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Abstract

We study the Ginzburg-Landau energy for a superconductor submitted to an
applied magnetic field hex just below the “second critical field” Hc2 . When the
Ginzburg-Landau parameter ε is small, we show that the mean energy per unit
volume can be approximated by a reduced energy on a torus. Moreover, we expand
this reduced energy in terms of Hc2−hex: when this quantity gets small, the problem
amounts to a minimization problem on a finite-dimensional space, equivalent to the
“lowest Landau level” in other approaches. This connects the Ginzburg-Landau
energy to the “Abrikosov problem” of locating vortices optimally on a lattice.

1 Introduction

A superconducting material subject to an external magnetic field of intensity hex is de-
scribed by its wave-function u, a complex-valued order parameter, and its potential-vector
A so that h := curl A is the induced magnetic field in the sample; |u|2 measures the local
density of superconducting electrons in the material. The response of the material varies
according to the value of the external field hex and the value of the Ginzburg-Landau pa-
rameter ε (inverse of the usual Ginzburg-Landau parameter κ), which is taken to be small
to model extreme type II superconductors. The state of the superconductor can be studied
through the minimization of the Ginzburg-Landau energy

JΩ(u, A) =
1

2

∫
Ω

|∇Au|2 + |curl A− hex|2 +
(1− |u|2)2

2ε2
. (1.1)
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Here ∇A = ∇ − iA is the covariant gradient and Ω is a two-dimensional bounded and
simply-connected domain, representing the cross-section of the material. We refer to the
book [SS1] for mathematical results that have been obtained, and to [SST, T] for physics
reference. See also [AD].

In this paper, we are interested in the regime where the intensity of the applied magnetic
field hex is of order 1/ε2, thus we set

hex =
b

ε2
. (1.2)

For fixed b, if ε is sufficiently small, it is known that A is such that curl A is very close
to hex (see e.g. Fournais-Helffer [FH2]). The behaviour of u, on the contrary, is strongly
dependent on b: when b is too large (b > b0 ' 1.695), the only critical point of the energy
is the normal solution u = 0, and A is such that curl A = hex (see [GP]). The behaviour
of u is analyzed by considering the linearized problem around the normal solution u = 0,
curl A = hex. Two eigenvalues emerge: the value of b0 corresponds to an eigenvalue problem
for a half-space, studied by many authors, see e.g. [LP1, LP2, HM], while b = 1 is the
eigenvalue for the full space R2. The value b = 1, that is hex = 1/ε2 is also called the
second critical field Hc2 , while b0/ε

2 is the third critical field Hc3 .
For b ∈ (1, b0), the minimizer is such that |u| is very small, except on a thin boundary

layer close to the surface of the sample, referred to as surface superconductivity, see [P1,
Al2, HP, FH1]. It is this boundary layer which is blown up and approximated by a half-
space problem. The formal computations of Abrikosov [Abr] indicate a bifurcation at b = 1.
As soon as b < 1, superconductivity is no longer present only on the surface of the sample
but also in the bulk. For b close to 1 (but smaller), it is expected that the modulus of the
minimizer is small but nonzero and vanishes at isolated points, called vortices, located on
a triangular lattice, referred to as the Abrikosov lattice. The rigorous proof of the optimal
location of the vortices is an open problem, related to the minimization of a reduced energy.
This is also called the Abrikosov problem. It is our aim in this paper to derive properties on
the minimal energy and relate it, for b close to 1, to the Abrikosov problem of minimizing
an energy on a torus.

The situation for vortices is quite different from the smaller field case hex � 1/ε2, or
b → 0 (refer to [SS1] for this regime) where vortices are local perturbations of the wave
function, while in this paper, their size ε is comparable to the interdistance between them.
In particular the term in

∫
(1− |u|2)2 is no longer negligible.

Let us first be more precise about the space of minimization. The energy JΩ admits
the gauge invariance JΩ(u, A) = JΩ(ueiΦ, A + ∇Φ) for any smooth function Φ, and the
physically relevant quantities, such as the modulus of the wave function or the current are
gauge-invariant, see e.g. [SS1]. It is possible by a gauge change to restrict the minimization
of the energy to the space

H = {(u, A) s.t. u ∈ H1(Ω), A ∈ H1(Ω)}.

The problem of minimizing JΩ for b close to 1 has already been studied [Al1, SS2]. In
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[SS2], it is proved that the energy is uniformly distributed in the sample, leading to the
definition of a function f(b):

Theorem 1 ([SS2]). Let 0 ≤ b ≤ 1. There exists a continuous increasing function f from
[0, 1] to [0, 1

4
], such that, as ε → 0, for (u, A) any minimizer of JΩ in H, for all 1 ≥ Rε � ε,

and all balls BRε of radius Rε included in Ω, we have

lim
ε→0

ε2JBRε
(u, A)

|BRε|
= lim

ε→0

ε2 minH JBRε

|BRε|
= f(b) (1.3)

where |.| denotes the two-dimensional Lebesgue measure of a set. Moreover, there exists a
positive constant α such that

α(1− b)2 ≤ 1− 4f(b) ≤ (1− b)2. (1.4)

Thus, in (1.3), the mean energy of the minimizer in each ball BRε is very close to
the minimal energy on the ball, provided that Rε is much larger than ε, that is there
should be a large number of vortices in the ball BRε . The value of this minimal energy
is independent of the ball, hence the equidistribution of the energy. The lower bound for
1−4f(b) is obtained by constructing a test-function which is periodic with respect to some
square lattice. Estimates on the convergence of the average of the L2 and L4 norms of u,
establishing that they decrease like

