
Homework – due December 1st
(1) Consider the four functions:

(i) fx  sin50x

(ii) fx  sincosx

(iii) fx  1 − a sin2x1/2 with a  0.95

(iv) fx  x − 2n −  for x ∈ 2n, 2n  1

and n  . . . ,−3,−2,−1,0,1,2,3, . . . ,

i.e. x −  ∈ 0,2 periodically copied. Sample these functions on the uniform grid xj  jh,
with j  01N − 1 and h  2/̸N. Use the DFT representation combined with the FFT
algorithm to approximate f ′xj. For each function, plot log10 maxj ‖f ′xj − gj‖ , where gj is
your approximation, as a function of N  2m for m  4110 (you might also plot it as a
function of m). For each of these functions, discuss the rate of observed convergence,
speculate on why each example has the form that it does, and compare and contrast these
examples.

Relevant to your discussion should be that (i) is a simple trigonometric function, (ii) is an
entire function, (iii) has complex singularities near the real axis, and that (iv) is a 2-periodic
function with jump discontinuities.

(2) A very common numerical problem is to approximate convolution integrals of the form

hx  1
2 0

2
fx − y gydy ,

where f and g are 2-periodic (function of the same period can always be rescaled to this basic
period). Given the uniform partition xk  kh for k  01N − 1 with h  2/N, the
trapezoidal rule approximation is

hk  1
N ∑

m0

N−1

fk−m gm for k  01N − 1 .

(a) Prove the discrete version of the Fourier convolution theorem, which states

h̃j  f̃ j g̃j for j  − N
2
 11 N

2
.

Given the discrete Fourier convolution theorem, discuss how the DFT and FFT would be
applied to calculate hk. Discuss the relative advantages of such an approach over “direct
summation”, i.e., the straightforward evaluation of the sum. If f and g are smooth periodic
functions, discuss the accuracy of this approach.

(b) Implement both direct and an FFT based “fast” summation to evaluate hk. Using

fx  1 − acos2x1/2, gx  sinx , with a  0.95 ,

show from your computations that, for N  16, both methods give the same answer (this is
called debugging!). How accurate is the numerical solution? Demonstrate and discuss
convergence of the fast method by considering successive doublings of N.

(3) The Lorenz system is given by



ẋ  y − x
ẏ  x − y − xz

ż  −z  xy
with , ,   0. In his original paper Lorenz chose   10,   8/3, and   28, and solved
the equations numerically as an initial value problem. Let’s do the same. Solve the Lorenz
system using the RK4 method with fixed time-step, starting from the initial data
x0,y0, z0  0.1,−0.1,0.0. Demonstrate that your code is fourth-order by applying the ratio
test to your computed solution at t  1.0. Using the time-step h  0.01, run the code up to
t  100, and plot the orbit xt,yt, zt every 0.1 time-units. Rerun the code using the very
slightly perturbed initial data x0,y0, z0  0.10001,−0.10002,0.0. Replot xt,yt, zt,
and plot the difference between these two "approximate" orbits that start from slightly different
initial data. Explain and interpret your results.

Now, using the original initial data x0,y0, z0  0.1,−0.1,0.0, successively halve the
time-step from h  0.01, running up to t  100, and saving data at the same time-points (every
0.1 time-units), and examine and discuss the differences between the "approximate" numerical
solutions (for different h) over this long time. What does the ratio test tell you? Your own
discussion will be enhanced by reading Goodman’s discussion of this system.


