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Abstract

We prove that if we consider a family of stable solutions to the Ginzburg-Landau
equation, then their vortices converge to a stable critical point of the ”renormalized
energy”. Moreover in the case of instability, the number of ”directions of descent” is
bounded below by the number of directions of descent for the renormalized energy. A
consequence is a result of nonexistence of stable nonconstant solutions to Ginzburg-
Landau with homogeneous Neumann boundary condition.

I Introduction and main results

We are interested in characterizing the vortices of solutions of the Ginzburg-Landau equa-
tion

(I.1) −∆u =
1

ε2
u(1 − |u|2) in Ω,

which are also the critical points of the Ginzburg-Landau energy

(I.2) Eε(u) =
1

2

∫

Ω

|∇u|2 +
1

2ε2
(1 − |u|2)2.

Here Ω is a smooth bounded two-dimensional simply connected domain and u is a complex-
valued function. Around each of its zeroes, the map u can have a nonzero winding number,
or degree of the zero. Such points are called vortices, and when their number is bounded,
they converge as ε → 0 to a limiting finite set of points or limiting vortices {ai}.
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The main result established by Bethuel, Brezis and Hélein in [BBH] is that vortices of
critical points of the Ginzburg-Landau energy (I.2) with a fixed Dirichlet boundary condi-
tion converge, as ε → 0, to critical points of the renormalized energy W , a function they
introduced (see below for its expression), which depends only on the limiting vortices {ai}
(and on the degrees). They also established that Eε Γ-converges to W in some sense, and
thus minimizers of Eε converge to minimizers of the renormalized energy. The converse
issue of proving that to each critical point {ai} of W can be associated a sequence of critical
points of (I.2) whose vortices converge to the {ai} has been answered positively (at least
in the case of degrees ±1), first in [Li, LL] through a construction for local minimizers and
minmax solutions, then in more details and all generality in [PR] through local inversion
(see also [AB] for a construction of solutions using the topological landscape of W ). So
essentially, through all these works, the relation of Eε to W has been understood at order
of the first derivative.

The main question that we address here is the following: if uε is a family of sta-
ble/unstable critical points of Eε, then is the limiting set of points {ai} a stable/unstable
critical point of W ? In other words, we know that the criticality and minimality of uε

translates into that of {ai}, and want to know whether the second order property of sta-
bility translates into that of {ai} for the limiting energy W . This will in turn give some
information about solutions of (I.1), for example we will see in Theorem 3 that with the
Neumann boundary condition, W has no stable critical point, and thus deduce that uε has
no nonconstant stable critical point, for ε small enough.

In order to answer this question, we place it in a more general framework. We es-
tablished in [SS4] a scheme to prove that if a family of functionals Eε Γ-converges to a
limiting functional F , then there are conditions that ensure that ”well-prepared” (mean-
ing having no excess energy) solutions of the gradient-flow of Eε converge to solutions of
the gradient-flow of F . This corresponds to a sort of C1 notion of Γ-convergence, that
guarantees that the C1 structure of the energy landscape is preserved through the limiting
process. In particular well-prepared critical points of Eε converged to critical points of F .
Here we show that the same kind of reasoning can be applied to the second order, or in
other words, we present some criteria that ensure that the second order structure of the
energy landscape is preserved, thus corresponding to a sort of C2 notion of Γ-convergence.
Since we only deal with critical points and static situations, the criteria are quite simpler.
The main criterion involves exactly as in [SS4], performing some construction (variation of
the original family uε), similar to that of [SS4], but pushed to the second order. Then, we
will just need to show that it is possible to do this construction for Ginzburg-Landau, in
order to obtain the result on stability/instability of vortices.

I.1 Abstract result

Here is thus the abstract result, providing the general scheme. The setting is similar to
[SS4]. Eε (resp. F ) are C2 functionals defined over M (resp. N ), open set of an affine
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space associated to a Banach space B (resp. B′). Since Eε is assumed to be C2, let us
denote by D2Eε(u) its Hessian at u and Qε(u) the associated quadratic function, associated
to the bilinear continuous function Bε(u)(., .) defined over B (resp. D2F (u), Q(u) and B(u)
for F ). We will say that a critical point is stable if the Hessian is nonnegative, unstable
otherwise, purely unstable if the Hessian is nonpositive.
We assume that there is a sense of convergence S such that if Eε(uε) ≤ C there exists a
subsequence uε ⇀S u ∈ N (i.e. we have compactness of families of solutions in that sense).
As in [SS4], this sense is to be specified each time. It can be a strong or weak convergence
of uε, it can also be a convergence of a nonlinear function of uε.

Theorem 1 Let uε be a family of critical points of Eε, and assume uε ⇀S u ∈ N . As-
sume also that the following hold: for any V ∈ B′, we can find vε(t) ∈ M defined in a
neighborhood of t = 0, such that ∂tvε(0) depends on V in a linear and one-to-one manner,
and

vε(0) = uε(I.3)

limε→0
d
dt |t=0

Eε(vε(t)) = d
dt |t=0

F (u + tV ) = dF (u).V(I.4)

limε→0
d2

dt2 |t=0
Eε(vε(t)) = d2

dt2 |t=0
F (u + tV ) = Q(u)(V ).(I.5)

Then
- if (I.3)-(I.4) are satisfied, u is a critical point of F
- if (I.3)-(I.4)-(I.5) are satisfied, then if uε are stable (resp. purely unstable) critical points
of Eε, u is a stable (resp. purely unstable) critical point of F . More generally, denoting by
n+

ε the dimension (possibly infinite) of the space spanned by eigenvectors of D2Eε(uε) as-
sociated to positive eigenvalues, and n+ the dimension of the space spanned by eigenvectors
of D2F (u) associated to positive eigenvalues (resp. n−

ε and n− for negative eigenvalues);
for ε small enough we have

n+
ε ≥ n+ n−

ε ≥ n−.

