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Abstract

We present a method to prove convergence of gradient-flows of families of energies
which Gamma-converge to a limiting energy. It provides lower bound criteria to
obtain the convergence, which correspond to a sort of C1-order Gamma-convergence
of functionals. We then apply this method to establish the limiting dynamical law
of a finite number of vortices for the heat-flow of the Ginzburg-Landau energy in
dimension 2, retrieving in a different way the existing results for the case without
magnetic field, and obtaining new results for the case with magnetic field.

I Introduction

The notion of Gamma-convergence was introduced by Ennio De Giorgi in the 70’s. It
provided a useful notion of convergence of a family of energy-functionals Eε to a limiting
functional F , i.e. criteria which allow to conclude that global minimizers of Eε converge to
global minimizers of F . It also unified various notions of variational convergence considered

1partially supported by URCF grant N5791
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earlier. Since then, a large number of variational problems have successfully been put in the
Gamma-convergence framework and this notion has become standard. For a presentation
of Gamma-convergence (from now on denoted Γ-convergence) and many examples, we refer
to the very nice book of Braides [Bra]. An early, celebrated example, conjectured by De
Giorgi and proved by Modica-Mortola, was the Γ-convergence of the real-valued phase
transition model i.e. the family of energies

Eε(u) =

∫

Ω

ε|∇u|2 +
1

ε
(1 − |u|2)2

with u : Ω #→ R to a perimeter functional. Another example that we will consider in this
paper is the Ginzburg-Landau functional, the complex-valued analogue of the previous
energy, whose Γ-convergence properties were first studied by Bethuel, Brezis and Hélein
[BBH].

When it comes to studying time-dependent versions of the problem, i.e. proving the
convergence of certain flows (for example the gradient flow) of Γ-converging energies to-
wards the flow of the limiting energy, no general criterion or result seems to be available,
even though it is expected that with proper scalings, there is convergence of solutions of
the gradient-flow (for a chosen structure) of Γ-converging energies to the solution of the
limiting flow, for a certain structure to be determined. However this does not follow from
any easy abstract argument, since it would involve commuting the limit as the parameter
ε → 0 and time-derivatives, which is wrong without further assumptions. Available results
in this direction are proved for specific problems, with PDE rather than energy methods,
i.e. without specifically using the Γ-convergence structure.

For example in the aforementioned case of real-valued phase-transitions, the conver-
gence of the solutions of the gradient flow (called the Allen-Cahn equation) to the mean
curvature flow (which is the gradient flow for the perimeter functional) in stronger or
weaker senses was established by De Mottoni-Schatzman [dMS] and X. Chen [Ch], then
Evans-Soner-Souganidis [ESS] via viscosity solutions and the level-set approach to mean-
curvature flow treated the situation even after the appearance of singularities, so did later
Ilmanen [I] connecting it to the notion of Brakke flow. It also requires some proper time-
rescaling, and dimension 1 is special because interfaces move exponentially slowly. For the
(complex-valued) Ginzburg-Landau functional without magnetic field, the expected con-
vergence (for various types of flows) in 2D has also been proved by PDE methods, by Lin
[Li1] and Jerrard-Soner [JS1] for heat flow, Lin-Xin and Jerrard-Colliander [LX, CJ1, CJ2]
for Schrödinger flows, Lin [Li2] and Jerrard [J2] for wave flow, all up to “collision-time”;
the advantage of these PDE methods over the one we present here being that they also
work for dispersive equations. In dimension 3, the limiting heat-flow of Ginzburg-Landau
is again the mean-curvature (Brakke) flow (see [AS, LR, BOS]).

In this paper, we focus on heat flow or gradient flows, and make an attempt towards
a more systematic treatment of the convergence relying on the Γ-convergence structure
(for another formal attempt of this sort, see [F]). This convergence cannot follow from
Γ-convergence only: slightly perturbing the energy landscape of Eε may add local minima
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which disappear in the limit. Thus extra conditions are required to guarantee that the C1-
structure of the energy landscape also converges. Our scheme is a time-dependent analogue
of the Γ-convergence scheme, or a C1 form of Γ-convergence. Like the basic theorems of
Γ-convergence, the abstract result is extremely simple to state and prove. We then prove
that this scheme can actually be applied, by using it first to recover the convergence result
for the heat flow of the Ginzburg-Landau equations (the result of [Li1, JS1]) and second
to obtain a convergence result for the magnetic Ginzburg-Landau energy, which is a new
result. We hope this scheme is sufficiently robust (or can be made so) to apply to other
interesting examples.

The criteria we state also contain information on the limiting gradient-flow. Indeed, we
mentioned above that the solutions of the gradient-flows (for a certain gradient structure)
are expected to converge to the solution of the gradient-flow of the limiting energy, but
for what limiting structure and what time scaling? This is not obvious, and is usually
determined during the case by case convergence study. In our scheme the limiting gradient-
flow is determined by certain criteria which have to be verified, and this may appear more
naturally.

Finally, let us point out that the idea of this method extends to second order and
allows to find criteria (basically that the C2-structure is preserved under the convergence)
to prove that stability/instability of critical points of Eε carries through to critical points
of F . This is the object of the paper [S3], in which it is again applied to Ginzburg-Landau.

I.1 The abstract result

The abstract framework that we wish to consider is the following. Let Eε be a family of
C1 functionals defined over M, an open subset of an affine space associated to a Banach
space B. We assume that Eε Γ-converges to the C1 functional F defined over N , which we
assume here for simplicity to be an open set of a finite-dimensional vector space B′. This
is the definition that we will use :

Definition 1 Eε Γ-converges along the trajectory uε(t) (t ∈ [0, T )) in the sense S to F if

there exists u(t) ∈ N and a subsequence (still denoted uε) such that ∀t ∈ [0, T ), uε(t)
S
⇀ u(t)

and
∀t ∈ [0, T ), lim inf

ε→0
Eε(uε(t)) ≥ F (u(t)).

The sense S is to be specified in each case, it can be a weak convergence of uε in a certain
norm or distance, it can be a convergence of some function of uε... Notice that uε and u do
not generally belong to the same space. Usually Γ-convergence requires a limsup condition
that will not be needed here but rather implied by the extra conditions we add.

We assume that B embeds continuously into a Hilbert space Xε, resp. B′ into Y .

Definition 2 If the differential dEε(u) of Eε at u, is also linear continuous on Xε, we call
the vector of Xε which represents it the gradient of Eε at u ∈ M for the structure Xε, and
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we denote it by ∇Eε(u). We have for any φ ∈ Xε

d

dt |t=0
Eε(u + tφ) = dEε(u) · φ = ⟨∇Eε(u), φ⟩Xε.

If this gradient does not exist, we use the convention ∥∇Eε(u)∥Xε = +∞.

The same is done for F , and since B′ is assumed to be finite-dimensional, the C1 character
of F implies the existence of its gradient for the structure Y .

Definition 3 A solution of the gradient-flow for Eε with respect to the structure Xε on
[0, T ) is a map uε ∈ H1((0, T ), Xε) such that

(I.1) ∂tuε = −∇Eε(uε) ∈ Xε

for a.e. t ∈ [0, T ) (where the gradient with respect to the structure Xε is taken in the sense
of Definition 2).

Such a solution is conservative if for all t ∈ [0, T ),

Eε(uε(0)) − Eε(uε(t)) =

∫ t

0

∥∂tuε(s)∥2
Xε

ds.

If uε is a family of solutions on [0, T ) of the gradient-flow for Eε along which Eε Γ-

converges to F (in the sense of Definition 1), and uε
S
⇀ u, we define the energy-excess

D(t) by
Dε(t) = Eε(uε(t)) − F (u(t)), D(t) = lim sup

ε→0
Dε(t) ≥ 0.

A family of solutions of the gradient-flow is said to be well-prepared initially if D(0) = 0.

The energy excess D should be considered as a small perturbation, and can be taken to be
0 in a first reading of what follows.

We define similarly the gradient flow of F . Notice that in practice, a sufficiently smooth
solution is conservative, so if smoothness can be deduced from (I.1), all solutions are
conservative. Our first main result is

Theorem 1 Let Eε and F be C1 functionals over M and N respectively, and let uε be
a family of conservative solutions of the flow for Eε (∂tuε = −∇Eε(uε)) on [0, T ), with

uε(0)
S
⇀ u0, along which Eε Γ-converges to F in the sense of Definition 1. Assume moreover

that 1) and either 2) or 2’) below are satisfied:

1) (lower bound) For a subsequence such that uε(t)
S
⇀ u(t), we have u ∈ H1((0, T ), Y )

and there exists f ∈ L1((0, T )) such that for every s ∈ [0, T ),

(I.2) lim inf
ε→0

∫ s

0

∥∂tuε(t)∥2
Xε

dt ≥
∫ s

0

(
∥∂tu∥2

Y − f(t)D(t)
)

dt.
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2) (construction) If uε(t)
S
⇀ u(t), there exists a locally bounded function g on [0, T ) such

that for any t0 ∈ [0, T ) and any v defined in a neighborhood of t0 satisfying

v(t0) = u(t0), ∂tv(t0) = −∇F (u(t0))

there exists vε(t) such that vε(t0) = uε(t0) and, letting D be the energy excess of uε,

(I.3)

lim supε→0 ∥∂tvε(t0)∥2
Xε

≤ ∥∂tv(t0)∥2
Y + g(t0)D(t0)

lim infε→0 −
d

dt |t=t0
Eε(vε) ≥ − d

dt |t=t0
F (v) − g(t0)D(t0).

2’) There exists a locally bounded function g on [0, T ) such that for any t ∈ [0, T )

(I.4) lim inf
ε→0

∥∇Eε(uε(t))∥2
Xε

≥ ∥∇F (u(t))∥2
Y − g(t)D(t).

Then if D(0) = 0, i.e. if uε is well prepared initially, then D(t) = 0 on [0, T ), all

the inequalities above are equalities, and ∀t ∈ [0, T ), uε(t)
S
⇀ u(t) is the solution of the

gradient-flow for F with respect to the structure Y on [0, T ) with initial data u0, i.e.
{

∂tu = −∇F (u)
u(0) = u0.

Moreover, if 2) is satisfied, then it yields for every t0 a family vt0
ε (t) defined in a neighbor-

hood of t0 and, letting v′
ε(t0) = ∂tvt0

ε (t0),

(I.5) lim
ε→0

∫ T

0

∥∂tuε − v′
ε∥2

Xε
dt = 0.

We will prove in Lemma II.1 that 2) implies 2’). The idea of the construction 2) is to
perturb u and “push it” along the direction of the expected motion i.e. along ∇F (u). If
this can be done without “paying too much” in ∥∂tu∥2

Xε
while decreasing the energy at

least of the expected amount (that is (I.3)), then it implies that the slope was at least the
expected limiting one ∥∇F (u)∥Y or (I.4) holds.

We will also prove

Proposition I.1 Under the same hypotheses, if uε is any family of solutions on [0, T ) of
the time-rescaled equation ∂tuε = −λε∇Eε(uε) with D(0) = 0, then

- if λε ≪ 1, then, for a.e. t ∈ [0, T ), uε(t)
S
⇀ u0 ∈ N (i.e. no motion)

- if λε ≫ 1 then, for a.e. t ∈ [0, T ), uε(t)
S
⇀ u ∈ N with ∇F (u) = 0 (instantaneous motion

to a critical point).

So this method is akin to a C1 version of Γ-convergence, obtained through the control
of convergence of the norms of tangents to curves. Criteria 1) and 2), 2’) are expected to
hold for a general class of uε(t) (not only solutions to the gradient flow).
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The difficulty in applying this theorem to concrete situations is in proving that these
criteria are satisfied, in particular perform the perturbation construction of 2). When it
can be done, it should allow to use the PDE less, relying more on energy comparison
techniques (even though we will see that the PDE is used to check some hypotheses of the
theorem).

As mentioned before, once structures Xε and Y such that 1) and 2) are verified are
identified, it provides the suitable time-scaling for the ε problems (see Proposition I.1)
and the limiting gradient-structure. For example, in the case of the Ginzburg-Landau
equation, we will see that we need to take ∥.∥Xε = 1√

|log ε|
∥.∥L2(Ω) and ∥.∥Y = 1√

π∥.∥(R2)n

(the canonical Euclidean scalar product on (R2)n).

I.2 Generalizations

The procedure above can be generalized in several ways. First it can be extended to the
case where the limiting space B′ is not finite-dimensional, and embeds into a Hilbert space
Y . Inspecting the proof (see Section II) shows that it suffices to require that for u(t) limit
of solutions uε, the gradient ∇F (u(t)) with respect to the structure Y exists and that∫ t
0 ⟨∇F (u(s)), ∂tu(s)⟩Y ds = F (u(t)) − F (u(0)) holds.

