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Abstract

We prove a new inequality for the Jacobian (or vorticity) associated to the
Ginzburg-Landau energy in any dimension. It allows to retrieve existing lower
bounds on the energy, to extend them to the case of unbounded vorticity, and to
get a few other corollaries. It also provides a new estimate on the time-variation for
time-dependent families, which has applications for the study of Ginzburg-Landau
dynamics.

I Main result

We are interested in proving lower bounds on the Ginzburg-Landau energy in any dimen-
sion:

(I.1) Eε(u) =
1

2

∫

Ω

|∇u|2 +
1

2ε2
(1 − |u|2)2,

where Ω is a smooth bounded domain of Rn, with n ≥ 2, and u is complex-valued. This
energy is a simple version (without magnetic field) of the Ginzburg-Landau energy of su-
perconductivity. It also appears in other models from physics, for superfluidity, nonlinear
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optics, Bose-Einstein condensates, and the complex-valued function u, called order param-
eter, plays the role of a pseudo wave-function. The zero-set of u is a crucial object. Indeed,
since u is complex-valued, it can have a nonzero degree around its zeroes, they are then
called topological defects, typically of codimension 2. In dimension n = 2, one thus expects
point defects, called vortices, in dimension n = 3, line vortices. These codimension 2 sets
can be clearly extracted at the limit ε → 0, and lower bounds on the Ginzburg-Landau
energy serve to relate the energy to the topology of these defects, or to the vorticity (un-
derstood as in fluid mechanics). The first result bounding below the Ginzburg-Landau
energy by the degrees of the vortices was obtained by Bethuel-Brezis-Hélein in [BBH] for
the n = 2 case and a bounded number of vortices, and also in [BMR]. Then, the works
of Sandier [Sa1] and Jerrard [J1], allowed to generalize these lower bounds to possibly
unbounded numbers of vortices, thanks to a suitable growing-ball procedure. Then, lower
bounds in dimensions 3 and higher were addressed in [Ri, LR, Sa2, JS1, BBO, ABO].

In this paper, we present an optimal (or sharp) lower bound, with a rather simple
proof. It is, to our knowledge, the first product-type lower bound on Ginzburg-Landau,
a slight improvement of the existing lower bounds (which it contains), but which allows
to get some new results as well. Our initial motivation was to obtain optimal estimates
and additional regularity for time-dependent Ginzburg-Landau (see Theorem 3 in Section
III), for which the product nature of the estimate turns out to be crucial; but our result
encompasses both the static and dynamic cases. We use those estimates in a forthcoming
work on Ginzburg-Landau dynamics [SS5].

The proof, presented in Section IV, relies on the same ingredients as the other proofs
of lower bounds, i.e. on the ball contruction method of [Sa1, J1], but the main new idea is
to use a deformation of the metric, and thus a construction with growing ellipses instead
of balls. Ellipses allow the freedom necessary to “separate” the directions. (Observe also
that the trace of a radial line-vortex on a plane which is not perpendicular to its axis is an
“elliptic vortex”.)

Following [JS1], for any sufficiently regular complex-valued u, the current of u is defined
as the 1-form

(I.2) ju = (iu, du) =
n∑

k=1

(iu, ∂ku)dxk,

where (., .) denotes the scalar product in C identified with R2 i.e (a, b) = ab+ab
2 . It is related

to the Jacobian determinants Ju of u through

(I.3) Ju =
1

2
d(ju) =

1

2
d(iu, du),

where
Ju =

∑

j<k

(i∂ju, ∂ku) dxj ∧ dxk.
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Thus Ju acts on couples of vectors fields (X, Y ) ∈ (Rn)2 with the standard rule that
dxi ∧ dxj(X, Y ) = 1

2(XiYj − YiXj). It can also be seen as an (n − 2)-dimensional current
acting on (n − 2)-forms by the relation

Ju(φ) =
1

2

∫

Ω

Ju ∧ φ dx.

The Jacobian carries the topological information on the zero-set of u, or the vorticity.
|J | will denote the total variation of the current, ∥.∥ the total mass of a measure, and
measure-valued 2-forms means forms whose coefficients are in the space of bounded Radon
measures on Ω.

In all the paper, M(ε) will be any function of ε satisfying
(I.4)

∀α > 0, lim
ε→0

εαM(ε) = 0, lim
ε→0

|log ε|
M(ε)α = 0, and log M(ε) = o(|log ε|) as ε → 0.

For example M(ε) = exp(
√

|log ε|) satisfies this.
Our main result is the following.

Theorem 1. Let uε be a family of H1(Ω, C) such that

(I.5) Eε(uε) ≤ Nε|log ε| ≪ M(ε),

with M(ε) as in (I.4). Then, up to extraction

Juε

Nε
⇀ J in (C0,γ

c (Ω))′, ∀γ > 0,

where J is a measure-valued 2-form. If Nε is bounded independently of ε then the limit of
1
πJuε is in addition a rectifiable integer-multiplicity current. Moreover, for all continuous
vector-fields X and Y compactly supported in Ω,

|X ·∇uε|√
Nε|log ε|

,
|Y ·∇uε|√
Nε|log ε|

are bounded in L2 and if we let νX , νY be their defect measures, we have

(I.6) ∥νX∥ 1
2∥νY ∥

1
2 ≥

∣∣∣∣∣∣

∫

Ω

J(X, Y )

∣∣∣∣∣∣
.

Corollary 1. Under the same hypotheses, we deduce

(I.7) lim inf
ε→0

1

Nε|log ε|

⎛

⎝
∫

Ω

|X ·∇uε|2
∫

Ω

|Y ·∇uε|2
⎞

⎠

1
2

≥

∣∣∣∣∣∣

∫

Ω

J(X, Y )

∣∣∣∣∣∣
.
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Remark 1. The compactness of Juε was proved in [JS1], together with the rectifiability
of the limit, in the case of Nε independent of ε. It has also been proved lately in [ABO].
The compactness was proved in case n = 2 in a weaker form in [SS3], [ASS]. We include
a proof in the general case close to that of [ASS], for the convenience of the reader.

Remark 2. We have considered Nε ≪ M(ε)
|log ε| for the sake of generality, but the result is

most interesting for Nε ≤ C|log ε|. Indeed, for larger order of Nε, the relevant order of
energy to consider in order to obtain a nontrivial limit is N2

ε rather than Nε|log ε|, as
we have shown for example in [SS4] Theorem 3, in which case a relevant lower bound is
immediate (see Theorem 2).

II Application to static Ginzburg-Landau

II.1 Case n = 2

In the case n = 2, one may identify the 2-form Ju with a distribution. Then taking
X = f(x)e1 and Y = g(x)e2 where (e1, e2) is a constant orthonormal frame and f, g are
C0

c (Ω) functions, we obtain, by taking the supremum over f and g such that |f | ≤ 1 and
|g| ≤ 1, the following corollary.

Corollary 2. (n = 2) Under the hypotheses of Theorem 1, up to extraction Juε
Nε

⇀ J where
J is a measure and

(II.1) lim inf
ε→0

1

Nε|log ε|

⎛

⎝
∫

Ω

|∂1uε|2
∫

Ω

|∂2uε|2
⎞

⎠

1
2

≥ |J |(Ω),

where |J |(Ω) denotes the mass of J , i.e. supX∈C0
c (Ω), Y ∈C0

c (Ω), |X|≤1, |Y |≤1

∫
Ω J(X, Y ).

