
Homework 3 – due Friday, November 4th.

From Bindel & Goodman, Chapter 6: #’s 1 & 3 (typo: xk1  −xk3).

This problem first concerns a more sensible derivation of Broyden’s method than
that given in class. The question is where does that rank-one update come from.
Recall that we had the secant equation:

Asc  yc

and wanted to minimize the change in A relative to the Jacobian "approximation", Ac,
of the previous iteration. That is, let’s minimize ‖A − Ac‖ under the constraint of the
secant equation. To get Broyden’s method we choose the matrix norm to be the

Frobenius norm: ‖A‖F 
1
2 ∑ i1

N ∑ j1
N Ai,j2

1/2
for A ∈ NN(note: this is not a norm

induced by a vector norm). We use the method of Lagrange multipliers, and so seek to
minimize in A and  the function

FA;  ‖A − Ac‖F
2  TAsc − yc

where  1, . . . ,N is a vector of Lagrange multipliers that enforces the secant
equation.

(i) Show that the stationary (critical) points of F in the components of A and 
satisfy

  1
scTsc

Acsc − yc

A  Ac  1
scTsc

yc − AcscscT

(ii) Prove the Sherman-Morrison formula for calculating the inverse of a rank-one
change to a matrix:

A  uvT−1  A−1 − A−1uvTA−1

1  vTA−1u

This gives a method for directly updating the inverse of Ac. Comment on the structure
of the inverse.

(iii) There are now two ways to implement Broyden’s method. In the first we write:

Aksk  −fxk
xk1  xk  sk

yk  fxk1 − fxk

Ak1  Ak  1
sk
Tsk

yk − AkskskT

and in the second:



sk  −Ak
−1fxk

xk1  xk  sk

yk  fxk1 − fxk

Ak1
−1  Ak

−1 
sk − Ak

−1yk

sk
TAk

−1yk
sk
TAk

−1

Compare in terms of rough operation count (the scaling of the number floating point
ops with N) the two different ways of implementing Broyden’s method.

(iv) Consider the Lorenz equations [E. N. Lorentz, 1963, Deterministic nonperiodic
flow, J. Atmospheric Science]

ẋ  y − x
ẏ  x − y − xz

ż  −z  xy

where , ,  are parameters. This systems has 3 fixed points: x,y, z0  0,0,0 and

x,y, z    − 1 ,  − 1 , − 1 . Implement both Newton’s method and

Broyden’s method for finding these fixed points (use the exact Jacobian to start the
Broyden method). Fixing   1,   2 and   1 , demonstrate that your
implementations shows convergence to x,y, z if the initial guess is sufficiently close
(but don’t start on the solution. That’s cheating). Demonstrate the quadratic
convergence of Newton’s method, and try and extract from your results a convergence
rate for the Broyden method (i.e. try to find  such that ‖xk1 − x‖ ~ C‖xk − x‖.

(v; extra credit) Lastly, find numerically the solution branch for  ∈ 0,1 (even
though we know it analytically). Given our numerically determined solution at   1,
take advantage of the local convergence properties of Newton’s method by slightly
decreasing  (say by Δ  0.1) and restarting Newton’s method (now with   0.9)
using as initial guess the solution determined for   1. It will converge very quickly as
the two solutions are close. Now decrease  again, and use the   0.9 solution as
the initial guess, and so on, and decrease  towards zero (sounds like a for-loop). This
is called a continuation method. What happens to the convergence rate of Newton’s
method as   0 is approached? What happens to the determinant of the Jacobian?
Do the same study, starting from   2,   1, but decreasing  towards 1.


