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Pattern formation in non-Newtonian Hele–Shaw flow
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We study theoretically the Saffman–Taylor instability of an air bubble expanding into a
non-Newtonian fluid in a Hele–Shaw cell, with the motivation of understanding suppression of
tip-splitting and the formation of dendritic structures observed in the flow of complex fluids, such
as polymeric liquids or liquid crystals. A standard visco-elastic flow model is simplified in the case
of flow in a thin gap, and it is found that there is a distinguished limit where shear thinning and
normal stress differences are apparent, but elastic response is negligible. This observation allows
formulation of a generalized Darcy’s law, where the pressure satisfies a nonlinear elliptic boundary
value problem. Numerical simulation shows that shear-thinning alone modifies considerably the
pattern formation and can produce fingers whose tip-splitting is suppressed, in agreement with
experimental results. These fingers grow in an oscillating fashion, shedding ‘‘side-branches’’ from
their tips, closely resembling solidification patterns. A careful analysis of the parametric
dependencies of the system provides an understanding of the conditions required to suppress
tip-splitting, and an interpretation of experimental observations, such as emerging length-scales.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1359417#
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I. INTRODUCTION

While flows of non-Newtonian fluids are of considerab
technological importance, their understanding is often
scured by their complexity. For this reason, we concent
on a rather simple situation: fluid flow in the essentially tw
dimensional setting of a Hele–Shaw cell, where the flow
described by a balance between pressure and viscous fo
and which for a Newtonian fluid is governed by Darcy’s la
Such thin-gap flows of non-Newtonian fluids are relevant
industrial processes such as injection molding1 or display
device design.2 In particular, a two-phase flow in this settin
is a scientifically important one, given the close analogy
tween the Saffman–Taylor instability of driven Newtonia
fluid with quasistatic solidification~and the Mullins–Sekerka
instability3!, and many other physical problems, such as e
trochemical deposition.4

To make contact with a large body of experimental a
theoretical work on pattern formation in such systems,
concentrate here on the interfacial dynamics of a gas bu
expanding into fluid in a radial Hele–Shaw cell. When t
fluid is Newtonian, a dense branching pattern morpholog
commonly observed~see McCloud and Maher5 and the ref-

a!Present address: Center for Applied Scientific Computing, Lawrence
ermore National Laboratory, P.O. Box 808, L-661, Livermore, Calif
nia 94551.
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erences therein! as the outcome of the nonlinear develo
ment of the Saffman–Taylor instability. Such patterns a
characterized by successive tip-splitting of the interface,
formation of branched structures, and the competition
tween them. This morphology has been observed in car
numerical simulations,6 and described in some of its aspec
theoretically.7 It is also well known that flow structures rem
niscent of solidification—dendritic fingers, side-branchin
suppressed tip-splitting—can be produced in such Newt
ian flows by imposing an anisotropy on the system, for e
ample, by scoring lines on the plates,8 or by introducing a
perturbation~bubble! in the fluid itself.9 Again, some de-
tailed understanding of these systems has been achi
through analysis and simulation~see, for example Almgren
Dai, and Hakim10!.

However, experiments performed with complex liqui
such as liquid crystals,11,12 polymer solutions and melts,13,14

clays,15 and foams,16 have shown that similar structures ca
be induced by the bulk properties of the fluid itself. That
the response of the fluid, which may itself be isotropic, c
produce an effect akin to anisotropy. One property shared
these different liquids is that they are shear-thinning~the
shear viscosity decreases with the local shear rate!, and we
will concentrate on this property.

As a motivating example, Figs. 1~a! and 1~b! show an
experiment of the pattern formation that results from push

-

1 © 2001 American Institute of Physics
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air into a dilute solution of PEO, a standard shear-thinn
polymer ~figures courtesy of R. Ennis and P. Palff
Muhoray, LCI, Kent State!. A relative lack of tip-splitting is
apparent, and one sees the appearance of isolated fin
Holding the driving pressure fixed, Figs. 1~c! and 1~d! show
the effect of decreasing the gap width by 2.5 times. T
decreases the non-Newtonian effect by lowering the W
senberg number~defined as the ratio of the material rela
ation time to a fluid flow time!, and one observes the eme
gence of tip-splitting and of a more densely branch
pattern. In either case, the similarity to dendritic structure
clear.

As an illustrative case, our analysis uses the Johns
Segalman–Oldroyd~JSO! model17 for a viscoelastic fluid,
though our results apply to more general differential mod
~Sec. II!. This model considerably simplifies in the thin-ga
limit e5b/L!1, where b is the separation between th
plates andL is some typical lateral dimension~Sec. II A!. To
the leading order ine, we find that there is a distinguishe
limit—where the natural Weissenberg number of the flow
O(1)—where shear-thinning is retained. In this limit, th
viscoelastic fluid is reduced to a generalized Newton
fluid, where elastic effects enter only through the definiti
of a Weissenberg number. Following our previous work,18,19

we obtain then a generalized Darcy’s law governing the b
fluid flow,

u52
“2p

m̄~We2u“2pu2!
, “2•u50, ~1!

whereu is the gap averaged longitudinal velocity,p is the
fluid pressure, We is a Weissenberg number, andm̄ is a
derived effective viscosity depending upon the squared p
sure gradient. This yields a nonlinear, elliptic boundary va
problem ~BVP! for the pressure in the driven fluid~Sec.
II B !. Issues related to boundary conditions for this BVP
discussed in Sec. II B 1. As it appears appropriate for

FIG. 1. Graphs~a! and~b! show the temporal development of a pattern th
results from pushing air into a dilute, shear-thinning PEO solution in
Hele–Shaw cell. Graphs~c! and~d! show the resulting pattern in a cell with
gap width 2.5 times smaller. The driving pressures are the same in e
case. Figures courtesy of Ennis and Palffy-Muhoray, LCI, Kent State.
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parametric regime which we study, in our simulations we u
the Laplace–Young condition, as is typically used for Ne
tonian Hele–Shaw flows.

In recent theoretical work, Poire´ and Ben Amar20,21have
used our prescription to study the formation of ‘‘fractures
or ‘‘cracks’’ in clays and associating polymer solutions20

Using a shear-thinning power-law fluid, they examined t
‘‘width selection’’ problem for a gas finger propagatin
steadily down a channel. They consider the displaced flui
be slightly shear-thinning~in the shear-thinning exponent!,
and show within this asymptotic limit, the selected fing
width decreases to zero~i.e., a crack! as surface tension goe
to zero. Lindner, Bonn, and Meunier22 recently studied ex-
perimentally the propagation of a finger into a shear-thinn
liquid. Also using Eq.~1! for a power-law fluid, they find
excellent agreement with their experimental data.

In Sec. III, we examine the linear stability of a circula
expanding gas bubble, where the driven fluid is governed
the generalized Darcy’s law. We consider first a weakly no
Newtonian model where, in the limit of a small Weissenbe
number, the nonlinear boundary value problem for the pr
sure is simplified to a linear one, and the linear stabil
problem can be solved exactly. This suggests that sh
thinning can modify the Saffman–Taylor instability to giv
increased length-scale selection. We expand on this fur
by solving numerically the linear stability problem for
strongly shear-thinning fluid. In Sec. IV we perform full
nonlinear, time dependent simulations of a bubble grow
into a strongly shear-thinning fluid. These simulations sh
that shear-thinning influences considerably the evolution
the interface, and in agreement with experiments with co
plex fluids, can lead to the formation of fingers which do n
split, and that grow in an oscillating fashion. They can
semble closely the dendritic structures observed in solid
cation. We also analyze the dependence of the interface m
phology on nondimensional parameters, which allows
comparison with and interpretation of available experimen
results~Sec. V!. Finally, we also explore some different vis
cosity models and discuss computed and experimentally
served length-scales. In the Appendix, we discuss the m
ematical aspects of solving for the effective viscositym̄, and
the relation to the solvability of the nonlinear BVP~1!.

II. EQUATIONS OF MOTION

First, for thin gap~Hele–Shaw! flow we show how a
‘‘typical’’ visco-elastic flow model reduces asymptotically t
the non-Newtonian Darcy’s law~1!. We then discuss bound
ary conditions at the gas/fluid interface. At the end of t
section, we formulate the flow problem as the dynamics
the gas/fluid interface, whose velocity is found by solving
nonlinear BVP over the fluid domain encompassed by
interface.

A model for the motion of an incompressible, isothe
mal, viscoelastic fluid is given by

r
Dv

Dt
5“•t, ~2!

“•v50, ~3!

a

er
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1193Phys. Fluids, Vol. 13, No. 5, May 2001 Pattern formation in non-Newtonian Hele–Shaw flow
together with a constitutive relation for the stress tensot.
Herev5(u,v,w) is the velocity field,D/Dt5] t1v•“ is the
material derivative, andr is the ~constant! density. The ve-
locity gradient is (“v) i j 5] jv i , andD5(“v1“vT)/2 is the
rate-of-strain tensor.

When studying a particular flow problem, it is importa
to pick a constitutive relation that reproduces the experim
tal observations for the relevant rheometric flows. In the c
of Hele–Shaw flow, we show how to derive the generaliz
Darcy’s law~1! for a broad class of differential models. W
illustrate this within the context of the Johnson–Segalma
Oldroyd ~JSO! model17,23 with a single relaxation time. This
is perhaps the simplest viscoelastic model that captures
mal stress differences and shear-thinning of the viscos
The JSO equations are

t52pI12msD1s, ~4!

s1l
Das

Dt
52mpD, ~5!

wherep is the pressure,s is the extra stress tensor,l is the
relaxation time, andms andmp are the solvent and polyme
viscosities.

The Gordon–Schowalter~GS! convected derivative,24

Das

Dt
5

Ds

Dt
2$“v s1s“vT%1~12a!$Ds1sD%,

~6!

in JSO models the nonaffine motion of polymer chains. Th
are not locked into a rubber network, which deforms with t
flow, but rather the chains are allowed to slip past the c
tinuum. Fora51 the motion is affine, and JSO reduces
the Oldroyd-B model, which forms50 is the same as th
upper-convected Maxwell model. Decreasinga increases the
slippage, and softens the response of the material by incr
ing shear-thinning in shear flows, and reducing strain ha
ening in extensional flows.@The slip-parametera should be
restricted to 0.2,a,0.89 for consistency with experiments25

using dilute solutions of a variety of commercial polyme
The ratio of the second normal stress difference to the fi
equal to 2(12a)/2 for JSO, was found to lie betwee
20.40 and20.055, and to be independent of the shear-ra#
The GS-derivative reduces to the corotational derivative
a50, and to the lower-convected derivative fora521.

A. A Hele–Shaw scaling of JSO

In this section, we use the small aspect ratio«5b/L of
the gap widthb to the lateral length-scaleL to derive the
generalized Darcy’s law~1!. This is done by choosing th
pressurep}«21, which makes shear-thinning a domina
effect and leaves the elastic response a higher order co
tion.

1. One-dimensional steady shear flow

We expect a non-Newtonian Hele–Shaw flow to beha
locally like a one-dimensional steady shear-flow in the dir
tion of the pressure gradient. To understand the scaling o
full equations ~2!–~4!, we consider a steady, one
dimensional shear flowv(z)5„u(z),0,0…. Partial derivatives
Downloaded 28 May 2001 to 128.122.81.196. Redistribution subject to 
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are denoted by a subscript and the components of a tenso
a superscript, e.g., thexx-component ofs is sxx.