Observe that the case Nε ≤ C corresponds to the case of a bounded vorticity, case in
which J (limit of Juε) is a finite sum of the form J = π

∑k
i=1 diδai where di ∈ Z and ai ∈ Ω

(di is the topological degree of the vortex at ai) and one obtains

Corollary 3. (n = 2) Under the hypothesis Eε(uε) ≤ C|log ε|, after extraction Juε ⇀
J = π

∑k
i=1 diδai with di ∈ Z and ai ∈ Ω, and we have

(II.2) lim inf
ε→0

1

|log ε|

⎛

⎝
∫

Ω

|∂1uε|2
∫

Ω

|∂2uε|2
⎞

⎠

1
2

≥ π
k∑

i=1

|di|.

Applying the arithmetico-geometric inequality, one has

⎛

⎝
∫

Ω

|∂1uε|2
∫

Ω

|∂2uε|2
⎞

⎠

1
2

≤ 1

2

∫

Ω

|∂1uε|2 + |∂2uε|2 =
1

2

∫

Ω

|∇uε|2,
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from which Corollary 3 allows to retrieve the result of [BBH, JS1]. Observe that Eε(uε) is
itself bounded below by 1

2

∫
Ω |∇uε|2 so that this really provides lower bounds on the total

Ginzburg-Landau energy. Corollary 3 also implies

Corollary 4. (n = 2) If Juε ⇀ J = π
∑k

i=1 diδai with for every i, di = ±1 and
1
2

∫
Ω |∇uε|2 ≤ πk|log ε|(1 + o(1)) as ε → 0, then for every unit vector ∂

∂x1
,

(II.3)

∫

Ω

|∂x1uε|2 = πk|log ε|(1 + o(1)) as ε → 0,

and for all vector fields X, Y ∈ C0
c (Ω),

(II.4) lim
ε→0

1

|log ε|

∫

Ω

(X ·∇uε, Y ·∇uε) = π
k∑

i=1

X(ai) · Y (ai).

In other words, if a vortex of degree ±1 carries exactly the minimum amount of energy
π|log ε| then the projection of its gradient on any coordinate carries exactly half of the
amount of the energy, i.e. an isotropic behavior is preferred.

Proof. We may isolate the ai’s in disjoint balls B(ai, r) of small radius r. In each of them,
we have, according to Corollary 3,

(II.5)
1

2|log ε|

∫

B(ai,r)

|∇uε|2 ≥
1

|log ε|

⎛

⎜⎝
∫

B(ai,r)

|∂1uε|2
∫

B(ai,r)

|∂2uε|2

⎞

⎟⎠

1
2

≥ π + o(1).

On the other hand 1
2

∫
Ω |∇uε|2 ≤ πk|log ε|(1 + o(1)), so we must have, for each i,

(II.6)
1

2|log ε|

∫

B(ai,r)

|∇uε|2 =
1

|log ε|

⎛

⎜⎝
∫

B(ai,r)

|∂1uε|2
∫

B(ai,r)

|∂2uε|2

⎞

⎟⎠

1
2

+ o(1) = π + o(1).

We deduce that

1

|log ε|

⎛

⎜⎜⎝

⎛

⎜⎝
∫

B(ai,r)

|∂1uε|2

⎞

⎟⎠

1
2

−

⎛

⎜⎝
∫

B(ai,r)

|∂2uε|2

⎞

⎟⎠

1
2

⎞

⎟⎟⎠

2

= o(1)

and thus
1

|log ε|

∫

B(ai,r)

|∂1uε|2 =
1

|log ε|

∫

B(ai,r)

|∂2uε|2 + o(1),
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and finally that

1

|log ε|

∫

∪k
i=1B(ai,r)

|∂1uε|2 = πk + o(1)
1

|log ε|

∫

∪k
i=1B(ai,r)

|∂2uε|2 = πk + o(1)

and since the sum of the two is less than 1
|log ε|

∫
Ω |∇uε|2 = 2πk + o(1), we must have

1

|log ε|

∫

∪k
i=1B(ai,r)

|∂1uε|2 =
1

|log ε|

∫

Ω

|∂1uε|2 + o(1) = πk + o(1),

which proves (II.3). This also implies that

(II.7)
1

|log ε|

∫

Ω\∪iB(ai,r)

|∂1uε|2 = o(1)

and that for each i, and each unit norm vector e,

(II.8)
1

|log ε|

∫

B(ai,r)

|e ·∇uε|2 = π + o(1).

If X ∈ C0(Ω), we may assume by taking r small enough, that X is a constant vector equal
to X(ai) in each B(ai, r). Then (II.7) and (II.8) imply that

1

|log ε|

∫

Ω

|X ·∇uε|2 =
1

|log ε|

k∑

i=1

∫

B(ai,r)

|X ·∇uε|2 + o(1) =
k∑

i=1

π|X(ai)|2 + o(1).

We can then polarize this result (applying it to X − Y and X + Y successively) to obtain
(II.4).

Remark 3. These estimates (hence Theorem 1) are sharp, for example for a radial vortex
of degree ±1.

II.2 Case n = 3

Let us now turn to the dimension 3. First, when Nε = O(1), it is known from [JS1]
(and we reprove it here) that J seen as a 1-current is rectifiable without boundary, with
J
π integer-multiplicity. In other words, J

π is the sum of integer-multiple “Dirac-masses”
supported on some rectifiable curves (the “vortex-lines”). Applying Corollary 1 to X
and Y perpendicular to each other and such that |X| ≤ 1 and |Y | ≤ 1 and taking the
supremum over such C0

c vector fields, one obtains (with the use of the arithmetico-geometric
inequality)
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Corollary 5. (n = 3) Under the hypothesis Eε(uε) ≤ C|log ε|, up to extraction Juε ⇀ J
(with J

π rectifiable and integer multiplicity), and we have

lim inf
ε→0

1

|log ε|

∫

Ω

|∇uε|2 ≥ 2|J |(Ω),

This lower bound was obtained in [JS1] and strengthened that of [Sa2].

Remark 4. Recently, Bourgain, Brezis and Mironescu have proved in [BBM] that in di-
mension n = 3, the limiting J is in fact in the smaller space (W 1,3

0 (Ω))′.

II.3 General case

Theorem 2. Let uε be a family such that Eε(uε) ≤ Nε|log ε| ≪ M(ε), and ∥uε∥L∞(Ω) ≤ C,
then up to extraction,

Juε

Nε
⇀ J measure-valued 2-form, in (C0,γ

c (Ω))′, γ > 0,

juε√
Nε|log ε|

⇀ j weakly in L2(Ω),

and

(II.9) lim inf
ε→0

1

Nε|log ε|

∫

Ω

|∇uε|2 ≥ 2|J |(Ω) +

∫

Ω

|j|2,

where juε was defined in (I.2).

Remark 5. If
√

Nε|log ε| = Nε i.e. if Nε = |log ε|, then J and j are related via J = 1
2 dj

(from the weak L2 convergence of juε).

Also, a similar result can be obtained without the assumption ∥uε∥L∞(Ω) ≤ C (but with
a weaker convergence of juε.)

This theorem is the lower-bound part of the Γ-convergence result on Ginzburg-Landau
energy, and includes the case of unbounded vorticity. In dimension 2, we retrieve the result
of [JS2] which was similar to the result of [SS3] when setting the magnetic fields equal to
zero. We see that 2|J | plays the role of the defect measure of juε√

Nε|log ε|
.

In order to complete the Γ-convergence, one would need to do a construction, i.e.
prove that for every limiting j and J , there exists a sequence uε such that Juε

Nε
⇀ J and

juε√
Nε|log ε|

⇀ j, and with an energy of order 2|J |(Ω) +
∫
Ω |j|2. This is much more delicate.