Second of all, a natural and more general framework to work on would be that of
manifold-type spaces, i.e. that M, and more commonly the limiting space N , has a tan-
gent space TuN at each point, which embeds into a Hilbert space Yu depending on the
point. Then ∂tu = −∇F (u) would be an equation holding in Yu(t), with the gradient
taken with respect to the structure Yu(t). The criteria replacing 1), 2) and 2’) in Theo-
rem 1 should then be exactly the same with Y replaced by Yu everywhere, for example

lim infε→0

∫ s

0 ∥∂tuε(t)∥2
Xε

dt ≥
∫ s

0

(
∥∂tu∥2

Yu(t)
− f(t)D(t)

)
dt.

The proof can also be reproduced step by step with this formal replacement. The
difficulty is rather to make sense of these manifold-type structures which do not in general
have atlas structures. Such a framework is appropriate for a number of problems. One
example is the convergence of the Allen-Cahn equation to the mean curvature flow, where
the expected structure is the weighted Lebesgue space L2

µ where µ is the limiting measure
carried by the surface or varifold. Another example is the case of Ginzburg-Landau with
large number of vortices, where the limiting space should be (up to rescaling) the space of
probability measures µ endowed with the 2-Wasserstein distance, the appropriate structure
on the tangent bundle being again L2

µ. In this particular case, the “manifold structure”
and the notion of trajectories and gradient flows for convex functionals for this structure
have been given a rigorous meaning by Ambrosio et al. in [AGS].

Thus, we see how some curvature may appear through the limiting process, when the
structure on the tangent space Yu can indeed depend on the point u even when the original
space Xε does not. The work by F. Otto [O] on the porous medium equation seems to
be the first that exploited the interpretation of the evolution as a gradient flow for such a
curved structure, in that case in order to derive information on the long-time behavior.

However, the scheme in its present form would allow to prove convergence only as long
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as the limiting flow is a classical flow, i.e. before the apparition of singularities.
A third possible generalization would be treating the case of a possible limiting func-

tional F which is not C1 with respect to the structure Y (or Yu) but which is convex so
that the gradient of F can be replaced by its subdifferential ∂F . Then, one would need to
replace ∥∇F (u)∥Yu by a norm of ∂F (u) defined as the maximum of the norms of the pos-
sible slopes in ∂F (u). Again, the proof carries through formally and one is led to gradient
flows defined through subdifferentials for convex functionals (see [Bre] and [AGS] again).

I.3 Statement of the results on Ginzburg-Landau

Ginzburg-Landau functionals arise in condensed matter physics, they serve to model su-
perconductivity, superfluidity, Bose-Einstein condensates. They involve a complex-valued
order parameter, that we denote u, which describes the local state of the material, |u|2 ≤ 1
being a local density. We will only consider the 2-dimensional case of a bounded simply
connected domain Ω ⊂ R2. The Ginzburg-Landau energy without magnetic field is

(I.6) Fε(u) =
1

2

∫

Ω

|∇u|2 +
1

2ε2
(1 − |u|2)2,

defined over H1(Ω, C). For superconductivity, one considers the gauge-invariant functional

(I.7) J(u, A) =
1

2

∫

Ω

|∇u − iAu|2 + |curl A − hex|2 +
1

2ε2
(1 − |u|2)2,

where A : Ω #→ R2 and hex is the intensity of the applied field. Both energies are to be
studied in the limit ε → 0. A key feature of these functionals is the existence of vortices
of u, i.e. isolated zeros of |u| with nonzero winding number d ∈ Z of u/|u| around such
a zero, or in other words topological singularities of u/|u|. The limit ε → 0 corresponds
to strongly repulsive point-like vortices. For the asymptotics of (I.6) as ε → 0 we refer to
[BBH] and to the subsequent vast literature. For more on (I.7), we refer to Section IV.
Both energies have been proved to Γ-converge, under certain hypotheses and in a sense
that we will specify below, to a function which depends only on the vortex-locations, i.e.
to a function on Ωn. Theorem 1 then allows to derive the limiting dynamics for the vortex
points when studying the gradient flow for (I.6) or (I.7). We will restrict in this paper to
the case where the number of vortices is initially bounded independently of ε.

The case with no magnetic field

It has been essentially shown (see [BBH], [S1, SS7] for a complete proof) that if g : ∂Ω → S1

is a fixed map with degree d > 0, there exists a function Wg(a,d), defined for an arbitrary
positive integer n and a ∈ Ωn, d ∈ Zn

∗ , and a universal constant C0, satisfying the following.
If Fε(uε) ≤ C|log ε|, with uε ∈ H1

g (Ω) (the set of H1 maps agreeing with g on ∂Ω), then
as ε → 0 and modulo a subsequence,

(I.8) curl (iuε,∇uε) ⇀ 2π
n∑

i=1

diδai

7



with
∑

i di = d, where (., .) denotes the inner product in C identified with R2 ((I.8) is the
sense of convergence S that we will use), and

(I.9) lim inf
ε→0

Fε(uε) − π
n∑

i=1

|di||log ε|− C0

n∑

i=1

|di| ≥ Wg(a,d),

where a = (a1, . . . , an), d = (d1, . . . , dn). Moreover, if uε is a critical point (resp. mini-
mizer) of Fε on H1

g , then a is a critical point (resp. minimizer) of Wg. An equivalent of
Wg exists for Neumann boundary conditions, we denote it Wn. We write W when stating
a result that applies to both cases.

Theorem 1 yields in this case

Theorem 2 Let uε be a family of solutions of

(I.10)
1

|log ε|
∂tu = ∆u +

u

ε2
(1 − |u|2),

with either Dirichlet (uε = g) or homogeneous Neumann boundary conditions, such that
curl (iuε,∇uε)(0) converges to 2π

∑n
i=1 diδa0

i
, where a0

i are distinct points of Ω and di = ±1,
and that uε(0) is well-prepared in the sense that

(I.11) Fε(uε(0)) − πn|log ε|− nC0 ≤ W (a0
i , di) + o(1).

Then there exists a time T ∗ > 0 such that curl (iuε,∇uε) ⇀ 2π
∑

i diδai(t) and

(I.12) Fε(uε(t)) ≤ πn|log ε| + nC0 + W (ai(t), di) + o(1)

for all t ∈ [0, T ∗), with

(I.13)
dai

dt
= −1

π
∂iW (ai(t), di), ai(0) = a0

i ,

where the degrees di remain constant. T ∗ is the minimum of the collision time and of the
exit time from Ω (in the Neumann case) for this law of motion.

Moreover, for all Bi(t) disjoint open balls centered at ai(t), 1Bi(t) denoting the charac-
teristic function of Bi(t), we have for all T < T ∗,

(I.14)
1

|log ε|

∫

Ω×[0,T ]

∣∣∣∣∣∂tuε −
∑

i

1Bi(t)
dai

dt
·∇uε

∣∣∣∣∣

2

dt → 0 as ε → 0.

We thus recover the same type of result as in [Li1, JS1] i.e. the convergence to the flow
of the limiting energy, up to collision time. In other time-scalings, one can also retrieve
the results of [Li1, JS1] by applying Proposition I.1. Our initial condition (I.11) is slightly
more restrictive, however we will prove in [S4] that it is satisfied after an infinitely small
time. We will also deal in [S4] with vortex-collisions and extending the result after time
T ∗.
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The estimate (I.14) is new, up to our knowledge. It expresses that uε is very close to
being simply transported at the velocity dai

dt around each ai.
The method we follow for deriving the dynamics consists in applying Theorem 1. The

appropriate Xε structure is a rescaled version of the L2 norm, and the Y structure a
rescaled version of the Euclidian norm on Ωn. The lower bound relating the time-variation
of u, to the velocity of the underlying vortices, needed to fulfil condition 1) is provided for
the study of (I.6) and (I.7) by a result of [SS6], Theorem 3 and Corollary 7 (see also [J2],
Proposition 3). The heart of the matter is then to perform an adequate construction to
fulfill condition 2).

The case with magnetic field

In the case of the functional with magnetic field, the result we prove is new. For a physical
presentation of the Ginzburg-Landau model of superconductivity model, see [T]. The
energy is (I.7) with unknowns the order parameter u : Ω #→ C, and the vector potential
A : Ω #→ R2. The notation ∇A will denote the covariant gradient ∇ − iA, and h =
curl A = ∂1A2−∂2A1 is the induced magnetic field, while hex is the intensity of the applied
(uniform, constant) magnetic field. The Ginzburg-Landau energy is invariant under the
gauge-transformations {

u #→ ueiw

A #→ A + ∇w.

The statics of (I.7) have been intensively studied recently. We will focus in particular on
the regime hex = O(|log ε|) which is a suitable regime to study vortices. We will assume
that

(I.15) hex = λ|log ε| 0 < λ < ∞.

In this regime we have obtained various results about the minimizers and critical points of
J , see [S1, SS1, SS2, SS3, SS4]. The (heat flow) Ginzburg-Landau equations as proposed
by Gorkov-Eliashberg are

(I.16)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + iuΦ = ∇2
Au +

u

ε2
(1 − |u|2) in Ω

∂tA + ∇Φ = ∇⊥h + (iu,∇Au) in Ω
(iu,∇Au) · n = 0 on ∂Ω
h = hex on ∂Ω.

These are the gradient flow for essentially the same L2 structure as in the case without
magnetic field. Observe that here there is no need to rescale in time to see motion of
vortices. The quantity Φ makes the equations invariant under the gauge-transformations :

(I.17)

⎧
⎨

⎩

u #→ ueiw

A #→ A + ∇w
Φ #→ Φ − ∂tw.
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The quantity (iu,∇Au) is the superconducting current also denoted j, it is a gauge-
invariant quantity. The equivalent of the Jacobian curl (iu,∇u) in this case is j +h, which
is also gauge-invariant. The quantity −∂tA − ∇Φ = E represents the electric current
generated by the evolution of the system, and F = ∂tu + iuΦ is such that ⟨F , iu⟩ is the
charge.

The well-posedness of (I.16) (hence the existence of solutions) once a gauge has been
chosen, was first established by Du [Du]. There have also been formal studies of the
dynamics: Pismen-Rubinstein [PR], E [E], Chapman-Rubinstein-Schatzman [CRS]. The
vortex dynamics in the limit ε → 0 has been rigorously established in the case hex = O(1)
(for which λ = 0) by Spirn [Sp]. Rather than reproving this result with our method, we
focus on the case λ > 0.

Let ξ0 be as in [S1, S2, SS1, SS3] the solution of

(I.18)

{
−∆ξ0 + ξ0 + 1 = 0 in Ω
ξ0 = 0 on ∂Ω

and

(I.19) J0 =
1

2

∫

Ω

|∇ξ0|2 + ξ2
0 .

From [S1, S2, SS1, SS5], if curl (iuε,∇uε) ⇀ 2π
∑

i diδai , with fixed degrees di, then

lim inf
ε→0

J(u, A) − h2
exJ0 − π

∑
i |di||log ε|

|log ε| ≥ 2πλ
∑

i

diξ0(ai),

hence the Γ-convergence in the sense of Definition 1. Theorem 1 yields

Theorem 3 Let (uε, Aε, Φε) be a family of solutions of (I.16) with (I.15). We assume that
curl ((iuε,∇uε − iAεuε) + Aε)(0) ⇀ 2π

∑n
i=1 diδa0

i
, with di = ±1, and that (uε(0), Aε(0)) is

well-prepared in the sense that

J(uε(0), Aε(0)) ≤ h2
exJ0 + πn|log ε| + 2πhex

∑

i

diξ0(a
0
i ) + o(|log ε|).

Then, there exists a time T ∗ > 0 such that, for all t ∈ [0, T ∗),

curl ((iuε,∇Aεuε) + Aε) (t) ⇀ 2π
n∑

i=1

diδai(t)

with

∀i
dai

dt
= −diλ∇ξ0(ai(t)), ai(0) = a0

i .

T ∗ is the minimum of the collision time and of the exit time from Ω for this law of motion.
Moreover, for all Bi(t) disjoint open balls centered at ai(t) and all T < T ∗,

1

|log ε|

∫

Ω×[0,T ]

∣∣∣∣∣∂tuε + iuΦε −
∑

i

1Bi(t)
dai

dt
·∇uε

∣∣∣∣∣

2

+ |∂tAε + ∇Φε|2 dt → 0.
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Thus, in this case, vortices move in the potential ξ0 without interacting. This is due
to the fact that to leading order the energy has no interaction term and is consistent with
results in [S1, SS4] where it is proved that in this regime, the vortices of global minimizers
of J concentrate as ε → 0 at the global minima of ξ0 and those of critical points at critical
points of ξ0. If the domain is convex then ξ0 is convex and has a single critical point
x0 ∈ Ω which is also a global minimum. Then Theorem 3 implies that vortices of positive
degree go to x0 while vortices of negative degree exit the domain through the boundary,
unless collisions occur in the meantime. Also, the velocity is proportional to λ hence to the
applied field. When hex ≪ |log ε| then λ = 0 and vortices do not move in this time-scale,
while λ = +∞ when hex ≫ |log ε| and vortices move infinitely fast.

