 fedz' 4 0(1) > M. — C'In*(M, +2) + o.(1),
T5e

for some C’ > 0 depending only on sup. F¢[u], k, 6 and £. The claimed result easily
follows. O

With the help of Proposition 5.2, an immediate consequence of Proposition 5.1 is the
following conclusion.

Corollary 5.3. There exists C > 0 depending only on r, 6, £ and sup,~q F¢[u®] such that
if g is as in Proposition 5.1 and (2.19) holds, then g. > —C.

In the following, we also define the modified energy density g., in which we include
2
back the positive terms of M, and a half of “’;”l A |hL|? that had been “kept aside” instead
of being included in f;:

2
——— K r2 9 s
Ge == g + oIl |he]” + | lnsl{ Y (PF = A& ) e ) A0

( AS>732/3-1

+ ¢ S (A ites Y A‘E&} (5.26)

B<AS<m32/3y-1 A;<p

1/3 _
where we recall 7, = (nglpil') and d5 is defined by (3.18). These extra terms will be

used to control the shapes and sizes of the droplets as well as to control hL. We also point
out that in view of (5.2), (5.3) and (3.12), we have

CF[uf] >

gedx’ 1). 2
- |ln€| T?E gEdw +O€( ) (5 7)
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6 Convergence

In this section we study the consequences of the hypothesis

VR >0, Cgr:= limsup/ G (z + 20)dz < 400, (6.1)
e—0 Kgr
where Kg = [—R, R]? and (22) is such that 22 + Kr C T%. This corresponds to “good”

blow up centers 22, and will be satisfied for most of them.

In order to obtain o.(1) estimates on the energetic cost of each droplet under this
assumption, we need good quantitative estimates for the deviations of the shape of the
droplets from balls of the same volume. A convenient quantity that can be used to char-
acterize these deviations is the isoperimetric deficit, defined as (in two space dimensions)

/ ’8926
D( )= — 1. (6.2)

i€
\ /47T’Q;7€

The isoperimetric deficit may be used to bound several types of geometric characteristics
of Q;E that measure their deviations from balls. The quantitative isoperimetric inequality,
which holds for any set of finite perimeter, may be used to estimate the measure of the
symmetric difference between Qgﬁ and a ball. More precisely, we have [17]

a(Q.) < C\/D(Q ), (6.3)

where C > 0 is a universal constant and a(Qg,s) is the Fraenkel asymmetry defined as

() := min M (6.4)
ie) * B |Q;5 ) .
where A denotes the symmetric difference between the two sets, and the infimum is taken
over balls B with |B| = |Q; |. In the following, we will use the notation r; and a for the
radii and the centers of the balls that minimize a(Qg’e), respectively.
On the other hand, in two space dimensions the following inequality due originally to
Bonnesen [6] (for a review, see [30]) is applicable to €2} _:

B <rf (1+¢/D(9,)). (6.5)

Here R; is the radius of the circumscribed circle of the measure theoretic interior of €2 _
and ¢ > 0 is universal. Indeed, apply Bonnesen inequality to the saturation of Qgﬁ (i.e., the
set with no holes) for each droplet. Then since the set Q;E is connected and, therefore, its
saturation has, up to negligible sets, a Jordan boundary [4], Bonnesen inequality applies
to it.
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6.1 Main result

We will obtain local lower bounds in terms of the renormalized energy for a finite number
of Dirac masses in the manner of [5]:

Definition 6.1. For any function x and ¢ € Ay, (cf. Definition 2.1), we denote

(1
W (g, x) = lim / XIVePda +mlnn > x(p) | - (6.6)
n—0 | 2 R2\U,eaB(p,n) pEA

We now state the main result of this section and postpone its proof to Section 6.2.
Throughout the section, we use the notation of Sec. 5. To further simplify the notation,
we periodically extend all the measures defined on ’]I‘%e to the whole of R?, without relabeling
them. We also periodically extend the ball constructions to the whole of R?. This allows
us to set, without loss of generality, all ¥ = 0.

Theorem 4. Under assumption (2.19), the following holds.

1. Assume that for any R > 0 we have

lim sup g-(Kr) < 400, (6.7)
e—0
where Kp = [—-R,R)?>. Then, up to a subsequence, the measures ., defined in

(3.17), converge in (Co(R?))* to a measure of the form v = 3*/3x > ac a where A
is a discrete subset of R, and {¢°} defined in (2.17) converge weakly in VVli’f(R%
for any p € (1,2) to ¢ which satisfies

—Ap = 2%25(1 —m in R?,
a€A

in the distributional sense, with m = 3_2/3(5 — 6:). Moreover, for any sequence
{Qi_c}e which remains in Kr, up to a subsequence, the following two alternatives
hold:

i. Bither A5 < B gnd Pr < Cn as e — 0,

ic = |lneg] V/|Ine|

. Or A7 is bounded below by a positive constant as € — 0, and
A; — 3*37 and P —2- 331 ase— 0,

with o
R
a(Q ) < s

< ase — 0, (6.8)
[Inel
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for some Cr > 0 independent of €.