Alberti, Baldo and Orlandi have obtained a result corresponding to this for bounded Nε,
see [ABO].
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If Nε ≫ |log ε|, then the right order of energy to consider is N2
ε and the immediate

lower bound

lim inf
ε→0

1

N2
ε

∫

Ω

|∇uε|2 ≥
∫

Ω

|j|2

is sharp and give the right principal order of energy.

Proof of Theorem 2. The first assertion follows directly from Theorem 1.
We prove the second assertion. Choose e1, e2, · · · , en an orthonormal (moving) frame

that may depend on x ∈ Ω, and f, g ∈ C0
c (Ω) with |f | ≤ 1 and |g| ≤ 1. Then, let X1 = fe1,

X2 = ge2, X3 = e3, · · · , Xn = en. The inequality

(II.10) |∇uε|2 ≥
n∑

i=1

|Xi ·∇uε|2

holds. Since |Xi · juε| ≤ |Xi ·∇uε||uε|, we have

|Xi · juε|− |Xi ·∇uε| ≤ (|uε|− 1) |Xi ·∇uε|.

Thanks to the bound on Eε(uε) and |uε| ≤ C, we infer directly that juε√
Nε|log ε|

is bounded

in L2(Ω), hence weakly compact, and that

(|Xi · juε|− |Xi ·∇uε|)+√
Nε|log ε|

→ 0

as ε → 0 in L1(Ω). It follows that denoting by φXi the weak L2 limit of

|Xi ·∇uε|√
Nε|log ε|

,

we have |Xi · j| ≤ φXi almost everywhere, where j is the weak limit of the normalized
currents.

Denoting by νX1 and νX2 the defect measures of

|X1 ·∇uε|√
Nε|log ε|

,
|X2 ·∇uε|√

Nε|log ε|
respectively, it follows from (II.10) and the very definition of a defect measure that

lim inf
ε→0

1

Nε|log ε|

∫

Ω

|∇uε|2 ≥ ∥νX1∥ + ∥νX2∥ +

∫

Ω

|φX1|2 + |φX2 |2 + · · ·+ |φXn|2,

thus using Theorem 1 and the above, we are led to

lim inf
ε→0

1

Nε|log ε|

∫

Ω

|∇uε|2 ≥ 2

∣∣∣∣∣∣

∫

Ω

J(X1, X2)

∣∣∣∣∣∣
+

∫

Ω

|X1 · j|2 + |X2 · j|2 + · · · |Xn · j|2

≥ 2

∣∣∣∣∣∣

∫

Ω

fgJ(e1, e2)

∣∣∣∣∣∣
+

∫

Ω

|j|2 +

∫

Ω

(|f |2 − 1)|j · e1|2 + (|g|2 − 1)|j · e2|2.(II.11)
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Taking the supremum over all such frames e1, · · · , en and all compactly supported |f | ≤ 1,
|g| ≤ 1 proves the proposition.

II.4 Application to Ginzburg-Landau with magnetic field

In any dimension n ≥ 2, one may consider the Ginzburg-Landau energies with magnetic
field

(II.12) Gε(u, A) =
1

2

∫

Ω

|dAu|2 + |h − hexp|2 +
1

2ε2
(1 − |u|2)2

where A is a real-valued 1-form on Ω (the magnetic potential), dA = d− iA, h = ⋆dA (the
magnetic field), ⋆ being the Hodge tranform, and p is a given (n − 2)-form. Here hex is a
real number (depending on ε), such that limε→0

hex
|log ε| = λ < ∞. Gε is a gauge-invariant

version of Eε, the one introduced as a model for superconductivity (for n = 2 and 3) by
Ginzburg and Landau (for more details, we refer to [T] and [SS3] for example), with hex

then corresponding to the intensity of an applied magnetic field. The gauge transformations
are {

u → ueiΦ

A → A + dΦ.

We define the gauge-invariant version of the Jacobian

J(u, A) =
1

2
d((iu, dAu) + A).

We have the following variant of Theorem 2:

Corollary 6. Let (uε, Aε) be such that Gε(uε, Aε) ≤ Chex|log ε| and hε = ⋆dAε. Then, up
to extraction the rescaled Jacobians J(uε,Aε)

hex
weakly converge to J , measure-valued 2-form,

in (C0,γ
c (Ω))′, (iuε,dAεuε)

hex
⇀ j in L2(Ω), hε

hex
⇀ h weakly in L2(Ω), and

(II.13) lim inf
ε→0

Gε(uε, Aε)

hex|log ε| ≥ |J |(Ω) +
λ

2

∫

Ω

|j|2 + |h − p|2.

Remark 6. If in addition, the relation −⋆dhε = (iuε, dAεuε) is satisfied (which is the case
when minimizing the energy with respect to A) then we also have − ⋆ dh = j.

In dimension n = 2, this result is the lower bound part of the result of [SS3].
Proof: Choosing the Coulomb gauge d⋆A = 0, A · n = 0 on ∂Ω, we obtain from the energy
upper bound a bound on Aε

hex
in H1(Ω). Thus, Aε

hex
is compact in L2(Ω) and there is no defect

measure of L2 convergence of (iuε,dAεuε)
hex

associated to A, hence the only defect measure is
that of (iuε, duε), and is J . The rest can be proved as in Theorem 2 and [SS3]. !
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III Application to Ginzburg-Landau dynamics

In this section, we wish to consider families uε which depend both on space and time. For
that purpose, we take the first coordinate to be time and work in n + 1 dimensions where
n is the number of space dimensions. In that framework we have

ju = (iu, ∂tu)dt + (iu, dspu),

where dspu denotes the differential with respect to the space coordinates only. When con-
sidering the total Jacobian Ju, we can split it again between the time and space coordinates
and write

Ju =
n∑

i=1

Vi dt ∧ dxi +
1

2
dsp(iu, dspu)

where 1
2dsp(iu, dspu) is the space-only Jacobian, corresponding to the vorticity, that we will

denote by µ. We will also write V =
∑n

i=1 Vi dt ∧ dxi, and identify at times V with a
vector-field. V corresponds to the velocity part of the Jacobian. We thus have

(III.1) Ju = V + µ.

Writing that the form Ju is closed, i.e. d(Ju) = 0, we have

(III.2) dtµ + dV = 0,

where dt denotes the differential with respect to the time variable only (indeed dspµ = 0
because µ is a space-closed form). Equation (III.2) expresses that µ is transported via
V . In dimension n = 2, µ can be identified with a function (or distribution) and V with
a vector-field (V1, V2) = 1

2(∂t(iu, ∂1u) − ∂1(iu, ∂tu), (∂t(iu, ∂2u) − ∂2(iu, ∂tu)), and (III.2)
rewrites

(III.3) ∂tµ − curl V = 0.

In dimension n = 3, µ and V can be identified with vector-fields and (III.2) rewrites again
(III.3) with the extra relation

div µ = 0

(coming from the fact that µ is a space-closed form). Theorem 1 applies similarly to this
case. We define the following norm on measure-valued 2-forms on Ω:

(III.4) ∥µ∥1 = sup
ζ smooth (n−2)-form on Ω, ζ=0 on ∂Ω, |dζ|≤1

∣∣∣∣∣∣

∫

Ω

µ ∧ ζ

∣∣∣∣∣∣
,

i.e. the norm in the dual of Lipzchitz forms (it is very similar to the flat norm, though
possibly smaller). In dimension n = 2, ζ is simply a function and, for measures of the
type µ =

∑
i diδai and µ′ =

∑
di

′δbi with di, di
′ ∈ Z, ∥µ− µ′∥1 corresponds to the minimal

connection between the ai’s and the bi’s as introduced by Brezis-Coron-Lieb in [BCL].