√
1− b as b → 1, thus showing an average decrease of

bulk-superconductivity, are also proved in [SS2].
In this paper, we want to better characterize f(b) in the limit when b tends to 1, and

relate it to a minimization problem on a torus. This relies on the study of the energy
on a reduced space, which is the first eigenspace for a magnetic operator, also called
lowest Landau level (LLL). This functional space is comprised of holomorphic functions
multiplied by a particular Gaussian. The lowest Landau level was used in [AB, ABN] to
analyze the vortex lattice in Bose-Einstein condensates. Our goal here is to show that a
similar framework applies to the Ginzburg-Landau energy. Because our problem is posed
on a torus, the space is finite dimensional, and the dimension is related to the number of
zeroes, while in the case of BEC, the LLL is of infinite dimension. The results that we
show are related to those obtained by Almog in [Al1] for rectangles. We hope to provide
here a short and simple presentation of these results and to bridge between the works of
[Al1] and [ABN].

In order to present our result, we rescale the functions u and A, around some origin in
Ω, as follows:

u → u
(

εx√
b

)
(1.5)

A → ε√
b
A
(

εx√
b

)
(1.6)

and the energy JΩ turns into GΩ
√

b/ε where, for any domain D, we denote

GD(u, A) =
1

2

∫
D
|∇Au|2 +

b

ε2
|curl A− 1|2 +

(1− |u|2)2

2b
. (1.7)
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Theorem 1 from [SS2] implies that if (u, A) is a minimizer of GΩ
√

b/ε, then for any Rε with
1/ε ≥ Rε � 1, as ε tends to 0, we have

f(b)

b
= lim

ε→0, Rε→∞

GBRε
(u, A)

|BRε|
= lim

ε→0, Rε→∞

minH GBRε

|BRε|
. (1.8)

We now want to reduce the Ginzburg-Landau energy to a periodic setting, in a sense that
we will make precise below. As pointed out in [SS2], in the relation (1.8), balls can be
replaced without loss of generality by squares, or other shapes like parallelograms. In what
follows, instead of considering balls, we will consider parallelograms, that is unit cells for
periodic problems: for R ∈ R∗

+, and τ = τ1 + iτ2 ∈ C\R, we set Kτ,R to denote the unit
parallelogram of the lattice

Lτ,R = R(Z⊕ τZ).

We will consider τ as fixed, and let R → ∞ in order to study large tori with fixed
“shape”. Our main result is going to reduce the calculation of f(b), as b tends to 1, given
by (1.8), to a minimization problem for (u, A) where u lies in a finite-dimensional subspace
of “periodic” functions and A = A0 is given by

A0 =
1

2
(−y, x) in Kτ,R. (1.9)

For that purpose, we define the energy Gτ,R(u) = GKτ,R
(u, A0), that is

Gτ,R(u) =
1

2

∫
Kτ,R

|∇A0u|2 +
(1− |u|2)2

2b
. (1.10)

Let us point out that Gτ,R(u) no longer depends on ε, except through the fact that R
needs to be less than 1/ε. The next step is to set a framework for “periodic” boundary
conditions, in the sense that the gauge-invariant quantities are periodic, namely |u| and
|∇A0u| should be periodic, but not u itself. More precisely, u and ∇A0u taken at the point
(z + nR + mRτ) for two integers n and m, have to be gauge equivalent to u and ∇A0u
[BGT]. This yields the definition of the following space for u (we will alternatively use
complex coordinates and coordinates in R2) :

Eτ,R = {u ∈ H1(Kτ,R, C), s.t. u(z + R) = e
iπNy
Rτ2 u(z), u(z + Rτ) = e

iπN
Rτ2

(τ1y−τ2x)
u(z)}

(1.11)
together with the quantization condition: |Kτ,R|/(2π) is an integer, that is there exists
N ∈ N∗, such that

R2τ2 = 2πN. (1.12)

This procedure is performed on the full Ginzburg-Landau energy in [BGT, Du, Ay] and
we refer to [NV] and the references therein for the quantification of the torus. In fact, A0

itself can be extended by periodicity (see [BGT]), but we do not enter into the details here.
One may also check that u ∈ Eτ,R implies that the total degree of zeroes of u in the torus
is equal to N , also proportional to the flux of the magnetic field.

Our main result is the following.
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Theorem 2. For every τ ∈ C \ R, let Kτ,R denote the unit parallelogram of the lattice
Lτ,R = R(Z ⊕ τZ) and GKτ,R

the Ginzburg-Landau energy (1.7) in this domain. Let f(b)
be the function defined in Theorem 1. Then, for all b ∈ (0, 1), for all τ ∈ C \ R, we have

f(b) = lim
ε→0, R→∞, R<1/ε

b
minH GKτ,R

|Kτ,R|
= lim

R→∞, |Kτ,R|/(2π)∈N
b
minEτ,R

Gτ,R

|Kτ,R|
(1.13)

where Gτ,R is defined in (1.10) and Eτ,R in (1.11). Moreover, we have the following expan-
sion for f(b) as b approaches 1:

lim
b→1

4f(b)− 1

(1− b)2
= lim

R→∞
min

v∈Lτ,R

Fτ,R(v) ∀τ ∈ C \ R (1.14)

where

Fτ,R(v) =
1

|Kτ,R|

∫
Kτ,R

|v|4 − 2|v|2 (1.15)

and Lτ,R is a finite-dimensional subspace of Eτ,R defined by functions such that DA0v :=
(∂1 + i∂2 + 1

2
(x + iy))v = 0.

In (1.13), the first equality is a consequence of the definition of f(b) and follows from
(1.8), while the second equality is a reduction to an energy which no longer depends on ε.
The information provided by (1.13) allows us to reduce the minimization to a subspace of
Eτ,R and thus obtain in (1.14), a more precise expansion of f(b) as b → 1 than the one of
(1.4). Let us emphasize that the limit on the r.h.s of (1.14) is thus independent of τ .