This case differs from the case without magnetic field, or with magnetic field bounded
independently of ε treated in [Sp], in two ways. First, the global minimizer of the energy
may have a number of vortices diverging when ε → 0, hence the fact that the vorticity
remains bounded must be proved before implementing the strategy of Theorem 1. Second,
the variation in time of the energy is expected to be of the order |log ε|. Thus one must
track which part remains concentrated in the vortex cores and what happens to the part
which is not. Theorem 1 does this, while it seems unpractical to adapt the methods of
[Li1, JS1, Sp].

We did not try to obtain the strongest possible convergence but rather focused on the
limiting dynamics, working with the convergence in the sense S which can be very weak.

The paper is divided into three more sections. Section II contains the proof of the
abstract result, Theorem 1. Section III is devoted to the case without magnetic field with
the new proof of Theorem 2, and Section IV to the case with magnetic field and Theorem 3.

Remark on notations: C always denotes a positive constant independent of ε.

Acknowledgments: We wish to acknowledge interesting and encouraging discussions
with Koby Rubinstein, Bob Kohn and Eric Van Den Eijnden during the preparation of
this work.

II Proof of Theorem 1

The aim of this section is to prove Theorem 1, which links the gradient flows of Eε and F
when Eε Γ-converges to F . The proof relies on the idea of steepest descent, i.e. that the
solution u of the gradient flow maximizes | d

dt |t=0
E(v(t))| for ∥∂tv(0)∥Xε given.

First we prove that condition 2) implies condition 2’). This clearly follows from

Lemma II.1 Let the functionals Eε, F be as in Theorem 1 and let uε
S
⇀ u be such that

11



lim supε→0 ∥∇Eε(uε)∥Xε ≤ C. If for any v defined in a neighborhood of t = 0 satisfying

(II.1)

{
v(0) = u
∂tv(0) = −∇F (u)

there exists vε ∈ M of class C1 in a neighborhood of 0, such that vε(0) = uε, and δ, δ′,
such that

lim sup
ε→0

∥∂tvε(0)∥2
Xε

≤ ∥∂tv(0)∥2
Y + δ(II.2)

lim inf
ε→0

− d

dt |t=0
Eε(vε) ≥ − d

dt |t=0
F (v) − δ′

2
.(II.3)

Then,
lim inf

ε→0
∥∇Eε(uε)∥2

Xε
≥ ∥∇F (u)∥2

Y − (δ + δ′).

Observe that in this lemma δ and δ′ can be positive or negative.

Proof of the lemma: Let uε be as above and let v satisfy (II.1). Then

− d

dt |t=0
F (v) = −⟨∇F (u), ∂tv(0)⟩ = ∥∂tv(0)∥2

Y = ∥∇F (v(0))∥2
Y = ∥∇F (u)∥Y .

From the hypothesis there exists vε ∈ M such that vε(0) = uε(0) and (II.2) and (II.3)
hold. Since − d

dt |t=0
Eε(vε) = −⟨∇Eε(uε(0)), ∂tvε(0)⟩Xε, equations (II.2) and (II.3)) imply

∥∇F (u)∥2
Y ≤ δ′

2
− ⟨∇Eε(uε(0)), ∂tvε(0)⟩Xε + o(1)

≤ δ′

2
+

1

2

(
∥∇Eε(uε)∥2

Xε
+ ∥∂tvε(0)∥2

Xε

)
+ o(1)

≤ δ′

2
+

1

2

(
∥∇Eε(uε)∥2

Xε
+ ∥∂tv(0)∥2

Y + δ
)

+ o(1),(II.4)

Inserting ∥∂tv(0)∥Y = ∥∇F (u)∥Y yields the desired result. !

Proof of Theorem 1: Let uε be a family of solutions of the gradient flow ∂tuε =
−∇Eε(uε) satisfying the hypothesis of Theorem 1. Then condition 1) is satisfied and from
the previous lemma 2’) is satisfied too. Since uε is initially well prepared Eε(0) = F (0)+o(1)
and Eε(t) = F (t) + Dε(t) + o(1), where Eε(t) := Eε(uε(t)), F (t) := F (u(t)). Thus

(II.5) Eε(0) − Eε(t) = F (0) − F (t) − Dε(t) + o(1).

On the other hand, since ∂tuε = −∇Eε(uε),
(II.6)

Eε(0) − Eε(t) = −
∫ t

0

⟨∇Eε(uε(s)), ∂tuε(s)⟩Xε ds =
1

2

∫ t

0

∥∇Eε(uε(s))∥2 + ∥∂tuε(s)∥2 ds.

12



Inserting (I.2), (I.4), we find

(II.7) Eε(0) − Eε(t) ≥
1

2

∫ t

0

∥∇F (u(s))∥2
Y + ∥∂tu∥2

Y − (g(s) + f(s))D(s) ds− o(1).

Combining with (II.5) yields

(II.8) F (0)− F (t)−Dε(t) + o(1) ≥ 1

2

∫ t

0

∥∇F (u(s))∥2
Y + ∥∂tu∥2

Y − (g(s) + f(s))D(s) ds.

Then it follows from (II.8) and

(II.9)
1

2

∫ t

0

∥∇F (u(s))∥2
Y + ∥∂tu∥2

Y ds ≥
∫ t

0

⟨−∇F (u(s)), ∂tu⟩Y ds = F (0) − F (t)

that

Dε(t) ≤
∫ t

0

(g(s) + f(s))D(s) ds.

Since D(0) = 0 by assumption and from Gronwall’s lemma, after passing to the limit we
find D(t) = 0 for t ∈ [0, T ], i.e. “well-prepared initial data remains well-prepared in time”.
Returning to (II.8), (II.9) and inserting D(t) = 0 we conclude that

∫ t

0

∥∇F (u(s)) + ∂tu∥2
Y ds ≤ 0,

hence ∂tu = −∇F (u) a.e in [0, T ].
To prove the last assertion of Theorem 1, note that all the inequalities in this proof

have now to be equalities, hence

(II.10) lim
ε→0

∫ T

0

∥∇Eε(uε)∥2
Xε

dt =

∫ T

0

∥∇F (u)∥2
Y dt.

Moreover if condition 2) is satisfied, using the notations of Theorem 1, we must have
equality in (II.3) i.e. for each t0,

(II.11) lim
ε→0

d

dt |t=t0
Eε(v

t0
ε ) = lim

ε→0
⟨∇Eε(uε(t0)), v

′
ε(t0)⟩Xε = −∥∇F (u(t0))∥2

Y

and limε→0 ∥∂tv′
ε(t0)∥2

Xε
= ∥∇F (u(t0))∥2

Y . Combining this with (II.10), passing to the limit
in
∫ T

0

∥∇Eε(uε) + v′
ε(t)∥2

Xε
dt =

∫ T

0

∥∇Eε(uε(t))∥2
Xε

+ ∥v′
ε(t)∥2

Xε
+ 2⟨∇Eε(uε(t)), v

′
ε(t)⟩Xε dt,

we are led to

lim
ε→0

∫ T

0

∥∇Eε(uε) + v′
ε(t)∥2

Xε
dt = 0

13



which proves (I.5).
If the hypotheses are satisfied with f = 0 and g = 0, we obtain in place of (II.8), even

without assuming D(0) = 0, that

D(0) − D(t) ≥ 0.

This can be applied on any subinterval of [0, T ], thus D(t) decreases in time. !

Proof of Proposition I.1: For the time-rescaled version, note that ∂tuε = −λε∇Eε(uε)
solves the gradient flow for the structure X ′

ε where ∥.∥X′
ε

= 1√
λε
∥.∥Xε . It follows that

∫ T

0 ∥∂tuε∥2
X′

ε
dt =

∫ T

0 ∥∇X′Eε(uε)∥2
X′ dt, where ∇X and ∇X′ denote respectively the gra-

dients with respect to the X and X ′ structures, remains bounded. Thus if λε = o(1),
condition 1) implies

∫ s

0

∥∂tu∥2
Y dt ≤ lim inf

ε→0

∫ s

0

∥∂tuε∥2
Xε

dt ≤ λε

∫ s

0

∥∂tuε∥2
X′

ε
dt + o(1) ≤ o(1).

Thus ∂tu = 0 a.e. which proves the result in the case λε ≪ 1. Moreover, we notice that
∥∇XEε(uε)∥X = 1√

λε
∥∇X′Eε(uε)∥X′. Hence if λε ≫ 1, using Lemma II.1 and condition

2’), we have for all t ∈ [0, T1),
∫ t

0

∥∇F (u)∥2
Y ≤ 1

λε

∫ t

0

∥∇X′Eε(uε)∥2
X′ ≤ o(1).

Thus, ∇F (u(t)) = 0 a.e. in t.

Remark II.1 If (I.2) is satisfied with f(t) = 0, and (I.3) with g(t) = 0, then for any

uε
S
⇀ u ∈ N ,

lim inf
ε→0

∥∇Eε(uε)∥Xε ≥ ∥∇F (u)∥Y

implying that critical points of Eε converge to critical points of F . Also then, for any
solution of ∂tvε = −∇Eε(uε) (not necessarily well-prepared), D(t) decreases in time.

Remark II.2 For almost every t ∈ [0, T ] we have lim supε→0 ∥∇Eε(uε(t))∥Xε < ∞. If this
implied that D(t) = 0, we could deduce that D(t) = 0 in ]0, T ], i.e. that any energy-excess
disappears instantaneously.

III Ginzburg-Landau without magnetic field

The main result (Theorem 2) is a consequence of the following result which we prove in
the next sections:

Theorem 4 Under the hypotheses of Theorem 2, the conclusions hold on some time-
interval [0, T ) with T > 0.

14



III.1 Preliminaries : definition of vortex-trajectories

We use the notation (I.6) for the Ginzburg-Landau energy. We need the following.

Proposition III.1 Let uε(t, x) be defined over [0, T ] × Ω (with Ω ⊂ R2) and be such that

∀t ∈ [0, T ], Fε(uε(t, .)) ≤ C|log ε|,
∫

[0,T ]×Ω

|∂tuε|2 ≤ C|log ε|.

Then after extraction curl (iuε(t),∇uε(t)) → µ(t) for every t ∈ [0, T ], in the dual of C0,γ
c (Ω)

for every γ > 0. Moreover µ(t) is of the form 2π
∑n(t)

i=1 di(t)δai(t), where di ∈ Z. Finally
t → ⟨µ(t), ζ⟩ is in H1((0, T )) for any ζ ∈ C1

c (Ω), where ⟨µ, ζ⟩ :=
∫

ζ dµ.

Proof: For the convergence of 1
2curl (iuε,∇uε) see [SS6], Theorem 3. That µ(t) is of the

form 2π
∑n(t)

i=1 di(t)δai(t) with di(t) ∈ Z results from the upper bound on the energy (see
[BBH], [JS2], [SS6]). From [SS6], Theorem 3, there exists a measure-valued vector field V
such that ∂tµ = −div V . Moreover the components of V are in L2([0, T ],M) where M is
the set of bounded Radon measures on Ω. Now let ζ ∈ C1

c (Ω) and ϕ ∈ C∞
c ((0, T )). Since

ζ is independent of time and ∂tµ = −div V , we get

∫ T

0

⟨µ(t), ζ⟩ϕ′(t) dt =

∫ T

0

⟨µ(t), ∂t(ζϕ)⟩ dt =

∫ T

0

⟨V,∇(ζϕ)⟩ dt.

Then, since ∇(ζϕ) = (∇ζ)ϕ,

∫ T

0

⟨µ(t), ζ⟩ϕ′(t) dt ≤ C

(∫ T

0

|ϕ(t)|2 dt

) 1
2

,

where C = ∥∇ζ∥L∞

(∫ T
0 ∥V ∥2dt

) 1
2
. Hence t → ⟨µ(t), ζ⟩ is in H1((0, T )) as claimed. !

Proposition III.2 Assume that µ(t) is a measure of the form
∑n(t)

i=1 di(t)δai(t) for every
t ∈ [0, T ), with di(t) ∈ Z and ai(t) ∈ Ω, and that t → ⟨µ(t), ζ⟩ is in H1((0, T )) for any
ζ ∈ C1

c (Ω). Assume moreover that
∑

i |di(t)| ≤
∑

i |di(0)| for every t, that di(0) ∈ {+1,−1}
and that {ai(0)} are distinct points.

Then there exists a time 0 < T ∗ ≤ T and n = n(0) functions ai(t) ∈ H1((0, T ∗), R2)
such that for all t ∈ [0, T ∗) the points {ai(t)}i are distinct and µ(t) =

∑
i di(0)δai(t).

Moreover, if T ∗ < T , as t tends to T ∗, either there exists i such that ai(t) tends to ∂Ω or
there exists i ̸= j such that ai(t) and aj(t) tend to the same limit.