10



With the perspective of studying solutions of time-dependent Ginzburg-Landau equa-
tions, we will make the extra assumption that the energy of Eε(uε) remains uniformly
bounded in time by Nε|log ε|. The idea of the following result is simply to apply Theorem
1 to the orthogonal vector-fields Y = f ∂

∂t and X = (0, X ′) where X ′ is some vector-field on
Ω that we denote X in the following, and to observe that J(X, Y ) reduces to fV ·X ′ (where
V is identified with a vector). M(Ω) will denote the space of forms whose coefficients are
bounded Radon measures on Ω.

Theorem 3. Let uε(t, x) be defined over [0, T ] × Ω (with Ω ⊂ Rn) and be such that

(III.5)

⎧
⎪⎪⎨

⎪⎪⎩

∀t ∈ [0, T ], Eε(uε) = 1
2

∫
Ω |∇uε|2 + 1

2ε2 (1 − |uε|2)2 ≤ Nε|log ε| ≪ M(ε)
∫

[0,T ]×Ω

|∂tuε|2 ≤ Nε|log ε| ≪ M(ε).

Then, Vε and µε being defined as in (III.1), there exist µ ∈ L∞([0, T ],M(Ω)), and V ∈
L2([0, T ],M(Ω)) such that, after extraction,

µε

Nε
⇀ µ in (C0,γ

c ([0, T ] × Ω))′, ∀γ > 0,
Vε
Nε

⇀ V in (C0,γ
c ([0, T ] × Ω))′, ∀γ > 0,

with

(III.6) dtµ + dV = 0.

This implies that µ(t) is C0, 12 in time for the ∥.∥1-norm, and that for all t ∈ [0, T ], we have

µε(t)

Nε
⇀ µ(t) in (C0,γ

c (Ω))′, ∀γ > 0.

Moreover, for any X ∈ C0
c ([0, T ] × Ω, Rn) and f ∈ C0

c ([0, T ] × Ω), denoting by νX and νT

the defect measures of L2 convergence of

|X ·∇uε|√
Nε|log ε|

,
f |∂tuε|√
Nε|log ε|

,

we have

(III.7) lim inf
ε→0

∥νX∥ 1
2∥νT∥

1
2 ≥

∣∣∣∣∣∣∣

∫

Ω×[0,T ]

V · fX

∣∣∣∣∣∣∣
.

This last relation immediately implies that

(III.8) lim inf
ε→0

1

Nε|log ε|

⎛

⎜⎝
∫

Ω×[0,T ]

|X ·∇uε|2
∫

Ω×[0,T ]

f 2|∂tuε|2

⎞

⎟⎠

1
2

≥

∣∣∣∣∣∣∣

∫

Ω×[0,T ]

V · fX

∣∣∣∣∣∣∣
.
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Proof. As we mentioned, Theorem 1 directly implies the convergence to the measure-valued
2-forms µ and V , and the lower bound (III.7). The fact that µ ∈ L∞([0, T ],M(Ω)) comes
from applying for example Theorem 1 in space variables only at each time. (III.6) follows
by passing to the limit in (III.2). There remains to prove the additional regularity on µ
and V . First, notice that (III.7) and (III.8) can be extended (by density) to f and X which
are continous and not compactly supported, as long as V is seen as a measure on ]0, T [×Ω
(which does not weigh on the boundary).

Inserting the a priori estimates (III.5) into (III.8), we are led to

(III.9)

∣∣∣∣∣∣∣

∫

]0,T [×Ω

V · X

∣∣∣∣∣∣∣

2

≤ C

T∫

0

∥X∥2
L∞(Ω) dt.

This proves by duality that V is L2 in time with values in M(Ω). Moreover, for every
C0

c ([0, T ] × Ω) vector-field X such that ∥X∥L∞(Ω) ≤ 1, we have

∣∣∣∣∣∣∣

∫

[t1,t2]×Ω

V · X

∣∣∣∣∣∣∣
≤ ∥V ∥L2([0,T ],M(Ω))

√
t2 − t1.

Returning to the formulation in differential forms, this means that for every (n − 1)-form
X such that |X| ≤ 1, we have

∣∣∣∣∣∣∣

∫

[t1,t2]×Ω

V ∧ X

∣∣∣∣∣∣∣
≤ ∥V ∥L2([0,T ],M(Ω))

√
t2 − t1.

Let us approximate V in L2([0, T ],M(Ω)) by some smooth Vα, and µ by some smooth µα

such that (III.2) holds. Considering ζ a smooth compactly supported (n − 2)-form on Ω
(i.e. independent of time) such that |dζ | ≤ 1, we have

(III.10)

∣∣∣∣∣∣∣

∫

[t1,t2]×Ω

Vα ∧ dζ

∣∣∣∣∣∣∣
≤ C

√
t2 − t1.
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But, in view of (III.2) and the fact that dtζ = 0, we have
∫

[t1,t2]×Ω

Vα ∧ dζ = −
∫

[t1,t2]×Ω

dVα ∧ ζ

=

∫

[t1,t2]×Ω

dtµα ∧ ζ

=

∫

[t1,t2]×Ω

dt(µα ∧ ζ)

=

∫

Ω

µα(t2) ∧ ζ −
∫

Ω

µα(t1) ∧ ζ .(III.11)

Consequently, (III.10) implies that
∣∣∣∣∣∣

∫

Ω

(µα(t2) − µα(t1)) ∧ ζ

∣∣∣∣∣∣
≤ ∥Vα∥L2([0,T ],M(Ω))

√
t2 − t1,

that is ∥µα(t2) − µα(t1)∥1 ≤ ∥Vα∥L2([0,T ],M(Ω))

√
t2 − t1. By passing to the limit α → 0 we

deduce that µ(t) is Hölder continuous in time (of exponent 1
2) for the 1-norm, with

(III.12) ∥µ∥
C0, 12 ([0,T ],(M(Ω),∥.∥1))

≤ ∥V ∥L2([0,T ],M(Ω)),

and that (III.11) holds for V and µ. This regularity is also true for the flat norm, with a
similar proof.

Let us now choose a time t0 ∈ [0, T [. Since we know that for all t ∈ [0, T ], Eε(uε(t)) ≤
CNε|log ε|, applying Theorem 1, we know that 1

Nε
µε(t0) is also compact in (C0,γ

c (Ω))′, ∀γ >
0. Let ν denote its weak limit (after extraction). Let us consider uε defined in ]− T, T ] by
uε = uε(t0) for t < t0 and uε = uε for t ≥ t0. Let us denote by µε, the associated vorticity.
It is clear that µε = µε(t0) for t < t0 and µε = µε for t ≥ t0. One can easily check that
uε satisfies the hypotheses of Theorem 3, thus we deduce that 1

Nε
µε converges weakly in

(C0,γ
c ([−T, T ] × Ω))′ (after extraction) to some limiting measure µ, continuous in time for

the 1-norm. By using test-functions, we see that necessarily µ = ν a.e. in ] − T, t0[, and
µ = µ a.e. in ]t0, T ]. But µ and µ are both continuous in time, hence we must have, by
continuity at the time t0, ν = µ(t0). We deduce that the only possible limit of extracted
sequences of 1

Nε
µε(t0) is µ(t0), and thus that 1

Nε
µε(t0) converges in (C0,γ

c (Ω))′, ∀γ > 0 to
µ(t0), for all t0 ∈ [0, T [. For the time T , the same argument can be applied by extending
uε to [0, 2T ].

