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We study theoretically the Saffman—Taylor instability of an air bubble expanding into a
non-Newtonian fluid in a Hele—Shaw cell, with the motivation of understanding suppression of
tip-splitting and the formation of dendritic structures observed in the flow of complex fluids, such
as polymeric liquids or liquid crystals. A standard visco-elastic flow model is simplified in the case
of flow in a thin gap, and it is found that there is a distinguished limit where shear thinning and
normal stress differences are apparent, but elastic response is negligible. This observation allows
formulation of a generalized Darcy’s law, where the pressure satisfies a nonlinear elliptic boundary
value problem. Numerical simulation shows that shear-thinning alone modifies considerably the
pattern formation and can produce fingers whose tip-splitting is suppressed, in agreement with
experimental results. These fingers grow in an oscillating fashion, shedding “side-branches” from
their tips, closely resembling solidification patterns. A careful analysis of the parametric
dependencies of the system provides an understanding of the conditions required to suppress
tip-splitting, and an interpretation of experimental observations, such as emerging length-scales.
© 2001 American Institute of Physic§DOI: 10.1063/1.1359417

I. INTRODUCTION erences therejnas the outcome of the nonlinear develop-
ment of the Saffman—Taylor instability. Such patterns are
While flows of non-Newtonian fluids are of considerable characterized by successive tip-splitting of the interface, the
technological importance, their understanding is often obformation of branched structures, and the competition be-
scured by their complexity. For this reason, we concentrat@yeen them. This morphology has been observed in careful
on a rather simple situation: fluid flow in the essentially two-nymerical simulation§ and described in some of its aspects
dlmen_S|0naI setting of a Hele—Shaw cell, Where_ the flow IStheoretically’ It is also well known that flow structures remi-
described by a balance between pressure and viscous forcegscent of solidification—dendritic fingers, side-branching,
and which for a Newtonian fluid is governed by Darcy’s law. suppressed tip-splitting—can be produced in such Newton-
Such thin-gap flows of non-Newtonian fluids are relevant to,, | 55vs by imposing an anisotropy on the system, for ex-
industrial processes such as injection moldimg display ample, by scoring lines on the plafesy by introduci’ng a
device desigi.In particular, a two-phase flow in this setting perturE)ation(bubee in the fluid itself® Again, some de-
is a scientifically important one, given the close analogy be:[ailed understanding of these systems has, been achieved
tween the Saffman—Taylor instability of driven Newtonian

fluid with quasistatic solidificatiofand the Mullins—Sekerka g‘“?“gh da;‘am% and simulatidsee, for example Almgren,
instability®), and many other physical problems, such as elec- al, and Haxim. . -
However, experiments performed with complex liquids

trochemical depositiof.
P gsuch as liquid crystals;*? polymer solutions and melfs;**

To make contact with a large body of experimental an 15 o -
theoretical work on pattern formation in such systems, welays:~ and foams,® have shown that similar structures can

concentrate here on the interfacial dynamics of a gas bubbf@® induced by the bulk properties of the fluid itself. That is,
expanding into fluid in a radial Hele—Shaw cell. When thethe response of the fluid, which may itself be isotropic, can

fluid is Newtonian, a dense branching pattern morphology iProduce an effect akin to anisotropy. One property shared by

commonly observedsee McCloud and Maheand the ref- these different liquids is that they are shear-thinnitige
shear viscosity decreases with the local shean,rared we
will concentrate on this property.

dpresent address: Center for Applied Scientific Computing, Lawrence Liv- .. I . d 1b) sh
ermore National Laboratory, P.O. Box 808, L-661, Livermore, Califor- As a motivating example, Figs.(d and Xb) show an

nia 94551. experiment of the pattern formation that results from pushing
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(o) TR : R ! parametric regime which we study, in our simulations we use
0:00:25:0 ' 0:80°RD: : the Laplace—Young condition, as is typically used for New-
/ ‘ i tonian Hele—Shaw flows.

In recent theoretical work, Poimnd Ben Ama®*have
used our prescription to study the formation of “fractures”
or “cracks” in clays and associating polymer solutidfs.
Using a shear-thinning power-law fluid, they examined the
“width selection” problem for a gas finger propagating
. : steadily down a channel. They consider the displaced fluid to
LR il RN ' be slightly shear-thinningin the shear-thinning exponent

i " and show within this asymptotic limit, the selected finger
width decreases to zefoe., a crackas surface tension goes
to zero. Lindner, Bonn, and Meunférrecently studied ex-
perimentally the propagation of a finger into a shear-thinning
liquid. Also using Eq.(1) for a power-law fluid, they find
excellent agreement with their experimental data.