2. If we replace (6.7) by the stronger assumption

limsup g.(Kg) < CR?, (6.9)

e—0

where C' > 0 is independent of R, then we have for any p € (1,2),

1
lim sup (/ \Vw[pdx) < +o0. (6.10)
R—+oc0 ‘KR‘ Kgr

Moreover, for every family {xr}r>0 defined in Definition 2.3 we have

o - 34/3 34/3 1
l1m1nf/ XRrgedr > — W (p, xR) + E xr(a) + o(|KRg|). (6.11)
e—0 R2 2 8 aeh

Remark 6.2. We point out that it is included in Part 1 of Theorem 4 that at most one
droplet QY _ with A;_. bounded from below converges to a € A. Indeed otherwise in the first

ie,E
item we would have u. — 32/37n, Y ach 0a where ng > 1 is the number of non-vanishing
droplets converging to the point a.

Theorem 4 relies crucially on the following proposition which establishes bounds needed
for compactness. Each of the bounds relies on (6.7). Throughout the rest of this section,

all constants are assumed to implicitly depend on x, 0, £ and sup,~ o F*[u®].

Lemma 6.3. Let g be as above, assume (6.7) holds and denote Cr = limsup,_,; g (KR).
Then for any R and € small enough depending on R we have

> 0l <C(Cric+ R, (6.12)
a‘UqCKR
Y A5 <C(Cric+ R, (6.13)
ie[ﬁ,KR
‘/ Xr(fe —ge)dx| < C Z (N + 1) In(ng +2) < C(Cryc + R?), (6.14)
Kgr

AlvacKpyc\Kp_c

where {xr} is as in Definition 2.3 and no = #Ig v, , with Uy as in the proof of Proposition
5.1, for some C' > 0 independent of € or R. Furthermore, for any p € (1,2) there exists a
Cp > 0 depending on p such that for any R > 0 and € small enough

/ \Vh;\pdx < Cp(CR+C + RQ). (6.15)
Kpr

35



Proof. First observe that the rescaled droplet volumes and perimeters A5 and P; are
bounded independently of €, as follows from Proposition 5.2 and the definition of M,.
Then, (6.12) and (6.13) are a consequence of (6.7), the second item in Proposition 5.1
together with the upper bound on M,. The first inequality appearing in (6.14) follows
from item 3 of Proposition 5.1 with the bound on M., where we took into consideration
that only those D, that are in the O(1) neighborhood of the support of |Vxg| contribute
to the sum, along with the observation that the mass of v* (of (5.1)) is now controlled
by n. (a consequence of the above fact that all droplet volumes are uniformly bounded).
The second inequality in (6.14) follows from (6.12). The bound (6.15) is a consequence
of Proposition 4.2 and follows as in [32] and [35]. We refer the reader to [32], Lemma 4.6

or [35] Lemma 4.6 for the proof in a slightly simpler setting. O

6.2 Lower bound by the renormalized energy (Proof of Theorem 4)

We start by proving the first assertions of the theorem.

- Step 1: All limit droplets have optimal sizes. From (5.26), (6.7) and Corollary 5.3, for all
¢ sufficiently small depending on R we have

s — o/ 4m|Ag| ) 6 A58
/KR (Z(P 4| Z!) + ¢ Z

7 A§>32/3ﬂ7_1

+ ¢ > (AF = 772)%5; +c5 » Af-Sf)d:c < @, (6.16)

B e " [Ine]
B<As<m32/3y i<B

where we recall that all the terms in the sums are nonnegative. It then easily follows that
for all ¢ € Ik, the droplets with A7 > 32/3714~1 do not exist when ¢ is small enough
depending on R, and those with A < (3 satisfy A = Cg|In 5\71 and P < Cg|In 5|71/2,
for some Cr > 0 independent of €. This establishes item (i) of Part 1 of the theorem.

It remains to treat the case of A5 € [3,3%3ry~!] when ¢ is small enough. It follows
from (6.16) that

Cr
D(Q;,.) <

~ |lne|’

(6.17)

for some Cr > 0 independent of ¢, and since 7. = 3%/3 + o.(1), for all these droplets (or
equivalently for all droplets with A5 > ) we must have

A5 5 3%3r and Pf— 23371 ase—0. (6.18)

Using (6.3), (6.8) easily follows from (6.18) and (6.16).
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- Step 2: Convergence results.

From boundedness of A5, (6.13) and (6.16) we know that #1Ig i, and pu.(Kg) are both
bounded independently of € as ¢ — 0. We easily deduce from this, the previous step and
the definition of u. that up to extraction, p. converges in each Kp to at most finitely
many point masses which are integer multiples of 32/37 and, hence, to a measure of the
form v = 3%/37 > ach daba, where d, € N and A is a discrete set in the whole of R2. In
view of (6.15), we also have h. — h € I/Vllo’f(RQ) as € — 0, up to extraction (recall that we
work with equivalence classes from (2.10)). Finally, from the definition of g. in (5.26) and
the bound (6.7) we deduce that

'%2 /12
|1H€| K |h€| SCR
R

from which it follows that |Ine| 'h. tends to 0 in L2 (R?) as ¢ — 0. Passing to the limit
in the sense of distributions in (3.16), we then deduce from the above convergences that
we must have

~Ah =371 "doby — i on R (6.19)
acA
We will show below that d, =1 for every a € A, and when this is done, this will complete
the proof of the first item after recalling ¢ = 2 - 3*2/3h(’E and m = 2-372/3.