In the case of a bounded number of vortices (i.e. Nε = O(1)) in two space dimensions,
we retrieve as a corollary the following result stated in [J2], Proposition 3. For a treatment
of the case with magnetic field, see [SS5].
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Corollary 7. Assume Eε(uε) ≤ C|log ε| and
∫
[0,T ]×Ω |∂tuε|2 ≤ C|log ε|, that there exists a

finite collection of continuous points ai(t) and integers di = ±1 independent of time, such
that µε ⇀ µ(t) = π

∑
i diδai(t), and that

∫
Ω |∇uε|2 ≤ 2π

∑
i |log ε|(1 + o(1)) for all t. Then

for all interval [t1, t2] ⊂ [0, T ] on which the ai remain distinct, we have

(III.13) lim inf
ε→0

1

|log ε|

∫

Ω×[t1,t2]

|∂tuε|2 ≥ π
∑

i

t2∫

t1

|∂tai|2 dt.

The existence of a fixed number of such continuous ai(t) is true for example if one knows
that the energy Eε(uε(t)) decreases in time (using the continuity of µ(t) for the minimal
connection stated in Theorem 3).

Proof. Since we assume that the ai’s remain distinct, and there is only a finite number
of them, we can find open balls Bi such that each Bi contains only one ai(t) on the time
interval [t, t + δ], δ small. Applying (III.8) with (III.11) (which we saw is valid even for
non compactly supported test-functions), we have, for every ζ ∈ C1

c (Bi),

(III.14) lim inf
ε→0

⎛

⎜⎝
1

|log ε|2

∫

Bi×[t,t+δ]

|∇⊥ζ ·∇uε|2
∫

Bi×[t,t+δ]

|∂tuε|2

⎞

⎟⎠

≥ π2 |di(ζ(ai(t + δ)) − ζ(ai(t))|2

In view of the hypothesis, we may use Corollary 4, more specifically (II.4), to say that for
all t ∈ [t1, t2], limε→0

1
|log ε|

∫
Bi

|∇⊥ζ · ∇uε|2(t) = π|∇ζ(ai(t))|2, and taking the supremum

over the ζ ∈ C1
c (Bi) such that |∇ζ | ≤ 1, (III.14) reduces to

lim inf
ε→0

⎛

⎜⎝
πδ

|log ε|

∫

Bi×[t,t+δ]

|∂tuε|2

⎞

⎟⎠ ≥ π2|ai(t + δ) − ai(t)|2.

We deduce that for every subdivision (tk) of [t1, t2],

π
∑

i,k

|ai(tk+1) − ai(tk)|2

|tk+1 − tk|
≤ lim inf

ε→0

1

|log ε|

∫

Ω×[t1,t2]

|∂tuε|2.

This implies that ai(t) ∈ H1([t1, t2]) and

π
∑

i

t2∫

t1

|∂tai|2 ≤ lim inf
ε→0

1

|log ε|

∫

Ω×[t1,t2]

|∂tuε|2.

The argument goes as follows : first we deduce that ai(t) is absolutely continuous (i.e.
∀ε > 0, ∃δ > 0,

∑
k |tk+1 − tk| < δ ⇒

∑
k |ai(tk+1) − ai(tk)| < ε), then it has a derivative

almost everywhere, and finally this derivative is L2.
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Remark 7. This estimate (hence that of Theorem 3) is optimal as can be seen for example
for the case of a radial vortex translating at a constant velocity.

IV Proof of Theorem 1

IV.1 Idea of the proof

By using a slicing argument and approximation, the proof of Theorem 1 reduces to the
case of a two-dimensional domain Ω and constant vectors X and Y . The lower bounds
introduced in [BBH, J1, Sa1] and a Jacobian estimate (see [JS1, SS3, ASS]) yield the
known result that under the assumption Eε(uε) ≤ Nε|log ε|, the normalized Jacobian
determinants J(uε)/Nε converge as ε → 0 to a measure-valued 2-form J and that

(IV.1) lim inf
ε→0

1

Nε|log ε|

∫

Ω

|∇uε|2 ≥ |J |(Ω).

Theorem 1 follows by noticing that the proof of this lower bound remains valid if one
chooses a different metric in Ω. For instance given two linearly independent vectors X, Y
one may choose a metric gλ for which gλ(X, X) = λ, gλ(Y, Y ) = 1/λ and gλ(X, Y ) = 0.
Then (IV.1) becomes

(IV.2) lim inf
ε→0

1

Nε|log ε|

∫

Ω

(
1

λ
|X ·∇uε|2 + λ|Y ·∇uε|2

)
dx dy

|X ∧ Y | ≥ |J |(Ω),

while |J ||X ∧ Y | = |J(X, Y )|. Another way of stating this is that we can apply the usual
Euclidean lower bounds to the map vε(x, y) = uε(xX +yY ). Minimizing the left-hand side
with respect to λ for each ε yields the desired product estimate

lim inf
ε→0

1

Nε|log ε|

⎛

⎝
∫

Ω

|X ·∇uε|2
∫

Ω

|Y ·∇uε|2
⎞

⎠

1
2

≥

∣∣∣∣∣∣

∫

Ω

J(X, Y )

∣∣∣∣∣∣
.

We now investigate the details.

IV.2 Modified vortex-balls

Here we restate the vortex ball construction of [Sa1] for a constant metric g in R2. We
denote by per A the Euclidean perimeter of a set A and perg A its perimeter with respect
to a metric g. Similarly we let

Dg(u, A) =
1

2

∫

A

|∇u|2g,
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where the integral is taken with respect to the surface element associated to g and |∇u|2g =
gij(∂iu, ∂ju). Finally we define the radius of a compact set K to be the infimum over all
finite coverings of K by disjoint balls B1, . . . , Bn of r1 + · · · + rn, where ri is the radius of
Bi. We write r(K) for the radius with respect to the Euclidean metric and rg(K) for the
radius with respect to a metric g, and recall that the radius is controlled by the perimeter.

Proposition IV.1. Assume Ω is a domain in R2 and ω is a compact subset of R2. Then
for any α > 0, any constant metric g and any t ≥ 1, there exists a family B1, . . . , Bn of
disjoint balls for the metric g, of radii r1, . . . , rn such that

(IV.3)
∑

i

ri ≤ t(rg(ω) + α)

and for any unit vector field u : Ω \ ω → S1 and any 1 ≤ i ≤ n such that Bi ⊂ Ω

(IV.4) Dg(u, Bi \ Ω) ≥ π|di| log t,

where di = deg(u, ∂Bi).

For the proof, it suffices to apply the standard Euclidean lower bound of [Sa1] to
v(x, y) = u(xX + yY ), where X, Y is an orthonormal frame for g. We denote by g0 the
standard metric on R2. We recall that M(ε) is such that
(IV.5)

∀α > 0, lim
ε→0

εαM(ε) = 0, lim
ε→0

|log ε|
M(ε)α = 0 and log M(ε) = o(|log ε|) as ε → 0.

A consequence of the previous proposition is:

Proposition IV.2. Let Ω ⊂ R2 a bounded domain and λ > 0. We assume that g is a
constant metric such that λ−1g0 ≤ g ≤ λg0, and that Eε(uε) < KM(ε) for some 0 < ε < 1.
Then there exists disjoint balls (depending on ε) B1, . . . , Bn for the metric g with Bi =
Bg(ai, ri) such that letting Ω̃ = {x ∈ Ω | dist(x, ∂Ω) > ε}

1.
∑

i ri ≤ λ/M(ε).