FIG. 1. Graphga) and(b) show the temporal development of a pattern that In Sec. Ill, we examine the linear Stab“ity of a circular,
results from pushing air into a dilute, shear-thinning PEO solution in ae€xpanding gas bubble, where the driven fluid is governed by
Hele—Shaw cell. Graph) and(d) show the resulting pattern in a cell with  the generalized Darcy’s law. We consider first a weakly non-
gap Wid_th 2.5 times smaller. '!'he driving pressures are the same in eith%ewtonian model where, in the limit of a small Weissenberg
case. Figures courtesy of Ennis and Palffy-Muhoray, LCI, Kent State. .

number, the nonlinear boundary value problem for the pres-

sure is simplified to a linear one, and the linear stability

problem can be solved exactly. This suggests that shear-
air into a dilute solution of PEO, a standard shear-thinninghinning can modify the Saffman—Taylor instability to give
polymer (figures courtesy of R. Ennis and P. Palffy- increased length-scale selection. We expand on this further
Muhoray, LCI, Kent State A relative lack of tip-splitting is by solving numerically the linear stability problem for a
apparent, and one sees the appearance of isolated fingessrongly shear-thinning fluid. In Sec. IV we perform fully
Holding the driving pressure fixed, Figsicland Xd) show  nonlinear, time dependent simulations of a bubble growing
the effect of decreasing the gap width by 2.5 times. Thisinto a strongly shear-thinning fluid. These simulations show
decreases the non-Newtonian effect by lowering the Weisthat shear-thinning influences considerably the evolution of
senberg numbefdefined as the ratio of the material relax- the interface, and in agreement with experiments with com-
ation time to a fluid flow timg and one observes the emer- plex fluids, can lead to the formation of fingers which do not
gence of tip-splitting and of a more densely branchedsplit, and that grow in an oscillating fashion. They can re-
pattern. In either case, the similarity to dendritic structures isemble closely the dendritic structures observed in solidifi-
clear. cation. We also analyze the dependence of the interface mor-

As an illustrative case, our analysis uses the Johnsonpghology on nondimensional parameters, which allows a
Segalman—OldroydJSO model’ for a viscoelastic fluid, comparison with and interpretation of available experimental
though our results apply to more general differential modelsesults(Sec. V). Finally, we also explore some different vis-
(Sec. ). This model considerably simplifies in the thin-gap cosity models and discuss computed and experimentally ob-
limit e=b/L<1, whereb is the separation between the served length-scales. In the Appendix, we discuss the math-
plates and. is some typical lateral dimensigfec. Il A). To  ematical aspects of solving for the effective viscogityand
the leading order ire, we find that there is a distinguished the relation to the solvability of the nonlinear BM®).
limit—where the natural Weissenberg number of the flow is
O_(1)—wh.ere ;hegr—thinning is retained. In this limit, the Il. EQUATIONS OF MOTION
viscoelastic fluid is reduced to a generalized Newtonian
fluid, where elastic effects enter only through the definition  First, for thin gap(Hele—Shaw flow we show how a
of a Weissenberg number. Following our previous wtrk? ~ “typical” visco-elastic flow model reduces asymptotically to
we obtain then a generalized Darcy’s law governing the bulkhe non-Newtonian Darcy’s lawd). We then discuss bound-

i

fluid flow, ary conditions at the gas/fluid interface. At the end of the
section, we formulate the flow problem as the dynamics of
U= — _L V..u=0 (1) the gas/fluid interface, whose velocity is found by solving a
w(We|Vp|?)’ 2 ' nonlinear BVP over the fluid domain encompassed by the
whereu is the gap averaged longitudinal velocity,is the ~ interface. _ _ o
fluid pressure, We is a Weissenberg number, ands a A model for the motion of an incompressible, isother-
derived effective viscosity depending upon the squared prednal, viscoelastic fluid is given by
sure gradient. This yields a nonlinear, elliptic boundary value Dv
problem (BVP) for the pressure in the driven fluiSec. PEZV'T, 2
[IB). Issues related to boundary conditions for this BVP are
discussed in Sec. IIB1. As it appears appropriate for the V.v=0, ()]
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together with a constitutive relation for the stress tensor
Herev=(u,v,w) is the velocity fieldD/Dt=¢,+Vv-V is the
material derivative, an@ is the (constant density. The ve-
locity gradient is ¥v);; = djv;, andD=(Vv+ VvN/2is the
rate-of-strain tensor.

When studying a particular flow problem, it is important
to pick a constitutive relation that reproduces the experimen-
tal observations for the relevant rheometric flows. In the case
of Hele—Shaw flow, we show how to derive the generalized t
Darcy’s law(1) for a broad class of differential models. We - L s
illustrate this within the context of the Johnson—Segalman—
Oldroyd (JSO model’?with a single relaxation time. This
is perhaps the simplest viscoelastic model that captures nor-
mal stress differences and shear-thinning of the viscosity.
The JSO equations are are denoted by a subscript and the components of a tensor by
@ @ superscript, e.g., thex-component ofo is o™

The extra stress tenser can be solved explicitly from

FIG. 2. Hele—Shaw cell.

7=—pI+t2uD+ o,

D,o (5) without approximatiort® The extra stress components are
o+ A\ Dt 2upD, (5 given by
wherep is the pressurey is the extra stress tensov,is the Xz HMp XX Xz
S =5 5U,, =(1+ ,
relaxation time, angks and u, are the solvent and polymer 7 1+(1—a?)\2us Uz, o7 =(1Fa)NU0 ™
viscosities. vy . .
The Gordon—SchowaltdGS) convected derivativé 0?¥=0, o*=-(1-a)hu’" ®)

D.c Do The steady momentum equatiof®3 are then
Dat =Di —{Vvo+oVV'}+(1-a){Do+ oD},