Let us observe that here we do not specifically require the Γ-convergence of Eε to F , the
relation between Eε and F is specified in (I.4)-(I.5).

I.2 Application to Ginzburg-Landau

We will be interested in the situation of families such that Eε(uε) ≤ C|log ε|. This bound
guarantees that the number of vortices remains bounded as ε → 0. We will consider two
types of boundary conditions, and emphasize that our results are valid for both. Either as
in [BBH] a Dirichlet boundary condition uε = g, where g is a fixed map with |g| = 1 and
deg(g, ∂Ω) = d > 0, or a homogeneous Neumann boundary condition ∂u

∂n = 0 on ∂Ω.
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The limiting vortices ai and their degrees di being given, we define Φ0 by

(I.6)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∆Φ0 = 2π
k∑

i=1

diδai in Ω

∂Φ0

∂n
=

(
ig,

∂g

∂τ

)
on ∂Ω (resp. Φ0 = 0 on ∂Ω for Neumann),

where δ denotes the Dirac mass, and (., .) denotes the scalar product in C identified with
R2. The renormalized energy is given by

(I.7) W (a1, · · · , ak) = −π
∑

i̸=j

didj log |ai − aj |− π
k∑

i=1

diR(ai) +
1

2

∫

∂Ω

Φ0(ig, ∂τg),

where

(I.8) R(x) = Φ0(x) −
k∑

i=1

di log |x − ai|.

In (I.7), the last boundary term is taken to be 0 in the case of the Neumann boundary
condition. By critical point of W , we mean critical points with the di’s being fixed.

We prove that conditions (I.3)—(I.5) are satisfied for solutions of Ginzburg-Landau,
and we deduce the following theorem.

Theorem 2 Let uε be a family of solutions of (I.1) such that Eε(uε) ≤ C|log ε|, with
either Dirichlet or homogeneous Neumann boundary conditions. Then, there exists a fam-
ily of points a1, · · · , ak and nonzero integers d1, · · · , dk such that, up to extraction of a
subsequence,

curl (iuε,∇uε) ⇀ 2π
k∑

i=1

diδai ,

where the family {ai} is a critical point of W . Moreover, if uε is a stable (resp. purely
unstable) solution of (I.1) then {ai} is a stable (resp. purely unstable) critical point of W ;
and more generally, denoting by n+

ε the dimension of the space spanned by eigenvectors of
D2Eε(uε) associated to positive eigenvalues and n+ the dimension of the space spanned by
eigenvectors of D2W (ai) associated to positive eigenvalues (resp. n−

ε and n− for negative
eigenvalues), we have, for ε small enough,

(I.9) n+
ε ≥ n+ n−

ε ≥ n−.

Let us mention that the result of [BBH] contained a stronger convergence of uε to u∗,
the canonical harmonic map associated to the ai’s and di’s, and that the compactness of
curl (iuε,∇uε) is true in a stronger sense, but we are not focusing on that aspect here.

On the other hand, some related results can be obtained from the analysis of [PR]
(restricted to degrees ±1). For example, conversely to Theorem 2, if the degrees di are
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all equal to ±1, then if uε are unstable, the ai’s are unstable too. Indeed, if they were
stable, then one would be able from [Li] to construct stable solutions vε of (I.1) by local
minimization, and these would have to be equal to the uε by the uniqueness result of [PR]
(stating that there is a unique solution of (I.1) converging to prescribed vortices of degree
±1). Our analysis does not use techniques of this type at all.

More generally, one can expect equality n−
ε = n− when the degrees are ±1, because

then solutions of (I.1) are essentially minimizers with prescribed vortices (as first observed
in [CM1, CM2]), and a strict inequality when some |di| > 1 due to the inner instability of
vortices of higher degrees.

One of the interesting consequences of Theorem 2 is the following

Theorem 3 Let uε be a family of nonconstant solutions of (I.1) with homogeneous Neu-
mann boundary condition ∂u

∂n = 0 on ∂Ω, such that Eε(uε) ≤ C|log ε|, then for ε small
enough, uε is unstable.

This theorem says that there are no nonconstant stable solutions of Ginzburg-Landau
with homogeneous Neumann boundary condition. In other words, there is no possibility
of having stable vortex-configurations with this simple model in dimension 2. First, this
is in contrast with the situation in dimension 3, because it has been proved by Montero,
Sternberg and Ziemer in [MSZ] that as soon as the 3D domain satisfies some nonconvexity
condition, there exist stable nontrivial solutions of the same equation, which have line
vortices. In order to have stable vortices in 2 dimensions, one needs to add a confinement
effect through some applied magnetic field, for example (see below).

Secondly, this result extends the same one by Jimbo and Morita [JM] which was valid in
any dimension but which required the domain to be convex. Their result was then extended
to the functional with magnetic field in 2 dimensions (see below) by Jimbo and Sternberg
in [JiSt]. In both cases, they used a totally different method (a clever integration), not
using the renormalized energy, and their result was in addition valid for all ε. Here, on
the contrary, this result is an asymptotic one, valid only for small ε, and it uses the fact
that the renormalized energy has no stable critical point, a fact that was observed by J.
Rubinstein [Ru] for the case of Ginzburg-Landau with magnetic field. The questions of
knowing whether Theorem 3 is true for all ε in simply connected domains, or for non-simply
connected ones remain open.