- Step 3: There is only one droplet converging to any limit point a.
In order to prove this statement, we examine lower bounds for the energy. Fix R > 1 such
that 0Kr N A = @ and consider a € AN Ki. From Step 1, (2.2) and Lemma 4.1, for
any 1 € (0,3) such that n < %minbeAmKR\{a} |a — b| and for all » < n, all the droplets
converging to a are covered by B(a, ), and B(a,n) contains no other droplets with A5 > 3,
for ¢ small enough. There are d, > 1 droplets in B(a,r) such that A5 — 32/37 as ¢ — 0,
let us relabel them as Q1 _,..., Q) _.

Let U = B(a,n). Arguing as in the proof of the first item of Proposition 4.2, by (6.18),
we may construct a collection By of disjoint closed balls covering | J;. Isu Qg,s and satisfying
r(Bo) < Cdape <1, (6.20)

for some universal C' > 0, provided ¢ is small enough, and a collection of disjoint balls B,
covering By of total radius r € [r(By),n]. Choosing r = 3, which is always possible for
small enough ¢, it is clear that B,s consists of only a single ball contained in B(a, %773) for
¢ small enough. Applying the second item of Proposition 4.2 to that ball, we then obtain

J

K2 1 773 da
<|Vh/€|2 + Tine] |h'€|2> dr' > by (ln (B~ cn?’) Z |AZ|2. (6.21)

n3
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Therefore, we have

, d
1 Ui 3 : | Fep2

xr | |VRL? + 2) dz' > (111 —c )(mlnx> As7. (6.22

/an w(1vmr et 2 o (s o) (min > IAT (62)

On the other hand, we can estimate the contribution of the remaining part of B(a,n) as

2
/ Xr|VHL|? dz’ + xr|hL|* dx'
Blam)\B,3 A Inel Jp(a)

2
> ( min XR) / |VhL|? dz' + il / |hL|* dx’
B(a,n) Blam)\B(a,21%) 4/Inel Jp(an
> <min XR) / ! / TR ar )+ W 2da' | drg. (6.23)
~ \Blan) ot \JoBlars) Allnel Jpary)
Arguing as in (4.12) and using the fact that n < =, we obtain
I"i2
[ v [ xalieas
Bla.m)\B,s AlInel Jp(an)

> % <Bmin >ln (Z A5> (1—Cn), (6.24)

(a,n)

where C > 0 is independent of 1 and ¢, for small enough .

We will now use crucially the fact shown in Step 1 that all A7 > 3 approach the same
limit as e — 0. We begin by adding (6.21) and (6.24) and subtracting 5-|In p| Zfil | A2 12X
from both sides. With the help of (6.20) we can cancel out the leading order O(] In p.|) term
in the right-hand side of the obtained inequality. Replacing flf and A5 with 3237 4 0:(1)
in the remaining terms and using the fact that ming ., xr > Xxr(a) — 27[[VXR[/c on
B(a,n), we then find

[ (i
xr | [Vh.|* +
B(a,n) € 2|1Il8|

1
P~ el tnpc ) o

34/371' ) 1 ,'73
> 5 xr(a) <da lnﬁ +dgIn 2> —C, (6.25)

where C' > 0 is independent of € or 7.
Now, adding up the contributions of all a € A N Kg and recalling the definition of f.
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n (5.2), we conclude that on the considered sequence

limsup/ XR[f-dz' > limsup Z / YR [ dz’
20 JKg =0 4eAnKr
34/3 9
> [Iny| Y (2d2 — 3da)xr(a) — C, (6.26)

CLGAﬂKR

for some C' > 0 is independent of € or 1. In particular, since xg(a) > 0 for all a € AN Kg,
the right-hand side of (6.26) goes to plus infinity as n — 0, unless all d, = 1. But by
the estimate (6.14) of Proposition 6.3, Corollary 5.3 and our assumption in (6.7) together
with (5.26), the left-hand side of (6.26) is bounded independently of 7, which yields the
conclusion.

- Step 4: Energy of each droplet. Now that we know that for each a; € AN Kg there exists
exactly one droplet Q’ such that a; — a; and A; — 32/37, we can extract more precisely
the part of energy that concentrates in a small ball around each such droplet. Let B; be a
ball that minimizes Fraenkel asymmetry defined in (6.4), i.e., let B; = B(a$,75), and let B

be a ball of radius rp centered at a$. Arguing as in (4.12) in the proof of the second item
of Proposition 4.2, we can write

e=43|Ine| 23|10, _ N BJ?
o e
€ 2nrp

/ \VhL2dH (z el

Observe that by the definition of Fraenkel asymmetry we have [Q2; .NB| > |B|— %a(QQQ | Bil
for all rg < r;. Hence, denoting by 7; the smallest value of rp for which the right-hand
side of this inequality is non-negative and integrating from 7 to r{, we find

112 112
/Bi <|Vh€| +4“ ’|h|>dx

(14 0.(1))e 3| Ine|~2/3 / rat(ry — |75 %) 2drp.  (6.28)

£
T

(I1—ecrf). (6.27)

>

2
Since by (6.8) and (6.18) we have 7 /r¢ — 0 and e~ /3|Ing|~V/0rf — 31/3 as e — 0, after
an elementary computation we find