2. For any x ∈ Ω̃ \ ∪iBi, ||uε(x)|− 1| ≤ 2/M(ε).

3. If Bi ⊂ Ω̃,

(IV.6) Dg(uε, Bi) ≥ π|di||log ε|(1 − o(1)),

where di = deg(uε, ∂Bi). The o(1) appearing in the lower bound is a function that goes to
zero with ε and which depends only on K. Moreover, letting

(IV.7) µε = π
∑

{i|ai∈Ω̃}

diδai ,
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we have

(IV.8) ∥⋆Juε − µε∥(C0,1
c (Ω))′ ≤ Cλ2Eε(uε)

M(ε)
,

where C depends only on K and ⋆ denotes the Hodge operator with respect to the Euclidean
metric.

For the case g = g0, the result in this form was proved in [JS1]. The proof below adapts
arguments in [SS1, ASS] where a slightly weaker result was proved. Throughout the proof
C denotes a constant depending only on K.

Proof of 1), 2), 3). The co-area formula implies the existence of a t such that 1/M(ε) <
t < 2/M(ε) such that — writing ωt = {||uε|− 1| ≥ t} — the estimate perΩ ωt < CεM(ε)2

holds, where perΩ is the Euclidean perimeter in Ω. We may also assume that t is a regular
value of |uε|, thus ωt has regular boundary. Using the upper bound on the energy we may
also control the area of ωt by a Cε2M(ε)2. This control implies that for some s ∈ (0, ε) the
length of {x ∈ ωt | dist(x, ∂Ω) = s} is less than CεM(ε)2. Let Ω̃ = {x ∈ ωt | dist(x, ∂Ω) >
s}. Then if ε is small enough, per(ωt ∩ Ω̃) < CεM(ε)2, thus ωt ∩ Ω̃ may be included in a
union of disjoint Euclidean balls whose union we call ω and such that perω < CεM(ε)2.
We have |u| ≥ 1 − 2M(ε)−1 in Ω̃ \ ω.

Let g be a metric such that λ−1g0 ≤ g ≤ λg0. Then perg ω ≤ λCεM(ε)2 and thus, using
(IV.5), if ε is small enough depending on K, we find 2 perg ω < λ/M(ε). We may apply

Proposition IV.1 in Ω̃ to v = u/|u| with α = perg ω and t such that 2t perg ω = λ/M(ε)
(hence t ≥ 1) to find a family of disjoint balls for the metric g, denoted B1, . . . , Bn with
Bi = Bg(ai, ri), such that

∑
i ri ≤ λ/M(ε) and for every i such that Bi ⊂ Ω̃,

Dg(v, Bi \ Ω) ≥ π|di| log t,

where di = deg(u, ∂Bi). It follows from perg ω ≤ λCεM(ε)2 that

t ≥ C
1

εM(ε)3
,

and then from (IV.5) that

Dg(u, Bi \ Ω)

|log ε| ≥ π|di||log ε|(1 − o(1)),

where o(1) depends only on K. Items 1, 2, 3 of the proposition follow.

Proof of (IV.8). We proceed with the proof of (IV.8) as in [SS4], Lemma II.1 and II.2.
First, we consider χ : R+ → R+ as follows

⎧
⎨

⎩

χ(x) = x if |x − 1| ≥ 1
2

χ(x) = 1 if |x − 1| ≤ 1 − M(ε)−1

χ is continuous and piecewise affine.
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We then define
ũε = χ(|uε|)

uε

|uε|
.

It is easy to check that ∥uε − ũε∥L∞(Ω) ≤ C/M(ε) and to deduce that, defining juε and jũε

as in (I.2),
∥juε − jũε∥2

L2(Ω) ≤ CM(ε)−2Eε(uε),

where |α dx+β dy|2 = α2+β2. It follows that for any smooth compactly supported function
ξ, ∣∣∣∣∣∣

∫

Ω

(Juε − Jũε)ξ

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣

∫

Ω

(juε − jũε) ∧ dξ

∣∣∣∣∣∣
≤ CM(ε)−1

√
Eε(uε)∥ξ∥C0,1(Ω).

and therefore

(IV.9) ∥ ⋆ Juε − ⋆Jũε∥(C0,1
c )′ ≤ C

√
Eε(uε)

M(ε)
.

Now we wish to estimate Jũε−µε, with µε defined in (IV.7). Let ξ be a smooth compactly
supported function. Since |ũε| = 1 outside of Ω̃∩ (∪iBi) we have Jũε = 0 there. Therefore

(IV.10)

∫

Ω

ξJũε =

∫

Ω\Ω̃

ξJũε +
∑

Bi ̸⊂Ω̃

∫

Bi∩Ω̃

ξJũε +
∑

Bi⊂Ω̃

∫

Bi

ξJũε = I1 + I2 + I3.

Since ξ vanishes on ∂Ω and from the definition of Ω̃ we find |ξ(x)| < ε∥ξ∥C0,1(Ω) for any
x ∈ Ω \ Ω̃. It is easy to check that |Jũε| < C|∇uε|2 thus

(IV.11) I1 ≤ CεEε(uε)∥ξ∥C0,1(Ω).

The second integral is taken care of in a similar way. From the definition of Ω̃ and since the
Euclidean radius of any ball is less than λ2M(ε)−1 it follows that if Bi ̸⊂ Ω̃ and x ∈ Ω∩Bi

then |ξ(x)| < ∥ξ∥C0,1λ2/M(ε). It follows that

(IV.12) I2 ≤ Cλ2 Eε(uε)

M(ε)
∥ξ∥C0,1(Ω).

To deal with the third integral we define ξ̄ to be equal to ξ(ai) on Bi for any Bi =
Bg(ai, ri) ⊂ Ω̃ and ξ̄ = 0 elsewhere. Then letting A be the union of the Bi’s which are
included in Ω̃, we have |ξ − ξ̄| ≤ λ2∥ξ∥C0,1/M(ε) on A while

∫

A

ξ̄Jũε =
∑

Bi⊂Ω̃

ξ(ai)

∫

Bi

Jũε =
∑

Bi⊂Ω̃

πdiξ(ai) =

∫
ξ dµε,

where we have used the fact that |ũε| = 1 on ∂Bi. Therefore

(IV.13)

∣∣∣∣I3 −
∫

ξ dµε

∣∣∣∣ ≤ Cλ2Eε(uε)

M(ε)
∥ξ∥C0,1(Ω).
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It follows from (IV.9), (IV.10), (IV.11), (IV.12) and (IV.13) that for any compactly sup-
ported smooth ξ ∣∣∣∣∣∣

∫

Ω

ξJuε −
∫

ξ dµε

∣∣∣∣∣∣
≤ Cλ2Eε(uε)

M(ε)
∥ξ∥C0,1.

and the proposition is proved.

IV.3 Convergence of the Jacobians

The results in this section are proved in [JS1] (see also [ABO]), the proof is included here for
the convenience of the reader. It uses Proposition IV.2 together with the nice interpolation
argument of [JS1].

Proposition IV.3. Let Ω be a bounded domain in Rn and {uε}ε>0 be a family in H1(Ω, C)
such that

(IV.14) Eε(uε) ≤ Nε|log ε| ≪ M(ε).

Then the normalized Jacobians Nε
−1Juε converge subsequentially in the dual of C0,γ

c (Ω) to
a measure valued two-form J , for any γ > 0. When Nε is independent of ε the limit of
π−1Juε is in addition a integer multiplicity rectifiable current.

Moreover, given constant vectors X, Y , a function η with compact support in Ω and
λ > 0, there exists sets Aε with measures tending to 0 such that

(IV.15) lim inf
ε→0

1

2Nε|log ε|

∫

Aε

λ−1|ηX ·∇uε|2 + λ|ηY ·∇uε|2 ≥

∣∣∣∣∣∣

∫

Ω

J(ηX, ηY )

∣∣∣∣∣∣
.