I.3 The case of Ginzburg-Landau with magnetic field

Although we don’t state here formal proofs, the results of the previous subsection could
be extended with the same method to the case of the full Ginzburg-Landau energy with
magnetic field:

(I.10) J(u, A) =
1

2

∫

Ω

|∇Au|2 + |h − hex|2 +
1

2ε2
(1 − |u|2)2.
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This is the full two-dimensional model of superconductivity, introduced by Ginzburg and
Landau. Here, u is coupled to a magnetic potential A, R2-valued vector field, with ∇A =
∇− iA the covariant derivative, and h = curl A the induced magnetic field. The parameter
ε is related to a material constant, and can be assumed to be small. The parameter hex

represents the intensity of an applied magnetic field. If hex = 0 and the domain Ω is
convex, Jimbo and Sternberg have proved in [JiSt] that all stable critical points of J are
constant (for all ε). On the other hand, it is known that a nonzero applied field hex larger
than some critical value Hsc of order 1 with respect to ε (the ”subcooling field”) stabilizes
vortices (i.e. there exist stable solutions with vortices), for ε small enough. This has been
proved in [DL] and in [S2]. Here for nonconvex domains and hex = 0, one could obtain
the analogue result of [JiSt] and of Theorem 3, that is there are no sequences (in ε → 0)
of nontrivial stable solutions. This would be done, as for Theorem 3, by examining the
renormalized energy associated to J (for hex ≤ O(1)) which is
(I.11)

WJ(a1, · · · , an) = −π
∑

i̸=j

didj log |ai−aj |−π
∑

i

diR(ai)+π
∑

i

diξ(ai)+
h2

ex

2
|Ω|−hex

2

∫

∂Ω

∂ξ

∂n

where R is defined as before, and

(I.12)

⎧
⎨

⎩

−∆2ξ + ∆ξ = 2π
∑

i diδai in Ω
ξ = 0 on ∂Ω
∆ξ = hex on ∂Ω.

This renormalized energy has been written down by Rubinstein [Ru] and Du-Lin [DL] (see
also [Sp] and [S2]). It was established in [Ru], that for hex = 0, WJ has no stable critical
points (for any n ̸= 0). His argument in fact proves that WJ has no stable critical point
for hex small, and has some for hex larger than a constant.

For hex ̸= 0, one expects to get the analogue of Theorem 2, that is that stable critical
points of J converge to stable critical points of WJ . Also, characterizing the smallest hex

such that WJ has nontrivial stable critical points would provide a lower bound for Hsc,
which has to be an equality in view of the result of [DL].

On the other hand, in the regime hex ≫ 1, for a bounded number of vortices, we have
established in [S1, SS1, SS2] that the renormalized (or Γ-limit) energy associated to J
suitably rescaled, becomes simply ξ0 where ξ0 is the solution of

(I.13)

{
−∆ξ0 + ξ0 + 1 = 0 in Ω
ξ0 = 0 on ∂Ω

We established in [SS2] that critical points converge to critical points of ξ0. Applying the
method presented here would yield that stable critical points converge to stable critical
points of ξ0.

Acknowledgements: The author wishes to thank Peter Sternberg for suggesting the
problem and providing the results of Section IV, and Etienne Sandier for useful discussions.
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II Proof of Theorem 1

Proof: -first assertion : We have d
dt |t=0

Eε(vε(t)) = 0 (because uε is a critical point), hence

from (I.4) we must have dF (u).V = 0. But this is true for any V ∈ B′, thus dF (u) = 0
and u is a critical point of F .
-second assertion: to every V ∈ B′, we can associate a vε such that, according to (I.5),

d2

dt2 |t=0
Eε(vε(t)) = Qε(uε)(∂tvε(0)) → Q(u)(∂tv(0)).

If uε is a stable critical point of Eε, we have Qε(uε)(∂tvε(0)) ≥ 0, thus Q(u)(V ) ≥ 0. But
this is true for all V ∈ B′, hence Q(u) ≥ 0 and u is a stable critical point of F .
-third assertion: we claim that, vε being associated to V and wε to W , we have

(II.1) Bε(uε)(∂tvε(0), ∂twε(0)) = B(u)(V, W ) + o(1).

Let us prove this claim. From the hypotheses, we can associate sε to V +W in such a way
that

∂tsε(0) = ∂tvε(0) + ∂twε(0)(II.2)

limε→0
d2

dt2 |t=0
Eε(sε(t)) = Q(u)(V + W )(II.3)

For simplicity, let us write Vε = ∂tvε(0), Wε = ∂twε(0), Sε = ∂tsε(0). We have

Qε(uε)(Vε + Wε) = Qε(uε)(Sε) = Q(u)(V + W ) + o(1).

We can do the same reasoning with V − W instead of V + W and will find that

Qε(uε)(Vε − Wε) = Q(u)(V − W ) + o(1).

Therefore by substracting these two relations, we are led to Bε(uε)(Vε, Wε) = B(u)(V, W )+
o(1) which is (II.1).

Next, by definition of n+, if n+ is finite, we can find n+ linearly independent vectors
V 1, · · · , V n+

, such that the quadratic function Q(u) restricted to the space they span is
positive, i.e.

(II.4) minPn+
i=1 x2

i =1

Q(u)

(
n+∑

i=1

xiV
i

)
> 0.

By the hypothesis, we can associate to them a family vi
ε such that (I.3)—(I.5) are satisfied.

Denoting V i
ε = ∂tvi

ε(0), since the V i
ε depend linearly and in a one-to-one fashion on the Vi,

they are also linearly independent. In view of (II.1), we have for all xi,

lim
ε→0

Qε(uε)

(
n+∑

i=1

xiV
i
ε

)
= Q(u)

(
n+∑

i=1

xiV
i

)
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and the convergence is uniform with respect to (xi) such that
∑

i x
2
i = 1. Finally we deduce

from (II.4) that for ε small enough

(II.5) minPn+
i=1 x2

i =1

Qε(uε)

(
n+∑

i=1

xiV
i
ε

)

> 0.