The extra stress tensors can be solved explicitly from
~5! without approximation.26 The extra stress components a
given by

sxz5
mp

11~12a2!l2uz
2 uz , sxx5~11a!luzs

xz, ~7!

syy50, szz52~12a!luzs
xz. ~8!

The steady momentum equations~2! are then

px5
]

]z
„m~uz

2!uz…, ~9!

py50, ~10!

pz52
]

]z
„~12a!lm~uz!uz

2
…, ~11!

where the shear-rate dependent viscositym is defined by

m~uz
2!5m0

11a~12a2!l2uz
2

11~12a2!l2uz
2 , ~12!

andm05ms1mp is the total, or zero shear-rate, viscosity.
The ‘‘shear-thinning parameter’’a5ms /m0 determines

the behavior of the viscosity function:a51 yields a New-
tonian fluid with a constant viscosity, anda,1 yields a
viscosity that increases with decreasing shear-rate, i.e.,
viscosity is shear-thinning. The constrainta.1/9 is neces-
sary for the stress–strain relation to be invertible~see Sec.
II B !.

We now nondimensionalize Eq.~9!, and study the effect
of different scalings of the pressure. For a given fluid, t
experimentally adjustable quantities are the driving~gauge!
pressuredP and the plate separationb. The lateral length
scaleL is given by some typical dimension in the horizont
direction, such as the size of the cell or an initial bubble si
which is large in comparison tob, so that«5b/L!1 ~Fig.
2!. The characteristic lateral velocityU will also depend on
the driving pressure. We scalez;b, x;L, p;dP and u
;U, and write Eq.~9! nondimensionally as

dP

L

]p

]x
5

m0U

b2

]

]z S 11a ~12a2!We82 uz
2

11~12a2!We82 uz
2 uzD . ~13!

Here We85lU/b is a Weissenberg number.26

FIG. 2. Hele–Shaw cell.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1194 Phys. Fluids, Vol. 13, No. 5, May 2001 Fast et al.
We now choose the pressure scaling. Balancing pres
and viscous forces givesU5«2 dPL/m0 . If dP is indepen-
dent of«, then We8}«, and ~13! reduces to the Newtonia
case with viscositym05ms1mp . If dP}«22, then We8
}«21, the shear-viscosity will be constant, and elastic
fects would become important in an unsteady flow.

The choice that makes shear-thinning apparent isdP
}«21. Then U}«, We8}1, and ~13! retains its shear-
thinning character in the leading order as«→0. This is a
distinguished limit, as a specific scaling of the independ
and dependent variables is required to retain some des
quality, in our case the shear-rate dependency of the vis
ity.

2. Nondimensional form of JSO for Hele –Shaw flow

In this section, the full equations of motion~2!–~5! are
nondimensionalized. The one-dimensional shear flow s
tion suggests the following scaling~the nondimensiona
quantities are primed!:

t5
m0

« P0
t8, x5Lx8, u5«

P0 L

m0
u8, ~14!

p5
12P0

«
p8, y5Ly8, v5«

P0 L

m0
v8, ~15!

s5P0s8, z5«Lz8, w5«2
P0 L

m0
w8. ~16!

Here, the pressurep, cross-gap directionz and lateral direc-
tions x, y are scaled as in the previous subsection, as is
characteristic velocityU5« P0 L/m0 . Time is scaled asL/U
and the cross-gap velocityw is scaled as«U. The typical
size of viscous and viscoelastic stresses ism0U/b5P0 . The
velocity gradient and the rate-of-strain tensor are then

“v5
P0

m0
“v8, where “v85S «ux «uy uz

«vx «vy vz

«2wx «2wy «wz

D ,

and

D5
P0

m0
D8,

where D85
1

2 S 2«ux «~uy1vx! uz1«2wx

«~uy1vx! 2«vy vz1«2wy

uz1«2wx vz1«2wy 2«wz

D .

To separate the orders of«, we write these tensors withou
approximation as

“v85L01«L11«2L2 , D85D01«D11«2D2 .

There are two nondimensional parameters associ
with the scaling given by Eqs.~14!–~16!,

Re5«2
rUL

m0
5«3

rP0L2

m0
2 , Reynolds number; ~17!

We85
lU

«L
5

lP0

m0
, Weissenberg number. ~18!
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A natural Deborah number would be defined as De5lU/L
5« We8. We will find it convenient to use the modifie
Weissenberg number,

We5~12a2!1/212We85~12a2!1/2
12lP0

m0
. ~19!

Introduce the lateral velocityu5(u,v), lateral gradient
“25(]x ,]y) and lateral LaplacianD25]xx1]yy . Then,
dropping the primes, the nondimensional momentum con
vation equations~2! are

Re
Du

Dt
5212“2p1a~uzz1«2D2u!1Fsz

xz

sz
yzG

1«Fsx
xx1sy

xy

sx
xy1sy

yyG , ~20!

«2 Re
Dw

Dt
5212pz1« sz

zz

1«2
„sx

xz1sy
yz1a~wzz1«2D2w!…, ~21!

the incompressibility condition~3! is

“2•u1wz50, ~22!

and the constitutive relation~5! with the convected deriva
tive ~6! is

s2We8~L0 s1s L 0
T2~12a!~D0s1sD0!!

52~12a!D02« H We8S Ds

Dt
2L1 s2s L 1

T1~12a!

3~D1s1sD1! D22~12a!D1J 1«2 $We8„L2 s

1s L 2
T2~12a!~D2s1sD2!…12~12a!D2%. ~23!

3. Leading order equations

Assume the horizontal velocityu, the pressurep and the
extra stress tensors have asymptotic expansions of the for

u~x,t !5u(0)1O~«!,

p~x,t !5p(0)1O~«!, ~24!

s~x,t !5s(0)1O~«!,

and substitute these expansions into Eqs.~20!–~23!.
The leading orderO(1) contribution to the momentum

equations~20! and incompressibility condition~22! are~after
dropping the superscripted 0 from the notation! a set of re-
duced Stokes equations:

12“2p5auzz1Fsz
xz

sz
yzG , ~25!

pz50, ~26!

“2•u1wz50. ~27!
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The constitutive relations~23! yield the set of linear equa
tions for the stresses:

sxx2We8 ~11a!sxzuz

5szz1We8 ~12a!~sxzuz1syzvz!50, ~28!

syy2We8 ~11a!syzvz

5sxy2We8
11a

2
~sxzvz1syzuz!50, ~29!

sxz2We8 szzuz1We8
12a

2
„~sxx1szz!uz1sxyvz…

5~12a!uz , ~30!

syz2We8 szzvz1We8
12a

2
„~syy1szz!vz1sxyuz…

5~12a!vz . ~31!

Equations~28!–~31! can be solved by first findingsxx,
syy, szz andsxy in terms of the shear stressessxz andsyz,
and then substituting these into Eqs.~30! and ~31!. After a
moderate amount of algebra, the shear-stressessxz andsyz

are found to satisfy the equations

AFsxz

syzG5~12a!Fuz

vz
G , ~32!

where

A5S 114Cuz
21Cvz

2 3Cuz vz

3Cuz vz 114Cvz
21Cuz

2D , ~33!

andC5(12a2) We82/4. Note thatC.0 as long as the as
sumptionuau,1 holds. The matrixA is nonsingular, with a
positive determinant,

detA5~11C uuzu2!~114C uuzu2!.

The shear stresses, along with the rest of the componen
the extra stress tensor, can now be solved from~32! and
~28!–~29!. They are given by

sxz5
12a

d
uz , syz5

12a

d
vz , ~34!

sxx5a
We8~11a!

d
uz

2 , syy5a
We8~11a!

d
vz

2, ~35!

szz52a
We8~12a!

d
uuzu2, sxy5a

We8~11a!

d
uzvz ,

~36!

whered511(12a2)We82uuzu2. Notable is the presence o
normal stress differences. This is in contrast to the He
Shaw flow of a Newtonian, or a generalized Newtonian flu
in which case the normal stress differences are zero. H
ever, these normal stress differences only enter atO(e), and
are not present in the leading order reduced Stokes’ e
tions ~25!–~26!.

Substituting the shear stresses into Eqs.~25!–~26! yields
Downloaded 28 May 2001 to 128.122.81.196. Redistribution subject to 
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12“2p5
]

]z
~ma„~We/12!2uuzu2

…uz!, ~37!

pz50, ~38!

“2•u1wz50, ~39!

as the leading order equations of motion for a JSO fluid i
Hele–Shaw cell. The nondimensional shear viscosity, w
both the polymer and the solvent contribution, is

ma„~We/12!2uuzu2
…5

11a~We/12!2 uuzu2

11~We/12!2 uuzu2 , ~40!

where a5ms /m0 , and the modified Weissenberg numbe
We, is given by~19!. This agrees with the one-dimension
steady shear flow result.

B. Generalized Darcy’s law

The reduced Stokes equations~37!–~39! can be used to
derive a generalized Darcy’s law, as in Kondic, Palff
Muhoray and Shelley.18 The discussion applies to a gener
shear-rate dependent viscosity function, but we specialize
results to the case of JSO.

Integration of the reduced Stokes equation~37! yields

12z“2p5ma„~We/12!2 uuzu2
…uz , ~41!

where we seek flows symmetric aboutz50, and use the
independence ofp from z. We would like to expressuz as a
function of“2p, as in the usual Darcy’s law. Squaring~41!
gives an implicit equation foruuzu2 in terms ofz2u“2pu2. The
invertibility of this equation, or lack thereof, is a central i
sue. A sufficient condition for finding a well-behaved inver
of ~41! is that

0,C0<ma~s2!12s2ma8 ~s2!<C1,` ~42!

holds for some constantsC0 , C1 , and all valuess ~see Ap-
pendix A!. In this case the inverse viscosity is define
through

ma~s2!s5z whenever s5z/m̃a~z2!. ~43!

In the case of JSO,ma(s2)5(11as2)/(11s2) with 0<a
<1 a constant, som satisfies inequality~42! only for a
.1/9. Assuming that inequality~42! holds, Eq.~41! can be
inverted uniquely to give

uz5
12z“2p

m̃a~We2 z2u“2pu2!
,

or

u5E
21/2

z

dz8
12z8“2p

m̃a~We2 z82u“2pu2!
. ~44!

ū(x,y)5*21/2
1/2 dzu(x,y,z) is the gap-averaged velocity. Ga

averaging~44! and the divergence-free condition yields

ū5
21

m̄a~We2 u“2pu2!
“2p, and “2•ū50, ~45!

where the viscosity functionm̄ is given by
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1

m̄a~We2 u“pu2!
512E

21/2

1/2

dz
z2

m̃a~We2 z2u“pu2!
. ~46!

Equations~45!–~46! are a generalized Darcy’s law for a no
Newtonian fluid, with the viscosity expressed as a funct
of u“pu2. The subscript on“ andm, and the bar onu will be
omitted hereafter.

Figure 3 showsm̄a(We2 u“pu2) for various values ofa,
with the Weissenberg number simply rescaling the absci
We summarize the relations between the four different ‘‘v
cosities:’’ m is the shear viscosity given by~40!, m̃ is the
inverse ofm, m̄ is the gap-average~46! of m̃, and later we
will need m̂, which is the inverse of the gap-averaged v
cosity. For a Newtonian fluid, these would all be equal to
constantm0 in dimensional terms, and simply 1 nondime
sionally. The ‘‘inverse’’ is always to be taken in the sen
discussed above. The viscositym̄a(We2u“pu2) inherits the
invertibility and monotonicity ofma(We2uuzu2). In Appen-
dix A we give a detailed discussion of the properties of
viscosity functions, and anexplicit expression form̄ in the
case of JSO.