K> 3437
/, (\Vh;\2+4“n€’\h’a\2> da’ > 3 + 0-(1). (6.29)

i,€

On the other hand, by (6.5) and (6.17) it is possible to choose a collection By C B(a;, 1),

actually consisting of only a single ball B(a5, RS) circumscribing €2} &+ SO that

r(Bo) = B <5 (14 Crllngl %) = p. + 0. (p2). (6.30)
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The corresponding ball construction B, of the first item of Proposition 4.2, with U =
B(a;,n) and n as in Step 3 of the proof (again, just a single ball B(a5,r)), exists and is
contained in U for all r € [r(By),n'], for any n' € (r(By), n), provided ¢ is sufficiently small
depending on /. In view of the fact that for small enough 1" and small enough & depending
on 1 we have xr(z) > xr(a$) — clx — ag| > 0, with ¢ > 0 independent of ¢, o’ or R, we
obtain that

/-62
Xr|VhL|de’ + / xr|hz|*da’
/B(&f,n’)\l?o ° AlInel Jp@sy ™ "

/

n 2 3
> / (xn(@) — or) (/ |Vh;|2d%1(x)> dr + Xe(a7) / B 2da!
r OB, B(as,n')

(Bo) 8| Ine|

/

n Ii2
> xr(a;) —cr / VhL|2dH! (x) + / hL|2dx" | dr
., et )<83T‘ )+ g [

/

n 2
> / (xr(a;) —cr) (/ |Vh'a\2d7-[1(x) + r / |h;|2dac’> dr
r(Bo) OB, 4|Ine| Jp,

/

1,y [" .
> AP [ (ea@) - o)1 - )
& r(Bo)

dr
)
r

(6.31)

for ' and e sufficiently small, arguing as in (4.12) in the proof of Proposition 4.2 and
taking into account Remark 4.4 in deducing the last line. Performing integration in (6.31)
and using (6.30), we then conclude

2
/ Xr| VR 2da’ + 2 / xr|h.|2ds’
B(as m')\Bo A Inel Jpas )
/

L5 . n
> —| A5 ¢ e :
_2W|A2|><R<az>1n<p) Cr, (6.32)

3

for € sufficiently small.
- Step 5: Convergence. Using the fact, seen in Step 2, that hL — h in VVli’f(]RQ), we have,
by lower semi-continuity,

e—0

lim inf/ Xr|VHL|? dz' > / xr|Vh|?dz’. (6.33)
Rz\UaGAB(am) Rz\UaGAB(am)
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On the other hand, in view of xg(as) = x% + O(p:) by (6.30), from (6.32) we obtain

2
liminf/ Xr|VAL|2da’ +/ XR ( “ |hL)? — i\ lnp5]y5> da’
=0 JB(az\Bo Bz \4Ine] 2m
K> 1
> liminf/ Xr|Vh.|?dx’ +/ XR < JoA— lnpg\ye) dx’
e—0 B(aff’]/)\BO B(?If-ﬂ?’) 4| In €| 2w

34/37T , ,
> —5—xrla) Inn —Cn, - (6.34)

where we also used that x% — xr(a) as € — 0.

We now convert the estimate in (6.29) to one over By and involving xr as well. Ob-
serving that ;. C By and that xp(z’) > I — 4p.|| VxRl for all 2/ € Q; . and ¢ small
enough by (6.30), from (6.29) and (3.1) we obtain

2
lim inf [ E—
m i /B XR ('V I+ g
where we used the fact that by (3.2), (3.12) and (4.5) the integral in the left-hand side
of (6.29) may be bounded by C|lne¢|, for some C' > 0 independent of ¢ and R. Adding
up (6.33) with (6.34) and (6.35) summed over all a; € Kp, in view of the arbitrariness of
n’ < n we then obtain

3437
s|2>alw’2 g xr(ai), (6.35)

2 1
liminf 12 K N2 _ 2] e /
gt v (1908 4 el i) o
1
2/ g xr(a (11177—1—) —Cn. (6.36)
RQ\UaEAB(aﬁn) 4

a€N
Letting now n — 0 in (6.36), and recalling that ¢ = 2 - 372/3h and that the definition of
W (e, x) is given by Definition 6.1, we obtain

. 2 1
llgélf/ XR <|Vh/|2—|—2|1 ’| E\2—an£|u>dx’

34/3
= —5 Wil xr) +

(6.37)
a€A

From (6.14) we may replace f. = |Vh.|? +
an additional error term:

5T e] |h.|? = 5k |In p|v® by g. in (6.37) with

34/3
liminf/ Xrgedzr' > TW(@,XR a) — cA(R), (6.38)
R2

e—0
acN
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where

A(R) = limsup Z (ng + 1) In(ng + 2),
=0 04|KR,CCUO¢CKR+C

for some ¢, C' > 0 independent of R. Under hypothesis (6.9), from (6.12) we have

limsu n? < CR?,
e—0 P Z ‘-
a'UaCKR

and thus, using Holder inequality and bounding the number of o’s involved in the sum by
CR we find

A(R) < C limsup > (n3/? +1)
e—0
alUaCKpio\Kp_c

3/4

< C'RY* 1lim sup Z ni +CR< C’”R7/4,
=0 0¢|UQCKR+C

for some C,C’,C" > 0 independent of R. Hence

. , A(R)
lim sup lim su =0,
om0 R2
which together with (6.38) and the fact that g. > g. establishes (6.11). O