Since the V i
ε span a space of dimension n+, this proves that D2Eε(uε) has at least n+

positive eigenvalues and thus that n+
ε ≥ n+. Observe that if n+ is +∞, we can apply the

previous argument on subspaces of arbitrary large finite dimensions, and find that n+
ε is

also +∞ for ε small. The same arguments work for n−
ε ≥ n−. !

III Application to Ginzburg-Landau

For Ginzburg-Landau, we take

Eε(u) =
1

2

∫

Ω

|∇u|2 +
1

2ε2
(1 − |u|2)2,

and F to be the renormalized energy W of [BBH] with Neumann or Dirichlet boundary
conditions. M is H1

g (Ω) (resp. {u ∈ H1(Ω), ∂nu = 0 on ∂Ω} for Neumann) where H1
g (Ω)

is the affine space of H1(Ω) functions which are equal to g on ∂Ω.
The sense of convergence S is uε ⇀S u = ((a1, d1), · · · , (ak, dk)) if curl (iuε,∇uε) ⇀

2π
∑k

i=1 diδai in the sense of distributions. N is then Ωk minus its diagonals (the di’s being
considered fixed).

Proposition III.1 Hypotheses (I.3) to (I.5) are verified for families of solutions of Ginzburg-
Landau (with Dirichlet or Neumann boundary condition) such that Eε(uε) ≤ C|log ε|, with
the above choices of Eε and F .

Proof :
- Step 1: preliminaries. Let uε be a family of critical points such that Eε(uε) ≤ C|log ε|.
There exists a constant λ and a bounded number of balls B(aε

i , λε) such that |uε| ≥ 1
2 in

Ω\ ∪i B(aε
i , λε) for ε small enough. In the case of the Dirichlet boundary condition and a

starshaped domain, this is proved in [BBH] (it follows from the Pohozaev identity). In the
case of the Neumann boundary condition, it can be proved following exactly the method
of [BR], or by a ball-construction method for solutions of Ginzburg-Landau that will be
exposed in [SS5], which proves that 1

ε2

∫
|u|≤ 1

2
(1 − |u|2)2 ≤ C.

Extracting a subsequence if necessary, we can assume that aε
i converges to ai and that

(III.1) curl (iuε,∇uε) ⇀ 2π
k∑

j=1

djδaj ,

in the sense of distributions, where the di’s are integers and the ai’s are distinct points
(this can be proved directly, or one can apply the results of [SS1, JeSo, SS3]). We can
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consider ρ > 0 small enough so that the balls Bj = B(aj , ρ) are disjoint and included in
Ω. Now the main theorem in Chap. X of [BBH] asserts that

1

4ε2
(1 − |uε|2)2 ⇀

π

2

k∑

j=1

d2
jδaj

in the sense of measures, for the Dirichlet boundary condition, and this result remains
valid also for Neumann boundary condition. If one of the di’s is 0, then

(III.2)

∫

B(ai,ρ)

1

4ε2
(1 − |uε|2)2 → 0.

It is standard from [BBH] that this implies that |uε| ≥ 1
2 in B(ai, ρ) for ε small enough.

Indeed, solutions of (I.1) satisfy the estimate ∥∇uε∥L∞(Ω) ≤ C
ε , and thus if there is a point

in B(ai, ρ) where |uε(x0)| < 1
2 , this estimate ensures that |uε| < 3

4 in a ball of size λε
centered at x0, which finally yields a contradiction with (III.2). Therefore, |uε| ≥ 1

2 in
B(ai, ρ), and the bad disc B(aε

i , λε) is not really a bad disc and can be removed from the
original list. Finally, we can thus assume that the di’s are all nonzero, still with |uε| ≥ 1

2
in Ω\ ∪j B(aj , ρ) for ε small enough.

We will need the following additional results.

Lemma III.1 If uε is a solution of (I.1) with either Dirichlet or Neumann boundary
condition, and Eε(uε) ≤ C|log ε|, then Φ0 being defined in (I.6), we have

(III.3)

∫

Ω\∪iBi

|∇uε − iuε∇⊥Φ0|2 → 0 as ε → 0.

(III.4) ∥(iuε,∇uε) −∇⊥Φ0∥Lp(Ω) → 0 ∀p < 2.

(III.5)

∫

Ω\∪iBi

|∇|uε||2 +
1

2ε2
(1 − |uε|2)2 → 0 as ε → 0.

We postpone the proof until the end of the section.

- Step 2: construction of vε. We now follow the construction of [SS4]. Given a family
of vectors V = (V1, · · · , Vk), we can find a C1 one-parameter family of diffeomorphisms of
Ω, χt(x) = x + tX(x) defined in a small interval around 0 such that X(x) is C1, X = 0 on
∂Ω and

(III.6) X(x) = Vi in each Bi.

In other words, χt achieves a translation of vector Vi of each ball. χt is thus a C1 family of
diffeomorphisms of Ω, independent of ε, which keep ∂Ω fixed. By taking a basis of (R2)k
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and associating this way an Xi(x) to each of its vectors, it is possible to obtain by linear
combination an X(x) which depends linearly on V .

Next, we let ai(t) denote χt(ai). We define Φt by

(III.7)

⎧
⎨

⎩

∆Φt = 2π
∑

i diδai(t) in Ω

∂Φt

∂τ
= (ig,

∂g

∂n
) on ∂Ω (resp. Φt = 0 on ∂Ω),

then Rt by

(III.8) Rt(x) = Φt(x) −
∑

j

dj log |x − aj(t)|.