The space Lτ,R can be viewed as the finite dimensional analogue of the “lowest Lan-
dau level” in [ABN]. It corresponds to the eigenspace for the smallest eigenvalue of the
Schrödinger operator with magnetic field −∇2

A0
, as we will see later. The functions in

this space are explicit: they can be described using the Jacobi Theta function and are
completely determined by their N zeroes on each lattice cell, N being defined by the
quantization condition (1.12). The dimension of Lτ,R is also the integer N .

Let us give some ideas about the proof of our theorem. The first step consists in
reducing the minimization of GKτ,R

over H, to a minimization for u ∈ Eτ,R, and A = A0.
This reduction uses estimates on A for a minimizer and tricks introduced in [SS2]. This
proves (1.13). The error is unfortunately like O(R), which does not allow to carry out
estimates on how close the minimizers of these two problems are.

The second step consists in studying the minimization of Gτ,R when u ∈ Eτ,R: we will
show that if u ∈ Eτ,R, we have the crucial relation (see Corollary 3.1)

b
Gτ,R(u)

|Kτ,R|
=

1

4
+

b

2|Kτ,R|

∫
Kτ,R

|DA0u|2 +
(1− b)2

4
Fτ,R(

u√
1− b

), (1.16)

where Fτ,R is defined in (1.15) and DA0u is defined at the end of Theorem 2. When b tends
to 1, the last two terms are of different order and this forces, for an energy minimizer,
DA0u to tend to 0. This leads us to analyze in details the space of functions u such that
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DA0u = 0. It is the first eigenspace for −∇2
A0

in Eτ,R, which we called Lτ,R. Thus, we may
project orthogonally a minimizer u of Gτ,R onto this first eigenspace Lτ,R and prove that
its projection uΠ is an almost minimizer of the energy Fτ,R restricted to Lτ,R. We also get
that u− uΠ is small in the following sense:

Proposition 1.1. Let u be a minimizer of Gτ,R in Eτ,R and let v = u/
√

1− b. Let vΠ be
the L2 orthogonal projection of v onto Lτ,R and w = v − vΠ. Then for β < 1, there exists
a constant Cβ,τ such that, for R large,

‖v‖C0,β(Kτ,R) ≤ Cβ,τR (1.17)

‖w‖C0,β(Kτ,R) ≤ Cβ,τR
√

1− b. (1.18)

Moreover,
Fτ,R(vΠ) = min

Lτ,R

Fτ,R + O(|Kτ,R|
√

1− b). (1.19)

If R is large, but b is sufficiently close to 1, the last term in the estimate is a small
error. The proof of this proposition relies on estimates of Lu and Pan [LP2], also proved
in [AB], which are analogues of elliptic estimates applied to the operator −∇2

A0
.

Let us finish with a discussion on related works in the literature.
Almog [Al1] studies a similar problem, but instead of considering general tori, he works

on rectangles only (that is τ = li for some l and the domain is Kli,R), with some conditions
on their size related to the way b → 1. Here, we work on all tori shapes, we do not
have restrictions on the rate of convergence of b → 1. His proof is two-fold: on the one
hand, he proves that if u is a minimizer of GD, for an arbitrary domain D, then its L∞

norm is small in terms of b − 1. It is this estimate which allows him to truncate u on
the boundary of subrectangles to 0, so that the truncated function becomes an element of
Eli,R and the energy he considers is GKli,R

. His constraints on the size of the rectangles
provide an estimate on how close the initial minimizer is to that on Eli,R. The core of his
results is an equivalent of Proposition 1.1, that is the projections onto the lowest Landau
level, that relies on rather technical computations instead of elliptic estimates as we do.
But essentially the results are similar in nature. The price that we pay for our lack of
constraints is that we do not have an estimate on the closeness of u to the minimizer of
Fτ,R.

The minimization of Fτ,R over Lτ,R is another formulation of the Abrikosov problem:
it is expected that, as R tends to infinity, the zeroes of the minimizer are almost located
on a triangular lattice whose unit cell has volume 2π. The main difficult open question
is to prove this statement. It would be already satisfactory (but difficult) to prove that if
τ = j = e2iπ/3 (that is the large torus is already triangular), then the minimum of Fj,R on
Lj,R is such that its zeroes are exactly on a triangular lattice of volume 2π. In other words,
we expect the modulus of the solution to be periodic with respect to the small lattice Lj,r0

with r2
0

√
3 = 4π, additionally to the initial one. F. Nier [Ni] was able to prove recently that

this solution with zeroes on a triangular lattice provides a local minimum of the energy
Fj,R. The other fact which was previously known is that if the zeroes of u are already
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assumed to be on a lattice of shape τ then the one minimizing Fτ,R is the triangular one,
as proved in [NV, ABN].

The work in [ABN] deals with rotating Bose-Einstein condensates, described by the
Gross-Pitaevskii energy, when the rotational velocity Ω tends to the transverse trapping
velocity that is set to 1. This is the equivalent of the limit b → 1, with the role of the
applied magnetic field played by the rotational velocity. When Ω tends to 1, the minimizer
of the Gross-Pitaevskii energy can be restricted to the lowest Landau level, that is the first
eigenspace for −∇2

A0
in R2 (instead of a bounded domain) as done in [AB]. The proof relies

on the projection onto the LLL and elliptic estimates, as we do here for Proposition 1.1.
The difference between our energy and the one for condensates is that the latter is posed in
the whole space R2 but a trapping potential makes the problem compact: the mean value
of |u|2 on several cells of vortices, instead of being almost constant, is close, on a large
scale, to an inverted parabola. In particular, there is no invariance of the mean energy
per unit volume in the domain, but on the contrary dependence on it. Nevertheless, at
the limit b = 1 or Ω = 1, the two limiting problems, for condensates and superconductors,
given by the minimization of Fτ,R should be the same, though the proof is still open in the
case of condensates [Aft, ABN].