Remarks. ~1! The analysis of this section generalizes im
mediately to JSO models with multiple relaxation time
Consider a model where the extra stresss is the sum ofN
modessk , each satisfying a constitutive relation of the for
of Eq. ~5!. That is, the equations of motion are~2!, conser-
vation of mass“•v50 and the constitutive relation

sk1lk

Dask

Dt
52hkD ~k51,...,N!, s5 (

k51

N

sk .

~47!

Herelk andhk are the relaxation time and viscosity of th
k-th mode, respectively.

FIG. 3. The effective viscositym̄ for some typical values ofa with We
51 ~changes in We rescale the abscissa!.
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The analysis of Sec. II A can now be applied to Eq.~47!
for each mode separately. The reduced Stokes equation
this case are~37!–~39! with the viscosity functionma5m
given by

m„~We/12!2 uuzu2…5a01 (
k51

N
ak

11bk
2~We/12!2uuzu2 ,

~48!

where a05ms /m0 , ak5hk /m0 , bk5lk /l1 , and m05ms

1(hk . The modified Weissenberg number should be
fined as in Eq.~19! using the longest relaxation timel1 . The
generalized Darcy’s law~45! holds now with the effective
viscosity m̄ defined using the inverse viscosity of Eq.~48!.

~2! More general constitutive models can be treated. J
is a special case of the Oldroyd 8 constant model,26

t52pI1s,

s1l1

D1s

Dt
1l3~Ds1sD!1l5tr~s!D1l6~s:D!I

52m0S D1l2

D1D
Dt

12l4DD1l7~D:D!ID ,

which is the most general differential model linear in t
extra stress tensor. HereA:B5tr(AB T), and the upper con-
vected derivativeD1 /Dt is given by Eq. ~6! with a51.
There are certain restrictions on the constantsm0 , l1 ...l7

for the model to be physically reasonable.26

Applying the scaling~14!–~16! to the Oldroyd 8 con-
stant model yields as the leading order the reduced Sto
equations~37!–~39!, but with a different viscosity. Here, the
shear-rate dependent viscosityma5m is given by

m„~We/12!2uuzu2…5
11b2~We/12!2 uuzu2

11b1~We/12!2 uuzu2
, ~49!

where

b15a31a51a3~12a32a5!1a6~12a32 3
2 a5!,

b25a2~a31a5!1a4~12a32a5!1a7~12a32 3
2 a5!,

and a j5l j /l1 for j 52,...,7. The modified Weissenber
number should be defined as in Eq.~19! usingl1 instead of
l. Note that no generality is gained by using the Oldroyd
constant model instead of JSO in the present context;
though the Oldroyd 8 constant model yields more gene
expressions for the extra stresses, the resulting redu
Stokes equations are the same as with JSO, with the sh
rate dependent viscosity of the same form.

~3! The model used by Bonnet al.,27,28 similar to Eq.
~45! but with the viscosity depending onuuu, now follows by
using the viscositym̂ instead of the viscositym̄a(We2u“pu2)
in Eq. ~45!, thereby expressing“p explicitly in terms ofu.
In this case, the functional form is such that this inversi
can always be accomplished. We consider Eq.~45! to be the
ÿ.more natural form of the flow equations; it leads to
boundary value problem for pressure, as in the Newton
case.

~4! Darcy’s law could be formulated in the same mann
with a ‘‘power-law’’ viscosity m(uuzu2)5(uuzu2)a. The pa-
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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rameteruau,1/2 is negative for a shear-thinning fluid. Da
cy’s law is still given by Eq.~45!, with the effective viscosity
m̄ now given by

m̄a~ u“pu2!5
314a

3~112a! S 1

4
u“pu2D a/~112a!

. ~50!

This model was used by Poire´ and Ben Amar,20,21who stud-
ied the Saffman–Taylor instability of a weakly shea
thinning power-law fluid (a!1) in a channel geometry
Lindner, Bonn and Meunier22 have also used this expressio
to describe their experimental results.

Boundary conditions on the pressure.Applying the
divergence-free condition to the generalized Darcy’s l
yields

“•S 1

m̄a~We2 u“pu2!
“pD50, ~51!

which is a nonlinear BVP for the pressure. As a bound
condition we will use in this work the Laplace–Young co
dition:

@p#5Ca21 k, ~52!

for the pressure jump@p#, wherek is the interfacial curva-
ture, Ca512«22m0U/g is a ~modified! capillary number,
and g is a surface tension parameter. This boundary con
tion is typically used, and has been justified,29,30for Newton-
ian Hele–Shaw flows. For the parametric regime which
study—moderate Weissenberg and capillary numbers—
current state of theoretical and experimental evidence s
gests that this boundary condition remains appropriate. F
ther, as our simulations do capture important qualitative f
tures observed in experiment, our results might
interpreted as ana posteriori justification for this assump
tion. Nonetheless, as the question of boundary condition
non-Newtonian flows is a complicated one, we give a br
review of what seem to be the relevant issues.

The derivation of the bulk fluid equation~1! assumes a
separation of length-scales into a large lateral length scaL
and a small gap-thicknessb so that «5b/L!1. No such
separation of length-scales is available near the menis
where in fact the flow is fully three dimensional~see Smith,
Wu, Libchaber, Moses and Witten,31 and Tabeling, Zocchi
and Libchaber32!, and at which the fluid satisfies a stre
jump condition. An analysis of the flow near the meniscus
therefore required to derive a consistent approximation to
boundary conditions on the gap-averaged pressure.

It is known that an air bubble displacing a fluid in
Hele–Shaw cell leaves behind a thin residual film. The thi
ness of this film varies with bubble velocity and so gives r
to variations in the pressure jump across the meniscus.
analogous problem is that of a long air bubble displacin
fluid in a capillary tube,33,29,34,30which for the Newtonian
case was analyzed by Bretherton33 by expanding in a very
small capillary number Ca˜5mU/g!1. This analysis was
generalized to Newtonian Hele–Shaw flow by Park a
Homsy,29 again for small Ca˜, who showed that the Laplace
Young condition gave the leading order contribution. Rein
and Saffman30,34 removed the small Ca˜ restriction through
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direct numerical solution of the flow, and determined t
correct pressure boundary conditions up to Ca˜5O(1).
Reinelt35 studied viscous fingering in a channel Hele–Sh
cell geometry, and extended the work of McLean a
Saffman36 by using the improved boundary conditions: h
analysis recovered the experimentally observed fin
widths. ~These improved boundary conditions have not be
applied in numerical simulations of radial Hele–Shaw flo
and, in fact, are not generally used.! In this work, we con-
centrate on the case Ca˜!1, and do not consider these co
rections.

In the case of a non-Newtonian fluid in a Hele–Sha
cell, only partial theoretical results are available. Ro a
Homsy37 generalized the analysis of Park and Homsy,29 and
found corrections to the pressure boundary condition for
Oldroyd-B fluid model.26 However, they do not conside
terms depending on the lateral curvature, and only acco
for changes in the thickness of the residual film.

We remark that Wilson38 has usedad hocboundary con-
ditions in an attempt to account for normal-stress effects
his study of the non-Newtonian Saffman-Taylor instabilit
He derived a normal-stress jump condition at the interface
assuming the stress distribution in the bulk fluid can be
tended up to the interface; however Ro and Homsy,37 work-
ing in the limit Cã5m0U/g!1, show that this assumption i
incorrect.

Several experimental studies have identified norm
stress differences as being important in some instance
non-Newtonian Hele–Shaw flow~see Smith, Wu, Lib-
schaber, Moses and Witten,31 Gauri and Koelling39 and
Huzyak and Koelling40!. However, this is highly dependen
on the parametric regime considered. Indeed, the aforem
tioned experiments reveal that the Newtonian and n
Newtonian case yield an almost identical response if the c
illary number and Weissenberg number are moderate, a
the present paper.

Gauri and Koelling39 study the flow dynamics at the tip
of the meniscus of a long air bubble that displaces a v
coelastic fluid with a constant shear-viscosity. Their expe
ments are characterized in terms of a capillary number˜
and a Deborah number De,

De5
l U

b
5We85

We

12A12a2
'

1

4
We,

whereU/b is the wall shear-rate in Hele–Shaw flow, and t
last approximative equality applies foruau'0.9. They find
two distinct flow patterns at the tip of the meniscus,
sketched already by Taylor:41 a complete bypass flow, and
recirculation flow. When De>1 the flow completely by-
passes the tip of the bubble, creating a strong extensi
flow field. The response of the non-Newtonian fluid chang
dramatically at De'1. This transition could be perhaps a
tributed to a ‘‘coil–stretch’’ transition~De Gennes42!, which
occurs due to the sudden uncoiling of polymer strands in
strong extensional flow near the tip of the meniscus for
>1.

However, such behavior is an example of the respons
a particular parametric regime. FormoderateDe,1 and
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Ca,103, Gauri and Koelling39 show that there is no stron
extensional flow near the tip. Further, for De,0.35, the flow
field near the meniscus tip for non-Newtonian fluids w
similar to that for Newtonian fluids, and the thicknesses
their residual films were nearly identical. In our numeric
studies~Sec. V! we concentrate on flows where Ca,103,
and the modified Weissenberg number is moderate,
,0.5 (De,0.125). This parametric regime should be belo
the transition to bypass flow and a possible ‘‘coil–stretc
response.

In a channel Hele–Shaw cell, Smithet al.31 studied the
properties of Saffman–Taylor fingers in very dilute solutio
of polystyrene dissolved in a Newtonian solvent. They fou
a transition to narrow fingers when the modified capilla
number Ca;103, and the shear rateU/b was comparable to
the inverse of the polymeric relaxation timel ~estimated
using Zimm theory!. Their analysis31 yields again the critical
Deborah number De'1, at which the abrupt change in re
sponse is attributed to a ‘‘coil–stretch transition.’’ An
again, for the capillary numbers considered herein, Sm
et al.31 found an essentially Newtonian response.

Although it is reasonable to assume that in this param
ric regime normal-stress effects are negligible near the tip
the meniscus, it is possible that viscoelastic effects in the
film region become important.37 However, for moderate
Weissenberg numbers (We8,1), Gauri and Koelling39 and
Huzyak and Koelling40 show that in a purely elastic poly
meric ~Boger! fluid the residual film thickness scales almo
identically in Cãfor Newtonian and non-Newtonian fluids
the Ro and Homsy analysis37 suggests in this case that th
non-Newtonian effects at the meniscus are negligible,
Newtonian boundary conditions are applicable. Hence
seems reasonable to neglect elastic effects at the interfa
the parametric regime in which we are interested.

The effect of shear-thinning near the meniscus has b
less researched: in light of theoretical studies~Ro and
Homsy37 and Fast43! it is possible that shear-thinning give
rise to corrections to the Laplace–Young condition. A mo
detailed analysis is clearly warranted: It is likely that a f
numerical simulation, as performed by Reinelt a
Saffman30 for Newtonian fluids, is required to settle th
question of shear-thinning and viscoelastic non-Newton
contributions to the pressure boundary conditions.