Proof: Let Bi = B(ai(0), ri) be disjoint balls and ϕi be a smooth function compactly
supported in Bi and equal to 1 in a neighborhood of ai(0). Then since fi(t) = ⟨µ(t), ϕi⟩ is
in H1 hence is continuous, then for t close to 0 the function f(t) is close to f(0) = di(0).
Therefore if t is small enough, µ(t) has a Dirac mass in Bi. Since this is true for every i and
the total degree is decreasing, there is exactly one Dirac mass in each ball. Thus, relabeling
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if necessary, µ(t) =
∑

i di(t)δai(t) with ai(t) ∈ Bi. Then f(t) = di(t) and continuity implies
that di(t) is constant. Since xi(t) = ⟨µ(t), xi⟩ is in H1 — where xi is a smooth function
compactly supported in Bi and equal to the coordinate x in a neighborhood of ai(0) —
and a similarly defined yi(t) also, then ai(t) ∈ H1((0, T ∗), R2).

It is clear that the process can be repeated by applying the above reasoning until two
points collide or one exits the domain. !

III.2 Proof of Theorem 4

First, multiplying (I.10) by ∂tuε and integrating in Ω × [t, s] we find

(III.1) Fε(uε(t)) − Fε(uε(s)) =
1

|log ε|

∫

[t,s]×Ω

|∂tuε|2.

It follows that Fε(uε(t)) is decreasing. Then from (I.11), we deduce Fε(uε(t)) ≤ C|log ε|
for all t ≥ 0.

Lemma III.1 Assume uε satisfies the hypothesis of Theorem 2. There exists T0 > 0 such
that uε satisfies the hypotheses of Proposition III.1 on [0, T0].

Proof: Let us first rescale time and consider vε(x, |log ε|t) = uε(x, t). This way, vε is a
solution of

(III.2) ∂tv = ∆v +
v

ε2
(1 − |v|2).

Assume by contradiction that there exists some subsequence of ε for which there exists
λε ≪ |log ε| with

(III.3)

∫ λε

0

∫

Ω

|∂tvε|2 dt = 1

Multiplying (III.2) by ∂tvε and integrating in Ω × [0, λε], we find

(III.4) 1 =

∫ λε

0

∫

Ω

|∂tvε|2 dt = Fε(vε(0)) − Fε(vε(λε)).

On the other hand, rescaling again in time and considering wε(x, t) = vε(x, λεt), we have

(III.5)

∫ 1

0

∫

Ω

|∂twε|2 dt = λε

∫ λε

0

∫

Ω

|∂tvε|2 dt = λε ≪ |log ε|.

Applying Theorem 3 of [SS6] to wε, we deduce from (III.5) (and the bound
∫
Ω |∇uε|2 ≤

Fε(uε) ≤ C|log ε|) that for every function f , compactly supported in Ω × [0, 1], and every
vector field X compactly supported on Ω × [0, 1], we have

(III.6)

∣∣∣∣
∫

Ω×[0,1]

fV · X
∣∣∣∣ ≤ lim inf

ε→0

1

|log ε|

(∫

Ω×[0,1]

|X ·∇wε|2
∫

Ω×[0,1]

f 2|∂twε|2
) 1

2

= 0.
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Here V is the limiting velocity associated to the limiting vorticity measure µ, in such a
way that ∂tµ + div V = 0, µ(t) being the limit of curl (iwε,∇wε)(t). From (III.6), we find
V = 0, and thus µ(t) = µ(0) = 2π

∑n
i=1 diδa0

i
. Returning to the previous time-scaling, we

find that curl (ivε,∇vε)(t) ⇀ µ(0) for every t ∈ [0, λε], i.e the vortices have not moved.
Thus, from the Γ-convergence (relation (I.9)), we deduce that

Fε(vε(λε)) ≥ πn|log ε| + nC0 + W (a0
i ,d) + o(1) = Fε(vε(0)) + o(1).

Plugging this back into (III.4), we get 1 ≤ o(1), a contradiction. We thus deduce the
existence of a T0 > 0 such that

∫ T0|log ε|

0

∫

Ω

|∂tvε|2 dt ≤ 1,

that is after rescaling
∫ T0

0

∫
Ω |∂tuε|2 ≤ |log ε| for all ε. !

We can thus apply Proposition III.1 in [0, T0]. It yields that µ(t), the limit of curl (iuε(t),∇uε(t)),
is of the form 2π

∑n(t)
i=1 di(t)δai(t). From (I.11), (I.9) and the energy-decrease, it follows that∑

i |di(t)| ≤
∑

i |di(0)| and therefore Proposition III.2 applies on [0, T0].
Thus there exists T1 > 0 and trajectories a1(t), . . . , an(t) in H1((0, T1)) such that for

any t < T1, the points ai(t) are distinct and µ(t) = 2π
∑

i diδai(t). The degrees di are
constant, equal to ±1 and T1 is the smallest of T ∗ (defined in Theorem 2) and T0.

We let from now on

(III.7) d = (d1, . . . , dn),

and d is fixed. Letting B = H1(Ω, C) we define M either by M = {u ∈ B | u = g on ∂Ω}
or M = {u ∈ B} | ∂νu = 0 on ∂Ω}, according to whether we are interested in the Dirichlet
or Neumann problem. The space B embeds into Xε = L2(Ω) that we equip with the norm

∥v∥2
Xε

=
1

|log ε|

∫

Ω

|v|2.

We let Eε = Fε −πn|log ε| (recall that n is the initial number of vortices). On the limiting
side, we let N = Ωn

∗ , by which we mean the set of n-uples of distinct points in Ω. It is a
subset of Y = (R2)n that we equip with the norm

∥v∥2
Y = π

n∑

i=1

|vi|2.

The limiting functional will be, as suggested by (I.9), for any u ∈ Ωn
∗ ,

(III.8) F (u) = W (u,d) + nC0.

By uε
S
⇀ u = (a1, . . . , an) we will mean that curl (iuε,∇uε) → 2π

∑
i diδai in the sense of

distributions.
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Noting that (I.10) and (I.13) are respectively the gradient flow of Eε for the structure
Xε and the gradient flow of F for the structure Y , it is a simple verification to check that
Theorem 1 applied in this framework on any interval [0, T ], with T < T1, proves the result
of Theorem 4 i.e. the limiting dynamics until T1 (the minimum of the collision time and the
exit time and T0). In order to deduce Theorem 4, it remains to prove that the hypothesis
of Theorem 1 are satisfied.

It is proved in [BBH], and we will see it below, that F defined by (III.8) is a smooth
function in Ωn

∗ . Together with (I.9), this implies that Eε and F satisfy the hypothesis
of Theorem 1. It remains to check hypothesis 1) and 2). Hypothesis 1) is provided by
Corollary 7 of [SS6], which states that

(III.9) ∀0 ≤ t1 < t2 < T ∗, lim inf
ε→0

1

|log ε|

∫

Ω×[t1,t2]

|∂tuε|2 ≥ π
∑

i

∫ t2

t1

|∂tai|2 dt.

It remains to prove that 2) is satisfied, which is done in paragraph III.4. Note that
with Proposition I.1, one retrieves the results of [Li1, JS1] for the other time scalings.

III.3 Proof of Theorem 2

We prove here that Theorem 2 follows from Theorem 4. Let T be the supremum of the times
until which the result holds, and assume that T < T ∗ (minimum of collision and exit times).
Then, for all t ∈ [0, T ), curl (iuε(t),∇uε(t)) ⇀ 2πsumidiδai(t) where the trajectories ai(t)
remain distinct and solve (I.13). Moreover, since T < T ∗, ai(t) → ai(T ) as t → T where
the ai(T )’s are distinct points in Ω. We claim that curl (iuε(T ),∇uε(T )) ⇀ 2π

∑
i diδai(T )

and that (I.12) holds at the time T . Then, Theorem 4 can be applied starting at time T
and this contradicts the maximality of T .

Note that from (III.1) and (I.12), for every t < T we have

1

|log ε|

∫

[0,t]×Ω

|∂tuε|2 = Fε(uε(t)) − Fε(uε(0)) −→ W (ai(t),d) − W (a0
i ,d).

Passing to the limit t → T and using the fact that the points ai(T ) are distinct, we find
∫

[0,T ]×Ω

|∂tuε|2 ≤ C|log ε|.

We can then apply Theorem 3 of [SS6], to say that for all t ∈ [0, T ], curl (iuε(t),∇uε(t)) ⇀
2πsumidiδai(t) with ai(t) continuous on [0, T ]. Therefore, limε→0 curl (iuε(T ),∇uε(T )) co-
incides with 2π

∑
i diδai(T ). It remains to prove that (I.12) holds at time T . From (III.1),

we have Fε(uε(T )) ≤ Fε(uε(t)) for all t < T . Hence, using (I.12) at time t,

Fε(uε(T )) ≤ Fε(uε(t)) ≤ πn|log ε| + nC0 + W (ai(t),d) + o(1).

Therefore,
lim sup

ε→0
Fε(uε(T )) − πn|log ε|− nC0 ≤ W (ai(t),d),

and passing to the limit t → T proves the result.
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III.4 Construction

In this section, we prove that 2) is satisfied via a construction which consists, as mentioned
in the introduction, in “pushing” the vortices along a given direction, while controlling
∥∂tvε∥Xε and the variation of Eε(vε(t)). We prove

Proposition III.3 Let uε satisfy Eε(uε) ≤ C, ∥∇Eε(uε)∥Xε ≤ C and uε
S
⇀ u ∈ N , with

u = (a1, . . . an). Considering any V ∈ (R2)n and any v(t) satisfying

(III.10)

{
v(0) = u
∂tv(0) = V,

we can find a vε ∈ M such that

vε(0) = uε(0)(III.11)

∥∂tvε(0)∥2
Xε

=
1

|log ε|

∫

Ω

|∂tvε|2(0) = ∥∂tv(0)∥2
Y + o(1)(III.12)

limε→0
d
dt |t=0

Eε(vε(t)) = d
dt |t=0

F (v(t)) + g(u)Dε,(III.13)

where g is locally bounded on N .

Remark III.1 In a more abstract manner, what could be proved based on this proposition
is that there exists a linear embedding Iε : (R2)n = TuN → TuεM (with Iε(V ) = ∂tvε(0)
above) which is an “almost isometry” in the sense that limε→0 ∥Iε(V )∥Xε = ∥V ∥Y and
which satisfies

lim
ε→0

I∗
ε∇Eε(uε) = ∇F (u)

in the sense that limε→0⟨∇Eε(uε), Iε(V )⟩Xε = ⟨∇F (u), V ⟩Y . Then, one easily deduces that
lim infε→0 ∥∇Eε(uε)∥Xε ≥ ∥∇F (u)∥Y holds.

Recall that M is defined differently when dealing with the Dirichlet or Neumann prob-
lem. There are really two constructions but we do them in parallel.

The proof requires to go into the definition of W introduced in [BBH]. We will write
W (u) instead of W (u,d) since the degrees are now fixed. First we define Φ by

(III.14)

⎧
⎨

⎩

∆Φ = 2π
∑

i diδai in Ω

∂Φ

∂n
= (ig,

∂g

∂τ
) on ∂Ω (resp. Φ = 0 on ∂Ω for Neumann).

We define as in [BBH], R by

(III.15) R(x) = Φ(x) −
∑

j

dj log |x − aj|.
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Then, the renormalized energy W associated to u = (a1, · · · , an) is defined by

(III.16) W (u) = −π
∑

i̸=j

didj log |ai − aj | +
1

2

∫

∂Ω

Φ(ig, ∂τg) − π
∑

i

R(ai),

respectively W (u) = −π
∑

i̸=j didj log |ai − aj |− π
∑

i R(ai) for Neumann.
We will need the following results, the proof of which is postponed until the end of the

section.

Lemma III.2 Let uε
S
⇀ u(a1, . . . , an) and Eε(uε) ≤ F (u) + Dε, with Dε bounded, and let

Φ be as in (III.14). Then for every ρ > 0 such that the B(ai, ρ) are disjoint,

1

2

∫

B(ai,ρ)

|∇uε|2 = π|log ε| + O(1)(III.17)

1

2

∫

Ω\∪iB(ai,ρ)

|∇|uε||2 +
1

2ε2
(1 − |uε|2)2 ≤ Dε(III.18)

1

2

∫

Ω\∪iB(ai,ρ)

|∇uε − iuε∇⊥Φ|2 ≤ Dε + oε(1), .(III.19)

Proof of Proposition III.3: We have u = (a1, . . . , an) and recall di = ±1. Let ρ > 0 be
small enough so that the balls Bi = B(ai, ρ) are disjoint and included in Ω. We wish to
“push” the vortices along the direction V , so we will simply translate the balls Bi along
this direction, and then study how the energy varies.

For every 1 ≤ i ≤ n, we can find smooth compactly supported vector fields in Ω, Xi1

and Xi2 such that

Xi1(x) = (1, 0) and Xi2 = (0, 1) in Bi

Xi1 = Xi2(x) = (0, 0) in Bj, j ̸= i.

Then, for any family of vectors V = (V1, · · · , Vn), we can define XV to be

XV =
n∑

i=1

∑

j=1,2

VijXij.