The paper is organized as follows: first we prove (1.13) in Section 2, then we study the
operator DA0 , its eigenspace and its spectrum in Section 3, and finally, in Section 4, we
prove Proposition 1.1 and the rest of Theorem 2.

Open problems

• The first main open problem is the one mentioned above, which consists in showing
that, as R tends infinity, the minimizer of Fτ,R in Lτ,R has zeroes that form an almost
triangular lattice, and an exact triangular lattice when the torus is already triangular,
i.e. τ = j.

• Does the fact that Fτ,R(vΠ) ∼ min Fτ,R imply that vΠ is close in some sense to the
set of minimizers of Fτ,R in Lτ,R? In what norm is there convergence? In particular
do the zeroes of vΠ converge?

• Link more precisely the minimizers of GKτ,R
to the the minimizers restricted to Eτ,R,

as done in [Al1] but with sharper estimates valid in a wider regime.

• This would probably require some better L∞ estimates on minimizers u of GΩ: do
estimates of the sort |u(x)| ≤ Cδ

√
1− b when dist (x, ∂GΩ) ≥ δ hold?

• Can anything else be said when b is fixed and does not tend to 1 and can f(b) then
be better characterized? In particular, can we estimate the number of Landau levels
filled according to the distance of b to 1?

2 Reduction to a torus

In this section b is fixed in (0, 1). We are going to prove the following:
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Proposition 2.1. Let us recall that A0 is given by (1.9), i.e. a vector field such that
div A0 ≡ 0 and curl A0 ≡ 1. The function f(b) defined in Theorem 1 has the property
(1.13).

This way, studying f(b) reduces to minimizing this simpler energy G on large tori (of
any shape). We first show intermediate lemmas. The first one recalls some useful a priori
estimates (see [FH2] Proposition 4.4):

Lemma 2.1. Let D be a bounded domain, (u, A) be a minimizer of GD, then |u| ≤ 1 and
there exists a constant C independent of ε and b such that

‖curl A− 1‖C1(D) ≤
Cε√

b
, ‖∇Au‖L∞(D) ≤

C√
b
.

Following exactly the method of [SS2], Lemma 3.1, we can show the following result:

Lemma 2.2. Let f(b) be given by Theorem 1, and (u, A) a minimizer of G
Ω
√

b
ε

. Then for

all R such that 1 � R < 1/ε, and Kτ,R ⊂ Ω
√

b
ε

,

GKτ,R
(u, A)

|Kτ,R|
=

minH GKτ,R
(u, A)

|Kτ,R|
+ o(1) =

f(b)

b
+ o(1) as ε → 0,

so that (u, A) is an “almost minimizer” of GKτ,R
. Moreover, as ε → 0,

1

|Kτ,R|

∫
Kτ,R

|u|4 −→ 1− 4f(b) (2.1)

1− 4f(b)

1− b
− o(1) ≤ 1

|Kτ,R|

∫
Kτ,R

|u|2 ≤
√

1− 4f(b) + o(1). (2.2)

This amounts to writing the result of Theorem 1, but in parallelograms instead of balls.
The results corresponding to (2.1) and (2.2) are also proved in [SS2].

In the proof of Proposition 2.1, we can thus restrict, in a first step, to a minimizer of
GKτ,R

. We next reduce to the case A = A0.

Lemma 2.3. Let (v, B) be a minimizer of GKτ,R
, then (v, B) is gauge-equivalent to some

(u, A) such that

‖A− A0‖L∞(Kτ,R) ≤ Cτ
εR√

b

where Cτ is a constant depending only on τ .

Proof. Let us solve {
∆φ = −div B in Kτ,R
∂φ
∂ν

= A0 · ν −B · ν on ∂Kτ,R.
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Then we take A = B +∇φ. This way, A satisfies div A = 0 = div A0 and (A−A0) · ν = 0
on ∂Ω. Thus we may write A− A0 = ∇⊥ξ with ξ = 0 on ∂Kτ,R. Moreover,

∆ξ = curl A− curl A0 = curl B − 1

In view of Lemma 2.1, we have ‖∆ξ‖L∞(Kτ,R) ≤ Cε√
b
. By elliptic regularity, we deduce

‖∇ξ‖L∞(Kτ,R) ≤
CτRε√

b

and the result follows.

Thus, by a gauge-transformation, we may reduce to such a (u, A) and are going to
prove that its energy is close to GKτ,R

(u, A0) = Gτ,R(u), which no longer depends on ε.

Lemma 2.4. We have

f(b) = lim
R→∞

b
minH1 Gτ,R

|Kτ,R|
. (2.3)

Proof. In view of Lemma 2.3, we have∫
Kτ,R

|∇Au|2 =

∫
Kτ,R

|∇A0u|2 + O(ε2R4/b)

If follows that

GKτ,R
(u, A) ≥ 1

2

∫
Kτ,R

|∇Au|2 +
(1− |u|2)2

2b
= GKτ,R

(u, A0) + O(ε2R4/b).

Therefore, by minimality of (u, A), minH GKτ,R
≥ minH1 GKτ,R

(., A0) + O(ε2R4/b). Also
min GKτ,R

≤ min GKτ,R
(., A0). We deduce that

min
H

GKτ,R
= min

H1
Gτ,R + O(ε2R4/b)

and that (u, A) is an almost minimizer of Gτ,R in that sense. In view of Lemma 2.2, we
deduce that

f(b) = lim
ε→0,1�R�1/ε

b
minH1 Gτ,R

|Kτ,R|
.