J 2
(6) Px=— (u(uz)uy), 9

in JSO models the nonaffine motion of polymer chains. They
are not locked into a rubber network, which deforms with the
flow, but rather the chains are allowed to slip past the con- d 5

tinuum. Fora=1 the motion is affine, and JSO reduces to ~ Pz= — 5, (1= @)Au(u)uz), (1D
the Oldroyd-B model, which fous=0 is the same as the ] . _
upper-convected Maxwell model. Decreasinincreases the Where the shear-rate dependent viscogitis defined by
slippage, and softens the response of the material by increas- 1+ a(l_az))\zug
ing shear-thinning in shear flows, and reducing strain hard- ,u(ui)z,uo 1T (1—a2na2
ening in extensional flowgThe slip-parametea should be (1=ad)\"u;
restricted to 0.2 a< 0.89 for consistency with experimefts  and uo= us+ Kp Is the total, or zero shear-rate, viscosity.
using dilute solutions of a variety of commercial polymers.  The “shear-thinning parameterd= ug/uy determines
The ratio of the second normal stress difference to the firsthe behavior of the viscosity functiome=1 yields a New-
equal to —(1—a)/2 for JSO, was found to lie between tonian fluid with a constant viscosity, and<1 yields a
—0.40 and—0.055, and to be independent of the shear-Jate.viscosity that increases with decreasing shear-rate, i.e., the
The GS-derivative reduces to the corotational derivative fowiscosity is shear-thinning. The constraimt-1/9 is neces-

p,=0, (10

(12

a=0, and to the lower-convected derivative for — 1. sary for the stress—strain relation to be invertitdee Sec.
I1B).
A. A Hele—Shaw scaling of JSO We now nondimensionalize E(P), and study the effect

of different scalings of the pressure. For a given fluid, the

the gap widthb to the lateral length-scale to derive the €XPerimentally adjustable quantities are the drivigguge

generalized Darcy’s lawl). This is done by choosing the pressureSP and the plate separatidn The lateral length

pressurep=e L, which makes shear-thinning a dominant scalelL is given by some typical dimension in the horizontal

effect and leaves the elastic response a higher order Corregi_rection, such as the size of the cell or an initial bubble size,
tion. which is large in comparison tb, so thate =b/L<1 (Fig.

2). The characteristic lateral velocity will also depend on
1. One-dimensional steady shear flow the driving pressure. We scale-b, x~L, p~46P andu
U, and write Eq.(9) nondimensionally as

In this section, we use the small aspect ratieb/L of

We expect a non-Newtonian Hele—Shaw flow to behave ™
locally like a one-dimensional steady shear-flow in the direc-  gp ap  pU a9 [1+a(1—a®)We'?u?
tion of the pressure gradient. To uncjerstand the scaling of the T ox_ o2zl 1% (1—ad)we'’? u§ Uz |.
full equations (2)—(4), we consider a steady, one-
dimensional shear flow(z) = (u(z),0,0). Partial derivatives Here Wé=\U/b is a Weissenberg numb#t.

(13
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We now choose the pressure scaling. Balancing pressur natural Deborah number would be defined as=Dé&J/L
and viscous forces givdd=e? 6PL/uq. If 5P is indepen- =g We'. We will find it convenient to use the modified
dent of g, then Wéxg, and(13) reduces to the Newtonian Weissenberg number,
case with viscosityuo=pus+ u,. If Pxe™2, then Wé
xg 1, the shear-viscosity will be constant, and elastic ef- 21/2 212 1A Po

' . X ' We=(1—a%)"“12W€ =(1—a°)"'——. (19
fects would become important in an unsteady flow.

The choice that makes shear-thinning apparentis _ )
«g~L. Then Uxs, We =1, and (13) retains its shear- Introduce the lateral velocity=(u,v), lateral gradient
thinning character in the leading order as-0. This is a Y2~ (9xdy) and lateral Laplaciand;=dy,+dy,. Then,
distinguished limit, as a specific scaling of the independenfifOPPINg the primes, the nondimensional momentum conser-

and dependent variables is required to retain some desiré@tion equations2) are

quality, in our case the shear-rate dependency of the viscos- u et
ity. Re— = —12V,p+ a(Uu,,+ £2A,U) + Z}
Dt 2P ( zz 2 O_)Z/Z
2. Nondimensional form of JSO for Hele —Shaw flow N o+ ay) 20
€ 1
In this section, the full equations of motid@)—(5) are o)+ ‘Tify
nondimensionalized. The one-dimensional shear flow solu-
tion s_qggests tr_\e following scalin¢the nondimensional &2 ReD_W: —12p,+& o
quantities are primed Dt
P,L +&%(0%* 4 oV + a(W,,+ %A ,w)), 21)
t:sﬁ’;) t,, X:LX', U=¢ 0 U,, (14) ( X y ( zz 2 )) (
0 Ho the incompressibility conditiofi3) is
12P, PoL
p= p’, y=Ly', v=e¢ v', (15 Vs, utw,=0, (22
€ Mo
P L and the constitutive relatiofb) with the convected deriva-
o=Pyo’, z=¢lz', w=¢? : w'. (16) tive (6) is
0