Rt is a smooth harmonic function in Ω, and we recall that the renormalized energy W
associated to a1(t), · · · , ak(t) is defined by
(III.9)

W (a1(t), · · · , ak(t)) = −π
∑

i̸=j

didj log |ai(t) − aj(t)| +
1

2

∫

∂Ω

Φt(ig, ∂τg) − π
k∑

i=1

diRt(ai(t)).

We can also consider R̃t, the conjugate harmonic function of Rt. We then denote by θj
t the

polar coordinate centered at aj(t) (defined modulo 2π), and define

(III.10) ψt =
k∑

j=1

djθ
j
t ◦ χt −

k∑

j=1

djθ
j
0 + R̃t ◦ χt − R̃0.

One can check that ψ0 = 0, ψt is a smooth function in Ω, the singularities at ai(0) in fact
cancelling out, and that it is smooth in space-time. Also, we have

(III.11) ∇⊥Φ0 + ∇ψt = ∇
(
∑

j

djθ
j
t ◦ χt + R̃t ◦ χt

)

We finally define vε(x, t) as follows:

(III.12) vε(χt(x), t) = uε(x)eiψt i.e. vε(x, t) = uε(x − tX(x))eiψt(x−tX(x)).

- Step 3: Let us check that vε satisfies the desired properties. First, ψt = 0 on ∂Ω (resp
∂ψt

∂n = 0 on ∂Ω) thus vε satisfies the right boundary conditions. In addition, vε is C1 in
time and clearly vε(0) = uε. Secondly,

(III.13) ∂tvε(x, 0) = −∇uε(x) · X(x) + iuε(x)
d

dt |t=0
ψt(x),

thus, since X depends linearly on V , in order to check that ∂tvε(0) depends linearly on
V , there remains to check that (∂tψt)|t=0 does. First, differentiating (III.7) with respect to
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t, we find that ∆∂tΦt = 2π
∑

i didiv (Viδai(t)). Thus, (∆∂tΦt)|t=0 depends linearly on V ,
hence (∂tΦt)|t=0 too in view of its boundary condition. But, using (III.11) with (III.8), one
may check that (∇∂tψt)|t=0 = (∇⊥∂tΦt)|t=0 hence (∇∂tψt)|t=0 depends linearly on V and
finally (∂tψt)|t=0 too. Let us check that the dependence is one-to-one. If V is such that
∂tvε(0) = 0, then in view of (III.13), we must have

∇uε · X = iuε
d

dt |t=0
ψt.

Thus, since |uε| ≤ 1, we must have |∇uε · X| ≤ C where C is independent of ε. But a
result of [SS3] (see Corollaries 1 and 2) yields that

lim inf
ε→0

1

|log ε|

(∫

Ω

|∇uε · X|2
∫

Ω

|∇uε · X⊥|2
) 1

2

≥
k∑

i=1

|di||X(ai)|2.

Hence, we deduce that we have

C∥X∥2
L∞(Ω)

∫

Ω

|∇uε|2 ≥ C

∫

Ω

|∇uε · X⊥|2 ≥
(

k∑

i=1

|di||X(ai)|2
)2

|log ε|2(1 + o(1)),

a contradiction with the hypothesis Eε(uε) ≤ C|log ε| unless
∑

i |di||X(ai)|2 = 0. Since we
saw that the di’s are all nonzero, this implies that for every i, X(ai) = 0, but recall that
X(ai) = Vi. Therefore, V = 0, and the mapping is one-to-one.

- Step 4: We evaluate d
dtEε(vε(t)). In view of the definition of vε, with a change of variables

y = χt(x), we have

Eε(vε) =
1

2

∫

Ω

(
|(∇vε) ◦ χt(x)|2 +

1

2ε2
(1 − |vε(χt(x))|2)2

)
|Jac χt|(x) dx

=
1

2

∫

Ω

(
|Dχ−1

t ∇(vε ◦ χt)|2 +
1

2ε2
(1 − |uε|2)2

)
|Jac χt|

=
1

2

∫

Ω

(
|Dχ−1

t ∇(uεe
iψt)|2 +

1

2ε2
(1 − |uε|2)2

)
|Jac χt|.(III.14)

First, observing that d
dt |Jac χt| and d2

dt2 |Jac χt| are 0 in ∪iBi, and bounded otherwise, we
have, in view of (III.5),

d

dt

∫

Ω

1

2ε2
(1 − |uε|2)2|Jac χt| ≤ C

1

2ε2

∫

Ω

(1 − |uε|2)2 ≤ o(1) as ε → 0(III.15)

d2

dt2

∫

Ω

1

2ε2
(1 − |uε|2)2|Jac χt| ≤ C

1

2ε2

∫

Ω

(1 − |uε|2)2 ≤ o(1) as ε → 0.(III.16)

11



Secondly, we have

(III.17)
d

dt

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt| =
d

dt

∫

Ω

|Dχ−1
t (∇uε + iuε∇ψt)|2|Jac χt|

=

∫

Ω

2(
d

dt
Dχ−1

t (∇uε + iuε∇ψt) + Dχ−1
t (iuε

d

dt
∇ψt)) ·

(
Dχ−1

t (∇uε + iuε∇ψt)
)
|Jac χt|

+ |Dχ−1
t (∇uε + iuε∇ψt)|2

d

dt
|Jac χt|

We can conclude with exactly the calculation of [SS4] that d
dt |t=0

Eε(vε) = d
dt |t=0

F (v). Let

us rewrite it here for the sake of completeness. We have

(III.18)
d

dt |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt|

=

∫

Ω

(
d

dt |t=0
Dχ−1

t ∇uε) ·∇uε + iuε
d

dt |t=0
∇ψt ·∇uε + |∇uε|2

d

dt |t=0
|Jac χt|

But, from (III.4) and the fact that ψt is smooth and C1 in time, we deduce that

(III.19)

∫

Ω

d

dt |t=0
∇ψt · (iuε,∇uε) =

∫

Ω

d

dt |t=0
∇ψt ·∇⊥Φ0 + o(1).