But since Gτ,R does not depend on ε, we may suppress the constraints on R and just replace
them with R →∞.

Proof of Proposition 2.1. Let us consider χ a cut-off function which is identically equal to
1 in Kτ,R−2, to 0 in Kτ,R\Kτ,R−1 and such that |∇χ| ≤ C. A similar proof to that of [SS2],
Lemma 3.1, allows to check that

Gτ,R(u) = GKτ,R
(u, A0) = GKτ,R

(χu,A0) + O(R) = Gτ,R(χu) + O(R).
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It follows that

minH1(Kτ,R) Gτ,R

|Kτ,R|
∼

minH1
0 (Kτ,R) Gτ,R

|Kτ,R|
as R →∞. (2.4)

But H1
0 can be viewed as a subspace of Eτ,R (conditions (1.11) are satisfied) thus

minH1
0 (Kτ,R) Gτ,R

|Kτ,R|
≥

minEτ,R
Gτ,R

|Kτ,R|
≥

minH1(Kτ,R) Gτ,R

|Kτ,R|

and from (2.4) and (2.3), it follows that Proposition 2.1 holds.

3 The operator DA0 and its first eigenspace

We now study the operator −∇2
A0

over the space Eτ,R. For the sake of completeness, we
include the proof of results which are known in other contexts. We will need the Theta
function, naturally associated with the lattice Z⊕ τZ, defined by

Θτ (v) =
1

i

+∞∑
n=−∞

(−1)neiπτ(n+1/2)2e(2n+1)πiv, v ∈ C. (3.1)

We refer the reader to [Cha] for details. The Theta function vanishes exactly on the lattice
Z⊕ τZ and satisfies

Θτ (v) = −Θτ (−v), Θτ (v + 1) = −Θτ (v), Θτ (v + τ) = −e−iπτe−2πivΘτ (v). (3.2)

Proposition 3.1. The operator −∇2
A0

is self-adjoint positive over the subspace Eτ,R. Its
lowest eigenvalue is equal to 1, and the associated eigenspace, called Lτ,R, has complex

dimension N =
|Kτ,R|

2π
and is described by the functions

u(z) = λe−|z|
2/4ez2/4−iπNz/R

N∏
k=1

Θτ (
z − zk

R
) (3.3)

where λ is any complex number, zk are N points in Kτ,R, satisfying the constraint

N∑
k=1

zk = RN
1 + τ

2
mod Lτ,R.

The second eigenvalue of −∇2
A0

is greater than 3.

Let us point out that this space is the finite dimensional equivalent of the lowest Landau
level as used e.g. in [GJ, ABN].
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Corollary 3.1. Let u ∈ Eτ,R and let DA0 = ∂1 + i∂2 + 1
2
(x + iy), then

Gτ,R(u) = GKτ,R
(u, A0) =

1

2

∫
Kτ,R

|u|2 + |DA0u|2 +
(1− |u|2)2

2b

=
1

2

∫
Kτ,R

|DA0u|2 +
|Kτ,R|

b

(
1

4
+

(1− b)2

4
Fτ,R(

u√
1− b

)

)
.(3.4)

If additionally u ∈ Lτ,R, then DA0u = 0 and

Gτ,R(u) =
1

2

∫
Kτ,R

|u|2 +
(1− |u|2)2

2b
=

|Kτ,R|
4b

+
1

4b

∫
Kτ,R

|u|4 − 2(1− b)|u|2.

=
|Kτ,R|

4b

(
1 + (1− b)2Fτ,R(

u√
1− b

)

)
. (3.5)

Proof of Proposition 3.1. We introduce the operator

DA0 = ∂1 + i∂2 +
1

2
(x + iy) = 2∂z +

z

2
(3.6)

in complex coordinates notation, where ∂z = 1
2
(∂x + i∂y). This operator corresponds to

the creation operator in second quantification and is naturally associated with −∇2
A0

as
we will see below, cf. [GJ]. In [SS2], it was introduced for a general field A following the
Bogomolnyi trick for self-duality.

The adjoint of DA0 with respect to the scalar product in L2 is D∗
A0

= −2∂z + 1
2
z.

Straightforward computations yield

DA0D∗
A0

= −4∂zz − z∂z + z∂z +
1

4
|z|2 + 1,

D∗
A0
DA0 = −4∂zz − z∂z + z∂z +

1

4
|z|2 − 1,

hence we deduce the canonical relations:

DA0D∗
A0

+D∗
A0
DA0 = −2∆ + 1

2
|z|2 − 2(iy∂y + ix∂y) = −2∇2

A0
, (3.7)

DA0D∗
A0
−D∗

A0
DA0 = 2I. (3.8)

In particular, −∇2
A0

= D∗
A0
DA0 + I. One may check that the periodicity conditions (1.11)

ensure that ∇A0u is really periodic with respect to Lτ,R. Thus the previous relation implies
(after an integration by parts which yields no boundary term)∫

Kτ,R

|∇A0u|2 =

∫
Kτ,R

|DA0u|2 + |u|2. (3.9)

Therefore, the lowest eigenvalue of −∇2
A0

in Eτ,R, characterized via the Rayleigh quotient

min
u∈Eτ,R

∫
Kτ,R

|∇A0u|2∫
Kτ,R

|u|2

11



is equal to 1 and the eigenspace Lτ,R identifies with the solutions of DA0u = 0 in Eτ,R. In
particular, returning to the form (3.6), we see that it is made up of functions u = f(z)e−|z|

