
Scientific Computing
A practical introduction to computational problem solving – Methods/Software
Instructor: M. Shelley, WWH1105, shelley@cims.nyu.edu, 8-3284
OHs: Wednesday, 5-7, or by appointment.
Grader: Ken Ho.
Text: Principles of Scientific Computing by Jonathan Goodman and David Bindel.

Posted on the course web-page.
Supplementary Text:
Supplementary Notes: See webpage of Aleks Donev, Spring 2011 Instructor.
This is not a programming course, but does require programming.
Some useful languages: Matlab (Courant labs, or get student editions), C, C,

Fortran, Python
Grades: homeworks approximately bi-weekly (6 or so, for 80%), plus larger final

project (20%).

Topics:
 Some basic Numerical Analysis: Interpolation & Extrapolation,
Approximating derivatives and integrals, local and global error, checking
convergence.
 Numerical Linear Algebra: Direct methods for solving linear systems of
equations. Conditioning. Matrix Eigenvalues, Matrix decomposition: SVD.
 Fourier series and the Fast Fourier Transform
 Solving nonlinear systems of equations, and optimization.
 Time-stepping ODEs (and PDEs, if time allows)
 Monte Carlo methods

Lecture 1:

First fact: Scientific computing is the art of approximate computing, understanding
sources of error, its growth and control, and accuracy.

Sources of Error:
 round-off error – finite representations of real numbers, and the results of
pair operations – ,,−, / – between them.
 truncation or approximation error.

Examples:

1. a. The formula fxh−fx
h

is an approximation for f ′x, and
improves as h  0. There are better ones.

b. ∑k1
N xk

k!
is an approximation to ex, and is especially good for x very

small.

c. b−a
N ∑k0

N−1 fa  k b−a
N  is an approximation to 

a

b
fxdx that improves

as N  . There are better approximation formulae.

 Termination of iteration errors.
 Statistical errors.

Forms of errors: In approximation A by Â,

e  Â − A  Â  A  e

is the absolute error and is dimensional (has units: meters, seconds, etc).

  e
A

 Â − A
A

 Â  1  A

is the relative error and is dimensionless, and hence more meaningful.

Side-note: − log10|| ≅ the number of digits of agreement between A and Â.

One important source of growth in relative error is cancellation.
Example: A  0.233999 and B  0.233888 are each known to 6 digits of accuracy,

and agree in the first three. C  A − B  0.000111 is known to only 3 digits of accuracy.
Lost off significant digits is a real and present danger, especially through accumulation
of such errors in many steps.

Floating Point Representation and Round-Off Error:
On modern computers, real numbers are represented approximately by finite

precision floating point numbers: Consider single precision using 32 bit strings of 0’s
and 1’s (binary).

1 10001010 01. . . 1

s e f

  2e−127  1. f2

So, 1 bit for sign, 8 bits for exponent in −127,129 where e is chosen s.t. the 1st bit of
the mantissa is always 1 (meaning of floating point), with 23 bits for the remaining
mantissa.

Let B and C be two finite precision floating point numbers.

A  B/C will generally not be an FPFP number. Rounding: Find Â closest to A.

Relative rounding error bounded by 1/2 the relative distance between two FP
numbers:

 
1. f2 − 1. f−2

1. f−2

 2−23

1. f−2

≤ 2−23

smallest value of 1. f−2 is 1.

Hence,

max  2−23 and so maximal rounding error is
1
2
max  2−24 ≅ 6  10−8. Called machine precision mach

Double precision: Nearly all computing is done in 64 bit arithmetic:
1 bit for sign
11 bits for exponent
52 bits for f.
 mach  2−53 ≅ 10−16. Often said: "16 digits of precision".

Nearly all computing is done in 64 bit double precision. Gives broader range of
exponents and more available fractions. There is demand for 128 bit and higher.

Truncation or approximation errors: The error in analytical approximations.