Meanwhile, observing that d
dt |t=0

Dχ−1
t = d

dt |t=0
|Jac χt| = 0 in ∪iBi, using (III.3), we have

(III.20)

∫

Ω

d

dt |t=0
Dχ−1

t ∇uε ·∇uε +
1

2
|∇uε|2

d

dt |t=0
|Jac χt|

=

∫

Ω

d

dt |t=0
Dχ−1

t ∇⊥Φ0 ·∇⊥Φ0 +
1

2
|∇⊥Φ0|2

d

dt |t=0
|Jac χt| + o(1).

Inserting (III.19) and (III.20) into (III.18), we have

(III.21)
d

dt |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt|

=

∫

Ω

d

dt |t=0
Dχ−1

t ∇⊥Φ0 ·∇⊥Φ0 +
d

dt |t=0
∇ψt ·∇⊥Φ0 +

1

2
|∇⊥Φ0|2

d

dt |t=0
|Jac χt| + o(1).

Using again the fact that d
dt |t=0

Dχ−1
t = d

dt |t=0
|Jac χt| = 0 in ∪iBi, we deduce that, for

any 0 < r < ρ,

(III.22)
d

dt |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt|

=
d

dt |t=0

1

2

∫

Ω\∪jB(aj ,r)

|Dχ−1
t (∇⊥Φ0 + ∇ψt)|2|Jac χt| + o(1) + or(1)

= lim
r→0

d

dt |t=0

1

2

∫

Ω\∪jB(aj ,r)

|Dχ−1
t (∇⊥Φ0 + ∇ψt)|2|Jac χt| + o(1).
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Now observe that in view of (III.8),

(III.23) ∇⊥Φt = ∇⊥Rt + ∇⊥
∑

j

di log |x − aj(t)| = ∇R̃t +
∑

j

dj∇θj
t ,

and hence in view of (III.10)

(III.24) ∇⊥Φ0 + ∇ψt = ∇
∑

j

djθ
j
t ◦ χt + R̃t ◦ χt.

Inserting this into (III.22) and doing a change of variables, we are led to

(III.25)
d

dt |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt|

= lim
r→0

d

dt |t=0

1

2

∫

Ω\∪jB(aj (t),r)

|∇(
∑

j

djθ
j
t +R̃t)|2+o(1) = lim

r→0

d

dt |t=0

1

2

∫

Ω\∪jB(aj (t),r)

|∇⊥Φt|2+o(1),

where we have used (III.23). We then introduce Sj
t (x) = Φt(x)− dj log |x− aj(t)|, smooth

harmonic function in a neighborhood of aj , also C1 in time. As in [BBH], p. 22, we have
Sj

t (aj(t)) = Rt(aj(t)) +
∑

k ̸=j dk log |aj(t) − ak(t)| and

(III.26)

d

dt |t=0

∫

Ω\∪jB(aj (t),r)

|∇Φt|2 =
d

dt |t=0

(
∑

j

∫

B(aj (t),r)

|∇Sj
t |2 + 2πdjS

j
t (aj(t)) + 2πd2

j log r

)

=
d

dt |t=0

(
∑

j

∫

B(aj (t),r)

|∇Sj
t |2 + 2π

∑

j

djRt(aj(t)) + 2
∑

j ̸=l

djdl log |aj(t) − al(t)|
)

=
d

dt |t=0

∑

j

∫

B(aj (t),r)

|∇Sj
t |2 + 2

d

dt |t=0
W (a1(t), · · · , ak(t)).

But, limr→0
d
dt |t=0

∑
j

∫
B(aj (t),r) |∇Sj

t |2 = 0, because the Sj are smooth functions, C1 in

time, thus taking the limit r → 0 in (III.26) and combining it with (III.25), we find

(III.27)
d

dt |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt| =
d

dt |t=0
W (a1(t), · · · , ak(t)) + o(1).

Combining this with (III.14) and (III.16), we conclude that

lim
ε→0

d

dt |t=0
Eε(vε(x, t)) =

d

dt |t=0
W (a1(t), · · · , ak(t)) = dW (ai).V,

hence the desired condition (I.4). This implies that, when uε is a solution of (I.1), then
dW (ai) = 0.

13



- Step 5: We evaluate d2

dt2 |t=0
Eε(vε). We differentiate a second time (III.17) and, observing

that ψ0 = 0, |Jac χ0| = 1 and Dχ0 = I, we find

(III.28)
d2

dt2 |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt|

=

∫

Ω

(
d2

dt2 |t=0
Dχ−1

t ∇uε + 2
d

dt |t=0
Dχ−1

t (iuε
d

dt |t=0
∇ψt) + (iuε

d2

dt2 |t=0
∇ψt)

)
·∇uε

+

∣∣∣∣
d

dt |t=0
Dχ−1

t ∇uε + iuε
d

dt |t=0
∇ψt

∣∣∣∣
2

+2
( d

dt |t=0
Dχ−1

t ∇uε+(iuε
d

dt |t=0
∇ψt)

)
·∇uε

d

dt |t=0
|Jac χt|

+
1

2
|∇uε|2

d2

dt2 |t=0
|Jac χt|.

Using (III.3), (III.4), (III.5), the fact that ψt is smooth and C1 in time, and observing
that d

dt |t=0
Dχ−1

t = d
dt |t=0

|Jac χt| = d2

dt2 |t=0
Dχ−1

t = d2

dt2 |t=0
|Jac χt| = 0 in ∪iBi, we see that

we can replace, like for the first derivative, ∇uε by ∇⊥Φ0 with only a small error and
eventually be led to
(III.29)
d2

dt2 |t=0

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt| = lim
r→0

d2

dt2 |t=0

∫

Ω\∪iB(ai,r)

|Dχ−1
t (∇⊥Φ0+∇ψt)|2|Jac χt|+o(1).