2/4

with f holomorphic. We can be more specific about the structure of f as we will see below.
Let us now consider u ∈ L⊥τ,R = (KerDA0)

⊥ (where the orthogonal is taken for the L2

scalar product on Eτ,R). Clearly u belongs to the closure of the range of D∗
A0

. We may
thus assume u = D∗

A0
v. In (3.9), we replace DA0u by DA0D∗

A0
v and use (3.8) to find

〈−∇2
A0

u, u〉 = 〈(I +D∗
A0
DA0)u, u〉 = ‖u‖2 + 〈2v +D∗

A0
DA0v,DA0u〉

= ‖u‖2 + 2〈D∗
A0

v, u〉+ 〈D∗
A0
DA0v,DA0D∗

A0
v〉 = 3‖u‖2 + ‖D∗

A0
DA0v‖2.

We conclude that, for u ∈ L⊥τ,R,

〈−∇2
A0

u, u〉 ≥ 3‖u‖2,

and this proves the last assertion of the proposition.
Let us now characterize better the eigenspace Lτ,R. We have seen that it is made up of

functions u = f(z)e−|z|
2/4 with f holomorphic, satisfying the periodicity condition (1.11),

which implies in particular that |u| is periodic. Since f is holomorphic, it has a finite
number of zeroes in Kτ,R. Let us call N0 this number and call zk the zeroes. We are going
to prove that (3.3) holds. This is a consequence of Hadamard’s factorization theorem. The
proof is similar to that in [ABN]. Since f and the function

∏N0

k=1 Θτ (
z−zk

R
) have the same

zeroes, their quotient is an analytic function which does not vanish in Kτ,R. Hence one can
find an analytic function φ such that

f(z) = eφ(z)

N0∏
k=1

Θτ (
z − zk

R
).

The Lτ,R-periodicity of |u(z)| = e−
|z|2
4 |f(z)| implies the upper bound

∀z ∈ C, eRe(φ(z))− |z|
2

4

∣∣∣∣∣
N0∏
k=1

Θτ (
z − zk

R
)

∣∣∣∣∣ ≤ C1 .

Therefore, when the periodicity cell Q is chosen such that Lτ,R ∩ ∂Q = ∅, there exists a
constant C > 0 such that ∀z ∈ ∂Q+Lτ,R, Re (φ(z)) ≤ C |z|2 + ln(CC1) . Since Re (φ(z))
is a harmonic function, the maximum principle yields ∀z ∈ C, Re (φ(z)) ≤ C ′(|z|2 + 1)
for some constant C ′ > 0. The Hadamard factorization theorem, see [Boa], then implies
that φ is a harmonic polynomial of degree 2, that is there exists (δ, η, β) ∈ C3 such that

f(z) = eδ+ηz+βz2
N0∏
k=1

Θτ (
z − zk

R
).

Conditions (1.11) and the properties on Theta (3.2) imply that

eηR+βR2−R2/4e2βRz−Rx/2(−1)N0 = e
iπNy
Rτ2

(−1)N0eηRτ+R2τ2/4−R2|τ |2/4+Rτz/2−Rxτ1/2−Ryτ2−iπτN0−2iπN0z/R+2iπ
P

k zk/R = e
iπN
Rτ2

(τ1y−τ2x)

12



The first equality yields

β =
1

4
, R2τ2 = 2πN, η = −i(

πN

R
+

2kπ

R
) (3.10)

for some integer k, while it follows from the second one that

N0 = N, η = −i
πN

R
, (3.11)

and
N∑

k=1

zk = RN
1 + τ

2
mod Lτ,R. (3.12)

This yields (3.3).

Proof of Corollary 3.1. Equality (3.4) is a direct consequence of (3.9) while (3.5) follows
from the definition of Lτ,R.

4 The behavior as b → 1

The aim of this section is to prove Proposition 1.1.

4.1 Upper bound for the energy

Lemma 4.1. We have

min
Lτ,R

Fτ,R ≤
−1

2πγ(τ)

where γ(τ) denotes the Abrikosov parameter of the lattice Lτ,ν defined by ν2 = 2π/τ2 and

γ(τ) = min
Lτ,ν ,ν2τ2=2π

∫
Kτ,ν

|v|4(∫
Kτ,ν

|v|2
)2 . (4.1)

The computation of γ(τ) has been made in [ABN]: it is equal to the Abrikosov parame-
ter and related to a series for Husimi functions for which Voros-Nonenmacher [NV] studied
the minimizer in terms of τ . It follows from these two papers that minτ γ is achieved when
τ = j, that is for the triangular lattice. An approximate value for 1/γ(j) is 0.86.

Proof. One specific choice of test function is to fix a lattice with a unit cell having a
volume 2π, that is Lτ,ν = ν(Z⊕ τZ) with ν2τ2 = 2π. Then as seen in Proposition 3.1, the
corresponding first eigenspace Lτ,ν is one-dimensional and spanned by uτ , which is multiple
of Θτ ((z − (1 + τ)/2)/ν), as given by (3.3).
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Now if v is any function in Lτ,ν , we have v = λuτ and Fτ,ν(λuτ ) is minimal for λ2 =
(
∫

Kτ,ν
|uτ |2)/(

∫
Kτ,ν

|uτ |4). This implies in particular that

Fτ,ν(λuτ ) = − 1

|Kτ,ν |

(∫
Kτ,ν

|uτ |2
)2∫

Kτ,ν
|uτ |4

.

Since γ(τ) is invariant when the function v varies in Lτ,ν , we have

min
Lτ,ν

Fτ,ν =
−1

2πγ(τ)
.