Then, XV depends linearly on V (and in a one-to-one fashion, see [S3]) and clearly XV (x) ≡
Vi in each Bi. We then define χt be the C1 one-parameter family of diffeomorphisms of Ω,
χt(x) = x + tXV (x) defined in a small interval around 0. Thus,

(III.20) χt(x) = x + tVi in each Bi,

i.e. χt is a translation of vector Vi in Bi. Also χt and such that ∥∇χt∥∞, ∥∂tχt∥∞ seen as
functions of (a1, . . . , an) are locally bounded on N .
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Let Φt solve

(III.21)

⎧
⎨

⎩

∆Φt = 2π
∑

i diδai(t) in Ω

∂Φt

∂n
= (ig,

∂g

∂τ
) on ∂Ω (resp. Φt = 0 on ∂Ω),

and

(III.22) Rt(x) = Φt(x) −
∑

j

dj log |x − aj(t)|.

Rt is a smooth harmonic function in Ω, and we recall that the renormalized energy W
associated to u(t) = (a1(t), · · · , an(t)) is defined by

(III.23) W (u(t)) = −π
∑

i̸=j

didj log |ai(t) − aj(t)| +
1

2

∫

∂Ω

Φt(ig, ∂τg) − π
n∑

i=1

Rt(ai(t)).

We can also consider R̃t, the conjugate harmonic function of Rt. We then denote by θj
t the

polar coordinate centered at aj(t), and define

(III.24) ψt =
n∑

j=1

djθ
j
t ◦ χt −

n∑

j=1

djθ
j
0 + R̃t ◦ χt − R̃0.

One can check that ψt is a smooth function in Ω, the singularities at ai(0) in fact cancelling
out, and that it is smooth in space-time. It follows from (III.22) that

(III.25) ∇⊥Φt = ∇⊥Rt + ∇⊥
∑

j

di log |x − aj(t)| = ∇R̃t +
∑

j

dj∇θj
t ,

and hence in view of (III.24),

(III.26) ∇⊥Φ0 + ∇ψt = ∇
(
∑

j

djθ
j
t ◦ χt + R̃t ◦ χt

)
.

Since χt keeps ∂Ω fixed, we deduce that ∂ψt

∂τ = ∂Φt
∂n − ∂Φ0

∂n = 0 on ∂Ω. In the Dirichlet case,
we can change the harmonic conjuguate by a constant so that ψt = 0 on ∂Ω. Similarly
∂ψt

∂n = ∂Φt
∂τ − ∂Φ0

∂τ = 0 on ∂Ω for the Neumann case.
We then define vε(x, t) as follows:

(III.27) vε(χt(x), t) = uε(x)eiψt(x).

Let us check that vε satisfies the desired properties.
First, ψt = 0 on ∂Ω (resp ∂ψt

∂n = 0 on ∂Ω) thus vε satisfies the right boundary conditions.
In addition, vε is C1 in time and clearly vε(0) = uε. Second, the leading order of the energy
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of uε is concentrated in the balls Bi (see (III.17)–(III.18)), and χt is a translation of vector
Vi there, thus, applying Corollary 4 of [SS6], we have

(III.28)
1

|log ε|

∫

Ω

|∂tvε|(0)2 =
1

|log ε|
∑

i

∫

Bi

|Vi ·∇uε|2 + o(1) =
∑

i

π|Vi|2 + o(1).

We then evaluate d
dt |t=0

Eε(vε). In view of the definition of vε, with the change of variables

y = χt(x), we have

Eε(vε) =
1

2

∫

Ω

(
|(∇vε) ◦ χt(x)|2 +

1

2ε2
(1 − |vε(χt(x))|2)2

)
|Jac χt|(x) dx

=
1

2

∫

Ω

(
|Dχ−1

t ∇(vε ◦ χt)|2 +
1

2ε2
(1 − |uε|2)2

)
|Jac χt|

=
1

2

∫

Ω

(
|Dχ−1

t ∇(uεe
iψt)|2 +

1

2ε2
(1 − |uε|2)2

)
|Jac χt|.(III.29)

First, observing that d
dt |t=0

|Jac χt| = 0 in ∪iBi, and is bounded otherwise by g(u) (locally

bounded in N ), we have, in view of (III.18),

(III.30)
d

dt |t=0

∫

Ω

1

2ε2
(1 − |uε|2)2|Jac χt| ≤ g(u)

1

2ε2

∫

Ω

(1 − |uε|2)2 ≤ g(u)Dε(0).

In what follows g(u) will always denote some function of u locally bounded in N (but
possibly changing). We then have

(III.31)
d

dt |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt| =
d

dt |t=0

1

2

∫

Ω

|Dχ−1
t (∇uε + iuε∇ψt)|2|Jac χt|

=

∫

Ω

(
d

dt |t=0
Dχ−1

t ∇uε) ·∇uε + iuε
d

dt |t=0
∇ψt ·∇uε +

1

2
|∇uε|2

d

dt |t=0
|Jac χt|

Observe that when lim sup ∥∇Eε(uε)∥Xε < ∞, which we can assume to be true,
∫

Ω

∣∣∣∆uε +
uε

ε2
(1 − |uε|2)

∣∣∣
2
≤ C

|log ε|

but (
iuε, ∆uε +

uε

ε2
(1 − |uε|2)

)
= (iuε, ∆uε) = div (iuε,∇uε)

hence div (iuε,∇uε) → 0 strongly in L2. Since we also have

curl
(
(iuε,∇uε) −∇⊥Φ0

)
⇀ 0

by definition of Φ0 = Φ (see (III.21)), we deduce

(III.32) (iuε,∇uε) ⇀ ∇⊥Φ0 + cst,
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in the sense of distributions, and the constant vector is 0 thanks to the boundary condition.
Now let Wε = ∇uε − iuε∇⊥Φ0. In view of (III.19), we have

∫
Ω\∪iB(ai,ρ) |Wε|2 ≤ 2Dε + o(1).

In view of (III.32) we also have (Wε, iuε) ⇀ 0.
Observing that ψt is smooth and C1 in time, we deduce from (III.32) that

(III.33)

∫

Ω

d

dt |t=0
∇ψt · (iuε,∇uε) =

∫

Ω

d

dt |t=0
∇ψt ·∇⊥Φ0 + o(1).

Also, since d
dt |t=0

Dχ−1
t = d

dt |t=0
|Jac χt| = 0 in ∪iBi, using (III.18) and (III.19), we get

(III.34)
1

2

∫

Ω

|∇uε|2
d

dt |t=0
|Jac χt| =

1

2

∫

Ω

d

dt |t=0

1

2
|∇⊥Φ0|2

d

dt |t=0
|Jac χt| + g(u)Dε,

and

(III.35)

∫

Ω

d

dt |t=0
Dχ−1

t ∇uε ·∇uε =

∫

Ω

d

dt |t=0
Dχ−1

t (Wε + iuε∇⊥Φ0) · (Wε + iuε∇⊥Φ0)

=

∫

Ω

d

dt |t=0
Dχ−1

t Wε · Wε + 2
d

dt |t=0
Dχ−1

t ∇⊥Φ0 · (iuε, Wε)

+ |uε|2
d

dt |t=0
Dχ−1

t ∇⊥Φ0 ·∇⊥Φ0

= O(g(u)Dε) +

∫

Ω

d

dt |t=0
Dχ−1

t ∇⊥Φ0 ·∇⊥Φ0

where we have used the properties of Wε. Inserting (III.33), (III.34) and (III.35) in (III.31),
we have

(III.36)
d

dt |t=0

1

2

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt|

=

∫

Ω

d

dt |t=0
Dχ−1

t ∇⊥Φ0 ·∇⊥Φ0 +
d

dt |t=0
∇ψt ·∇⊥Φ0 +

1

2
|∇⊥Φ0|2

d

dt |t=0
|Jac χt| + g(u)Dε.

Using again the fact that d
dt |t=0

Dχ−1
t = d

dt |t=0
|Jac χt| = 0 in ∪iBi, with ψ0 = 0, we

deduce that, for any 0 < r < ρ,

(III.37)
d

dt |t=0

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt|

=
d

dt |t=0

∫

Ω\∪jB(aj ,r)

|Dχ−1
t (∇⊥Φ0 + ∇ψt)|2|Jac χt| + g(u)Dε + or(1)

= lim
r→0

d

dt |t=0

∫

Ω\∪jB(aj ,r)

|Dχ−1
t (∇⊥Φ0 + ∇ψt)|2|Jac χt| + g(u)Dε.
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Inserting (III.26) into (III.37) and doing a change of variables, we are led to

(III.38)
d

dt |t=0

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt|

= lim
r→0

d

dt |t=0

∫

Ω\∪jB(aj(t),r)

|∇(
∑

j

djθ
j
t+R̃t)|2+g(u)Dε = lim

r→0

d

dt |t=0

∫

Ω\∪jB(aj (t),r)

|∇⊥Φt|2+g(u)Dε,

where we have used (III.25). We then introduce Sj
t (x) = Φt(x)− dj log |x− aj(t)|, smooth

harmonic function in a neighborhood of aj , also C1 in time. As in [BBH], p. 22, we have
Sj

t (aj(t)) = Rt(aj(t)) +
∑

k ̸=j dk log |aj(t) − ak(t)| and

(III.39)

d

dt |t=0

∫

Ω\∪jB(aj (t),r)

|∇Φt|2 = − d

dt |t=0

(
∑

j

∫

B(aj (t),r)

|∇Sj
t |2 + 2πdjS

j
t (aj(t)) + 2πd2

j log r

)

=
d

dt |t=0

(

−
∑

j

∫

B(aj (t),r)

|∇Sj
t |2 − 2π

∑

j

djRt(aj(t)) − 2π
∑

j ̸=k

djdk log |aj(t) − ak(t)|
)

= − d

dt |t=0

∑

j

∫

B(aj (t),r)

|∇Sj
t |2 + 2

d

dt |t=0
W (a1(t), · · · , an(t)).

But, limr→0
d
dt |t=0

∑
j

∫
B(aj (t),r) |∇Sj

t |2 = 0, because Sj is a smooth function in a neighbor-

hood of aj , C1 in time, thus taking the limit r → 0 in (III.39) and combining it with
(III.38), we find

(III.40)
d

dt |t=0

∫

Ω

|Dχ−1
t ∇(uεe

iψt)|2|Jac χt| = 2
d

dt |t=0
W (a1(t), · · · , an(t)) + g(u)Dε.

Combining this with (III.29) and (III.30), we conclude that

lim
ε→0

d

dt |t=0
Eε(vε(x, t)) =

d

dt |t=0
W (a1(t), · · · , an(t)) + g(u)Dε,

hence the desired result. !

Remark III.2 In [S4] it will be proved that ∥∇Eε(uε)∥Xε ≤ C implies Dε = o(1). Thus
Proposition III.3 combined with Lemma II.1 yield the estimate

lim inf
ε→0

(
|log ε|

∫

Ω

|∆uε +
1

ε2
uε(1 − |uε|2)|2

)
≥ π

n∑

i=1

|∂iW (a1, · · · , an)|2 = π|∇W (u)|2

(already proved in [Li1]). It also implies the result of [BBH] that critical points of Eε

converge to critical points of the renormalized energy.
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Proof of Lemma III.2 : By assumption, we have the a priori upper bound

(III.41)
1

2

∫

Ω

|∇uε|2 +
1

ε2
(1 − |uε|2)2 ≤ πn|log ε| + nC0 + W (u) + Dε.

By the usual lower bounds of [BBH], it is easy to check that this implies

(III.42)
1

2

∫

Ω\∪iB(ai,ρ)

|∇uε|2 − |∇|uε||2 ≥ πn log
1

ρ
+ W (u) + oρ(1),

while

(III.43)
1

2

∫

∪iB(ai,ρ)

|∇uε|2 +
1

ε2
(1 − |uε|2)2 ≥ πn| log ρ/ε| + nC0 + oρ(1),

(see Chapter 8 of [BBH]). Summing the two equations and comparing to (III.41), we must
have

(III.44)
1

2

∫

Ω\∪iB(ai,ρ)

|∇|uε||2 +
1

2ε2
(1 − |uε|2)2 ≤ Dε + oρ(1),

and also, keeping ρ fixed and using the fact that Dε = O(1),

(III.45)
1

2

∫

∪iB(ai,ρ)

|∇uε|2 +
1

ε2
(1 − |uε|2)2 = πn|log ε| + Oε(1),

which yields (III.17). Going back to (III.44), we find that, for ρ0 fixed, letting ρ → 0,
(III.46)
1

2

∫

Ω\∪iB(ai,ρ0)

|∇|uε||2 +
1

2ε2
(1− |uε|2)2 ≤ lim

ρ→0

1

2

∫

Ω\∪iB(ai,ρ)

|∇|uε||2 +
1

2ε2
(1− |uε|2)2 ≤ Dε,

which is (III.18).
Let us turn to (III.19). Let Ψρ be defined as in [BBH] by

(III.47)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆Ψρ = 0 in Ω\ ∪i B(ai, ρ)

Ψρ = const = ci on ∂B(ai, ρ)
∫

∂B(ai,ρ)

∂Ψρ

∂n
= 2πdi for all i

∂Ψρ

∂n
= (ig, ∂τg) (resp. Ψρ = 0 for Neumann) on ∂Ω∫

∂Ω

Ψρ = 0.