Inserting (III.24) into (III.29) and doing a change of variables yields

(III.30)
d2

dt2 |t=0

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt| = lim
r→0

d2

dt2 |t=0

∫

Ω\∪iB(aj (t),r)

|∇(
∑

j

djθ
j
t + R̃t)|2 + o(1)

= lim
r→0

d2

dt2 |t=0

∫

Ω\∪iB(aj (t),r)

|∇⊥Φt|2 + o(1)

.

where we have used (III.23). As before,

(III.31)

d2

dt2 |t=0

∫

Ω\∪jB(aj (t),r)

|∇Φt|2 =
d2

dt2 |t=0

(
∑

j

∫

B(aj(t),r)

|∇Sj
t |2 + 2πdjS

j
t (aj(t)) + 2πd2

j log r

)

=
d2

dt2 |t=0

(
∑

j

∫

B(aj (t),r)

|∇Sj
t |2 + 2π

∑

j

djRt(aj(t)) + 2
∑

j ̸=k

djdk log |aj(t) − ak(t)|
)

=
d2

dt2 |t=0

∑

j

∫

B(aj (t),r)

|∇Sj
t |2 + 2

d2

dt2 |t=0
W (a1(t), · · · , ak(t)).
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But, limr→0
d
dt |t=0

∑
j

∫
B(aj (t),r) |∇Sj

t |2 = 0, because the Sj are smooth functions, C1 in

time, thus taking the limit r → 0 in (III.31) and combining it with (III.30), we find

(III.32)
d2

dt2 |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt| =
d2

dt2 |t=0
W (a1(t), · · · , ak(t)).

Combining this with (III.14) and (III.16), we conclude that

lim
ε→0

d2

dt2 |t=0
Eε(vε(x, t)) =

d2

dt2 |t=0
W (a1(t), · · · , ak(t)),

hence the desired result (I.5). This completes the proof. !

Combining Proposition III.1 with Theorem 1, we deduce Theorem 2.

Proof of Lemma III.1:
In the Dirichlet case, this follows directly from the result of [BBH], Theorem X.3, where
C1,α(K) convergence of uε to the ”canonical harmonic map” is proved, for every K com-
pact subset of Ω\ ∪i {ai}. We give here a slightly different proof, valid for both Dirichlet
and Neumann cases, but that borrows ingredients from [BBH] and other works.
- Step 1 : Taking the scalar product of (I.1) with iuε we find

0 =
(
iuε, ∆uε +

uε

ε2
(1 − |uε|2)

)
= (iuε, ∆uε)

but we have the identity

(III.33) (iuε, ∆uε) = div (iuε,∇uε)

hence we deduce div (iuε,∇uε) = 0 and since Ω is simply connected, we may write

(III.34) (iuε,∇uε) = ∇⊥Uε

with the boundary conditions

∂Uε

∂n
= (ig,

∂g

∂τ
) on ∂Ω

in the case of the Dirichlet boundary condition, and

Uε = 0 on ∂Ω

in the case of the Neumann boundary condition. We deduce from (III.34) that |∇Uε| ≤
|∇uε| hence

∫
Ω |∇Uε|2 ≤ C|log ε|. From the analysis of [SS1], we also have

(III.35) curl (iuε,∇uε) −→ 2π
∑

i

diδai = curl∇⊥Φ0 in W−1,p(Ω) ∀p < 2.
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Since we also have div (iuε,∇uε) = 0, we deduce that

(III.36) (iuε,∇uε) → ∇⊥Φ0 + cst strongly in Lp(Ω).

Examining the boundary conditions, we deduce that the constant is 0 and that (III.4) is
proved.
- Step 2: Let η be a smooth cut-off function, equal to 0 in ∪iB(ai,

ρ
2) and to 1 in Ω\ ∪i

B(ai, ρ). For ε small enough, we have |uε| ≥ 1
2 wherever η > 0, and in view of (III.34), we

have

(III.37) div

(
∇Uε

|uε|2

)
= 0 in Ω\ ∪i B(ai,

ρ

2
).

Let us then consider
∫

Ω

η
|∇(Uε − Φ0)|2

|uε|2
=

∫

Ω

η∇(Uε − Φ0) ·∇Φ0

(
1 − 1

|uε|2

)
+

∫

Ω

η∇(Uε − Φ0) ·
(
∇Uε

|uε|2
−∇Φ0

)

=

∫

Ω

η∇(Uε − Φ0) ·∇Φ0

(
1 − 1

|uε|2

)
+

∫

Ω

(Uε − Φ0)∇η ·∇Uε

(
1 − 1

|uε|2

)

−
∫

Ω

(Uε − Φ0)∇η · (∇Uε −∇Φ0) −
∫

Ω

η(Uε − Φ0)div

(
∇Uε

|uε|2

)
.(III.38)

The first two terms on the right-hand side tend to zero thanks to the a priori bounds∫
Ω(1 − |uε|2)2 ≤ Cε2|log ε| and

∫
Ω |∇Uε|2 ≤ C|log ε| combined with the fact that |uε| ≥ 1

2
on the support of η and ∇η. The third term goes to zero from the strong Lp convergence
of ∇Uε to ∇Φ0 (III.36). From (III.37), the last term vanishes. Finally we deduce that

(III.39)

∫

Ω\∪iB(ai,ρ)

|∇(Uε − Φ0)|2 → 0 as ε → 0.