6.3 Local to Global bounds via the Ergodic Theorem: proof of Theorem
1, item i.

The proof follows the procedure outlined in [35]. We refer the reader to Sections 4 and 6
of [35] for the proof adapted to the case of the magnetic Ginzburg-Landau energy, which
is essentially identical to the present one, with some simplifications due to the fact that
we work on the torus. As in [35], we say that u € Mo(R?), if the measure du + Cdx is a
positive locally bounded measure on R?, where C' is the constant appearing in Corollary
5.3. The measures dg. and the functions ¢, will be alternatively seen as functions on T?E or
as periodically extended to the whole of R?, which will be clear from the context. We let y
be a smooth non-negative function on R? with support in B(0,1) and with fRZ x(x)dx = 1.
We set X = W/llo’f(R2) x Mo(R?), and define for every x = (p,g9) € X the following
functional

f(x):= Q/RQ X (y)dg(y)- (6.39)
We note that from (5.27) we have for ¢ sufficiently small
2
Flf] 4 0.1) > - [ dg. = ][ £(05x.)d), (6.40)
?[Ine| T2, T2
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where x. := (¢%, g.), 0 denotes the translation operator by A € R? i.e., O\ f(z) := f(z+)),
and f stands for the average. Here the last equality follows by an application of Fubini’s
theorem and the fact that [, x(z)dz = 1.

It can be easily shown as in [35] that f. = f satisfies the coercivity and I'-liminf proper-
ties required for the application of Theorem 3 in [35] on sequences consisting of x. = (¢°, ge)
obtained from (u®) obeying (2.19). This is done by starting with a sequence {x.}. in X
such that

limsup/ f(Orxc)d\ < +o0, (6.41)
e—0 Kgr
for every R > 0, which implies that the integral is finite whenever ¢ is small enough.
Consequently f.(0\x.) < +oo for almost every A € Kr. Applying Fubini’s theorem again,
(6.41) becomes
lim sup / ,XR(Y)dg:(y) < +oo,

R

e—0

where xp = x * 1x,, and “*” denotes convolution. Then since xg = 1 in Kr_1 and g. is
bounded below by a constant, the assumption (6.7) in Part 1 of Theorem 4 is satisfied, and
we deduce from that theorem that ¢° and g. converge, upon extraction of a subsequence,
weakly in I/Vllo’f(R2) and weakly in the sense of measures, respectively. Furthermore, if x. —
x = (¢, g) on this subsequence, we have 2 fR2 X(y)dg:(y) = f(xc) — f(x) =2 fRQ x(y)dg(y).

We may then apply Theorem 3 of [35] to f on TZ and conclude that the measure {P}.
defined as the push-forward of the normalized uniform measure on T2 by

A= (ngoaa 0,\?]5),

converges to a translation-invariant probability measure P on X with

lim inf F*[u"] > / f(x)dP(x) = / £*(x)dP(x), (6.42)
where
(¢, 9) = lim . E(Prx)dA = lim (IKQM /}R2 XR(y)dg(y)> : (6.43)

provided that x is in the support of P.

The next step is to show that for P-a.e. x we have ¢ € A,, with m = 372/3(§—§,), and
f* can be computed. By [35, Remark 1.6], we have that for P-a.e x, there exists a sequence
{Ac}e such that x. = (0)_¢°, 0).g-) converges to x in X. In addition, from (6.42)—(6.43),
for P-a.e. X, we have

lim f(0 x)d\ < 400,
R—+o00 KR
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for P-almost every x. Using Fubini’s theorem again, together with the definition of f, we

then find )
lim —_— d +00.
B 1 <’ % ’ /2 XR(Z/) g(l/)) <

Therefore, since

/ Xr()dg(y) / xr@)dg(y)  ase—0, (6.44)
R2 R2

a bound of the type (6.9) holds, and the results of Part 2 of Theorem 4 hold for x.. In
particular, we find that

—Ap =27 Z dg —m, (6.45)
a€N
with m = 372/3(5 — 6,), and that
2 34/3
£*(p,9) = }311—I>I<1>o <|KR\ ;IL% o XRggd$> > 343 W () + 5 (6.46)

The result in (6.46) follows from the definition of f*, (6.44), (6.11), the definition of W,
provided we can show that
v(Kg) _ m

—. 6.47
R—>+oo |KR| Z XR R—>+oo 27T|KR| 27 ( )

The latter can be obtained from (6.15), exactly as in Lemma 4.11 of [35], so we omit the
proof. Note that with (6.45), it proves that ¢ € A,,, and we thus have the claimed result.
Combining (6.42) and (6.46), we obtain

liminf F*[u®] > / (34/3W(cp) 328/3 (6 -6, )) dP(g, g).

e—0

Letting now P¢ and P be the first marginals of P¢ and P respectively, this proves (2.20)
and the fact that P-almost every ¢ is in A, with m = 372/3(§ — 4.). O

7 Upper bound construction: proof of Part ii) of Theorem 1

We follow closely the construction performed for the magnetic Ginzburg-Landau energy
in [35], but our situation is somewhat simpler, since we work on a torus (instead of a domain
bounded by a free boundary). The construction given in [35] relies on a result stated as
Corollary 4.5 in [35], which we repeat below with slight modifications to adapt it to our
setting. These results imply, in particular, that the minimum of W may be approximated
by sequences of periodic configurations of larger and larger period. Below for any discrete
set of points A, |A| will denote its cardinal.
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Proposition 7.1 (Corollary 4.5 in [35]). Let p € (1,2) and let P be a probability measure
on I/Vllo’f(RQ) which is invariant under the action of translations and concentrated on Aj.