’ T
Here, the pressurp, cross-gap direction and lateral direc- @~ W€ (Lo ot o Lo—(1-a)(Doo+ aDy))

tions x, y are scaled as in the previous subsection, as is the Do
characteristic velocity) =& Py L/ . Time is scaled ak/U =2(1-a)Dy—¢ [We’ i L0~ a£I+ (1—a)
and the cross-gap velocity is scaled asU. The typical
size of viscous and viscoelastic stressegj8l/b=P,. The ) )
velocity gradient and the rate-of-strain tensor are then X(Dyo+0D1) | —2(1=a)Dy +e“{We' (L o
Py el ely U, +oL)—(1-a)(Dyo+0D,)+2(1—a)D,}. (23
Vv= M—Vv’, where Vv'=| s&vx evy vz |,
0
&?Wy 82Wy eW, 3. Leading order equations
and Assume the horizontal velocity, the pressur@ and the
Po extra stress tenser have asymptotic expansions of the form
D=—D',
Ho u(x,t)=u®+0(e),
2eu uy+ u,+&’w
1 eUy &( y Uy) zT € Wy p(x,t)=p(0)+ O(s), (24)
where D' = > g(Uytvy) 280, vtedwy ||
— 0
u +e’wy v, t+edw, 2ewW, o(x,t)=a@+0(e),

To separate the orders ef we write these tensors without and substitute these expansions into Eg6)—(23).
approximation as The leading orde©(1) contribution to the momentum
' 2 ' P equationg20) and incompressibility conditiofR2) are(after
Vv =Ly+ely+e°L,, D' =Dy+eD;+eD,. dropping the superscripted 0 from the notajianset of re-
There are two nondimensional parameters associateduced Stokes equations:
with the scaling given by Eq$14)—(16),

XZ

uL PoL? 12V,p=aU,,+| v, 25
Re=s2" =83u2—, Reynolds number; (17) 2P=allzzT| oy 29
Mo Mo
We'= —=——, Weissenberg number. (18
el mo V,-u+w,=0. (27
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The constitutive relation$23) yield the set of linear equa-
tions for the stresses:

o*—=We' (1+a)o™*u,

=o**+We' (1-a)(c*u,+ ¥ ,) =0, (28
o¥Y—-We' (1+a)o¥%,
Xy ,1+a X yz
=g¥Y—We T(a’ 2,+0Y4,)=0, (29
XZ / z Vl_a XX z XY.
o**—We' o*u,+We T((o- +o*9)u,+ *¥,)
=(1-a)u,, (30
yz roz /1_a vy z Xy,
o¥*—=We' %% ,+We T((O’ +a*)v,+ Uy
=(1-a)v,. (3D

Equations(28)—(31) can be solved by first finding™*,
o¥¥, o** andd™ in terms of the shear stresse¥” and oY%,
and then substituting these into E480) and (31). After a
moderate amount of algebra, the shear-stres$ésnd o¥*
are found to satisfy the equations

o** u
A Uyz}(l—a) ol (32
where
1+4Cu+Cuv? 3Cu,v,
A= 2 2 (33)
3Cu,v, 1+4Cv;+Cu;

andC=(1—a?) We'?/4. Note thatC>0 as long as the as-
sumption|a|<1 holds. The matrix4 is nonsingular, with a
positive determinant,

detA=(1+C|u,|?)(1+4C |ul?).

The shear stresses, along with the rest of the components
the extra stress tensor, can now be solved (@2 and
(28)—(29). They are given by

< -« y -«
o=y, oY=y, (34
We'(1+a We'(1+a
UXXZQ%UE, 0'yy=a%v§, (35
We'(1—a We'(1+a
O'ZZ=—a—(d )|uz|2, a’xy=a—(d )uzvz,
(36)

whered=1+(1—a?)We'?|u,|2. Notable is the presence of

normal stress differences. This is in contrast to the Hele—

Shaw flow of a Newtonian, or a generalized Newtonian quid,U(X’y) - . . )
\Aﬁ\veragmg(44) and the divergence-free condition yields

in which case the normal stress differences are zero. Ho
ever, these normal stress differences only ent€(af), and

are not present in the leading order reduced Stokes’ equa-

tions (25—(26).
Substituting the shear stresses into E85)—(26) yields

Pattern formation in non-Newtonian Hele—Shaw flow 1195
? 2 2

12V,p=— (uo((Wel12?u,?)uy), (37

pZ: 01 (38)

V,-u+w,=0, (39

as the leading order equations of motion for a JSO fluid in a
Hele—Shaw cell. The nondimensional shear viscosity, with
both the polymer and the solvent contribution, is

1+ a(Wel122|u,)|?
1+(Wel12?|u,?

1a((Wel122|ug?)= (40)
where = u¢/png, and the modified Weissenberg number,
We, is given by(19). This agrees with the one-dimensional
steady shear flow result.

B. Generalized Darcy’s law

The reduced Stokes equatiof8)—(39) can be used to
derive a generalized Darcy’s law, as in Kondic, Palffy-
Muhoray and Shelley® The discussion applies to a general
shear-rate dependent viscosity function, but we specialize the
results to the case of JSO.