- Step 3: For the convergence of the modulus, we proceed as in [BBH]. Let us write locally
in polar coordinates uε = ρεeiϕε outside of the zeroes of uε. Taking the scalar product of
the equation (I.1) with uε, one finds

(III.40) −∆ρε + ρε|∇ϕε|2 =
1

ε2
ρε(1 − ρ2

ε),

but since ∇⊥Uε = (iuε,∇uε) = ρ2
ε∇ϕε, this becomes

(III.41) −∆ρε +
|∇Uε|2

ρ3
ε

=
1

ε2
ρε(1 − ρ2

ε)

in Ω\ ∪i B(ai,
ρ
2). Multiplying this equation by η(1 − ρε) and integrating, we are led to

(III.42)∫

Ω

η|∇ρε|2 −
∫

Ω

η
(1 − ρε)

ρ3
ε

|∇Uε|2 −
∫

Ω

(1 − ρε)∇η ·∇ρε +
1

ε2

∫

Ω

ηρε(1 − ρε)
2(1 + ρε) = 0.
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But on the one hand,
∫

Ω

η
(1 − ρε)

ρ3
ε

|∇Uε|2 =

∫

Ω

η
(1 − ρε)

ρ3
ε

|∇Φ0|2 +

∫

Ω

η
(1 − ρε)

ρ3
ε

(|∇Φ0|2 − |∇Uε|2),

and by Lebesgue’s dominated convergence theorem, since ρε → 1 a.e., the first term tends
to zero, while the second tends to zero by the strong L2 convergence of ∇Uε outside of the
points ai (see (III.36). The third term in the left-hand side of (III.42) tends to zero by the
a priori estimates on ρε, and finally we get that

∫

Ω

η|∇ρε|2 +
1

ε2

∫

Ω

ηρε(1 − ρε)
2(1 + ρε) → 0.

Using the fact that ρε(1 − ρε)2(1 + ρε) ≥ C(1 − ρ2
ε)

2 where ρε ≥ 1
2 , we deduce that

(III.5) holds. Finally (III.3) follows easily from this and (III.39). Indeed, to have (III.3)
it suffices to prove that

∫
Ω\∪iB(ai,ρ) |ρε(∇ϕε − ∇⊥Φ0)|2 → 0, but this is smaller than

C
∫

Ω\∪iB(ai,ρ) |ρ
2
ε∇ϕε−∇⊥Φ0+(1−ρ2

ε)∇⊥Φ0|2 which tends to zero by (III.39) and Lebesgue’s
dominated convergence theorem. This completes the proof of the lemma. !

IV Proof of Theorem 3

Suppose, by contradiction, that a sequence (uε) of stable critical points exists, and has, up
to extraction, k limiting vortices of nonzero degrees. Let V ∈ R2 be arbitrary, and as in
the proof of Proposition III.1, define a1(t) for t small by the formula a1(t) = a1 + tV . Then
in light of Proposition III.1 or the results (I.4) and (I.5) of Theorem 1, the criticality and
stability of the sequence (uε) implies that

(IV.1)
d

dt |t=0

W (a1(t), a2, . . . , ak) = 0 and
d2

dt2 |t=0

W (a1(t), a2, . . . , ak) ≥ 0.

Moreover, since we are allowing only the first vortex to vary with t, we find that the
condition on the second derivative of W takes the form:

(IV.2)
∑

i,j=1,2

∂2W1

∂xixj
(x)|x=a1

V iV j ≥ 0,

where V = (V 1, V 2) and

(IV.3) W1(x) ≡ −π
k∑

j=2

d1dj log |x − aj |− πd2
1R1(x, x).

Here, recalling that we are in the Neumann case, R1(x, y) = Φ(x, y) − log |x − y| and Φ is
the Green’s function with singularity at y defined by

∆xΦ(x, y) = 2πδy for x ∈ Ω, Φ(x, y) = 0 for x ∈ ∂Ω.
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Since V ∈ R2 is arbitrary, this says that the Hessian of W1 is non-negative definite.
Now the function R1(x, x) has been well-studied and can in fact be written down

explicitly in terms of a conformal map g from Ω to the unit disc (cf. [Ri], p. 323):

(IV.4) R1(x, x) = log |g′(x)|− log(1 − |g(x)|2).

A direct computation yields that ∆xR1(x, x) = 4e2R1(x,x). Hence,

∆W1(a1) = −4πe2R1(a1,a1) < 0,

contradicting (IV.2). Consequently, we deduce that if there is a sequence uε of stable
solutions, necessarily their number of limiting vortices is 0, and |uε| ≥ 1

2 for ε small
enough. We claim that this implies that uε are constant solutions. Indeed, since |uε| ≥ 1

2 ,
uε can be written globally as uε = ρεeiϕε with ρε and ϕε real-valued functions, and ρε ≥ 1

2 .
As seen in (III.33) and (III.34), we deduce from (I.1) that

div (ρ2
ε∇ϕε) = 0

with ∂ϕε

∂n = 0 and ∂ρε

∂n = 0 on ∂Ω from the Neumann boundary condition. Multiplying this
relation by ϕε and integrating by parts, we find

∫
Ω ρ2

ε|∇ϕε|2 = 0 and thus ϕε is a constant.
On the other hand (III.40) holds and thus

−∆ρε =
1

ε2
ρε(1 − ρ2

ε)

Multiplying this equation by (1 − ρε) and integrating, we are led, as in (III.42), to

∫

Ω

|∇ρε|2 +
1

ε2

∫

Ω

ρε(1 − ρε)
2(1 + ρε) = 0,

therefore, since 0 < ρε ≤ 1, we have
∫

Ω |∇ρε|2 = 0, thus ρε is also constant and uε is a
constant. Finally, we conclude that if {uε} is a family of stable critical points of (I.2), then
necessarily uε is a constant for ε small enough, which completes the proof.
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