Dhfx 
fx  h − fx

h
is an approximation to f ′x. Taylor series with remainder:

fx  h  fx  hf ′x  1
2

h2f ′′x     

fx  h − fx
h

 f ′x  1
2 hf ′′x    

dominant absolute

approximation error

 hx 
Dhfx − f ′x

f ′x
≅ 1

2
h

f ′′x
f ′x

, assuming f ′x ≠ 0

So, approximation errors – either absolute or relative – should decrease roughly as
Const  h.

Let’s check. Consider x  1 and let h1 
sin1h−sin1

h
−cos1

cos1 (relative error). Compute

in 16 digit arithmetic.

h h

10−2 7.8  10−3

10−4 7.8  10−5

10−6 7.8  10−7

10−8 5.5  10−9

10−10 1.1  10−7

10−12 8.0  10−5

decreases

linearly with h

loss of accuracy

cancellation

At first approximation error dominates and error decreases. Then, loss of accuracy
through cancellation begins to dominate.

Quick analysis: In forming the divided difference we are using FPFP numbers:

Dhf ≅
f̂1 − f̂2

h

where f̂1,2  f1,2  e1,2
h m, where e1,2

h m are the rounding errors with e1,2
h being order one

coefficients. Then

f̂1 − f̂2

h
 Dhf  Δeh

m

h

≅ f ′  1
2

hf ′′  Δeh
m

h
Hence the error is

Eh  1
2

hf ′′  Δeh
m

h

which is plotted above. Assuming that Δe is a (roughly) a constant, then the minimum
error occurs when h~m

1/2 which is consistent with the numerical results.

Lesson: The approximation of derivatives is sensitve to loss of significance
through cancellation errors. h cannot be taken too small.

Note: Here I might write hx  Oh meaning |hx |
h

is bounded as h → 0.

Other examples again:
 ∑k1

N xk

k!
is an approximation to ex. The approximation error is given by

N1

N1!
for some  ∈ 0,x.

 h∑k0
N−1 fa  h with h  b − a/N approximates 

a

b
fxdx. Approximation

error can be expressed through the Euler-MacLaurin formulae. Quadrature
does not typicaly suffer from cancellation errors.

Iterative Methods and Termination Errors
Task: Solve ga  0 for a. Typically this cannot be solved in closed form and

instead a is sought through convergence of a sequence ak → a as k → .

Example: Newton’s method. If g is diffentiable we could try

ak1  ak − gak/g′ak

This process may or may not converge, but even if it does, it must eventually be
terminated. Good iterative methods can produce and approximation to a that are
essentially as accurate as the finite precision allows.

Stopping Criteria:

|ak − ak−1 |
|ak |

 tolerance, or

|gak−1|
|ga0|

 tolerance, etc.

which will give a relative termination error of |a−ak |
|a|

.

Statistical Errors:

Approximate A  EX, where X is a random variable, by

AN  1
N ∑

k1

N

Xk

where X1, . . . ,XN are independent samples of X.
Basic Theorem: AN → A as N →  (almost assuredly). But, errors for finite N are

large and convergence is very slow.

Conditioning and the Condition Number: Input errors can arise from many
sources, such as errors in data accuracy, finite sample size, or because of rounding
errors. The condition number K measures, in a non-dimensional way, the sensitivity of
output (the "solution") to small changes in the input.

Smallest input error is rounding error mach;

Error in output is Kmach.

Computations with K~O1 are call well-conditioned. There is little if any
amplification of input errors.

Condition numbers can easily be large, and large K arise commonly in the solution
of large systems of linear equations. Computations with K  1 are called
ill-conditioned, and algorithms should be re-designed if possible to avoid this difficulty.
Solving large least-squares problems via the Normal Equations, or solving 1st-kind
integral equations, can be ill-conditioned. If K  108 and input error is mach  10−16,

then automatic error of 10−8, or loss of 1/2 of the digits!

Simplest case: Compute Ax with input x  Δx.

ΔA  Ax  Δx − Ax

Define K by relating relative output error to relative input error as

ΔA
A

≅ K Δx
x where Δx

x ≅ mach

ΔA
A

≅ K Δx
x  A ′Δx

A
≅ K Δx

x

 K ≅ A ′xx
Ax

Most simple binary operations are well-conditioned. Rather it results from algorithms
that have many, as in solving linear equations.