Integration of the reduced Stokes equat{8i) yields

122V ,p= p,(We/12?|u,|?)u,, (41)

where we seek flows symmetric aboz#=0, and use the
independence gb from z. We would like to express, as a
function of V,p, as in the usual Darcy’s law. Squaril)
gives an implicit equation fdu,|? in terms ofz?|V,p|2. The
invertibility of this equation, or lack thereof, is a central is-
sue. A sufficient condition for finding a well-behaved inverse
of (41) is that

0<Co=<p,(s?)+28°u/(s?)<C <o (42)

holds for some constant3,, C;, and all values (see Ap-
pendix A. In this case the inverse viscosity is defined

tyrough

wo(S2)s=¢ whenever s=7/T,(L?). (43

In the case of JSOu,(s?)=(1+ as?)/(1+5s?) with 0<a
<1 a constant, squ satisfies inequality42) only for «
>1/9. Assuming that inequalit{42) holds, Eq.(41) can be
inverted uniquely to give

B 12zV,p
 Ba(WE 2V 5p|?)

Uz

or

JZ 47 122'V,p
7= - .
“12 Ra(WE 2V ,p[?)

(44)

Y2 dzu(x,y,z) is the gap-averaged velocity. Gap

u= and V,-u=0, (45)

-1
_—V y
L (WEVp[2) " 2P

where the viscosity functiom is given by
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1.1 - - - - - The analysis of Sec. Il A can now be applied to E&il)
for each mode separately. The reduced Stokes equations in
1 T this case ard37)—(39) with the viscosity functionu,= u
N given by
0.9} AN J
AR — o= N
\\ o e a:o_s ak
i N D C oo 1 We/12?|u,|?) = ay+ ,
0.8 \“.\‘ o 3;8::135 m(( 2 | z| )=ay kzl 1+ﬁﬁ(We/132|uZ|2
vy (48)
0.7 [ B 4
Loy where ag= us/po, ax=m/po, Bx=NM/N1, and po= us
06 \\ \ - +2 7. The modified Weissenberg number should be de-
‘ \\ e fined as in Eq(19) using the longest relaxation timg . The
05 4 AN . generalized Darcy’s law45) holds now with the effective
! RN viscosity . defined using the inverse viscosity of H¢48).
0.4+ \ . (2) More general constitutive models can be treated. JSO
N e is a special case of the Oldroyd 8 constant m&8lel,
0.3 \ i
. T7=—pI+o,
02} k Do
o+ A1W+A3(D0’+ D)+ \str(o) D+ Ng(0=D)T
' 1 2 3 s 5 6
IV pl

D,D

FIG. 3. The effective viscosity. for some typical values o with We

=1 (ch in W le the absc) o . . . .
(changes in We rescale the abscjssa which is the most general differential model linear in the

extra stress tensor. Hew B=tr(ABT), and the upper con-
vected derivativeD, /Dt is given by Eq.(6) with a=1.
112 72 There are certain restrictions on the constaings Aq...\7

1
== 12] dz= . 46 i .
. (WE V) D3 WE AV (46)  for the model to be physically reasonabfe

Applying the scaling(14)—(16) to the Oldroyd 8 con-

Equationg45)—(46) are a generalized Darcy’s law for a non- stant model yields as the leading order the reduced Stokes
Newtonian fluid, with the viscosity expressed as a functionequationg37)—(39), but with a different viscosity. Here, the
of |V p|2. The subscript oV andu, and the bar o willbe ~ shear-rate dependent viscosijty,= u is given by
omitted hereafter. 2 2

Figure 3 showsu,(We? |V p|?) for various values of, w(Wel122|u,|?)= 1+,82(We/132 |UZ|2,
with the Weissenberg number simply rescaling the abscissa. 1+ B1(Wel12?[u,|
We summarize the relations between the four different “vis-where
cosities:” u is the shear viscosity given big0), & is the
inverse ofu, & is the gap-averagét6) of &, and later we B1=as+as+as(1—az—as)+ ag(l—az— 3 as),
will need &, which is the inverse of the gap-averaged vis- 5
cosity. For a Newtonian fluid, these would all be equal to theB2= @2(@st as)+ as(l—ag—as)+az(l-az— zas),
constantu, in dimensional terms, and simply 1 nondimen- 5nq aj=\j/\; for j=2,...,7. The modified Weissenberg
sionally. The “inverse” is always to be taken in the sensenymper should be defined as in Eg9) using\, instead of
discussed above. The viscosity,(We’|Vp|?) inherits the ) Note that no generality is gained by using the Oldroyd 8
invertibility and monotonicity ofu,(We?|u|?). In Appen-  constant model instead of JSO in the present context; al-
dix A we give a detailed discussion of the properties of theihoygh the Oldroyd 8 constant model yields more general
viscosity functions, and aexplicit expression foru in the  expressions for the extra stresses, the resulting reduced

case of JSO. _ _ _ ~ Stokes equations are the same as with JSO, with the shear-
Remarks(1) The analysis of this section generalizes im- rate dependent viscosity of the same form.

mediately to JSO models with multiple relaxation times.  (3) The model used by Bonet al,?"? similar to Eq.
Consider a model where the extra stresss the sum ofN  (45) pyt with the viscosity depending da|, now follows by
modesoy, each _satlsfymg a constitutive _relatlon of the form sing the viscosityi instead of the viscosity:,,(We?| Vp|?)
of Eq. (5. That is, the equations of motion af2), conser- iy Eq. (45), thereby expressin§ p explicitly in terms ofu.

vation of massV-v=0 and the constitutive relation In this case, the functional form is such that this inversion