C. Dynamics of an expanding bubble

We now consider the evolution of a gas bubble expa
ing under an applied pressure into a non-Newtonian fluid
a radial Hele–Shaw cell. The fluid domain is taken to be
annular regionV bounded by an inner boundaryG i and an
external boundaryGe . Let the inner and outer boundary b
given by the curvexi ,e(b,t), respectively, where we assum
b to be the Lagrangian parametrization of the curve.

We will study initial data, for an expanding interfac
which is a small perturbation from a circle. Accordingly,
defining the nondimensional parameters, Ca and We, we
as characteristic length and velocity scales the initial bub

radiusR0 and initial velocityṘ0.
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The full evolution problem forV is the nonlinear BVP
for the pressure,

“•S 1

m̄a~We2 u“pu2!
“pD50,

~53!
puG i

512Ca21k i , puGe
5Ca21 ke ,

and the kinematic condition,

]xi ,e

]t
~b,t !5u„xi ,e~b,t !,t…, ~54!

which states that the boundaries are material curves.
Remarks:~1! Nonlinear BVPs similar to Eq.~53! arise as

the steady states of nonlinear conservation laws in m
other physical contexts, such as gas dynamics44 and
magnetostatics.45 The solvability of Eq.~53! is established in
Appendix A3 using classical results; inequality~42! is also a
sufficient condition for Eq.~53! to have a unique solution.

~2! Consider a finite patch of fluid, denoted byV with
boundaryG, surrounded by gas at uniform pressure~set to
zero!. Then the length of the boundary curve decreases w
time, so the dynamics is curve shortening. To show this,
nonlinear BVP~53! with the Laplace–Young boundary con
dition must be augmented with the kinematic condition~54!
where the boundary curvex is parametrized with the La
grangian parameterb. The velocity is obtained from the
pressure through Darcy’s law~1!. This free-boundary prob-
lem describes the relaxation of the bubble under capill
forces. A direct calculation shows that the lengthL of the
boundary curve decreases in time since

dL
dt

52CaE
V

u“pu2

m̄~We2u“pu2!
dA,0.

~3! The Weissenberg number could be removed from
problem by rescaling Eqs.~53!, ~54! and ~46! asL→WeL,
t→We2 t, and Ca→Ca/We. However, we retain a We de
pendence in what follows to keep a fixed physical leng
scale for our initial data.

III. LINEAR STABILITY ANALYSIS

We study the linear stability of a circular bubble of r
dius R(t), which is perturbed by a small azimuthal distu
bance, and expands into a non-Newtonian fluid in an
bounded Hele–Shaw cell. For simplicity, we impose in th
section a constant mass flux as the driving force, so that
areaS(t) of the bubble satisfiesSt/2p5RRt51. The nondi-
mensionalization is chosen so thatR(0)51, Rt(0)51.

The bubble is centered at the origin and the positionR of
the interfaceG is given by

R~u,t !5R~ t !@11eh~u,t !# r̂ , ~55!

where e!1, andh is the perturbation. Assuming a pure
radial flow far from the expanding bubble, the far-fie
boundary condition simplifies to

p~r !;2 ln r , as r→`,

similarly to the Newtonian case.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Since h(u,t) can be written as a Fourier series in t
azimuthal angleu, and the linearized equations are separa
we consider without loss of generality a perturbation of
form h(u,t)5N(t)cosmu, wherem is a wave number, and
N(t) is the amplitude of the perturbation. We derive an e
pression for the growth ratesm5Nt /N for a weakly non-
Newtonian fluid, as well as for a general shear-thinning flu

A. Weakly non-Newtonian limit

We start by considering the weakly non-Newtonian lim
We2!1, where we can obtain an explicit expression for t
growth rate. This limit can be attained experimentally
choosing a fluid with a short relaxation timel, or by choos-
ing P0 to be small, as is suggested by~19!.

Expanding the viscosity function~40! for JSO in We2

!1 yields

ma~We2uuzu2!512We2 ~12a!uuzu21O~We4!.

All dependency on the specific viscosity function is co
tained in the parametera. By introducing in Eq.~41! a small
We expansion forp5p01We2p1 andu5u01We2 u1 , inte-
grating and gap-averaging as in Sec. II B, we obtain the
term hierarchy,

u052“p0 , “•u050, ~56!

u152“p12
3~12a!

20
u“p0u2

“p0 , “•u150, ~57!

with the boundary conditions

p0uG52Ca21k, p1uG50, ~58!

p0→2 ln r , p1→C, as r→`. ~59!

The constantC is determined as a part of the solution.
By solving the perturbation pressurep1 from Eqs.~56!–

~59! and using the kinematic boundary condition, we find t
instantaneous growth rate

sm5211mS 11B m21

m11D
1Ca21 m~12m2!S 11B 2m

m11D . ~60!

In this weakly non-Newtonian limit, the non-Newtonia
character of the fluid is contained in the single small posit
parameterB5(3/20)(12a)We2.

In the absence of surface tension (Ca2150), the
growth-ratesm is always positive and grows essentially li
early with the wave numberm, making the system ill-posed
Introducing surface tension (Ca21.0) stabilizes the large
wave numbers, and yields a band of unstable modes at in
mediate wave numbers. This is similar to the case of a N
tonian fluid.

The shear-thinning of the fluid has several effects on
growth rate. The wave number of maximum growth for
Newtonian fluid is given by46

mmax
Newt5A11Ca

3
. ~61!
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From Eq. ~60!, one can obtain an explicit solution for th
wave numbermmax with a maximal growth rate in the
weakly non-Newtonian case. This expression is rather co
plex, but in the limit Ca21!1 it simplifies to

mmax'mmax
NewtS 12

B
2 D . ~62!

The maximal growth rate is increased by shear-thinning
Ca.17. Typical experimental values of the capillary numb
are much larger than this.12 Similarly, the critical wave num-
ber mc , the maximum wave number for which the grow
rate is still positive, is shifted towards lower wave numbe
as shear-thinning is increased. We find that the relat
mc

Newt5)mmax
Newt holds approximately for a shear-thinnin

fluid as well.
To summarize, in the weakly non-Newtonian lim

shear-thinning decreases the wave number of maxim
growth, increases the maximum growth rate and tightens
band of unstable modes. This suggests an increased sele
ity of wavelengths in the pattern formation problem. F
shear-thickening fluids, the results are reversed: the gro
rate for the wave number of maximum growth is decrea
for all reasonable values of the capillary number, and
wave numbers of maximum and critical growth are i
creased.

B. Linear stability: General case

Let us now return to the general case@We5O(1)# of a
non-Newtonian fluid whose viscosity is given by Eq.~40!.
We do not obtain an explicit expression for the growth ra
in this case, but can find the growth rates numerically.

In the absence of perturbations, the radiusR(t) of a cir-
cular bubble evolves asRt51/R, since we impose a constan
mass-flux at infinity. The corresponding velocity field
given by ū(r ,t)5 r̂ /r . We define the pressurep̄ through

p̄r~r !52m̂~We2/r 2!
1

r
, p̄„R~ t !…52

1

CaR~ t !
,

by expressing the viscosity as a function ofu. The connec-
tion of m̂ to the previously defined viscosities is discussed
Sec. II B.

The perturbation of the interface induces perturbations
the pressure and velocity fields, which we expand as

u~r ,u,t !5ū~r !1«ũ~r ,u,t !,

p~r ,u,t !5 p̄~r ,t !1« p̃~r ,u,t !.

By expanding Darcy’s law~45! and the boundary condition
~53! in «, we obtain for the pressure perturbationp̃ the linear
boundary value problem,

“•F m̄22 We2 m̄8“ p̄“ p̄T

m̄2 “ p̃G50, for r .R~ t !, ~63!

p̃~R,u!52 p̄r~R! Rh1
1

R Ca
~h1huu!, ~64!

p̃→0, as r→`. ~65!

Here m̄5m̄(We2 p̄r
2), andm̄8 is defined analogously.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The separation of variables with p̃(r ,u,t)
5P(t,m) f (r ,t,m)cos(mu) leads to the linear two-poin
boundary-value problem,

1

r

]

]r F r S m̄22We2 m̄8p̄r
2

m̄2 D f r G2
m2

r 2m̄
f 50, ~66!

f ~r 5R!51, ~67!

f→0, as r→`. ~68!

The factorization ofp̃ was chosen so thatf (R)51, which
requires

P~ t !5S m̂„We2/R~ t !2
…1

1

R~ t ! Ca
~12m2! D N~ t !,

for the perturbation pressure to satisfy the boundary co
tion ~64!.

Equation~66! approaches its Newtonian counterpartm̄
51, m̄850) asr→`, so we expect

f r~r !'2
m

r
f ~r !, ~69!

to hold for r @1. We impose Eq.~69! at a large, but finite
radius r 5r out, instead of Eq.~68! when solving the two-
point boundary value problem~66!–~68! numerically. To-
gether with the kinematic boundary condition, this comple
the formulation of the problem, and the growth ratesm is
given by

sm5
1

R F2Rt2S m̄122 We2 m̄18p̄r
2~R!

m̄1
2 D

3S m̄11
1

R Ca
~12m2! D f r~R!G , ~70!

where m̄15m̄(We2 p̄r„R(t)…2), m̄185m̄8(We2 p̄r„R(t)…2),
and f r is obtained through numerical integration of Eqs.~66!,
~67! and ~69!.

C. Discussion

In Fig. 4 we show results of linear stability analysis f
the general shear-thinning fluid. First, in Fig. 4~a! decreasing
the shear-thinning parametera leads to an increased growt
rate of the wave number of maximum growth, and its sh
toward lower wave numbers, as predicted by the wea
non-Newtonian model. Comparing Fig. 4~a! with Fig. 4~b!,
we see that an increase of We reduces the range of uns
wave numbers considerably; one might expect increased
bility of short wavelengths for large We. Another point
note is that, contrary to Fig. 4~a!, decreasinga does not
necessarily lead to an increase of the growth rate of the m
of maximum growth. Still, strongly shear-thinning fluids d
show increased growth rates in the range of We mostly c
sidered in this paper (We,0.5). The comparison of Figs
4~a!,~b! with Figs. 4~c!,~d! show the role of Ca; an increas
of Ca makes shorter wavelengths unstable, increases
growth rate of unstable wave numbers, and augments
effect of shear-thinning.
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Increased wavelength selection, resulting from she
thinning, as well as the stabilization of short wavelengt
encourages the idea that shear-thinning might lead to
suppression of tip-splitting. However, due to the intrins
nonlinearity of the problem, we prefer not to make any de
nite conclusions based on linear theory alone. Linear stab
analysis does, however, provide us with the basic und
standing of the problem and guidance in performing fu
nonlinear time dependent simulations of an expand
bubble. This is the subject of the next section.

IV. NUMERICAL SIMULATION

In this section, we discuss the discretization and num
cal solution of the full evolution problem~53!–~54! of a gas
bubble expanding into a non-Newtonian fluid. As initial da
we take the interior interfaceG i as a circle perturbed with a
single azimuthal mode, and the outer boundaryGe as a
circle.

The kinematic condition~54! can be viewed roughly as
an ODE for the boundary of the bubble, with the right ha
side a complicated and nonlocal function of the boundary
the domain. The numerical solution of~53!–~54! using an
explicit time-integration scheme can then be outlined as
lows.

~1! Given the boundary position, solve for the pressure fr
~53!.

~2! Find the velocity from the pressure using Darcy’s la
~45!.

~3! Find the new boundary position according to~54!.