We will use two results from [BBH]: first that Ψρ −Φ → 0 in Ck
loc(Ω\∪i {ai}), second that

as ρ → 0,

(III.48)
1

2

∫

Ω\∪iB(ai,ρ)

|∇Ψρ|2 = πn log
1

ρ
+ W (u) + O(ρ).
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We deduce that

(III.49)

∫

Ω\∪iB(ai,ρ)

|∇uε|2 ≤
∫

Ω\∪iB(ai,ρ)

|∇Ψρ|2 + oρ(1) + 2Dε.

Then,
(III.50)∫

Ω\∪iB(ai,ρ)

|∇uε−iuε∇⊥Ψρ|2 =

∫

Ω\∪iB(ai,ρ)

|∇uε|2+(|uε|2−2)|∇Ψρ|2−2
(
(iuε,∇uε) −∇⊥Ψρ

)
·∇⊥Ψρ.

But,
∫
Ω\∪iB(ai,ρ) |∇uε|2 is bounded by a constant independent of ε hence there exists an

S1-valued map u with the same degrees di on ∂B(ai, ρ) such that uε ⇀ u weakly in
H1(Ω\ ∪i B(ai, ρ)), and curl (iuε,∇uε) ⇀ curl (iu,∇u) = 0 in D′(Ω\ ∪i B(ai, ρ)). We
deduce with the definition of Ψρ (cf (III.47)) that

(III.51)

∫

Ω\∪iB(ai,ρ)

(
(iuε,∇uε) −∇⊥Ψρ

)
·∇⊥Ψρ

= −
∫

Ω\∪iB(ai,ρ)

curl (iuε,∇uε)Ψρ−
∑

i

∫

∂B(ai,ρ)

((
iuε,

∂uε

∂τ

)
− ∂Ψρ

∂n

)
Ψρ → 0 as ε → 0.

Inserting this in (III.50), with (III.49), and using the fact that |uε| → 1 strongly in L2, we
are led to

(III.52)

∫

Ω\∪iB(ai,ρ)

|∇uε − iuε∇⊥Ψρ|2 ≤ 2Dε + oρ(1) + oε(1).

Considering now ρ0 to be fixed, we deduce that for ρ → 0,

(III.53)

∫

Ω\∪iB(ai,ρ0)

|∇uε − iuε∇⊥Ψρ|2 ≤ 2Dε + oρ(1) + oε(1).

But we also know that ∇⊥Ψρ → ∇⊥Φ uniformly in every compact subset of Ω\ ∪i {ai},
thus, passing to the limit ρ → 0 in (III.52) yields

(III.54)

∫

Ω\∪iB(ai,ρ0)

|∇uε − iuε∇⊥Φ|2 ≤ 2Dε + oε(1),

which is the desired result (III.19). The same would work for the Neumann boundary
condition. !

IV Ginzburg-Landau with magnetic field

In this section we apply Theorem 1 to the full Ginzburg-Landau functional (I.7) to prove
Theorem 3. Just like in the case without magnetic field, it suffices to prove that the
conclusions hold on some small time-interval [0, T ].

We assume (I.15) is satisfied and define ξ0 and J0 as in (I.18), (I.19).
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IV.1 Preliminary results

Most of the statements on Ginzburg-Landau without magnetic field can be translated into
a gauge-invariant version. For instance the equivalent of the Jacobian will be

(IV.1) µε = curl ((iuε,∇Aεuε) + Aε) = curl (iuε,∇Aεuε) + hε.

we also let

(IV.2) Jf (u, A) =
1

2

∫

Ω

|∇u − iAu|2 + |curl A|2 +
1

2ε2
(1 − |u|2)2,

be the Ginzburg-Landau functional with no applied field. We will need the following result
[Sa, J1, SS4, JS2, ASS, SS6].

Lemma IV.1 Assume J(uε, Aε) ≤ C|log ε|2. Then there exists a family (depending on ε)
of disjoint balls B(ai, ri) such that for any q > 0,

∑
i ri ≤ Cq|log ε|−q, |uε| ≥ 1 − |log ε|−q

in Ω\ ∪i B(ai, ri), and

(IV.3)
1

2

∫

B(ai,ri)

|∇Aεuε|2 ≥ π|di||log ε|(1 − o(1))

where di = deg(uε, ∂B(ai, ri)) if B(ai, ri) ⊂ Ω (0 otherwise). Moreover,

(IV.4) µε − 2π
∑

i

diδai → 0,

in the dual of C0,γ
c (Ω), for any γ > 0.

We also recall the following result from [ASS, SS4, SS5, SS6].

Lemma IV.2 Assume J(uε, Aε) ≤ CNε|log ε|, where Nε ≤ C|log ε|q, with q arbitrary.
Then there exists a bounded Radon measure µ ∈ M(Ω) such that, after extraction 1

Nε
µε ⇀ µ

weakly in the dual of C0,γ
c , for any γ > 0 and

(IV.5) J(uε, Aε) − h2
exJ0 ≥ λ|log ε|

∫

Ω

ξ0µε + Jf(uε, Aε
′) + o(1),

(IV.6) lim inf
ε→0

J(uε, Aε) − h2
exJ0

Nε|log ε|
≥ 1

2

∫

Ω

|µ| + λ

∫

Ω

ξ0dµ,

where λ is defined in (I.15), and Aε
′ = Aε − hex∇⊥ξ0.

Proof : For the convergence of µε, see [SS1, JS2, ASS, SS6]. We reproduce the proof of
the lower bound (IV.5) (see [SS1, SS5]) for the convenience of the reader.
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We let h′ = curl A′ and j′ = (iu,∇A′u) (we dropped the subscript ε). Then ∇Au =
∇A′u − iuhex∇⊥ξ0, and from (I.18), we find h := curl A = h′ + hex(ξ0 + 1). Replacing in
(I.7), we are led to

(IV.7) J(u, A) = Jf (u, A′) +
h2

ex

2

∫

Ω

|u|2|∇ξ0|2 + |ξ0|2 + hex

∫

Ω

−∇⊥ξ0 · j′ + ξ0h
′.

From the energy upper bound and Cauchy-Schwarz inequality, we have
∫
Ω ||u|2 − 1| ≤

Cε|log ε|q/2 therefore |u|2|∇ξ0|2 tends to |∇ξ0|2 in L1. Integrating by parts the last term
in (IV.7) and noting that from (I.18) it follows that curl j′ + h′ = curl (iu,∇Au) + h = µε,
we get

(IV.8) J(u, A) = h2
exJ0 + hex

∫

Ω

ξ0µε + Jf (u, A′) + o(1),

which (IV.5). Moreover, the ball construction of Lemma IV.1 applied to (u, A′) implies

(IV.9)
1

2

∫

∪iB(ai,ri)

|∇A′u|2 ≥ π
∑

i

|di||log ε|(1 − o(1)),

where (curl j′+h′)−2π
∑

i diδai converges to 0 hence 1
Nε

2π
∑

i diδai ⇀ µ. In view of (IV.8),
we deduce

(IV.10) J(u, A) ≥ h2
exJ0 + hex

∫

Ω

ξ0µε +
|log ε|

2

∑

i

|di|(1 − o(1)) + o(1),

and (IV.6) follows by dividing by Nε|log ε| and passing to the limit ε → 0. !

IV.2 Boundedness of the vorticity

As in the case without magnetic field we need to show that, starting from a configuration
(u, A) with n vortices of degree +1 or −1, and which is well-prepared, the number of vortices
remains constant for some time and sufficiently regular trajectories may be defined. We
recall the following notations

(IV.11) E = −∂tA −∇Φ, F = ∂tu + iuΦ,

We will need the following variant of Proposition III.1.

Proposition IV.1 Let (uε, Aε, Φε) be defined on the time interval [0, T ] and be such that

(IV.12) ∀t ∈ [0, T ], Jf (uε, Aε) ≤ CNε|log ε|
∫

Ω×[0,T ]

|Eε|2 + |Fε|2 ≤ CNε|log ε|,

with Nε ≤ C|log ε|. Then µε

Nε
converges to a measure µ for every t ∈ [0, T ] in the dual of

C0,γ
c (Ω) for every γ > 0. Moreover t → ⟨µ(t), ζ⟩ is in H1([0, T ]) for any ζ ∈ C1

c (Ω) and

|⟨µ(t2), ζ⟩ − ⟨µ(t1), ζ⟩| ≤ C
√

t2 − t1 lim inf
ε→0

1√
Nε|log ε|

(∫

Ω×[t1,t2]

|Fε|2
) 1

2

,

for any [t1, t2] ⊂ [0, T ].
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Proof: The proposition is a consequence of Theorem 3 of [SS6], when working in a
suitable gauge. Since the above results are invariant under gauge transformations (I.17)
we may work in the Lorentz gauge Φε = −div Aε in Ω× [0, T ], with Aε ·ν = 0 on ∂Ω× [0, T ]
and div Aε = 0 at time t = 0. Then, in view of (IV.11),

∂tAε − ∆Aε = −Eε.

The fact that Aε satisfies Aε ·ν = 0 on ∂Ω and div Aε = 0 initially implies that ∥Aε∥H1(Ω) ≤
CNε|log ε| initially and then standard parabolic estimates give for all time

(IV.13) ∥Aε∥2
H1(Ω) ≤ CNε|log ε|, ∥Φε∥2

H1(Ω) ≤ CNε|log ε|

Now we apply Theorem 3 of [SS6] to uε. From (IV.12)–(IV.13), its hypothesis are
satisfied. Moreover the defect measures of L2 convergence of

|X ·∇uε|√
Nε|log ε|

,
f |∂tuε|√
Nε|log ε|

,

coincide with those of their gauge equivalents, where ∇uε is replaced with ∇Aεuε and ∂tuε

with ∂tuε+iuΦε. Also, (iuε,∇Aεuε)+Aε = (iuε,∇uε)+(1−|uε|2)Aε and (1−|uε|2)Aε tends
to 0 in the sense of distributions from (IV.12), (IV.13). Therefore µε−curl (iuε,∇uε) tends
to zero as a distribution. We then find that µε

Nε
converges to a measure µ for every t ∈ [0, T ]

in the dual of C0,γ
c (Ω) for every γ > 0 and that there exists a vector V with components in

L2([0, T ],M(Ω)) such that ∂tµ + div V = 0, where M denotes the set of bounded Radon
measures in Ω. Moreover, for any [t1, t2] ⊂ [0, T ], any X ∈ C0

c ([t1, t2] × Ω, R2), we have
(see [SS6], Theorem 3)
(IV.14)

lim inf
ε→0

1

Nε|log ε|

(∫

Ω×[t1,t2]

|X ·∇Aεuε|2
∫

Ω×[t1,t2]

|∂tuε + iuεΦε|2
) 1

2

≥ 1

2

∣∣∣∣
∫

Ω×[t1,t2]

V · X
∣∣∣∣ .

The proposition follows by taking X = ∇ζ , using (IV.12) and reasoning as in Proposition
III.1. !

We will need

Lemma IV.3 Assume (uε, Aε, Φε) solve (I.16) in Ω × R+. Then

(IV.15) J(uε, Aε)(0) − J(uε, Aε)(T ) =

∫

[0,T ]×Ω

|Fε|2 + |Eε|2.

The proof is a direct computation. We are now in a position to prove

Proposition IV.2 Assume (uε, Aε, Φε) solve (I.16) in Ω × [0, T ]. Assume moreover that
µε(0) converges to a finite measure µ(0) = 2π

∑n(0)
i=1 di(0)δai(0) with di(0) ∈ Z and that

(uε, Aε) is well prepared initially, i.e.

J(uε(0), Aε(0)) ≤ h2
exJ0 +

|log ε|
2

∫

Ω

|µ(0)| + λ|log ε|
∫

Ω

ξ0dµ(0) + o(|log ε|).
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Then µε(t) converges to a finite measure µ(t) of the form 2π
∑n(t)

i=1 di(t)δai(t) with di(t) ∈ Z
for every t ≥ 0, and there exists T0 > 0 independent of the particular solution taken such
that if t ≤ T0 then

∑n(t)
i=1 |di(t)| ≤

∑n(0)
i=1 |di(0)|.

Proof: From Lemma IV.2,

J(uε(t), Aε(t)) − h2
exJ0 ≥ λ|log ε|

∫

Ω

ξ0µε + Jf(uε(t), Aε(t)
′) + o(1),

where A′ = A− hex∇⊥ξ0. Together with the well-preparedness of (uε(0), Aε(0)) this yields
(IV.16)

J(0)− J(t) ≤ λ|log ε|
∫

Ω

(µε(0)− µε(t))ξ0 +
|log ε|

2

∫

Ω

|µ(0)|− Jf (uε(t), Aε
′(t)) + o(|log ε|),

where J(t) stands for J(uε(t), Aε(t)). We let

Nε = sup
t∈[0,T ]

Jf(uε(t), Aε
′(t))

|log ε|
.