Now if R2τ2/2π is an integer, (1.12) is satisfied and a specific test function in Eτ,R

can be constructed by simply extending the previous λuτ by “periodicity” i.e. taking
λuτ (z + ν(n + mτ)), for n, m integers. The periodicity of |uτ | implies that

Fτ,R(λuτ ) = Fτ,ν(λuτ ) = − 1

2πγ(τ)
, (4.2)

hence the result.

Remark 4.1. In order to try to minimize Fτ,R, we have taken test-configurations which
are periodic with respect to smaller lattices (of the same shape). However, we do not believe
that the estimate above is optimal, unless τ = j. The natural conjecture is rather that

lim inf
R→∞

min
Lτ,R

Fτ,R = − 1

2πγ(j)
.

This corresponds to showing that in large tori, the optimal location of vortices is still on a
triangular lattice, except for negligible boundary effects. Observe that the inequality

lim inf
R→∞

min
Lτ,R

Fτ,R ≤ − 1

2πγ(j)

is already not so easy to obtain.

We now easily deduce

Proposition 4.1. For any τ and any b ∈ (0, 1), we have

min
Eτ,R

Gτ,R

|Kτ,R|
≤ 1

4b

(
1 + (1− b)2min

Lτ,R

Fτ,R

)
≤ 1

4b

(
1− (1− b)2 1

2πγ(τ)

)
. (4.3)

Corollary 4.1. For any b ∈ (0, 1), we have

f(b) ≤ 1

4
+

(1− b)2

4
inf

τ∈C\R
lim inf
R→∞

min
v∈Lτ,R

Fτ,R(v) ≤ 1

4
− (1− b)2

4

1

2πγ(j)
. (4.4)
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Proof of the proposition. It suffices to build a test-configuration: let us take v0 a minimizer
of Fτ,R in Lτ,R, and take u0 = v0

√
1− b. Since u0 ∈ Lτ,R, we use (3.5) and find

Gτ,R(u0) =
|Kτ,R|

4b

(
1 + (1− b)2Fτ,R(v0)

)
=

|Kτ,R|
4b

(
1 + (1− b)2min

Lτ,R

Fτ,R

)
.

The second inequality follows from Lemma 4.1.

Proof of the corollary. In view of the characterisation of f by (1.13), we deduce

f(b) ≤ 1

4
+

(1− b)2

4
lim inf
R→∞

min
Lτ,R

Fτ,R. (4.5)

Since this is true for every τ , minimizing the right-hand side over τ and using Lemma 4.1
gives the result (since we know that γ is minimized for τ = j).

Remark 4.2. In [SS2] an upper bound for f of this sort was given by using configurations
periodic with respect to square lattices. We see here that this upper bound can be improved
by taking triangular lattices, but it is still open whether there is equality above, i.e. whether
triangular-periodic configurations are energetically optimal.

4.2 Lower bound as b → 1

Proposition 4.2. Let u be a minimizer of Gτ,R in Eτ,R. Then as R →∞,

Gτ,R(u)

|Kτ,R|
≥ 1

4b
+

(1− b)2

4b

(
min
Lτ,R

Fτ,R + O(|Kτ,R|(1− b)
1
2 )

)
. (4.6)

The proof consists in projecting the minimizer u onto the space Lτ,R and checking,
using elliptic estimates, that u and its projection uΠ are close. Finally, we prove that
Fτ,R(uΠ) is close to minLτ,R

Fτ,R. Unfortunately, we are not able to prove that uΠ is close
to a minimizer of Fτ,R (see open problems). The proof is similar to that of [AB] for the
reduction of the minimization of the Gross-Pitaevskii energy to the lowest Landau level.
In [Al1], the projection onto the lowest Landau level is also used, but with different elliptic
estimates.

Proof. - Step 1: upper bounds. From Proposition 4.1 we have

1

|Kτ,R|
Gτ,R(u) ≤ 1− (1− b)2/(2πγ(τ))

4b

for any R such that R2τ2/(2π) ∈ N. Using (3.4), writing α = 1
2πγ(τ)

, and rearranging the
terms, we find

1

|Kτ,R|

∫
Kτ,R

|DA0u|2 +
(|u|2 − (1− b))2

2b
≤ (1− α)(1− b)2

2b
. (4.7)
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We let v = u/
√

1− b and deduce that

1

|Kτ,R|

∫
Kτ,R

(1− |v|2)2 ≤ (1− α) (4.8)

1

|Kτ,R|

∫
Kτ,R

|DA0v|2 ≤
(1− α)(1− b)

2b
. (4.9)

It follows that (∫
Kτ,R

|v|4
)1/2

≤ ‖|v|2 − 1‖L2 + ‖1‖L2 ≤ 2|Kτ,R|1/2 (4.10)

and also using the Cauchy-Schwarz inequality, that∫
Kτ,R

|v|2 ≤ 2|Kτ,R|. (4.11)

- Step 2. The function v belongs to Eτ,R, we may project it orthogonally (for L2(Kτ,R))
onto Lτ,R. Let vΠ denote its projection, and let us write

v = vΠ + w (4.12)

Since w ∈ L⊥τ,R, we have from Proposition 3.1 and (3.9) that

3

∫
Kτ,R

|w|2 ≤
∫

Kτ,R

|∇A0w|2 =

∫
Kτ,R

|DA0w|2 + |w|2

and thus

2

∫
Kτ,R

|w|2 ≤
∫

Kτ,R

|DA0w|2

But since vΠ ∈ Lτ,R and w ∈ L⊥τ,R we have DA0v = DA0w and thus, in view of (4.9), we get

1

|Kτ,R|

∫
Kτ,R

|w|2 ≤ (1− α)(1− b)