Let Q be the push-forward of P under —A. Then there exists a sequence R — oo with
R? € 27N and a sequence {bp}r of 2R-periodic vector fields such that:

- There exists a finite subset Ar of the interior of Kr such that

—div bgr :27TZaEAR(Sa_ 1 in Kg
br-v=20 on 0Kg.

- Letting Qg be the probability measure on T/Vlgcl’p(]RQ), which is defined as the image
of the normalized Lebesgue measure on Kg by x — —div bg(x+-), we have Qr — Q
weakly as R — oo.

1 1
- limsup —— lim / lbr|*dx 4 7| Ag|Inn §/W(<p) dP(p).
R—oo ‘KR‘ n—0 \ 2 Kr\Us€ARB(a,n)

Remark 7.2. We would like to make the following observations concerning the vector field
br constructed in Proposition 7.1.

1. By construction, the vector fields b has no distributional divergence concentrating on
OKp and its translated copied since bg - v is continuous across 0Kgr. However, bg -7
may not be, and this may create a singular part of the distributional curlbg. This
1s the difficulty that prevents us from stating the convergence result for P directly in
Theorem 1, Part ii).

2. We also note that an inspection of the construction in [35] shows that bg is curl-free
in a neighborhood of each point a € Ar and that curlbgr belongs to ngcl’p(]W) for
p < 0.

7.1 Definition of the test configuration

We take R the sequence given by Proposition 7.1. The first thing to do is to change the
density 1 into a suitably chosen density me g, in order to ensure the compatibility of the
functions with the torus volume. Recalling that g > 0 for 6 > . and £ small enough, we

set
1 | evIE | )
MeR= —>5 .
=B =12 | 2RR.
where, as usual, || denotes the integer part of a . We note for later that
2[1° CR
‘mg,R - Pl< —= = o:(1). (7.2)
TE
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Recalling also that 7. = 33 + O <lnlln€|> and pf — o = O (ln|1n€|>, we deduce that

Mne| [Ine
me R — M, where m := 2 - 3*2/3/1, as ¢ — 0, for each R. In particular, m. g is bounded
above and below by constants independent of € and R. The choice of m. r ensures that we

can split the torus into an integer number of translates of the square Kp with R’ := W]‘Z =,

each of which containing an identical configuration of # points.

Let P € P be given as in the assumption of Part 2 of Theorem 1, i.e., let P be a
probability measure concentrated on A,,. Letting P be the push-forward of P by ¢
gp(ﬁ), it is clear that P is concentrated on A;, and by the change of scales formula (2.16)
we have

/W )dP(p /W )dP(p lnm (7.3)
m

We may then apply Proposition 7.1 to P. It yields a vector field bgr. We may then rescale
it by setting

be,r(x) = \/Me R l_)R(\/maRx).
. .1 2 Loy/me R - .
We note that b. g is a well-defined periodic vector-field on Tj. because —55== is an integer.
This new vector field satisfies

—divbeg =21 > ba—mer inTj (7.4)

G/EAE’R

for some set of points that we denote A, r, and

1 . 1

—— lim /
(KRl n=0\ 2 /K 5 \Usea. nBlam)

\b573\2dx + ﬂ"Aa,R N KR/\/W‘ ln(n‘/mavR)

/W ¢)+ogr(l) as R — oo.

Using (7.3) and [Ae,r N KRy 5| = %, this can be rewritten as

Me R 1 2 me Mme R
lim | = b d ArrNK 1 d —
|KR| 771%0 2/}( R \Uaea, pB(an be.l"dw + mlAe, R/\/me,zz‘ nn 14 T
Me,R
m
ER/VV ©) +or(1).

Zel) 5 0. Therefore, recalling the

But we saw that m.r — m as ¢ — 0 hence ln( =
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definition of R’ we have

1 1
lim / be pl?dz + 7|Ae RN Kp) m—|1nn
‘KR””*(’(? Kier, gt e By
< [ W(e)dP(e) + on(1) + 0-(1). (7

It thus follows that

1 1
G 0(2 / |bE,R|2dx’+w|AE,R|1nn) < [ W(e)dP(e) + or(D) + 0:(0).
n— T%a\uaeAaRB(a’:n)

(7.6)

Note that A. g is a dilation by the factor 1/ Mz Ry uniformly bounded above and
below, of the set of points Ag, hence the minimal distance between the points in A, g is
bounded below by a constant which may depend on R but does not depend on €. For the
same reason, estimates on br . are uniform with respect to €.