(49

Do, N can always be accomplished. We considgr (E&) to be the
ot )\kT=27;kD (k=1,...N), o=, oy. y>more natural form of the flow equations; it leads to a
k=1 boundary value problem for pressure, as in the Newtonian
@47 case.
Here \, and », are the relaxation time and viscosity of the (4) Darcy’s law could be formulated in the same manner
k-th mode, respectively. with a “power-law” viscosity u(|u,|?) = (Ju,|?)¢. The pa-
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rameter|@| <1/2 is negative for a shear-thinning fluid. Dar- direct numerical solution of the flow, and determined the
cy’s law is still given by Eq(45), with the effective viscosity ~correct pressure boundary conditions up T0=x(1).
& now given by Reinelt® studied viscous fingering in a channel Hele—Shaw
al(1+20) cell geometry, and extended the work of McLean and
3t4a (1|Vp|2) (50) Saffmari® by using the improved boundary conditions: his
4 analysis recovered the experimentally observed finger
widths. (These improved boundary conditions have not been
applied in numerical simulations of radial Hele—Shaw flow
and, in fact, are not generally usgdh this work, we con-
centrate on the case &4, and do not consider these cor-
rections.

_ 2y Stda
walVP) = 30550
This model was used by Poiesnd Ben Amar®?*who stud-
ied the Saffman—Taylor instability of a weakly shear-
thinning power-law fluid @¢<1) in a channel geometry.
Lindner, Bonn and Meuniéf have also used this expression

ribe their experimental r Its. . L
to describe their experimental results In the case of a non-Newtonian fluid in a Hele—Shaw

Boundary conditions on the pressurapplying the cell, only partial theoretical results are available. Ro and
di -f dition to th lized D 's | ’ ) ; ,
vergence-iree condition fo the generalized Larcy's aWHomsW generalized the analysis of Park and Horfisgind

yields found corrections to the pressure boundary condition for an
1 Oldroyd-B fluid modef® However, they do not consider
Vi mowevep VP =0 (31 terms depending on the lateral curvature, and only account

for changes in the thickness of the residual film.

which is a nonlinear BVP for the pressure. As a boundary  We remark that Wilsoif has usedd hocboundary con-
condition we will use in this work the Laplace—Young con- ditions in an attempt to account for normal-stress effects in
dition: his study of the non-Newtonian Saffman-Taylor instability.

[p]=Calx (52) He der_ived a normal-st_res_s ju_mp _condition at th_e interface by

' assuming the stress distribution in the bulk fluid can be ex-

for the pressure jumpp], wherex is the interfacial curva- tended up to the interface; however Ro and Hoffsyprk-
ture, Ca=12: " 2uoU/y is a (modified capillary number, ing in the limit Ca= woU/y<1, show that this assumption is
and y is a surface tension parameter. This boundary condiincorrect.
tion is typically used, and has been justiff@d®for Newton- Several experimental studies have identified normal-
ian Hele—Shaw flows. For the parametric regime which westress differences as being important in some instances of
study—moderate Weissenberg and capillary numbers—theon-Newtonian Hele—Shaw flowsee Smith, Wu, Lib-
current state of theoretical and experimental evidence sugschaber, Moses and Wittéh,Gauri and Koelling® and
gests that this boundary condition remains appropriate. FutHuzyak and Koellin). However, this is highly dependent
ther, as our simulations do capture important qualitative feaon the parametric regime considered. Indeed, the aforemen-
tures observed in experiment, our results might bdioned experiments reveal that the Newtonian and non-
interpreted as am posteriori justification for this assump- Newtonian case yield an almost identical response if the cap-
tion. Nonetheless, as the question of boundary conditions iillary number and Weissenberg number are moderate, as in
non-Newtonian flows is a complicated one, we give a briefthe present paper.
review of what seem to be the relevant issues. Gauri and Koelling® study the flow dynamics at the tip

The derivation of the bulk fluid equatiofi) assumes a of the meniscus of a long air bubble that displaces a vis-
separation of length-scales into a large lateral length dcale coelastic fluid with a constant shear-viscosity. Their experi-
and a small gap-thickneds so thate=b/L<1. No such ments are characterized in terms of a capillary number Ca
separation of length-scales is available near the meniscugnd a Deborah number De,
where in fact the flow is fully three dimension@ee Smith,
Wu, Libchaber, Moses and Wittéh,and Tabeling, Zocchi AU . We 1
and Libchabé®), and at which the fluid satisfies a stress 26~ b~ WE& = 12\/E2%ZWG'
jump condition. An analysis of the flow near the meniscus is
therefore required to derive a consistent approximation to thevhereU/b is the wall shear-rate in Hele—Shaw flow, and the
boundary conditions on the gap-averaged pressure. last approximative equality applies féa|~0.9. They find