The full evolution problem is much harder to solve n
merically than the corresponding problem for a Newton
fluid, where the pressure is harmonic. In that case, bound
integral methods coupled with the ‘‘small-scale decompo
tion’’ ~Hou, Lowengrub and Shelley6! make it possible to
solve the problem efficiently. In the non-Newtonian case,
pressure satisfies the nonlinear BVP~53!, and must be solved

FIG. 4. The growth rates for general shear-thinning fluid~see the text!.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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for in the whole domain. Since the problem is driven by t
curvature of the boundaries, high spatial resolution is
quired. Further, there is a severe stability constraint on
time-step, leading to a computationally intensive proble
For efficiency, we impose a four-fold symmetry on the init
bubble shape, and the solution.

Methods for solving the equation for the pressure
presented in Sec. IV A. Issues related to evolving the bou
aries are addressed in Sec. IV B.

A. Pressure solver

The solution of the pressure requires solving a nonlin
elliptic PDE in a complicated evolving geometry. Althoug
solution methods for problems of this type have been c
sidered in the literature, for example by Concus,45 they have
typically been for steady state calculations, where efficie
was not as critical as in the present problem.

We use a Lagrangian grid which conforms to the int
faces and moves with the fluid. The fluid domain is mapp
onto an annulus, where the the nonlinear BVP is discreti
using finite differences, and the resulting system of equati
is solved. We introduce on the annulus the coordinates~z,h!,
where z is a ‘‘radial’’ coordinate, andh is a 2p-periodic
azimuthal coordinate, so that~z,h! is mapped to the poin
(x,y) in the fluid domain according to

H x5x~z,h!,
y5y~z,h!, with Jacobian J5F xz yz

xh yh
G . ~71!

The inner boundaryG i corresponds toz51, and the outer
boundaryGe to z52. Formulas are modified when express
in the new coordinates, for example,“p(x,y)
5J21

“̃p(z,h), where“̃ is the gradient with respect to th
annular variables. In particular, we solve

N~p!5“•H “p

m̄~We2u“pu2!J 50 in V,

and
~72!

p5 f on the boundary]V,

for a givenf , with N expressed in the annular variables. W
present the numerical methods in the original variables (x,y)
for clarity, but in practice, our computations are carried o
in the annular variables.

We use two iterative methods to solve the BVP~72!.
Both iterations reduce the nonlinear problem~72! to a se-
quence of linear elliptic BVP’s. The solution of these line
problems is an issue in itself.

Typically, we use Newton’s method,47 for which a lin-
earization, or Fre´chet-derivative, ofN has to be calculated
One then solves at each iteration the linear, variable co
cient elliptic BVP,

N8~pn!pn115N8~pn!pn2N~pn!, in V,

pn115 f on ]V,

for the approximationpn11 . Here the Fre´chet-derivativeN8
is given by
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N8~p!q5“•H m̄22 We2 m̄8“p“pT

m̄2 “qJ.
Since this linear problem is solved approximately

practice, the convergence of the resulting scheme is typic
less than quadratic.48 Newton’s method can be quite sens
tive to the choice of the initial guess, and can diverge if t
initial guess is poor. We encounter this problem in the sim
lations when the interface begins to develop structure. In
case, we switch to the projection-iteration scheme.

The projection-iteration scheme49 for the solution of~72!
is defined by

Dpn115Dpn2kN~pn!, in V, pn115 f on ]V,

wherek.0 is a parameter of the method. The iteration c
be shown to converge for any initial guessp0 , provided that
the parameterk is chosen appropriately. However, sufficie
conditions that guarantee convergence for a range ofk ap-
pear to be far from tight, and we find that the convergence
the method can be enhanced considerably by choosing
value of k dynamically. This value may lay outside of th
range of theoretically guaranteed convergence.

Finite differencing of the linear BVP produces a spar
but nonsymmetric linear system of equations for the u
known pressure at the grid points. After a comparison wit
number of iterative schemes,50 we chose to use the biconju
gate gradient method with a diagonal preconditioner to so
the linear equations.

B. Moving the interface

As is typical for curvature driven free boundary flow
the computational problem is exceedingly stiff. The size o
time-step is strongly constrained by numerical stability. W
find that the stability constraint is always more restricti
than say resolving the time-scale of the fastest growing lin
mode. As is known for the Newtonian case,6 and is sug-
gested by our weakly non-Newtonian linear stability analy
~Sec. III!, the step-sizeDt for an explicit scheme should
satisfy

Dt,C~Dsmin!
3, ~73!

whereDsmin is the minimum spacing of mesh points on th
interfaces, andC is a constant. We observe and enforce t
constraint in our code, using an empirically determined va
for C. For time-evolution, we use an explicit, two-stag
Runge–Kutta method with repeated Richardson extrap
tion. The step-size is sometimes reduced after taking
half-steps and comparing the error with that obtained afte
full step. An implicit time-stepping scheme would presum
ably ameliorate the stability constraint, but the implemen
tion of such a scheme in the present context is difficult. T
severe stability constraint~73! is a primary obstacle to long
time simulation of the evolution problem~53!–~54!.

Remarks. ~1! Number of grid points. The length of the
interface increases by more than two orders of magnit
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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during the simulations. A large number of points would
desirable for resolution, whereas a small number of po
would be preferred to alleviate the stability constraint.
strike a balance, we begin typically with 64 points on a qu
ter of an interface in the azimuthal direction, with the res
lution increased as needed up to 512 points. In the ra
direction, we use a fixed number of points, typically 100
150. A lower resolution leads to a rapid loss of accuracy

~2! Time extrapolation. The pressure solver, in particula
Newton’s method, is quite sensitive to the initial guess. Si
the time steps are relatively small because of the stab
constraint, we can find a good initial guess for the solution
the next time step by extrapolating the results from two p
vious time steps. However, when the bubble develops m
structure, this initial guess might not be good enough to
sure the convergence of Newton’s iteration. In this case,
switch to the projection-iteration method.

~3! Clustering of grid points. The Lagrangian discretiza
tion tends to move grid points away from the tips of t
forming fingers, and into the fjords. This clustering is und
sirable; the flow near the tips is left underresolved, and
fjords are overresolved. The unnecessary clustering of po
in the fjords also worsens the stability constraint. Con
quently, regridding to equally spaced points in the azimut
variable is performed when needed. An alternative appro
would be to impose this dynamically by adding an azimut
velocity component to the velocity of the mesh points so
to keep the grid points equally spaced~see Houet al.6!.

~4! Second order accuracy. Our numerical scheme i
second order accurate in time and space. Evaluating the
locity from a pressure field through~45! requires special at
tention at the boundaries. We find that calculating a fin
difference approximation to a radial~or z! derivative of the
pressure at the boundaries by extrapolating from two inte
levels of points, as is commonly done, leads to a nonsmo
radial error in the velocity: Although the one-sided appro
mation used at the boundaries and the centered approx
tion used away from the boundaries are both second o
accurate, the one-sided approximation has a much la
constant multiplying the leading order error. To avoid th
problem, we have devised an improved extrapolation sch
which uses three layers of points in the interior to calcul
the derivatives at the boundaries. The new scheme yi
second order accuracy, but with a smooth error in the ve
ity field. We have verified the second-order accuracy
space and time of our code by varying the spatial and t
poral resolutions, and estimating the numerical errors.

V. DISCUSSION OF THE RESULTS

In this section we discuss the simulational results. Fi
a study of the influence of shear-thinning fluid behavior
pattern formation is given. A more detailed analysis of t
influence of nondimensional parameters in the problem
lows, as well as some comments on the effect of using
ferent effective viscosity functions. Finally, we address
question of the dependence of emerging length-scales on
flow and fluid characteristics.
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A. The effect of shear-thinning on the dynamics of
the interface

From experiment,46 theory51–53,7and simulation,6 the ba-
sic elements of pattern formation are well understood fo
gas bubble expanding into a Newtonian fluid in a rad
Hele–Shaw cell. Very roughly, a perturbation of the bubb
interface grows outwardly into an expanding petal. Wh
this petal’s radius of curvature exceeds the wavelength o
unstable mode, it ‘‘tip-splits’’ into two nascent petals, whic
themselves broaden and split. This repeated process yield
interface described by a population of branches and fjo
and whose evolution is characterized by strong competi
among the branches, with some branches being ‘‘shield
and retracting, and others advancing farther into the flu
Clearly, if tip-splitting can be suppressed a much differe
pattern morphology will follow.

The beginnings of the pattern formation scenario fo
Newtonian fluid are seen in Fig. 5~a!, which shows the simu-
lation of an expanding bubble, plotted at equal time interva
The initial shape is a circle perturbed by anm54 cosinus
mode of amplitudea, where a/R050.1. In Fig. 5~a! we
observe the unstable mode growing into a petal~say, about
u50!, which widens, and then splits into two as its radius
curvature increases.~Again, much more developed pattern
can be computed with higher accuracy using boundary in
gral methods.6!

The bubble evolution in a strongly shear-thinning fluid
strikingly different, as is illustrated in Fig. 5~b!. This simu-
lation has the same capillary number as the Newtonian si

FIG. 5. The snap-shots of the evolving bubble interface for~a! Newtonian
fluid and ~b! strongly shear-thinning fluid~Ca5480 for both simulations,
a50.15, We50.15 for shear-thinning one!.

FIG. 6. ~Color! Contour plot of the viscosity of the driven fluid~We
50.15, a50.15, Ca5480!.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 7. ~a! The viscosity of the fluid
along the interface for a nontip-
splitting finger ~S is the arc length
measured from the tip!; ~b! the time
evolution of the viscosity at the tip;~c!
the time evolution of the curvature o
the tip.
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lation, and again has initial data unstable to the Saffma
Taylor instability. The first and plainest effect of shea
thinning is to suppress the tip-splitting of the outward
growing petal. As the petal expands outwards, it appear
near a splitting, but then ‘‘refocuses,’’ leaving behind ‘‘sid
branches,’’ and continues to grow outwards. This refocus
occurs twice during the shown course of the evolution, w
the larger~and later! side-branches themselves beginning
grow outwards and giving the impression of a trifurcation
the petal, rather than the bifurcation associated with
splitting in the Newtonian flow. We note that the presence
a single mode (m54) at t50 necessarily influences th
shape of evolving patterns by imposing a symmetry which
not present in a physical experiment. By performing ad
tional simulations, characterized by different modesm and
also by a combination of differentm’s, we have verified that
the main results~in particular, the phase diagrams of Se
V B, and the length-scale results of Sec. V D! are not modi-
fied by this assumption.

Figures 6, 7 and 8 provide us with some intuitive und
standing of the source of suppression of tip-splitting. Fig
6 shows the viscositym̄a(We2 u“pu2) in the fluid external to
the bubble, at the final time shown in Fig. 5~b!. As expected,
we see that the lowest viscosity appears at the ends o
petals. The viscosity increases sharply as one moves a
from the tips, and is highest within the fjords, where it
nearly a constant unity~recall that the ‘‘zero shear’’ viscosity
is normalized to one!. Figure 7~a! shows the viscosity along
the bubble interface at several times, includingt50, and
shows that the viscosity is always lowest in a fairly localiz
region around the tip.
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It is this phenomena that results in the narrowed pe
observed from the nonlinear development of the Saffma
Taylor instability: The fluid velocity is locally accentuate
by the non-Newtonian effect, which pulls the interface o
wards at the tips. Thus, a tip remains a tip, and thereby
conditions for a lower local viscosity are maintained. O
course, this effect is limited by capillarity, which seeks
lower the length to area ratio, and which is also likely relat
to the production of ‘‘side-branches’’ left behind the advan
ing tip. As is shown in Sec. V C, one can actually induce t
formation of fingers~rather than narrowed petals! by a dif-
ferent choice of viscosity function, even in the open rad
geometry.