In addition, we have that Q& R, the push-forward of the normalized Lebesgue measure
on T% by z +— —div be g(z+-) converges to @, the push-forward of P by —A, as € — 0 and
R — o00. The final step is to replace the Dirac masses appearing above by their non-singular
approximations:

N XB(a,r.) / 1/3

d, =
©T

|Ine|Y/S7,, (7.7)

where 7. was defined in (3.1). Note also that in view of the discussion of Section 3 it is
crucial to use droplets with the corrected radius £!/3|1n €|1/ 67, instead of its leading order
value p, = 31/3¢1/3|Ing|/6,

Once the set A, r has been defined, the definition of the test function u® € A follows:

it suffices to take
u(x) =—-142 Z XB(a,r!) <£C| ln5|1/2) )
aeAs,R

which means (after blow up) that all droplets are round of identical radii r. and centered
at the points of A. r. We now need to compute F®[u®] and check that all the desired
properties are satisfied. This is done by working with the associated function h. defined
in (3.16), i.e. the solution in T% to

—AK. + h’ =77 Y 0 (7.8)

| 1 (IEAE R

obtained from (3.16) by explicitly setting all AZ = 772,
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7.2 Reduction to auxiliary functions

Let us introduce ¢., which is the solution with mean zero of
~Age =21 Y dg—mep in T, (7.9)
CLEAS’R
where m, g is as in (7.1), and f; the solution with mean zero of
~Afe=2r Y 0a—mer in Ti. (7.10)
aGAE,R

We note that f. is a rescaling by the factor m. r — m of a function independent of €, so
all estimates on f. can be made uniform with respect to ¢.

Lemma 7.3. Let h. and ¢. be as above. We have as e — 0

/ 1. 2da’ < Cr|Ine] (7.11)
TZ

Y22

2
v (-5%)

for some constant Cr 4 > 0 independent of €.

and for any 1 < g < oo

< CRruy, (712)
7q
Lq(T?E)

Proof. Since A, g is 2R'-periodic, h. is too, and thus

/ h;|2dx’=£2ylne\][ |hL|?dz’ < Cg|Ine|.
2 Kp

Ty

For the second assertion, let

he(z) = hl(zy/[Ine])  9:(z) = ¢=(z/]Ine])

be the rescalings of h. and ¢. onto the torus T?. Rescaling (7.11) gives
1hellr2(r2) < Cr. (7.13)

Furthermore, the function w.:= h, — %ngbs is easily seen to solve

—Aw, = —k> (ha — ][ hadx> in T?.
T

But from elliptic regularity, Cauchy-Schwarz inequality and (7.13), we must have

he —][ he
TQ

L

IVwel|po(rz2) < C

L2(T3)

which yields (7.12). O
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The next lemma consists in comparing ¢. and f-.
Lemma 7.4. We have

||V(f8 - gbs)HLoo(ng\UaB(a,ré)) S CR51/4.

Proof. We observe that f. and ¢. are both 2R'-periodic. We may thus write

0:(x) = fl@) =2 | Gomlw—y) D dGa=da)(y)
2R/ a€N. R

where Gop/ is the zero mean Green’s function for the Laplace’s operator on the square
torus of size 2R’ with periodic boundary conditions, i.e. the solution to

~AGop = 0g — —5— in Tap (7.14)

which we may be split as Gop/(z) = —5=log|z| + Sop(x) with Sep a smooth function.
By Newton’s theorem (or equivalently by the mean value theorem for harmonic functions
applied to the function log |-| away from the origin), the contribution due to the logarithmic
part is zero outside of Uaen, , B(a, rl). Differentiating the above we may thus write that
for all =z ¢ Uaea, ,Bl(a,rl),

V(pe — f)(z) =27 / VSar(z—y) Y d(da—8a)(y). (7.15)
T2
2R/ a€h. R
Using the C? character of Syr we deduce that
IV (fe = ¢8)HL°°(T§E\UQB(a,rg)) < CR"AE,R N KR’|7";
and the result follows in view of (7.7). O

The next step involves a comparison of the energy of ¢. and that of b, g and leads to
the following conclusion.

Lemma 7.5. Given A. g as constructed above, and h. the solution to (7.8), we have

1 . 2
gl | [ SIVRPd + wlA i | < [ W(e)dP(e)+o(1)+or(D).
(€2)2 n—=0 T2\Usen, , Blam) 7

Proof. In view of Lemmas 7.3 and 7.4, it suffices to show the corresponding result for
fT?E\UaeAE’R Blam) 3|V f|?dz’ instead of the one for hL. From (7.10) and (7.4), we have

div (b g — Vf-) = 0 hence by Poincaré’s lemma we may write Vf. = b. p + V1&. We
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note that —A¢, = curlb, g, which is in VVl;Cl P for any p < 400 as mentioned in Remark
7.2. By elliptic regularity we find that V& € Lf C(Rz) for all 1 < p < 400, uniformly with
respect to €. We may thus write

1
/ 3 |b- r|*dz’
T%E \ UaeAE’R B(am)

1 1
/ <|Vf5|2 + Z|VEP - Ve vigg) dz’, (7.16)
TEE\UU/EAE’R B(aﬂ?) 2 2

where V f.- V£ makes sense in the duality V& € LP, p > 2, Vf. € L9, ¢ < 2. In addition,
by the same duality, we have for any a € A; g,

lim Vf. -Vte. =0
1=0JB(an)

uniformly with respect to €. Therefore, we may extend the domain of integration in the
last integral in (7.16) to the whole of T% at the expense of an error o,(1) multiplied by the
number of points, and obtain

1
/ SIvhpd < [
T2\ Usen,  Blan) T2\ Uyen,  Blam)

—i—/ Vf. - V+eda' +o,(|Ingl). (7.17)
TZ

1
§|b€,R|2d:r’

Noting that the last integral on the right-hand side vanishes by Stokes’ theorem (and by
approximating V f. and V+¢. by smooth functions), adding 7|A. g|Inn to both sides, and
combining with (7.6) we obtain the result. O

In view of (7.4) and (7.9) we have that —div be g + Ade =273, cp_ (0o — da) — 0 in

T/Vl;Cl’p (R?), so we deduce, since the push-forward of the normalized Lebesgue measure on

TZ by x — —div bs g(x+-) converges to @, that the push-forward of it by x — —A¢®(z+-)
also converges to (). Thus, part ii) of Theorem 1 is established modulo (2.21), which remains
to be proved.