It is known that an air bubble displacing a fluid in a two distinct flow patterns at the tip of the meniscus, as
Hele—Shaw cell leaves behind a thin residual film. The thick-sketched already by Tayl8t:a complete bypass flow, and a
ness of this film varies with bubble velocity and so gives riserecirculation flow. When De1 the flow completely by-
to variations in the pressure jump across the meniscus. Apasses the tip of the bubble, creating a strong extensional
analogous problem is that of a long air bubble displacing dlow field. The response of the non-Newtonian fluid changes
fluid in a capillary tube®?%34%0which for the Newtonian dramatically at De-1. This transition could be perhaps at-
case was analyzed by Brethertdiby expanding in a very tributed to a “coil—stretch” transitiofDe Genne¥), which
small capillary number GauU/y<1. This analysis was occurs due to the sudden uncoiling of polymer strands in the
generalized to Newtonian Hele—Shaw flow by Park andstrong extensional flow near the tip of the meniscus for De
Homsy?® again for smallCawho showed that the Laplace— =1.
Young condition gave the leading order contribution. Reinelt ~ However, such behavior is an example of the response in
and Saffmarf* removed the small"Caestriction through a particular parametric regime. FonoderateDe<1 and
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Ca<10°, Gauri and Koelling® show that there is no strong The full evolution problem fo} is the nonlinear BVP
extensional flow near the tip. Further, for £6.35, the flow  for the pressure,
field near the meniscus tip for non-Newtonian fluids was 1

similar to that for Newtonian fluids, and the thicknesses of V =0,

2
their residual films were nearly identical. In our numerical Ho(WE[VPI%)

studies(Sec. V) we concentrate on flows where €40°, plr=1-Ca 'k, plr,=Ca *re, (53
and the modified Weissenberg number is moderate, We . ) . °

<0.5 (De<0.125). This parametric regime should be below@nd the kinematic condition,

the transition to bypass flow and a possible “coil-stretch” IXi o

response. ot (BO=ukie(B.0).1), (54)

In a channel Hele—Shaw cell, Smiét al3 studied the ] ] ]
properties of Saffman—Taylor fingers in very dilute solutions/Nich states that the boundaries are material curves.
of polystyrene dissolved in a Newtonian solvent. They found ~ Remarks{1) Nonlinear BVPs similar to Eq53) arise as
a transition to narrow fingers when the modified capillarythe steady states of nonlinear conservation laws in many

number Ca-10%, and the shear ratd/b was comparable to other physi(_:al contexts, _S_UCh as gas dynafﬁican(_i
the inverse of the polymeric relaxation time (estimated magnetostatic® The solvability of Eq(53) is established in

using Zimm theory. Their analysi&' yields again the critical Appendix A3 using classical results; inequalfp) is also a

‘ . _ sufficient condition for Eq(53) to have a unique solution.
Deborah_numb.er Del, at W?'Ch the abrupt Ch"f‘f‘ge,,'” re (2) Consider a finite patch of fluid, denoted by with
sponse is attributed to a ‘“coil-stretch transition.” And boundaryT', surrounded by gas at uniform pressgset to

aga";‘,'l for the cap|llary_ numbers can|dered herein, Smm}erd. Then the length of the boundary curve decreases with
etal” found an essentially Newtonian response. time, so the dynamics is curve shortening. To show this, the
Although it is reasonable to assume that in this paramet ) iinear BVP(53) with the Laplace—Young boundary con-
ric regime normal-stress effects are negligible near the tip O&ition must be augmented with the kinematic conditi&#)
the meniscus, it is possible that viscoelastic effects in the thig 1o o the boundary curve is parametrized with the La-
film region become importarif. However, for moderate gy angian parameteB. The velocity is obtained from the
Weissenberg numbers (We1l), Gauri and KoeIIm@? and  pressure through Darcy’s lavl). This free-boundary prob-
Huzyak and Koelling® show that in a purely elastic poly- |em describes the relaxation of the bubble under capillary

meric (Bogey) fluid the residual film thickness scales almostfgrces. A direct calculation shows that the lengthof the

the Ro and Homsy analysissuggests in this case that the )
non-Newtonian effects at the meniscus are negligible, and d_ﬁz_ f _ VPl

Newtonian boundary conditions are applicable. Hence, it  dt an(WeVp|?)
seems reasonable to neglect elastic effects at the interface in (3) The Weissenberg number could be removed from the

the parametric regime in \-/vhi.ch we are interegted. problem by rescaling Eqg53), (54) and (46) asL—WeL,
The effect of shear-thinning near the meniscus has bee \ye2t and CasCa/We. However. we retain a We de-

less researched: in light of theoretical studié®o and pengence in what follows to keep a fixed physical length-
Homsy"’ and FasP) it is possible that shear-thinning gives ¢caje for our initial data.

rise to corrections to the Laplace—Young condition. A more
detailed analysis is clearly warranted: It is likely that a full
numerical simulation, as performed by Reinelt and
Saffmari® for Newtonian fluids, is required to settle the
question of shear-thinning and viscoelastic non-Newtonian  We study the linear stability of a circular bubble of ra-

dA<O.

Ill. LINEAR STABILITY ANALYSIS

contributions to the pressure boundary conditions. dius R(t), which is perturbed by a small azimuthal distur-
bance, and expands into a non-Newtonian fluid in an un-
C. Dynamics of an expanding bubble bounded Hele—Shaw cell. For simplicity, we impose in this

qsection a constant mass flux as the driving force, so that the
nareaS(t) of the bubble satisfieS,/2m=RR=1. The nondi-
ensionalization is chosen so tiR¢0)=1, R,(0)=1.