Then we may apply Theorem 3 of [SS6] to (uε, Aε
′) to find

(IV.17)(∫

Ω

(µε(0) − µε(t))ξ0

)2

≤ 1

|log ε|2

∫

Ω×[0,t]

|∇A′
ε
uε|2|∇ξ0|2

∫

Ω×[0,t]

|∂tuε + iuεΦε|2(1 + o(1))

≤ C

|log ε|2

∫ t

0

Jf(uε, A
′
ε) dt

∫

Ω×[0,t]

|Fε|2

and thus

(IV.18)

(∫

Ω

(µε(0) − µε(t))ξ0

)2

≤ C
tNε

|log ε|

∫

Ω×[0,t]

|Fε|2 ≤ C
tNε

|log ε|
(J(0) − J(t)).

Thus, in view of (IV.16) and letting ∆(t) =
∫
Ω(µε(0) − µε(t))ξ0, we obtain

(IV.19)
∆(t)2

CtNε
≤ λ∆(t) +

1

2

∫

Ω

|µ(0)|− 1

|log ε|Jf (uε(t), Aε
′(t)) + o(1).

It follows that

(IV.20) ∆(t)2 ≤ C(1 + tNε).

Replacing in the previous inequality we find |log ε|−1Jf (uε(t), Aε
′(t)) ≤ C(1 + tNε) and,

taking the supremum over t ∈ [0, T ], Nε ≤ C(1 + TNε). Thus, for T smaller than some
T0, Nε is bounded independently of ε. Inserting (IV.18) into (IV.16), we also obtain
J(0)−J(t) ≤ C|log ε| 12 (J(0)−J(t))

1
2 +C|log ε|, thus

∫
[0,T ]×Ω |Eε|2 + |Fε|2 = J(0)−J(t) ≤

C|log ε| and the hypotheses of Proposition IV.1 are satisfied with Nε = 1.
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The convergence of µε(t) to a measure of the form 2π
∑n(t)

i=1 di(t)δai(t) with di(t) ∈ Z for
every t ≤ T0 follows from the upper bound on Jf (uε(t), Aε

′(t)) together with (IV.3)-(IV.4)
applied to (uε(t), Aε

′(t)). Returning to (IV.20) we find that ∆(t) is bounded in [0, T0], and
with (IV.19) that limt→0 ∆(t) = 0. Since Lemma IV.2 and (IV.3)–(IV.4) imply

0 ≤ J(0) − J(t) ≤ ∆(t) + π|log ε|

⎛

⎝
n(0)∑

i=1

|di(0)|−
n(t)∑

i=1

|di(t)|

⎞

⎠+ o(|log ε|),

we deduce, taking T0 smaller if necessary, that
∑n(t)

i=1 |di(t)| ≤
∑n(0)

i=1 |di(0)| for t ≤ T0. !

IV.3 Proof of Theorem 3

As mentioned earlier, we need only prove the local version. The framework of Section II
applies as follows. Assume (uε, Aε, Φε) satisfy the hypothesis of Theorem 3. Then Proposi-
tion IV.2 applies together with Proposition III.2. Thus there exists T0 > 0 and trajectories
a1(t), . . . , an(t) in H1((0, T0)) such that for any t < T0 the points ai(t) are distinct, contin-
uous, and such that µε(t) → µ(t) = 2π

∑
i diδai(t) in the sense of distributions. The degrees

di are constant and equal to ±1.
Letting B = H1(Ω, C) × H1(Ω, R2) we define M to be the set of (u, A) ∈ B satisfying

the boundary conditions in (I.16). Writing w = (u, A) we let

(IV.21) Eε(w) =
J(u, A) − h2

exJ0 − πn|log ε|
|log ε| .

The space B embeds into Xε = L2(Ω, C) × L2(Ω, R2) that we equip with the norm

∥δw∥2
Xε

=
1

|log ε|

∫

Ω

|δu|2 + |δA|2.

One may check that the gradient-flow of Eε for this structure is a solution of (I.16) satisfying
the temporal gauge condition Φ = 0.

For the limiting functional, we define N to be as in the case without magnetic field the
set Ωn

∗ of n-uples of distinct points in Ω. It embeds into Y = (R2)n on which we use the
norm ∥v∥2

Y = π
∑

i |vi|2. We say that a family wε in M converges to w = (a1, . . . , an) ∈ N
if µε = curl (iuε,∇Aεuε) + hε converges to µ = 2π

∑
i diδai in the sense of distributions.

The limiting functional is

(IV.22) F (w) = 2πλ
n∑

i=1

diξ0(ai) = λ

∫

Ω

ξ0dµ,

and we let Dε = Eε(wε) − F (w). Under the constraint that the limit in the sense S of wε

is in N (i.e. is a configuration of n distinct vortices of degrees di), Eε Γ-converges to F
in the sense of Definition 1, as seen in Lemma IV.2, and Eε, F satisfy the hypothesis of
Theorem 1.

There remains to check conditions 1) and 2) of Theorem 1, which is done in the next
section.
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IV.4 Lower and upper bounds

We start with the lower bound. The result is essentially the one of (III.9) but requires some
more careful application of Theorem 3 of [SS6] because the hypothesis 1

2

∫
B(ai,ri)

|∇u|2 =

π|log ε|(1 + o(1)) does not a priori have to be satisfied for all time in the present case.
First we need the following

Lemma IV.4 Let (uε, Aε) be as before, B(ai, ri) be given by Lemma IV.1 for each time
with ri ≤ C|log ε|−3, X be a smooth vector field on Ω × [0, T ], we have, for every i and
every [t1, t2] ⊂ [0, T ],

(IV.23)

∫ t2

t1

∫

B(ai(t),ri(t))

|∇Aεuε · X|2 dt ≤ 1

2

∫ t2

t1

∫

B(ai(t),ri(t))

|X|2|∇Aεuε|2 dt

+ C|log ε|
∫ t2

t1

Dε(t)∥X∥2
L∞(Ω)(t) dt + o(1).

Proof: For any (u, A), we let

∂uJ(u, A) = ∇2
Au + u

ε2 (1 − |u|2)
∂AJ(u, A) = ∇⊥h + j.

As in [SS4], we introduce the stress-energy tensor associated to the energy J :

(IV.24) T =
1

2

(
|∂A

1 u|2 − |∂A
2 u|2 2(∂A

1 u, ∂A
2 u)

2(∂A
1 u, ∂A

2 u) |∂A
2 u|2 − |∂A

1 u|2
)

+

(
h2

2
− (1 − |u|2)2

4ε2

)(
1 0
0 1

)
.

Here ∂A
j = ∂j − iAj . A direct calculation (see for example [Sp]) yields

(IV.25) div T :=

(
∂1T11 + ∂2T12

∂1T21 + ∂2T22

)
= (∇Au, ∂uJ(u, A)) − h(∂AJ(u, A))⊥.

Since (u, A) is here assumed to be a solution of (I.16), the right-hand side is equal to
(∇Au,F)+hE⊥. We will write temporarily V = 1

2(|∂
A
1 u|2 − |∂A

2 u|2, 2(∂A
1 u, ∂A

2 u)). Let f be
a C∞

0 (Ω) function and let us multiply this relation (IV.25) by the vector field (f, 0), and
integrate. We are led to

(IV.26)

∣∣∣∣

∫

Ω

fdiv V − ∂1f

(
h2

2
− (1 − |u|2)2

4ε2

)∣∣∣∣ ≤
∫

Ω

|f | (|∇Au||F|+ |h||E|) .

Since the vortex balls remain well-separated in time, we can find for each i an f ∈ C∞
0 (Ω)

which has support in Ω\ ∪j ̸=i B(aj , rj) and such that

⎧
⎪⎪⎨

⎪⎪⎩

∇f = (1, 0) in B(ai, ri)
∥∇f∥L∞(Ω) ≤ C
∥f∥L∞(Ω) ≤ ri ≤ C

|log ε|3

|supp f | ≤ Cri ≤ C
|log ε|3 ,
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where |supp f | denotes the area of the support of f . This may be achieved by a function
of the form ξ(x1)χ(x2). Then from (IV.26),

(IV.27)

∣∣∣∣

∫

B(ai,ri)

V1

∣∣∣∣ ≤
∫

Ω\∪jB(aj ,rj)

|∇f · V | +
∫

Ω

|∇f |
∣∣∣∣
h2

2
− (1 − |u|2)2

4ε2

∣∣∣∣

+

∫

Ω

|f | (|∇Au||F|+ |h||E|) .

But from Lemma IV.2, letting A′ = A − hex∇⊥ξ0,

(IV.28) Jf(u, A′) ≤ |log ε|(πn + Dε + o(1)),

while (see (IV.9))

(IV.29)
1

2

∫

∪jB(aj ,rj)

|∇A′u|2 ≥ πn|log ε|(1 − o(1)),

therefore ∫

Ω\∪jB(aj ,rj)

|∇u − iA′u|2 ≤ 2Dε|log ε|(1 + o(1)).

Moreover, since ξ0 is C∞ and the support of f has measure less than C
|log ε|3 , we deduce

∫

Ω\∪jB(aj ,rj)∩supp f

|V1| ≤ C

∫

(Ω\∪jB(aj ,rj))∩supp f

|∇u − iAu|2 ≤ CDε|log ε|(1 + o(1)) + o(1).

Using also the fact that ∥∇f∥L∞ ≤ C, we may finally deduce that
∫
Ω\∪jB(aj ,rj)

|∇f · V | ≤
CDε|log ε| + o(1). By the same argument, from (IV.28),

∫

(Ω\∪jB(aj ,rj))∩supp f

|h|2 ≤ CDε|log ε| + o(1),

and, with the help of (IV.28) again,
∫

Ω

|∇f |
∣∣∣∣

(
h2

2
− (1 − |u|2)2

4ε2

)∣∣∣∣ ≤ CDε|log ε| + o(1).

Finally, (IV.27) becomes

(IV.30)

∣∣∣∣
∫

B(ai,ri)

V1

∣∣∣∣ ≤ CDε|log ε| + o(1) +
C

|log ε|3

∫

Ω

|∇Au||F|+ |h||E|,

and the same result holds for V2. Let now X be a continuous vector field. Then
∫

B(ai,ri)

|X ·∇Au|2 =

∫

B(ai,ri)

|X|2 |∇Au|2

2
+

X2
1 − X2

2

2
(|∂A

1 u|2 − |∂A
2 u|2) + 2X1X2(∂

A
1 u, ∂A

2 u)

=

∫

B(ai,ri)

|X|2 |∇Au|2
2

+

∫

B(ai,ri)

(X2
1 − X2

2 )V1 + 2X1X2V2.
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We deduce that

(IV.31)

∫

B(ai,ri)

|X ·∇Au|2 ≤
∫

B(ai,ri)

|X|2 |∇Au|2

2

+ ∥X∥2
L∞(Ω)

(
CDε|log ε| + o(1) +

C

|log ε|3

∫

Ω

|∇Au||F| + |h||E|
)

.

But, since (uε, Aε) is a solution of (I.16) it satifies (IV.12), thus
∫
Ω×[t1,t2]

|∇Au||F| ≤
C|log ε|2 and

∫ t2
t1

|h||E| ≤ C|log ε|2. Integrating in time (IV.31), we get (IV.23). !

Proposition IV.3 If wε = (uε, Aε) is a solution of the gradient flow ∂twε = −∇Eε(wε),

such that wε
S
⇀ w(t) ∈ N on [0, T ), there exists f ∈ L1(R) such that for all [t1, t2] ⊂ [0, T ],

(IV.32) lim inf
ε→0

∫ t2

t1

∥∂twε∥2
Xε

dt ≥
∫ t2

t1

(
∥∂tw∥2

Y − f(t)D(t)
)

dt.

Proof: If we combine (IV.9) and (IV.10) with the definition of Eε and F , we find that
∀i, 1

2

∫
B(ai,ri)(t)

|∇A′u|2 ≤ (π + CDε + o(1))|log ε| and thus
∫

B(ai,ri)(t)
|∇Au|2 ≤ (π + CDε +

o(1))|log ε|. Then, combining this with Lemma IV.4, we find

(IV.33)

∫ t2

t1

∫

∪iB(ai(t),ri(t))

|∇Aεuε · X|2

≤
∫ t2

t1

π
∑

i

|X(ai(t), t)|2|log ε| dt +

∫ t2

t1

C∥X∥2
L∞(Ω)(t)Dε(t)|log ε| dt + o(1).