7.3 Calculating the energy

We begin by calculating the exact amount of energy contained in a ball of radius 7.

Lemma 7.6. Let h. be as above. Then we have for any a € A g,

/ \VhL|2dz’ =
B(a,rl)
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and
Fn L 4 0.(1) + 0y(1). (7.19)

Pe

E

/ |VhL|2da’ <
B(a,n)\B(a,rt)

Proof. In view of (7.12) applied with ¢ > 2 and using Hélder’s inequality, we have that for
all a € A€7 R,
72|
/ V(R — £¢.)| dz’ < o,(1). (7.20)
B(a,n) 2

Thus it suffices to compute the corresponding integrals for ¢.. Using again the 2R'-
periodicity of ¢., we may write, with the same notation as in the proof of Lemma 7.4

¢e(x) = Gop/(x —y) | 27 E Sa(y) —meg | dy.
T2 =
2R/ (IEAE,R

Since the distances between the points in /_\5, r are bounded below independently of ¢, and
the number of points is bounded as well, we may write ¢. in B(a,n) as

60) = 0ule) = [ Wl ylBu(w)dy (7.21)
T2
2R/
where 1. (z) is smooth and its derivative is bounded independently of £ (but depending on
R).
Thus the contribution of v, to the integrals fB(a,n) |Ve|? is 0,(1), and its contribution
to [ Blast) |Ve|? is 0-(1). There remains to compute the contribution of the logarithmic

term in (7.21). But this is almost exactly the same computation as in (6.27)-(6.29), and
with (7.20) it yields (7.18), while it yields as well that

/ Vo 2dz’ < 2nIn-L 4 0,(1). (7.22)
B(amn)\B(a,rl) Te
Now

rh_ 1 (el \YP /o e\ \ "7

pe 313 \|Inp.| N |Inel ’
Consequently In % = 0.(1), and so we may replace r. with p. at an extra cost of 0.(1) in
(7.22), and the result follows with (7.20). O

We can now combine all the previous results to compute the energy of the test-function
u. By following the lower bounds of Proposition 3.1, it is easy to see that in our case (all
the droplets being balls of radius r.) all the inequalities in that proof become equalities,
and thus recalling (3.1):

€ 15 1
P = e (2

2
/TQ <‘Vhla’2+ a |hla|2> dw,“‘ﬂf?‘AE,R“npz—:) +0:(1),

2, |Ine|
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with the help of Lemma 7.6 we have for every R

1 34/3
Feluf] < Tae <2 /1r2 Y s IVAL|? da’ + 77| Ac g Inn + 1 W\AE,RO + 0:(1) + oy(1).
e \VaeA, pBLG:T]

In view of Lemma 7.5, letting n — 0, we obtain

4/3
Pl < 72 ([ W) aPe) 4 01) + on(D)) + Sz Akl + 0200,

Letting & — 0, using that 7. — 3'/3 and the fact that |Ac | = %ma,RWP with m. g — m,
and then finally letting R — oo, we conclude that

34/3m
8

lim sup F*[uf] < 34/3/W(g0) dP(p) +

e—0

Since %32/ 3m = (6 — d.), this completes the proof of part ii) of Theorem 1. O

7.4 Proof of Theorem 2
In order to prove Theorem 2, it suffices to show that

32/3(5 — )

3 (7.23)

min FO[P] = 33 min W +
PeP Am
For the proof, we use the following result, adapted from Corollary 4.4 in [35].

Proposition 7.7 (Corollary 4.4 in [35]). Let ¢ € A; be given, such that W(p) < co. For
any R such that R? € 27N, there exists a 2R-periodic pgr such that

—Ang:27TZa€AR5a—1 mn Kg,

0
R _ on 0Kp,
ov
where Ag is a finite subset of the interior of Kr, and such that
w 1
lim sup (¥R, Licn) < W(p)
R—o0 | KR|

Let us take ¢ to be a minimizer of W over A,, (which exists from [35]). We may
rescale it to be an element of A;. Then Proposition 7.7 yields a ¢ g, which can be extended
periodically. We can then repeat the same construction as in the beginning of this section,
starting from Vg instead of by, and in the end it yields a u* with

3236 -4
lim sup F<[uf] < 3%/3 rﬂin W + (80)

e—0
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It follows that

lim sup min F* < 3*3 min W +

e—0 m

32/3(6 — 6.)
—a

But by part i) of Theorem 1 applied to a sequence of minimizers of F, we also have

lim inf min F€ > inf F° > 33 min W +
e—0 A P Am

32/3(6 = 4,)
8

where the last inequality is an immediate consequence of the definition of F°. Comparing
the inequalities yields that there must be equality and (7.23) is proved, which completes
the proof of Theorem 2. O
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