More information on the production of side-branches
found in Figs. 7~b! and 7~c!, which show, respectively, the
time evolution of the viscosity and curvature at a petal
~about u50!. In the viscosity, we observed an early tim
behavior characterized by only small changes in abso
value, but having fast, irregular oscillations. We find the
oscillations curious, and have no explanation for them,
cept to note that they persist under refinement in both
space and time resolution. In particular, even if it is not o
vious from Fig. 7~b!, these small oscillations are smoot
There are approximately 1500 computational time steps
100 data points presented in this oscillatory region. Dur
this period, the curvature shows little change. These osc
tions are followed by a period of monotonic increase in
viscosity, as the radius of curvature likewise increases~the
petal spreads!. At somewhere less thant53, the velocity at
the petal tips increases relative to the surrounding parts
the interface~a suppression of tip-splitting!, which leads to
FIG. 8. ~Color! The pressure contours and velocity vectors of the driven fluid at the final time:~a! Newtonian fluid;~b! shear-thinning fluid~the parameters
are the same as in Fig. 5!.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the shedding of a side-branch, and an ensuing decrease
viscosity and radius of curvature. Somewhat later the
crease in tip viscosity slows, the radius of curvature ag
decreases, but this is followed by yet another shedding
side-branch, a decrease in the radius of curvature, and a
rapid decrease in tip viscosity.

It is worth re-emphasizing that the side-branches did
originate at the sides of the petal, but rather formed near
tip during the growth of the radius of the curvature, and w
left behind the propagating tip. This observation points to
similarity of the pattern formation mechanism in this syste
to the formation of dendrites in solidification,54 even though
our system lacks any imposed directionality.

Finally, Fig. 8 shows the pressure distributions at
final times for the Newtonian and non-Newtonian simu
tions, overlaid by their respective velocity vector fields. W
do not observe flattening of the pressure in the shear-thin
fluid, in contrast to what the linear stability analysis in Da
cord and Nittmann55 and Nittmann, Daccord and Stanley56

suggests. Based on this predicted flattening, it was con

FIG. 9. The pressure in front of the growing tip as a function of rad
distance. The data are taken at nondimensional timet55.0 both for New-
tonian and shear-thinning case. The parameters are as in Fig. 5.
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tured that shear-thinning would not influence considera
the instability structure. Figure 9 shows the pressure in
driven fluid in front of the growing tip versus radial distanc
for a Newtonian and a non-Newtonian fluid. The data p
sented in Fig. 9 are taken at the same time for Newtonian
shear-thinning simulations. The tip of the finger expand
into the shear-thinning fluid has propagated out farther t
the tip of the splitting petal growing into the Newtonia
fluid. Despite this, the pressure in front of the tips is qua
tatively similar in both cases. Away from the tips, the diffe
ent shapes of the interfaces for the Newtonian and the sh
thinning fluid modify the pressure distribution considerab
~Fig. 8!.

B. Parametric dependence

Here we explore the role which the three dimensionl
parameters,a, Ca and We, play in the bubble evolution.

Figures 10–12 summarize the results of simulations
different regions of this parameter space.~In all cases the
initial bubble size is the same. The patterns are enlarged
presentational purposes.! In each of these ‘‘phase diagrams,
there is a region~B! of the parameter space where splitting
the finger tips is suppressed. Figure 10 illustrates some o
effects of strong shear-thinning (a50.15). For small We we
observe ‘‘Newtonian’’ patterns—i.e., widening petals th

l

FIG. 10. Phase diagram for pattern formation in the strongly shear-thinn
fluid, a50.15, for small values of We,0.25. In A one gets wide ‘‘New-
tonian’’ petals, inB tip-splitting is suppressed, and inC narrow~relative to
A!, but tip-splitting petals are observed.
a
FIG. 11. Phase diagram for fixed C
5240. Part~a! shows the results for
rather strongly shear-thinning fluid,a
,0.25, with small values of We
,0.25. InA one gets wide ‘‘Newton-
ian’’ fingers, in B tip-splitting is sup-
pressed, and inC narrow ~relative to
A!, but tip-splitting fingers are ob-
served. Part~b! gives the results for a
wide range ofa and We.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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split ~regionA!. Increasing We brings us to regionB where
splitting is suppressed. Even higher values of We yield n
rowed petals, which tip-split~see also Fig. 11!.

Note that these general observations agree with wha
seen by comparing Figs. 1~a! and 1~b! with Figs. 1~c! and
1~d!. For a fixed capillary number, the Weissenberg num
decreases by 2.5 in moving from Figs. 1~a! and 1~b! to Figs.
1~c! and 1~d!. In this decrease the re-emergence of a m
Newtonian pattern is observed~i.e., more tip-splitting!.

An increase of Ca leads to the same consequences a
Newtonian fluids: Shorter wavelengths become unsta
which induces tip-splitting~see also Fig. 12!. The increase of
Ca leads also to a narrowing of regionB, where tip-splitting
is suppressed. In Fig. 10, the size of the window of We
which tip-splitting is suppressed is decreased for Ca.500.
Also, increasing Ca shifts this window towards lower We.
an experiment this would mean that if one uses a hig
pumping pressure, the fluid should have a shorter relaxa
time if nonsplitting tips are to be observed. This effect has
fact, been observed by Buka, Kertesz and Viscek11 in experi-
ments with nematic liquid crystals,11 where the driving pres-
sure was varied. At low driving pressures, the pattern w
Newtonian~corresponding here to small Ca and We—reg
A in Fig. 10!. At intermediate driving pressures, the tips d
not split ~as in regionB!, and finally, high driving pressure
~large Ca and We! resulted again in a tip-splitting phase~as
in regionC!. These experimental observations agree rema
ably well with our results.

Figure 11 shows the phase diagram asa and We are
varied while Ca5240 is fixed.~We cannot explore the regio
where a,1/9, where the production of slip layers in th
driven fluid might be expected.18! We focus first on Fig.
11~a!, wherea and We are rather small, and where the
sulting patterns depend quite sensitively on changes of
parameters. As in Fig. 10, a larger We leads to tip-splitt
and narrow petals, in contrast to the ones produced for s
We. The role of We is to determine which part of the v
cosity curve~Fig. 3! governs the viscous response of t
fluid. For small values of We, the viscosity in the neighbo
hood of the tip does not change very much, and the resul
patterns are close to Newtonian~A!. In Figs. 10–12, the
patterns in region~B!, where nonsplitting fingers are ob

FIG. 12. Phase diagram for fixed We50.15, and for a range ofa,0.50,
and Ca,1000.
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tained, correspond to the situation where viscosity var
considerably along the interface—this seems to be a ne
sary condition for the suppression of tip-splitting. At eve
higher values of We, the viscosity at the tips moves to
lower plateau of the viscosity curve. One might be temp
to explain the observed nonsplitting, narrow, fingers in ter
of a local capillary number by using the viscosity at the ti
instead of a constant capillary number. However, this wo
lead to small values of this ‘‘effective’’ Ca, which would
predict larger length-scales in region~C! than in region~A!,
contrary to our results. The important point here is that th
are still very low values of the pressure gradient not o
deep in fjords, but also on the finger sides~see Figs. 6 and 8!:
The flow still sees the steep part of the viscosity cur
Higher viscosity for low pressure gradients further su
presses the motion of the finger sides, leading to the decr
of the resulting length-scales.

Figure 11~b! shows a larger range ofa and We of the
phase diagram in 11~a!. Large values ofa and small We
yield Newtonian patterns. On the other hand, smalla and
large We lead to petals which split, but which are narrow
than those in regionA. In this case, the boundary betwee
the regionsA and C is not very sharp; there is a transitio
region for large values ofa and We. An interesting case i
a50.40, We50.15, where the effect of shear-thinning
strong enough to prevent splitting~at least at this stage of th
growth of the bubble!, but not strong enough to produc
narrow pointed fingers, such as those formed at smaller
ues ofa. The inspection of Fig. 11 clearly shows that d
creasinga leads to the decrease of the resulting leng
scales. This effect was observed in experiments with wa
based muds,15 which were performed in a channel geometr
where the increase of colloid concentration led to stron
shear-thinning~i.e., a decrease ofa!, and to the decrease o
finger width. Similarly, the recent experiments57 with hy-
droxypropyl methyl cellulose~HPMC! solutions in a radial
Hele–Shaw cell showed the decrease of the resulting len
scales with the increase of the concentration of HPM
which corresponds to stronger shear-thinning.

In Fig. 12, where We50.15, we observe again narro
pointed fingers for smalla and Ca~regionB!; narrow, split-
ting petals for smalla, and larger values of Ca~region A!,
and patterns resembling the Newtonian case for larger va
of a ~regionC!.

Figures 10–12 demonstrate that a strongly she
thinning fluid is required in order to prevent tip-splitting. W
do not observe narrow, nonsplitting fingers fora.acrit

50.35. Also, larger values of Ca typically lead to tip
splitting. Finally, there is a window of We, where tip
splitting is suppressed: This window is shifted towards low
values of We as Ca is increased, becomes narrower for la
values of a, and disappears completely whena.acrit

50.35.
Another effect of tip-splitting is to modify the velocity

of the finger tip. Figure 13 shows the tip velocity for tw
choices of parameters which lead to tip-splitting~Newtonian
anda50.15, We50.15, and Ca5600!, and one choice for
which tip-splitting is suppressed~a50.15, We50.15 and
Ca5240!. ~Specifically, the tip velocity is calculated atu
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ive
ly

e
e

he
b

s
o-
s
it
r

ica

o

w
he
u
er

si
th

or
rn
ws
e

ch
pre-

the
to

ent
ity
he

ed
ity
wth

ng
um-
d

n
r

the
he
m
ea-
er.
and
how

is
ults
ar
the

ear
e
le

s t

ent

1206 Phys. Fluids, Vol. 13, No. 5, May 2001 Fast et al.
50, whereu is an azimuthal angle measured from a posit
x axis.! The velocity of the splitting petal is continuous
decreasing, as the tip of the petal is widening on its route
become a fjord, whereas the velocity of a nonsplitting fing
is roughly a constant@the arrows show the points where th
curvature of the~former! tip changes sign#. This effect has
been noted by Meiburg and Homsy58 in a theoretical study of
channel flow of Newtonian fluid, where the curvature of t
finger tip was held constant artificially. The same study o
served also dendritic modes and side-branches.

Remark:There is an intriguing similarity in our result
to simulations of Newtonian Hele–Shaw flow with anis
tropic boundary conditions,59,10 where side-branching wa
also observed, as well as to local solidification models w
anisotropy.60 Further, power-law fluids in a rectangula
Hele–Shaw cell were recently the subject of a theoret
study ~Poiréand Ben Amar20,21!. Experiments with foams,16

where elastic properties might be of importance, and b
miscible5 and immiscible61,57 polymeric liquids, can also
produce structures quite similar to ours.

