Homework 3 - due Friday, November 4th.

From Bindel \& Goodman, Chapter 6: \#'s 1 \& 3 (typo: $x_{k+1}=-x_{k}^{3}$).

This problem first concerns a more sensible derivation of Broyden's method than that given in class. The question is where does that rank-one update come from. Recall that we had the secant equation:

$$
\mathbf{A}_{+} \mathbf{s}_{c}=\mathbf{y}_{c}
$$

and wanted to minimize the change in \mathbf{A}_{+}relative to the Jacobian "approximation", \mathbf{A}_{c}, of the previous iteration. That is, let's minimize $\left\|\mathbf{A}_{+}-\mathbf{A}_{c}\right\|$ under the constraint of the secant equation. To get Broyden's method we choose the matrix norm to be the Frobenius norm: $\|\mathbf{A}\|_{F}=\left(\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{i, j}^{2}\right)^{1 / 2}$ for $\mathbf{A} \in \mathbb{R}^{N \times N}$ (note: this is not a norm induced by a vector norm). We use the method of Lagrange multipliers, and so seek to minimize in \mathbf{A}_{+}and λ the function

$$
F\left(\mathbf{A}_{+} ; \lambda\right)=\left[\left\|\mathbf{A}_{+}-\mathbf{A}_{c}\right\|_{F}^{2}+\lambda^{T}\left(\mathbf{A}_{+} \mathbf{s}_{c}-\mathbf{y}_{c}\right)\right]
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a vector of Lagrange multipliers that enforces the secant equation.
(i) Show that the stationary (critical) points of F in the components of \mathbf{A}_{+}and λ satisfy

$$
\begin{aligned}
\lambda & =\frac{1}{\mathbf{s}_{c}^{T} \mathbf{s}_{c}}\left(\mathbf{A}_{c} \mathbf{s}_{c}-\mathbf{y}_{c}\right) \\
\mathbf{A}_{+} & =\mathbf{A}_{c}+\frac{1}{\mathbf{s}_{c}^{T} \mathbf{s}_{c}}\left(\mathbf{y}_{c}-\mathbf{A}_{c} \mathbf{s}_{c}\right) \mathbf{s}_{c}^{T}
\end{aligned}
$$

(ii) Prove the Sherman-Morrison formula for calculating the inverse of a rank-one change to a matrix:

$$
\left(\mathbf{A}+\mathbf{u} \mathbf{v}^{T}\right)^{-1}=\mathbf{A}^{-1}-\frac{\mathbf{A}^{-1} \mathbf{u}^{T} \mathbf{A}^{-1}}{1+\mathbf{v}^{T} \mathbf{A}^{-1} \mathbf{u}}
$$

This gives a method for directly updating the inverse of \mathbf{A}_{c}. Comment on the structure of the inverse.
(iii) There are now two ways to implement Broyden's method. In the first we write:

$$
\begin{aligned}
\mathbf{A}_{k} \mathbf{s}_{k} & =-\mathbf{f}\left(\mathbf{x}_{k}\right) \\
\mathbf{x}_{k+1} & =\mathbf{x}_{k}+\mathbf{s}_{k} \\
\mathbf{y}_{k} & =\mathbf{f}\left(\mathbf{x}_{k+1}\right)-\mathbf{f}\left(\mathbf{x}_{k}\right) \\
\mathbf{A}_{k+1} & =\mathbf{A}_{k}+\frac{1}{\mathbf{s}_{k}^{T} \mathbf{s}_{k}}\left(\mathbf{y}_{k}-\mathbf{A}_{k} \mathbf{s}_{k}\right) \mathbf{s}_{k}^{T}
\end{aligned}
$$

and in the second:

$$
\begin{aligned}
\mathbf{s}_{k} & =-\mathbf{A}_{k}^{-1} \mathbf{f}\left(\mathbf{x}_{k}\right) \\
\mathbf{x}_{k+1} & =\mathbf{x}_{k}+\mathbf{s}_{k} \\
\mathbf{y}_{k} & =\mathbf{f}\left(\mathbf{x}_{k+1}\right)-\mathbf{f}\left(\mathbf{x}_{k}\right) \\
\mathbf{A}_{k+1}^{-1} & =\mathbf{A}_{k}^{-1}+\frac{\left(\mathbf{s}_{k}-\mathbf{A}_{k}^{-1} \mathbf{y}_{k}\right)}{\mathbf{s}_{k}^{T} \mathbf{A}_{k}^{-1} \mathbf{y}_{k}} \mathbf{s}_{k}^{T} \mathbf{A}_{k}^{-1}
\end{aligned}
$$

Compare in terms of rough operation count (the scaling of the number floating point ops with N) the two different ways of implementing Broyden's method.
(iv) Consider the Lorenz equations [E. N. Lorentz, 1963, Deterministic nonperiodic flow, J. Atmospheric Science]

$$
\begin{aligned}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =\rho x-y-x z \\
\dot{z} & =-\beta z+x y
\end{aligned}
$$

where σ, ρ, β are parameters. This systems has 3 fixed points: $(x, y, z)_{0}=(0,0,0)$ and $(x, y, z)_{ \pm}=(\pm \sqrt{\beta(\rho-1)}, \pm \sqrt{\beta(\rho-1)}, \rho-1)$. Implement both Newton's method and Broyden's method for finding these fixed points (use the exact Jacobian to start the Broyden method). Fixing $\mu=1, \rho=2$ and $\beta=1$, demonstrate that your implementations shows convergence to $(x, y, z)_{+}$if the initial guess is sufficiently close (but don't start on the solution. That's cheating). Demonstrate the quadratic convergence of Newton's method, and try and extract from your results a convergence rate for the Broyden method (i.e. try to find γ such that $\left\|\mathbf{x}_{k+1}-\mathbf{x}_{+}\right\| \sim C\left\|\mathbf{x}_{k}-\mathbf{x}_{+}\right\|^{\gamma}$).
(\mathbf{v}; extra credit) Lastly, find numerically the solution branch for $\beta \in[0,1]$ (even though we know it analytically). Given our numerically determined solution at $\beta=1$, take advantage of the local convergence properties of Newton's method by slightly decreasing β (say by $\Delta \beta=0.1$) and restarting Newton's method (now with $\beta=0.9$) using as initial guess the solution determined for $\beta=1$. It will converge very quickly as the two solutions are close. Now decrease β again, and use the $\beta=0.9$ solution as the initial guess, and so on, and decrease β towards zero (sounds like a for-loop). This is called a continuation method. What happens to the convergence rate of Newton's method as $\beta=0$ is approached? What happens to the determinant of the Jacobian? Do the same study, starting from $\rho=2, \beta=1$, but decreasing ρ towards 1 .