Proof of compactness. We begin by proving compactness of the Jacobians, by slicing the
current Juε as in [JS1].

Let (v, w, σ) ∈ R × R × Rn−2 denote coordinates in Rn. Let, σ being given, Ωσ =
{(v, w, σ) ∈ Ω}. We let Jε = Juε(∂v, ∂w), and write Jε,σ for its restriction to Ωσ. Finally
we let

(IV.16) eε(σ) =
1

2

∫

Ωσ

|∇uε|2 +
1

2ε2

(
1 − |uε|2

)2
.

We claim that for any σ ∈ Rn−2 there exists a measure µε,σ in Ωσ such that

(IV.17) ∥µε,σ∥ ≤ C
eε(σ)

|log ε| , ∥Jε,σ − µε,σ∥(C0,1
c )′ < CM(ε)−1/2eε(σ),

where C is independent of ε, σ. The convergence of Juε follows from (IV.17) as follows.
Integrating w.r.t. σ and using the energy bound (IV.14) we find, letting µε be the measure
whose slices are {µε,σ}σ and νε = Nε

−1(Jε − µε),

(IV.18) ∥νε∥(C0,1
c )′ ≤ C|log ε|M(ε)−1/2, ∥N−1

ε µε∥(C0)′ ≤ C.
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Besides, since |Juε| ≤ C|∇uε|2, the bound (IV.14) yields

∥νε∥(C0)′ ≤ C|log ε|.

For any γ ∈ (0, 1) (see Lemma 3.3 of [JS1]) it holds that

∥νε∥(C0,γ
c )′ ≤ C∥νε∥1−γ

(C0
c )′∥νε∥γ

(C0,1
c )′

,

and it follows from (IV.18) and (IV.5) that νε goes to zero in (C0,γ
c )′ for any 0 < γ < 1. The

compactness of N−1
ε µε in (C0,γ

c )′ is true because of its boundedness in (C0)′ and the compact
embedding of C0,γ in C0 (see [JS1]). It follows that N−1

ε Jε subsequentially converges in
(C0,γ

c )′ to the same limit as N−1
ε µε, i.e. to a measure. But recall Jε = Juε(∂v, ∂w) so

that by choosing different coordinates we get convergence for the other components and
conclude that the normalized Jacobians N−1

ε Juε subsequentially converge in (C0,γ
c )′ to a

measure valued 2-form.
The proof of (IV.17) is straightforward. If eε(σ) < M(ε), Proposition IV.2 applies and,

µε,σ being defined by (IV.7),

∥Jε,σ − µε,σ∥(C0,1
c )′ ≤ Cλ2 eε(σ)

M(ε)
,

where C > 0 is an absolute constant, while from (IV.6),

∥µε,σ∥|log ε| ≤ Ceε(σ).

Thus (IV.17) is verified.
In the case eε(σ) > M(ε) we let µε,σ = 0. Then if ξ is a smooth compactly supported

function, an integration by parts yields
∫

Ωσ

ξJε,σ = −1

2

∫

Ωσ

dξ ∧ jε,σ,

where jε,σ is the current restricted to the slice and dξ is the differential of ξ in the slice
also. The last integral may be bounded by ∥jε∥L1∥ξ∥C0,1. There remains to prove that

(IV.19) ∥jε∥L1(Ωσ) ≤ CM(ε)−1/2eε(σ).

From the identity jε = ρ2 dϕ where uε = ρeiϕ it follows easily that

|jε| ≤ ||uε|2 − 1||∇uε| + |∇uε|,

and then
∥jε∥L1(Ωσ) ≤ C(εeε(σ) + eε(σ)1/2).

The bound (IV.19) follows by noting that if eε(σ) > M(ε) then eε(σ)1/2 < M(ε)−1/2eε(σ).
This concludes the proof of (IV.19), (IV.17) and the compactness of N−1

ε Juε.
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Proof of the rectifiability. Rectifiability of the limit requires that Nε be a constant, which
we assume here. It is proved in [JS1] and uses a rectifiability criterion which has been
investigated recently by several authors (see [W], [JS3] and also [AK]) which involves slices
of currents. Let T be an (n − 2)-current in Rn and let (v, w, σ) ∈ R × R × Rn−2 denote
coordinates as above. The 0-dimensional currents {Tσ}σ are said to be the slices of T
under the map (v, w, σ) → σ if Tσ has support in the plane {(v, w, σ)/v, w ∈ R} and for
any smooth ξ,

(IV.20)

∫

Rn−2

Tσ(ξ) = T (ξdσ1 ∧ · · · ∧ dσn−2).

(see [AK]). Let Jε = Juε(∂v, ∂w). Then the restrictions Jε,σ of Jε to Ωσ are the slices of the
current Juε in the above sense, where k-forms are freely identified with (n−k)-dimensional
currents.

An (n−2)-current T in Rn is then rectifiable (see [W], [JS3] and also [AK]) if and only if
almost every slice under projections on any coordinate plane is a rectifiable 0-dimensional
current. If the slices are in addition integer-multiplicity then so is T . Letting J be the limit
of Juε, we must then identify its slices. To this aim, let ξ be a smooth function compactly
supported in Ω and

fε,ξ(σ) =

∫

Ωσ

Jε,σξ.

The function fε,ξ is bounded in BVloc(Rn−2, R) independently of ε. Indeed, following [AK],
for any smooth compactly supported ψ : Rn−2 → R, and using the identity dJuε = 0, we
have ∫

Rn−2

fε,ξ(σ)∂σiψ =

∫

Ω

ξ dψ ∧ Juε ∧ (⋆dσi) = −
∫

Ω

ψ∂σiξJuε ∧ dσ,

where ⋆ denotes the Hodge operator with respect to the n − 2 variables σ1, · · · , σn−2 and
dσ = dσ1 ∧ · · · ∧ dσn−2. It follows that

∣∣∣∣∣∣

∫

Rn−2

fε,ξ(σ)∂σiψ

∣∣∣∣∣∣
≤ C∥ψ∥C0∥Juε∥(C0,1

c )′∥ξ∥C2.

Since ∥Juε∥(C0,1
c )′ is bounded independently of ε (see (IV.8) and (IV.6)), the result follows.

Therefore by compact embedding, fε,ξ converges subsequentially as ε → 0 in L1(Rn−2) and
almost everywhere. This is true for any ξ, thus using a diagonal argument, we may extract
a subsequence such that fε,ξ converges for a.e. σ and any ξ in a countable dense subset A
of C2

c (Ω) to some fξ(σ). Let us identify this limit.
Defining eε(σ), µε,σ as in (IV.16), (IV.17), and since {|log ε|−1eε(σ)}ε is bounded in

L1(Rn−2), for a.e. σ, there exists a subsequence ε′ → 0 — depending on σ — such that
| log ε′|−1eε′(σ) is bounded, which implies using (IV.17) that {µε′,σ}ε′ is bounded in (C0)′.
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A subsequence then converges to a weak limit µσ and
∫

Ωσ

ξ dµσ = lim
ε′→0

∫

Ωσ

ξ dµε′,σ = lim
ε′→0

∫

Ωσ

ξJε′,σ = fξ(σ),

for a.e. σ and ξ ∈ A. Now π−1µσ is the limit of a linear combination of a bounded
number (depending on σ) of Dirac masses with integer coefficients, and therefore is such a
combination itself. Moreover

lim
ε→0

∫

Rn−2

∫

Ωσ

Jε,σξ = lim
ε→0

∫

Rn−2

fε,ξ(σ) =

∫

Rn−2

fξ(σ) =

∫

Rn−2

∫

Ωσ

ξ dµσ,

which proves that the slices of π−1J under the map (v, w, σ) → σ are the measures {µσ}σ

which are integer multiplicity rectifiable, for a.e. σ. We deduce the rectifiability and
integer-multiplicity of J from Theorem 8.1 of [AK]. Note that J is not necessarily a
normal current but as noted in [DL], the conclusion of Theorem 8.1 in [AK] remains valid
if J is a local normal current, i.e. if its boundary has locally finite mass. Here we have the
stronger property that the boundary of the current J vanishes locally in Ω, i.e. for any
n − 1-form α compactly supported in Ω

∫

Ω

J ∧ dα = 0.