C. Different viscosity models

The form of the developing patterns in Hele–Shaw flo
of non-Newtonian fluids is very sensitive to a variation of t
parameters which define the viscous response of the fl
Similar sensitivity has been also widely observed in exp
ments with polymeric fluids and clays~see, e.g., McCloud
and Maher,5 Van Damme and Lemaire15!. Consequently, one
also expects that the choice of the non-Newtonian visco
model would influence considerably the response of
driven fluid and pattern formation.

While the use of the viscosity~40! is motivated by the
fact that it follows from the well-established JSO model f
viscoelastic fluids, it is also of interest to study the patte
resulting from a different viscosity model. Figure 14 sho
the evolution of the interface for a fluid with the effectiv
viscosity,

m̄a~We2u“pu2!5
11aWe2 u“pu2

11We2 u“pu2
, ~74!

where 1/9,a,1. That is, we definem̄a(We2u“pu2) di-

FIG. 13. The velocity of tip propagation, along thex axis. The arrows show
the point where curvature of the tip changes sign. A dashed line show
simulation where fingers do not split.
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rectly, instead of starting with a viscosity functionm and
finding the correspondingm̄ through~43!, ~46!. It is possible
to find the physical viscositym that yields the effective vis-
cosity in Eq.~74!; see Appendix A 4.

In Fig. 14 we see that the growing fingers are mu
narrower and more elongated than the fingers obtained
viously. The oscillatory mode is still present as in Fig. 5~b!,
even if rather strongly suppressed. We conjecture that
shear-thinning behavior of the driven fluid alone can lead
the suppression of tip-splitting. This feature is independ
of the particular model, although the choice of the viscos
model is important if one is interested in the details of t
pattern formation.

D. Emerging length-scales

A typical length-scale (l ) of patterns which develop in a
radial Hele–Shaw flow for Newtonian fluids is determin
by the capillary number Ca. For large Ca, linear stabil
suggests that a length-scale associated with the initial gro
of the patterns is given by46

lm5
2pR

mmax
Newt'2pRA 3

Ca
, ~75!

where R is the time-dependent radius of the expandi
bubble, and we have used the expression for the waven
ber of maximum growth~61!. Such a scaling is observe
approximately in both simulation and experiment32,62,63 for
Newtonian flows, and experimentally for non-Newtonia
flows.56,55 We look into our simulation results for a simila
length scaling in shear-thinning liquids.

Figure 15 shows the length-scales emerging from
simulation of a strongly shear-thinning fluid, as well as t
result of linear stability analysis and a fit of the for
A Ca21/2. Here the length-scale was approximated by m
suring the radius of curvature at the tip of a growing fing
As we have shown, the curvature can oscillate at the tip
so we plot a representative value where the error bars s
the size of the fluctuations. Note that this length-scale
measured in the strongly nonlinear regime, where the res
of linear theory would not be expected to apply. The line
stability result is obtained by assuming that the radius of
bubble is equal to its initial size, soR51 in ~75!. In the
apparent form of its decrease with Ca, the results of lin
stability for the shear-thinning liquid is consistent with th
fit. And while it is unclear that the simulational length-sca

he

FIG. 14. The snap-shots of the evolving bubble interface for a differ
viscosity model. Herea50.30, We50.30, and Ca5240.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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behaves as Ca21/2, there is a reasonable agreement in m
nitude between the simulations and the result of lin
theory.

In experiments using a shear-thinning polymeric solut
being displaced by water,56,55 emerging length-scales hav
been measured as the gap widthb is varied, apparently while

holding fixed the characteristic velocityṘ0 . These results
suggest that the length-scale scales linearly withb. For New-
tonian fluids this observation confirms the result of line
stability, since Ca;1/b2 if the characteristic velocity is fixed
independently ofb. However, the flow also depends up th
Weissenberg number, We, which is itself a function ofb. So,
one should modify both Ca and We accordingly, in order
obtain a realistic comparison with experimental resu
These resulting length-scales measured in this way are g
in Fig. 16. Since our simulational results~and the experimen
tal observations56,55! suffer from relatively large uncertainty
we cannot conclude from this that scalingl;b is satisfied.
Still there is a good qualitative agreement of the simulatio
and the experimental results.

FIG. 15. Capillary number dependence of the length-scale (l ) of the most
unstable modes following from linear stability~dashed!, emergent length-
scales from the simulations~dots! and the fit of the formA Ca21/2 ~solid!,
whereA is taken from the first data point. Herea50.15 and We50.15.

FIG. 16. The dependence of the length-scale (l ) on plate separationb. Here
b0 is the plate separation which gives Ca5240 and We50.15 att50. Lin-
ear stability results~dashed!, simulation results~dots! and fit l;b ~solid! are
shown (a50.15). The constantk required for fitting lineL5kb is deter-
mined from the data pointb5b0 .
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The driving pressure is another control parameter wh
influence on emerging length-scales can be explored. In
periments@air displacing water based muds15 and HPMC
~polymeric! solutions61,57# increasing the driving pressur
typically decreases the observed length-scales.15,61,57 How-
ever, these experimental data are not very precise in expr
ing the length-scale dependence upon the driving press
Figure 17 compares the length-scales obtained from
simulations to the results of linear stability, and to a fittin
function of the form l;1/AdP, where dP is the driving
pressure. The motivation for this particular fit arises fro
analogy with Newtonian fluids wherel;1/ACa, and Ca
;dP ~see also Fig 15!. Here we observe that linear stabilit
theory and simulational results agree rather well at sma
driving pressures. For larger values ofdP, the length-scales
resulting from linear stability analysis saturate to a consta
while the results of the simulations fitl;1/AdP very
closely. We hope to verify this prediction experimentally.64

Figure 18 shows the possible source of emerging leng
scales for shear-thinning fluids. This figure presents
variation of viscosity in radial direction in front of the tip
m(r ), the viscosity in the fluid adjacent to the interfacem(S)

FIG. 17. The dependence of the length-scales on driving pressuredP. Here
dPc is the the driving pressure which gives Ca5240 and We50.15. Linear
stability results ~dashed!, simulation results ~dots! and fit l
;k(dP/dPc)21/2 ~solid! are shown. The constantk is determined from the
data pointdP5dPc.

FIG. 18. The curvature of the interfacek(S), viscosity in the fluid along the
interfacem(S) and viscosity in the radial directionm(r ) are shown. Herer
is radial distance from the tip andS is the arc-length measured from the tip
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and the curvaturek(S) along the interface, wherer is the
radial distance from the tip andS is the arc-length along the
interface, measured from the tip. The data are taken from
last time presented in Fig. 5. It is intriguing that the leng
scales on which each of these quantities vary substant
are comparable~of course, the curvature of the tip give
approximately the length-scale on which curvature along
interface changes sign!. In particular, we observe that th
variation of viscosity in the radial direction compares w
with the variation of viscosity along the interface~Fig. 6!.
We conjecture that the length-scale associated with the
cosity variation in a driven fluid relates closely to the leng
scale of emerging patterns.

VI. CONCLUSION

In this paper we have shown that, under certain assu
tions, flow in a Hele–Shaw cell of a complex viscoelas
fluid simplifies to that of a generalized Newtonian fluid. Fu
numerical simulations of the two phase~liquid/gas! flow
show that shear-thinning behavior of the driven fluid mo
fies significantly the morphology of the patterns, relative
those for Newtonian liquids, by suppressing tip-splittin
This can lead to structures of dendritic appearance res
bling those occurring in quasistatic solidification. These
sults are consistent with available experimental results. F
ther, we provide morphological phase diagrams that sh
the flow and fluid parameters required to suppress
splitting. Lastly, the varying of length-scales emerging fro
our simulations, as parameters are changed, is in reason
agreement with those observed in experiments. In particu
we observe in our simulations that the typical length-scale
the patterns scales with driving pressure asl;P0

21/2—this
prediction is still to be verified experimentally.

We have ignored in this work several potentially impo
tant aspects of these flows, that preclude us from havin
fuller understanding of these problems. First, better comp
hension is needed of the flows close to the interface. Cor
tions to the simple Laplace–Young boundary condition ha
been derived for Newtonian fluids~see Homsy65 and the ref-
erences therein! that account for the presence of a menisc
and of films wetted to the cell plates. This has been don
a lesser degree for non-Newtonian fluids~Ro and
Homsy65,37!. An elastic response is also likely to be impo
tant in the neighborhood of the meniscus, and an impro
understanding of the boundary flows would lead to a m
quantitative understanding of the coil–stretch transition31

Second, in our scaling we do not allow for an elastic
sponse in the bulk fluid, that is, we look at flow only at ord
one Weissenberg number. To consider higher Weissen
numbers would apparently require solving fully tim
dependent PDEs for the extra stress in the bulk fluid
would be of interest to find some scaling of the equatio
that would allow this to be done in a tractable way. Last
by our construction of the effective viscosities, we have c
tainly not allowed for the possibility of slip-layer formatio
~see Kondic, Palffy-Muhoray and Shelley18 and the refer-
ences therein!. Though the origin of wall slip is still
controversial,23 the JSO equations do formally allow fo
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shearing flows with slip layers though having a nonmon
tonic stress/rate-of-strain relation~for a,1/9!.

Nonetheless, given that our present~relatively simple!
approximation seems to capture many of the salient feat
of shear-thinning flows—in particular the suppression of t
splitting—there are some fundamental questions to be
swered. A central one is understanding at a detailed le
how this system, without any explicit anisotropy, forms fi
gering structures so reminiscent of directional solidificatio
Obviously, an effective anisotropy is being created nonl
early by the shear-thinning, and is intimately related to
suppression of tip-splitting. Understanding this will requi
mathematical analyses combined with refined experime
and accurate numerical simulation.

The analysis of Poire´ and Ben Amar20,21on finger selec-
tion in weakly shear-thinning, power law fluids is a first e
fort in this direction. Another mathematical approach th
could be fruitful to expand upon follows from the work o
Miranda and Widom66 on tip-splitting in Newtonian flows.
They execute a slightly nonlinear analysis to understand h
mode coupling dynamics leads to tip-splitting. Perhaps fo
shear-thinning flow such an approach would show how m
coupling instead suppresses tip-splitting. Improved num
cal approaches to evolving the interface efficiently, and
pecially accurately, will also allow a calculation of the pa
terns over a longer time, as has been done for Newton
flows,6 to see whether the structures we have found h
persist, and how the patterns are characterized. It is also
portant to understand how the patterns observed depen
the details of the particular viscosity model. In this ve
given the gross similarity of patterns observed in liqu
crystals11,12 and foams16 to those seen in shear-thinning liq
uids, one might expect to find modified Darcy’s laws that a
similar to those found here.
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APPENDIX: PROPERTIES OF THE EFFECTIVE
VISCOSITY m̄

Our theory builds upon two basic assumptions:~i! The
transformation defined by Eqs.~43!,~46!, from m to m̃ andm̄
is well-defined, and~ii ! the nonlinear BVP~51! has a solu-
tion. We show here that a reasonable condition that gua
tees the existence of the effective viscositym̄ is also suffi-
cient for Eq. ~51! to be solvable. Further, we show i
Appendix A 2 that the monotonicity ofm is inherited bym̃
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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andm̄, and in Appendix A 4 that given am̄, we can find the
correspondingm, under suitable restrictions. A closed for
expression form̄ is given in Sec. A 5.

1. Invertibility

The following theorem gives a sufficient condition fo
the inverse viscositym̃ of m to be well-defined.