4b
. (4.13)

- Step 3: We use the estimates of Lu-Pan [LP2], or rather the adaptation proved in
[AB]: for any (f, A), there exists a constant C such that

‖∇Af‖H1(Br) ≤ C(‖∆A‖∞, ‖curl A‖∞)
(
‖∇2

Af‖L2(B2r) + ‖f‖L2(B2r)

)
(4.14)

where C is independent of r.
We deduce the following estimates
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Lemma 4.2. Let u be a minimizer of Gτ,R in Eτ,R, v = u/
√

1− b, and let vΠ its orthogonal
projection onto Lτ,R and w = v − vΠ. Then for β < 1 there exists a constant Cβ,τ such
that, for R large enough,

‖v‖C0,β(Kτ,R) ≤ Cβ,τR (4.15)

‖w‖C0,β(Kτ,R) ≤ Cβ,τR
√

1− b. (4.16)

Proof. For R sufficiently large, R > 2 and Rτ2 > 2, so that for any x ∈ Kτ,R, B(x, 2) ⊂ MR,
defined by MR = Kτ,R(1 + mR + nRτ), with m, n ∈ {−1, 0, 1}. We use the fact that since
u is a minimizer of GKτ,R

(., A0), v solves the Euler-Lagrange equation

−∇2
A0

v =
v

b
(1− (1− b)|v|2) (4.17)

hence estimate (4.14) yields that for any x ∈ Kτ,R,

‖∇A0v‖H1(B(x,1)) ≤ C‖v‖L2(B(x,2)) + C(1− b)‖v|v|2‖L2(B(x,2)). (4.18)

From (4.17) it is also easily shown (using the maximum principle) that |u| ≤ 1 hence
|v| ≤ 1/

√
1− b. Moreover, since v ∈ Eτ,R, |v| is periodic, hence ‖v‖L2(MR) ≤ 9‖v‖L2(Kτ,R).

Using (4.11) we find ‖v‖L2(B(x,2)) ≤ CR. Similarly

(1− b)‖v|v|2‖L2(B(x,2)) ≤ (1− b)‖v‖L∞‖|v|2‖L2(B(x,2) ≤ C
√

1− bR

by (4.10). Inserting into (4.18), we conclude that ‖∇A0v‖H1(B1(x)) ≤ CR, where C does
not depend on x in Kτ,R. The Sobolev embedding yields (4.15).

For the estimate on w, we use (4.17) and recall that −∇2
A0

vΠ = vΠ, hence

−∇2
A0

w =
v

b
(1− (1− b)|v|2)− vΠ =

1

b
w +

1

b
vΠ(1− b)− 1

b
(1− b)v|v|2.

Using (4.14), we find as above for all x ∈ Kτ,R,

‖∇A0w‖H1(B1(x)) ≤ C(‖w‖L2(Kτ,R) + (1− b)‖vΠ‖L2(Kτ,R) +
√

1− b‖|v|2‖L2(Kτ,R)).

Estimates (4.11)-(4.10)-(4.13) yield ‖∇A0w‖H1(B1(x)) ≤ CR
√

1− b, where C does not de-
pend on x in Kτ,R. The Sobolev embedding yields (4.16).

It follows that ‖w‖L∞ ≤ C|Kτ,R|
1
2

√
1− b and ‖vΠ‖L∞ ≤ C|Kτ,R|

1
2 .

- Step 4: We estimate
∫

Kτ,R
|v|4 − 2|v|2. By definition of vΠ and w, we have

−2

∫
Kτ,R

|v|2 = −2

∫
Kτ,R

|vΠ|2 + |w|2 ≥ −2

∫
Kτ,R

|vΠ|2 − C|Kτ,R|(1− b)

where the last inequality comes from (4.13). Moreover,∫
|v|4 ≥

∫
|vΠ|4 +4(vΠ ·w)(|w|2 + |vΠ|2) ≥

∫
|vΠ|4−2

(
‖vΠ‖2

L∞ + ‖w‖2
L∞

)
‖vΠ‖L2‖w‖L2

≥
∫
|vΠ|4 − C

√
1− b|Kτ,R|2.

17



We conclude that∫
Kτ,R

|v|4 − 2|v|2 ≥
∫

Kτ,R

|vΠ|4 − 2|vΠ|2 − C|Kτ,R|2
√

1− b.

Inserting into (3.4), we find

b

|Kτ,R|
Gτ,R(u)− 1

4
≥ (1− b)2

4
Fτ,R(v) ≥ (1− b)2

4
Fτ,R(vΠ) + O(|Kτ,R|(1− b)5/2)) (4.19)

and (4.6) follows.

We deduce immediately that if b tends to 1 and R →∞ in such a way that
√

1− b|Kτ,R| →
0, then

lim sup
R→∞,

√
1−b|Kτ,R|→0

b
Gτ,R(u)

|Kτ,R|
≥ 1

4
+

(1− b)2

4
min
Lτ,R

Fτ,R

But by the characterisation (1.13), the left-hand side is equivalent as b → 1 to f(b)
hence we deduce

lim inf
b→1

4f(b)− 1

(1− b)2
≥ lim sup

R→∞
min
Lτ,R

Fτ,R.

Comparing with (4.5), we deduce that the liminf and limsup are equal and the second
assertion of Theorem 2 follows. The first assertion is also easily true.

Now if u minimizes Gτ,R, and vΠ is the projection on Lτ,R as above, comparing (4.3) to
(4.19) we deduce also that

Fτ,R(vΠ) = min
Lτ,R

Fτ,R + O(|Kτ,R|
√

1− b).

With the content of Lemma 4.2, Proposition 1.1 is proved.
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