Proof of the lower bound. The lower bound (IV.15) is trivial if X and Y are colinear, thus
we assume they are not and we choose a system of coordinates (v, w, σ) such that the
span of (X, Y ) is the plane {σ = 0}. Then we define µε, Jε, µε,σ, Jε,σ as above. On a slice
Ωσ, we let g be the metric such that g(X, X) = g(Y, Y ) = 1 and g(X, Y ) = 1. Then
Proposition IV.2 implies that for any σ such that eε(σ) < M(ε) there exists a collection of
balls {Bi}i for the metric g in Ωσ satisfying the properties there described. Then for any
smooth η compactly supported in Ω, it follows from (IV.6) that

(IV.21)
1

2|log ε|

∫

Bi

λ−1|ηX ·∇uε|2 + λ|ηY ·∇uε|2
dv dw

|X ∧ Y |
≥ π|di|

(
min
Bi

η2 − o(1)

)
.

Besides, writing Bi = Bg(ai, ri), we have minBi η2 ≥ η2(ai) − Cλri∥η∥C0,1. Also
∑

i ri ≤
λ/M(ε). Plugging in (IV.21) and summing over i, we have

(IV.22)
1

2|log ε|

∫

∪iBi

λ−1|ηX ·∇uε|2 + λ|ηY ·∇uε|2
dv dw

|X ∧ Y |
≥

∣∣∣∣∣∣

∫

Ωσ

(
η2 − o(1)

)
dµε,σ

∣∣∣∣∣∣
,
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where o(1) is a quantity that tends to 0 when ε → 0 independently of σ. This is in fact
true for every σ because µε,σ was set to be 0 if eε(σ) > M(ε). Integrating (IV.22) w.r.t. σ,
we find

1

2|log ε|

∫

Aε

λ−1|ηX ·∇uε|2 + λ|ηY ·∇uε|2 ≥

∣∣∣∣∣∣

∫

Ω

(
η2 − o(1)

)
dµε

∣∣∣∣∣∣
,

where Aε = ∪σ ∪i Bi(ε, σ). In particular the Lebesgue measure of Aε is bounded above by
C(Ω, λ)M(ε)−1 and therefore goes to 0 when ε → 0. Dividing the above inequality by Nε

we find

lim inf
ε→0

1

2Nε|log ε|

∫

Aε

λ−1|ηX ·∇uε|2 + λ|ηY ·∇uε|2 ≥ |X ∧ Y |

∣∣∣∣∣∣

∫

Ω

η2J(∂v, ∂w)

∣∣∣∣∣∣
,

where J is the limit of N−1
ε Juε. The proposition is proved by noting that

J(ηX, ηY ) = |X ∧ Y |η2J(∂v, ∂w).

IV.4 Proof of Theorem 1, completed

Let X, Y be continuous vector fields compactly supported in Ω. It follows from (I.5) that

(IV.23) jε,X =
|X ·∇uε|√
Nε|log ε|

, jε,Y =
|Y ·∇uε|√
Nε|log ε|

are bounded in L2 and therefore converge weakly subsequentially. We fix a convergent
subsequence and let jX , jX denote the weak L2 limits. Then

(IV.24) |jε,X|2 ⇀ |jX |2 + νX , |jε,Y |2 ⇀ |jY |2 + νY ,

weakly as measures, where νX and νY are positive Radon measures, called the defect
measures of the sequences.

We are going to approximate X and Y by constant vector fields. Let K denote the
union of the supports of X and Y . Choose α > 0 smaller than the distance of K to ∂Ω.
Let B = {B1, . . . , Bn} be a covering of K by balls of radius α. Then there exists a partition
of unity η1

2, . . . , ηn
2, ηKc

2 subordinate to B ∪ {Rn \ K}, where for every 1 ≤ k ≤ n the
function ηi

2 has compact support in Ω and for every x ∈ K

(IV.25)
n∑

k=1

ηk
2(x) = 1.

We let Xk, Yk denote the average value of X, Y on Bk. Then

(IV.26) δ(α) = sup
1≤k≤n
x∈Bk

{|Xk − X(x)|, |Yk − Y (x)|} −−→
α→0

0.
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and

(IV.27) |ηk(X − Xk)| ≤ δ(α), |ηk(Y − Yk)| ≤ δ(α).

We use Proposition IV.3 for every k to find sets Aε,k of measure tending to 0 such that

lim inf
ε→0

1

2Nε|log ε|

∫

Aε,k

λ−1|ηkXk ·∇uε|2 + λ|ηkYk ·∇uε|2 ≥

∣∣∣∣∣∣

∫

Ω

J(ηkXk, ηkYk)

∣∣∣∣∣∣
,

for every 1 ≤ k ≤ n. Using (IV.27) we find

lim inf
ε→0

1

2Nε|log ε|

∫

Aε,k

λ−1|ηkX ·∇uε|2 + λ|ηkY ·∇uε|2 ≥

∣∣∣∣∣∣

∫

Ω

J(ηkX, ηkY )

∣∣∣∣∣∣
− Cδ(α).

Letting Aε = ∪kAε,k and summing over k yields, in view of (IV.25),

(IV.28) lim inf
ε→0

1

2Nε|log ε|

∫

Aε

λ−1|X ·∇uε|2 + λ|Y ·∇uε|2 ≥

∣∣∣∣∣∣

∫

Ω

J(X, Y )

∣∣∣∣∣∣
− Cδ(α).

We claim that

(IV.29)
1

2

(
λ−1∥νX∥ + λ∥νY ∥

)
≥ lim inf

ε→0

1

2Nε|log ε|

∫

Aε

λ−1|X ·∇uε|2 + λ|Y ·∇uε|2.

Let us see how Theorem 1 follows. Using (IV.28) and (IV.29) and letting α tend to 0 we
find

1

2

(
λ−1∥νX∥ + λ∥νY ∥

)
≥

∣∣∣∣∣∣

∫

Ω

J(X, Y )

∣∣∣∣∣∣
.

Minimizing the left-hand side w.r.t λ yields the conclusion.
Inequality (IV.29) is quite standard. Choose a subsequence εn → 0 such that the

measure of An = ∪m≥nAεm goes to 0 when n → +∞. For any n we have ∥νX∥ ≥ νX(An)
and similarly for νY . But from (IV.24),

νX(An) +

∫

An

|jX |2 = lim inf
m→+∞

∫

An

|jεm,X |2 ≥ lim inf
m→+∞

∫

Aεm

|jεm,X |2.

Letting n go to +∞, since the measure of An goes to 0, we find

∥νX∥ ≥ lim inf
m→+∞

∫

Aεm

|jεm,X |2,

and a similar inequality holds for νY . A linear combination of these two inequalities, in
view of (IV.23), yields (IV.29).
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