Proposition 1: Let m(s2).0 for all s, f (s)5m(s2)s be
continuously differentiable, and

0,C0<m~s2!12s2m8~s2!<C1,`, ~A1!

for some constants C0 , C1 . Then the inverse viscositym̃ can
be defined by~43!, and it satisfies

0,C08<
m̃~z2!22z2m̃8~z2!

m̃2~z2!
<C18,`. ~A2!

Proof: The functionf is strictly increasing, so its invers
function g5 f 21 exists. Sinceg8„f (s)…51/f 8(s), and 0
,C0< f 8(s2)<C1,` by ~A1!, we obtain 0,1/C0

<g8(z2)<1/C1 . At z50 we haveg(0)50,

m̃~0!5 lim
z→0

z

g~z!
5

1

g8~0!
5 f 8~0!5m~0!,

andg(z).0 for zÞ0.
The inverse viscosity can now be defined asm̃(z2)

5z/g(z) for all z. Equation~A2! follows by notingg8(z)
5„m̃(z2)22z2m̃8(z2)…/m̃2(z2).

This motivates the following definitions.
Definition 2: A functionm:R→R is called a viscosity

(function) ifm>C.0 for a constant C, and f(s)5m(s2)s is
continuously differentiable.

The viscosity function is called monotonic ifm is mono-
tonically increasing or decreasing. A viscosity function
called bounded if0,C<m<C8,`.

Definition 3: A viscosity functionm is called invertible if

0<C0<m~s2!12s2m8~s2!<C1,`,

for some constants C0 , C1 .
We will not consider viscosity functions that are not i

vertible in the sense of Definition 3 in this work, althoug
they are certainly interesting.23 The definitions given above
are natural, as one sees from the solvability conditions
cussed in Sec. A 3.

2. Monotonicity and derivatives of the viscosities

The inverse viscositym̃ and the effective viscositym̄
inherit the monotonicity of the original viscosity functionm.

Proposition 4: Letm be a monotonic, invertible viscosit
function. Thenm8, m̃8 and m̄8 have the same sign.

Proof: By a direct calculation. First considerm̃, and note
that

m̃~z2!5mS z2

m̃~z2! D , ~A3!

for any z by Eq. ~43!. Taking a z-derivative of Eq.~A3!
together with Proposition 1 shows thatm8 and m̃8 have the
same sign.
Downloaded 28 May 2001 to 128.122.81.196. Redistribution subject to 
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To showm̄8 andm̃8 have the same sign, differentiate th
definition of m̄. Together with the first part this implies tha
m, m̃ and m̄ have the same sign.

3. Solvability of the BVP

In this section, we find conditions onm that are sufficient
for

“•S “p

m̄~ u“pu2! D50, in V, p5 f , on ]V, ~A4!

to have a unique classical solution. HereV is a connected,
bounded domain in the plane,f is a given andm̄ is an effec-
tive viscosity.

To avoid technicalities, we assume the boundary of
domain and all functions to be sufficiently smooth when t
underlying theorems require, e.g., Holder-continuity.~See
Gilbarg and Trudinger67 for details.! Continuous differentia-
bility is sufficient for most purposes here. Classical solutio
of ~A4! are at least twice continuously differentiable. No
that the results give sufficient conditions, and one could c
tainly look for more general results.

The main result of this subsection is given by the fo
lowing.

Proposition 5: Let the effective viscositym̄ correspond
to a viscosity functionm that satisfies

0,C0<m~s2!12s2m8~s2!<C1,`, ~A5!

for some constants C0 , C1 . Then the nonlinear BVP (A4
has a unique classical solution.

The essence of this proposition lies within two facts:~1!
The solvability of Eq.~A4! is expressed in terms of th
physical viscositym, and~2! the solvability is guaranteed b
the same condition as the invertibility of the viscosity. T
proof amounts to showing that~A4! satisfies the conditions
of a classical result~Lemma 6!. We have collected the re
quired calculations in a sequence of lemmas.

Equation~A4! can be written in an equivalent, noncon
servative form as

a~px ,py! pxx12b~px ,py! pxy1c~px ,py! pyy50, ~A6!

where

a5
m̄22px

2 m̄8

m̄2 , b52
2px py m̄8

m̄2 ,

and

c5
m̄22py

2 m̄8

m̄2 .

We write m̄5m̄(u“pu2) and m̄85m̄8(u“pu2) for clarity.
Lemma 6: Assume the coefficients a,b,c are smooth, and

the eigenvaluesl, L of the coefficient matrix,

S a b

b cD , ~A7!

are strictly positive and satisfy1<L/l,g,` for some
constantg. Then (A4) has a unique classical solution.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Proof: Gilbarg and Trudinger,67 Theorem 12.5.
Lemma 7: The coefficient matrix~A7! has the eigenval-

ues

l65
m̄2u“pu2m̄8

m̄2 6Um̄8 u“pu2

m̄2 U.
Proof: By a direct calculation.

Lemma 8: Let a viscosity functionm be bounded and
invertible. Then

0,D0<
m̄2u“pu2m̄8

m̄
<D1,`,

for some constants D0 , D1 .
We defer the proof of this technical Lemma after t

following.
Proof of Proposition 5:We will show that the assump

tions of the Proposition imply those of Lemma 6. First, co
sider a shear thinning fluid withm8(s2)<0. Then by Lemma
7 the eigenvalues of the coefficient matrix are

l5
1

m̄
, L5

m̄22u“pu2m̄8

m̄2 ,

and we have 0,l,L. The ratio of these satisfies

1<
L

l
5

m̄2u“pu2m̄8

m̄
<g,`,

where the lower bound follows from shear thinning, and
upper bound follows from Lemma 8 withg a constant.
Lemma 6 can now be applied. The case of a shear thicke
viscosity, m8(s2).0, follows similarly with l and L
switched.

Proof of Lemma 8:Denotej5u“pu, and note that

m̄
d

dj S j

m̄~j2! D5
m̄22j2m̄8

m̄

512m̄E
21/2

1/2 F m̃~j2 z2!22j2 z2m̃8~j2 z2!

m̃2~j2 z2! G z2dz.

~A8!

Since m is bounded and invertible, the term in the squa
brackets is strictly positive and bounded by Proposition 1
m is invertible then the corresponding effective viscositym̄ is
bounded and strictly positive, as one sees from its defini
~46!. It follows that

0,
m̄min

C1
<

m̄22j2m̄8

m̄
<

m̄max

C0
,`,

wherem̄min , m̄min is a lower and upper bound ofm̄, respec-
tively.

4. Inverting the transformation

The transformationm→m̃→m̄ can be inverted, that is
given a suitablem̄ it is possible to find the correspondingm̃,
and therebym, in Eq. ~46!.

Proposition 9: Letm̄ satisfy
~i! 0,C0<m̄(j2)22j2m̄8(j2)<C1,`, for all j;
~ii ! 0,C2<m̄(j2)<C3,`,
Downloaded 28 May 2001 to 128.122.81.196. Redistribution subject to 
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where C0 ,...,C3 are constants. Then the inverse viscosity,

m̃~j2!5
m̄2~4j2!

m̄~4j2!2 2
3 •4j2m̄8~4j2!

, ~A9!

satisfies Eqs.~43!, ~46!.
Proof: It follows from Eq. ~46! by taking a derivative

and integration by parts. Then

22jm̄8~j2!

m̄2~j2!
524F z3

jm̃~j2 z2!G
z50

1/2

224E
0

1/2 3z2dz

jm̃~j2 z2!

5
3

jm̃~j2/4!
2

3

jm̄~j2!
, ~A10!

so thatm̃ can be solved as a function ofm̄ to get Eq.~A9!.
The expression~A9! is valid as long as the denominato

is not zero. This is clear for shear-thinning fluids, for whi
m̄8,0 by Sec. A 2 In fact, Eq.~A9! holds for all uniquely
invertible viscosity functions.

Let m̄8(s2).0 and consider the denominator of E
~A9!. It can be bounded from below by using the definitio
of m̄ and Eq.~A10! to yield

m̄~4j2!2 2
3 •4j2m̄8~4j2!

.m̄~4j2!22~4j2!m̄8~4j2!

512m̄2~4j2!E
21/2

1/2

z2
m̃~4j2!22~4j2!z2 m̃8~4j2 z2!

m̃2~4j2 z2!
dz

.0,

for anyj, since the integrand is strictly positive ifm̃ satisfies
the invertibility condition~A2!.

Example:Instead of using the effective viscosity corr
sponding tom(s2)5(11as2)/(11s2), one could consider
more general effective viscosities. A particularly interesti
choice is

m̄~s2!5
11as2

11s2 , ~A11!

which is also discussed in Sec. V C. Note thatm̄ is specified
directly, instead of going through the transformation~46!.

Using the inversion formula~A9!, we can find the vis-
cosity function m corresponding to the effective viscosit
function of Eq.~A11!. This requires the invertibility condi-
tions for m̄ to hold, soa.1/9.

Equation~A9! gives now

m̃~z2!5
3~114a z2!2

314~51a! z2148a z4 .

An analytical expression for the correspondingm seems un-
attainable. However, we can still plot the correspondingm
using the following simple observation.

First, define s5s(z) in Eq. ~43!. Then one has
m„s(z)2

…5m̃(z2). This allows us to plot„s,m(s2)… as
„s(z),m̃(z2)…, wheres(z)5z/m̃(z2). Figure 19 compares the
effective viscosity given by Eq.~A11! to those obtained from
JSO, and the corresponding physical viscosities.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 19. Comparing the effective vis
cosity m̄(j)5(11aj2)/(11j2) to
those obtained from JSO. Varyinga in
JSO does not significantly change th
slope of the effective viscosity@see
~a!#, or the physical viscosity@see~b!#,
at small shear-rates. The shear-rate d
pendency of the effective viscosity in
Eq. ~A11! at small shear rates is muc
stronger than that in JSO.
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5. Explicit m̄ for JSO

The gap-averaging~46! of the viscosity requires the in
tegration of the inverted viscositym̃. For completeness, w
show here how to find a closed form expression form̄, which
is defined as

1

12m̄~j2!
5E

21/2

1/2 z2dz

m̃~j2 z2!
. ~A12!

Now, let z(s)5m(s2)s and note that s
5z(s)/m̃(z(s)2), so that especiallym̃„z(s)2

…5m(s2) holds.
By changing the variable of integration tos and integration
by parts we obtain

1

12m̄~j2!
5

2

j3 E
0

j/2
„m~s2!s…2

m~s2!

d

ds
„m~s2!s… ds, ~A13!

5
1

j3 H x3m~x2!22E
0

xS 11a s2

11s2 sD 2

dsJ , ~A14!

wherex5(j/2)/m(j2/4), and we specialized to JSO.~The
same approach works for other viscosity functions.! The final
result for the gap-averaged viscosity is given by

m̄~j2!5
j3

24
•F2a~a21!x1S m2~x2!2

a2

3 Dx3

2
C

2
arctanx1

1

2
~a21!2

x

11x2G21

, ~A15!

whereC5(5a226a11),

m̃~z2!5
1

3
1q1/31

123z2

9q1/3 ,

and

q5
219~3a21!z2

54

1S z2

108
~4z41„3~3a21!224!z214a…D 1/2

.

Equation ~A15!, although exact, is numerically ill
conditioned for small argumentsj, in which case one can us
the approximation
Downloaded 28 May 2001 to 128.122.81.196. Redistribution subject to 
m̄~j2!512
3~12a!

20
j21O~j4!.
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