We may plug this into the proof of Theorem 1 of [SS6] to obtain as an alternate of Propo-
sition IV.1, the following result

(IV.34) lim inf
ε→0

(
1

|log ε|

∫

Ω×[t1,t2]

|Fε|2
)(∫ t2

t1

π
∑

i

|X(ai(t), t)|2 + C∥X∥2
L∞(Ω)Dε(t) dt

)

≥
∣∣∣∣
1

2

∫

Ω×[t1,t2]

V · X
∣∣∣∣
2

,

where V is such that ∂tµ + div V = 0. Since the ai(t)’s remain distinct (we work before
collision) and continuous in time, we may work in open sets Ui which contain only one ai(t)
for t ranging in a small interval [t1, t2]. Applying (IV.34) on Ui for X(x, t) = ∇ζ(x, t), and
considering D(t) = lim supε→0 Dε(t), we are led to

(IV.35)
1

2

∣∣∣∣

∫

Ui×[t1,t2]

V ·∇ζ

∣∣∣∣

≤
(∫ t2

t1

π|∇ζ(ai(t), t)|2 + C∥∇ζ∥2
L∞(Ui)D(t) dt

) 1
2

lim inf
ε→0

(∫
Ui×[t1,t2]

|Fε|2
) 1

2

|log ε| 12
.
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But, one may check that in the sense of distributions, div V = div (2π
∑

i di∂tai(t)δai(t)),
hence (IV.35) becomes

(IV.36)

∣∣∣∣

∫ t2

t1

π∂tai(t) ·∇ζ(ai(t), t) dt

∣∣∣∣

≤
(∫ t2

t1

π
(
|∇ζ(ai(t), t)|2 + C∥∇ζ∥2

L∞(Ui)D(t)
)

dt

) 1
2

lim inf
ε→0

(∫
Ui×[t1,t2]

|Fε|2
) 1

2

|log ε| 12
.

For any vector-valued X(t) we may choose ζ ’s such that ∥∇ζ(x, t)∥L∞(Ui) = |∇ζ(ai(t), t)|
and ∇ζ(ai(t), t) = X(t). Then (IV.36) rewrites

∣∣∣∣
∫ t2

t1

π∂tai(t) · X(t) dt

∣∣∣∣ ≤
(∫ t2

t1

π|X(t)|2(1 + CD(t)) dt

)1
2

lim inf
ε→0

(∫
Ui×[t1,t2] |Fε|2

) 1
2

|log ε| 12
.

By a duality argument, we deduce that ∂tai ∈ L2
1+CD([t1, t2]), where L2

ρ denotes the
weighted L2 Lebesgue space with weight ρ, and that

(IV.37) π

∫ t2

t1

|∂tai|2

1 + CD(t)
dt ≤ lim inf

ε→0

1

|log ε|

∫

Ui×[t1,t2]

|Fε|2.

Using the identity 1
1+CD ≥ 1−2CD, the fact that D(t) is bounded by Eε(0), and summing

up over i and over small time intervals, we get that |∂tai|2 ∈ L1([0, T ]) and that for all
[t1, t2] ⊂ [0, T ],

(IV.38) lim inf
ε→0

1

|log ε|

∫

Ω×[t1,t2]

|Fε|2 ≥ π

∫

[t1,t2]

∑

i

|∂tai|2(1 − 2CD(t)) dt

= π

∫

[t1,t2]

∑

i

|∂tai|2 − f(t)D(t) dt,

where f(t) = 2C
∑

i |∂tai|2 ∈ L1([0, T ]). Choosing the gauge Φ = 0, this is the desired
result. !

We turn to the proof of upper bound result, i.e. condition 2) of Theorem 1. As in Lemma
II.1, it is enough to prove the result for wε = (uε, Aε) satisfying ∥∇Eε(wε)∥Xε ≤ C.

Proposition IV.4 Let (uε, Aε)
S
⇀ w = (a1, · · · , an) be such that ∥∇Eε(wε)∥Xε ≤ C and

D = lim supε→0 Eε(wε)−F (w). For any family of vectors V1, · · · , Vn, letting (b1, · · · , bn)(t)
satisfy

(IV.39)

{
∂tbi(0) = Vi

bi(0) = ai,
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there exists (vε, Aε) of class C1 in a neighborhood of 0, equal to (uε, Aε)(0) at t = 0, and a
locally bounded (on N ) g(w) such that

lim sup
ε→0

1

|log ε|

∫

Ω

|∂tAε(0)|2 + |∂tvε(0)|2 ≤ π
∑

i

|Vi|2(1 + g(w)D) + g(w)D(IV.40)

lim inf
ε→0

(
− d

dt |t=0
Eε(vε, Aε)

)
≥ − d

dt |t=0
2πλ

∑

i

diξ0(bi(t)) − g(w)D.(IV.41)

Proof: We define a family of diffeomorphisms χt as in Proposition III.3, satisfying (III.20)
and such that ∥∇χt∥∞, ∥∂tχt∥∞ seen as functions of (a1, . . . , an) are locally bounded on
N . In view of (IV.28)-(IV.29), we may find ρε ≪ |log ε|−3 such that

(IV.42)
1

2

∫

Ω\∪iB(ai,ρε)

|∇u− iuA′|2 +
1

2

∫

Ω

|curlA′|2 +
1

2ε2
(1− |uε|2)2 ≤ (Dε + o(1))|log ε|.

We then define vε as follows

(IV.43) vε(χt(x)) = uε(x).

We assume that Aε is in the Coulomb gauge and is equal to hex∇⊥ξ0 + ∇⊥ξ with ξ = 0
on ∂Ω, (ξ depends implicitely on ε). We observe that from (IV.42),

∫
Ω |∆ξ|2 ≤ 2D|log ε|

and since ξ = 0 on ∂Ω, by elliptic regularity we have ∥ξ∥2
H2 ≤ CD|log ε|. We then take at

time t ≥ 0,

(IV.44) Aε(t) = hex∇⊥ξ0 + ∇⊥(ξ ◦ χ−1
t ).

Let us first prove that (IV.40) is satisfied. First,

1

|log ε|

∫

Ω

|∂tvε|2(0) =
1

|log ε|

∫

Ω

|∇uε ◦ χ−1
t · ∂tχ

−1
t |2.

Then, using the fact that ∂tχ
−1
t = −Vi in each Bi and that χ−1

t is a translation in each Bi,
we have

1

|log ε|

∫

Ω

|∂tvε|2(0) ≤ g(w)

|log ε|

∫

Ω\∪iB(ai,ρε)

|∇uε|2 +
1

|log ε|
∑

i

∫

B(ai,ρε)

|∇uε · Vi|2

≤ g(w)

|log ε|

(∫

Ω\∪iB(ai,ρε)

|∇uε − iuε∇⊥ξ|2 +

∫

Ω

|∇ξ|2
)

+
1

|log ε|
∑

i

∫

B(ai,ρε)

|∇uε · Vi|2

≤ g(w)D +
1

|log ε|
∑

i

∫

B(ai,ρε)

|∇uε · Vi|2 + o(1),
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where we have used (IV.42)-(IV.44). For the remaining term, we use ∥∇Eε(wε(0))∥Xε ≤ C,
that is

1

|log ε|

∫

Ω

|∇2
Aε

uε +
uε

ε2
(1 − |uε|2)|2 + |−∇⊥curl Aε − j|2 ≤ C,

or 1
|log ε|

∫
Ω |∂uJ(u, A)|2 + |∂AJ(u, A)|2 ≤ C. Applying the method of Lemma IV.4, this

implies that
∫

B(ai,ρε)

|∇Aεuε · Vi|2 ≤
1

2

∫

B(ai,ρε)

|∇Aεuε|2|Vi|2 + C|Vi|2Dε(0)|log ε| + o(1).

Finally, we will be able to conclude as in (IV.23) that

1

|log ε|

∫

Ω

|∂tvε|2(0) ≤ π
∑

i

|Vi|2 + g(w)D(1 +
∑

i

|Vi|2) + o(1).

Meanwhile, in view of (IV.44),

1

|log ε|

∫

Ω

|∂tAε|2(0) ≤ C
1

|log ε|

∫

Ω

|D2ξ|2 ≤ g(w)

|log ε|∥ξ∥
2
H2(Ω) ≤ g(w)D + o(1).

Thus (IV.40) is satisfied. Let us then evaluate J(vε, Aε). As in (IV.7)-(IV.8) we have

(IV.45) J(vε, Aε) = Jf(v,∇⊥(ξ ◦ χ−1
t )) +

h2
ex

2

∫

Ω

|v|2|∇ξ0|2 + |ξ0|2

+ hex

∫

Ω

−∇⊥ξ0 · (iv,∇v − iv∇⊥(ξ ◦ χ−1
t ) + ξ0∆(ξ ◦ χ−1

t )

= h2
exJ0 + Jf (v,∇⊥(ξ ◦ χ−1

t )) +
h2

ex

2

∫

Ω

(|v|2 − 1)|∇ξ0|2 − hex

∫

Ω

∇⊥ξ0 · (iv,∇v)

+ hex

∫

Ω

(|v|2 − 1)∇ξ0 ·∇(ξ ◦ χ−1
t ).

We will deal separately with the time derivative at t = 0 of all the terms in the right-hand
side. First, with a change of variables y = χt(x) as in Proposition III.3, from (IV.43) we
have

(IV.46) I :=
1

2

∫

Ω

(|vε|2 − 1)∇ξ0 · (∇ξ0 + 2∇(ξ ◦ χ−1
t )) + |∆(ξ ◦ χ−1

t )|2 +
1

2ε2
(1 − |vε|2)2

=
1

2

∫

Ω

(
(|uε|2 − 1)∇ξ0 ◦ χt · (∇ξ0 ◦ χt + 2∇(ξχ−1

t ) ◦ χt)

+ |(∆(ξ ◦ χ−1
t )) ◦ χt|2 +

1

2ε2
(1 − |uε|2)2

)
|Jac χt|.

Differentiating with respect to t, we deduce with the a priori estimates and (IV.42) that

(IV.47)

∣∣∣∣
d

dt |t=0
I

∣∣∣∣ ≤ g(w)

(∫

Ω

|D2ξ|2 +
(1 − |uε|2)2

2ε2
+ o(1)

)
≤ g(w)|log ε|(D + o(1)).
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Arguing again as in Proposition III.3, we have

(IV.48)
d

dt |t=0

1

|log ε|

∫

Ω

|∇vε−ivε∇⊥(ξ◦χ−1
t )|2 =

d

dt |t=0

1

|log ε|

∫

Ω

|Dχ−1
t ·(∇uε−iuε∇⊥ξ)|2|Jac χt|

≤ g(w)

|log ε|

∫

Ω\∪iB(ai,ri)

|∇uε − iuε∇⊥ξ|2 ≤ g(w)(D + o(1)),

where we have used (IV.42). There remains to differentiate the cross-term. For that we
first write (with the same change of variables),

(IV.49)
d

dt |t=0

∫

Ω

∇⊥ξ0 · (ivε,∇vε) =
d

dt |t=0

∫

Ω

(∇⊥ξ0) ◦ χt · Dχ−1
t (iuε,∇uε)|Jac χt|.

Let us now introduce Θ0 the harmonic conjugate of the solution of
{

∆Φ = 2π
∑

i diδai on Ω
Φ = 0 on ∂Ω.

Θ0 is not uni-valued but satisfies curl (∇Θ0) = 2π
∑

i diδai . Hence, in view of Lemma IV.1,
and the fact that we are in the Coulomb gauge, we have

curl ((iuε,∇uε) −∇Θ0) ⇀ 0 in D′(Ω).

Therefore, after extraction, there exists H ∈ D′(Ω) such that

(IV.50) ((iuε,∇uε) −∇Θ0 −∇H) ⇀ 0 in D′(Ω).

Inserting this into (IV.49), we are led to

d

dt |t=0

∫

Ω

∇⊥ξ0 · (ivε,∇vε) =
d

dt |t=0

∫

Ω

(∇⊥ξ0) ◦ χt · Dχ−1
t (∇Θ0 + ∇H)|Jac χt| + o(1)

=
d

dt |t=0

∫

Ω

∇⊥ξ0 ·∇((Θ0 + H) ◦ χ−1
t ) + o(1)

= − d

dt |t=0

∫

Ω

ξ0 curl∇(Θ0 ◦ χ−1
t ) + o(1)

= − d

dt |t=0

(
2π
∑

i

diξ0(bi(t))

)
+ o(1).(IV.51)

Combining (IV.45)–(IV.47)–(IV.48)–(IV.49) and (IV.51), we deduce that

(IV.52)
d

dt |t=0

J(vε, Aε)

|log ε| =
d

dt |t=0
F (bi(t)) + g(w)(D + o(1)).

which yields the desired result (IV.41). !
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Finally, the result of this last proposition applied to Vi = −2diλ∇ξ0(ai), allows to
apply Theorem 1 and conclude with Theorem 3. (Indeed, it is enough to apply the proof
of Lemma II.1.) The last statement of Theorem 3 follows from the last of Theorem 1 and
the construction above (bearing in mind that D = 0).
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