The bubble is centered at the origin and the posiRoof
the interfacel is given by

We now consider the evolution of a gas bubble expan
ing under an applied pressure into a non-Newtonian fluid i
a radial Hele—Shaw cell. The fluid domain is taken to be ar"
annular regionQ) bounded by an inner boundaly and an
external boundary'.. Let the inner and outer boundary be
given by the curve; o(B,t), respectively, where we assume R(6,t)=R(t)[1+en(6,0)]F, (55)

B to be the Lagrangian parametrization of the curve. where e<1, and » is the perturbation. Assuming a purely

.We_ will study initial d_ata, for an _expanding in_terfac_e, radial flow far from the expanding bubble, the far-field
which is a small perturbation from a circle. Accordingly, in boundary condition simplifies to

defining the nondimensional parameters, Ca and We, we use
as characteristic length and velocity scales the initial bubble ~P(r)~—Inr, asr—oo,

radiusR, and initial veIocityRo. similarly to the Newtonian case.
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Since 7(6,t) can be written as a Fourier series in the From Eg.(60), one can obtain an explicit solution for the
azimuthal angle), and the linearized equations are separablewave numbermg,,, with a maximal growth rate in the
we consider without loss of generality a perturbation of theweakly non-Newtonian case. This expression is rather com-
form 7(6,t)=N(t)cosmé, wherem is a wave number, and plex, but in the limit Cal<1 it simplifies to

N(t) is the amplitude of the perturbation. We derive an ex- B
pression for the growth rate,=N;/N for a weakly non- Mimax™ mm‘;ﬂ(ﬂ( 1——|. (62)
Newtonian fluid, as well as for a general shear-thinning fluid. 2

The maximal growth rate is increased by shear-thinning if
A. Weakly non-Newtonian limit Ca>17. Typical experimental values of the capillary number
We start by considering the weakly non-Newtonian limit &ré much larger than thi€.Similarly, the critical wave num-
We?<1, where we can obtain an explicit expression for thePer M, the maximum wave number for which the growth
growth rate. This limit can be attained experimentally byrate is still positive, is shifted towards lower wave numbers
choosing a fluid with a short relaxation time or by choos- @s_shear-thinning is increased. We find that the relation

ing P, to be small, as is suggested 9). myeM=v3mie™ holds approximately for a shear-thinning
Expanding the viscosity functiofd0) for JSO in wé  fluid as well.
<1 yields To summarize, in the weakly non-Newtonian limit
shear-thinning decreases the wave number of maximum
po( WE|U %) =1—We? (1— a)|u,|*+O(We?). growth, increases the maximum growth rate and tightens the

All dependency on the specific viscosity function is con-Pand of unstable modes. This suggests an increased selectiv-
tained in the parameter. By introducing in Eq(41) a small ity of wavelengths in the pattern formation problem. For
We expansion fop=py+We?p,; andu= uy+We? u, , inte- shear-thickening fluids, the results are reversed: the growth
grating and gap-averaging as in Sec. 11 B, we obtain the twaate for the wave number of maximum growth is decreased

term hierarchy, for all reasonable values of the capillary number, and the
wave numbers of maximum and critical growth are in-
Uo=—Vpo, V-uy,=0, (56)  creased.
3(1—

uy=—Vp;— TQ)|VP0|2VF301 V.u,=0, (570 B. Linear stability: General case
Let us now return to the general cds&e=0(1)] of a
with the boundary conditions non-Newtonian fluid whose viscosity is given by Eg0).
Polr=—Ca tk, pylr=0, (58) We do not obtain an explicit expression for the growth rate
in this case, but can find the growth rates numerically.
po——Inr, p;—C, asr—w, (59 In the absence of perturbations, the radi{s) of a cir-
The constanC is determined as a part of the solution. cular bubble e_vo_lvgs #&=1R, since we impose a COOStant
By solving the perturbation pressupe from Eqs.(56)— mass-flux at |nf|An|ty. The cprrespondmg lelocny field is
(59) and using the kinematic boundary condition, we find theglven byu(r,t)=F/r. We define the pressuge through
instantaneous growth rate

p,(r)= “Wezlzl P(R(1))= !

o pr(r)=—p( T)F, p( (t))——m,

om=—1+m(1—l—B—
m+1

by expressing the viscosity as a functionwofThe connec-
tion of & to the previously defined viscosities is discussed in
2m Sec. IIB.
1+B . (60 . . . .
m+1 The perturbation of the interface induces perturbations to
the pressure and velocity fields, which we expand as

+Ca 'm(1-m?)

In this weakly non-Newtonian limit, the non-Newtonian
character of the fluid is contained in the single small positive  u(r, 8,t)=u(r)+&T(r, 4,t),
parametet3= (3/20) (1— a) We?. _ 5

In the absence of surface tension (¢a&0), the p(r,6,0)=p(r,t) +ep(r,0,1).

growth-rates,, is always positive and grows essentially lin- By expanding Darcy’s law45) and the boundary conditions

early with the wave numben, making the system ill-posed. (53) in ¢, we obtain for the pressure perturbatjihe linear
Introducing surface tension (C&>0) stabilizes the large boundary value problem,

wave numbers, and yields a band of unstable modes at inter-

quiate wave numbers. This is similar to the case of a New- ¢ pn—2 Wez_f‘z’“’VEVET VP |=0, for r>R(t), (63
tonian fluid. m

The shear-thinning of the fluid has several effects on the 1
growth rate. The wave number of maximum growth for a (R, 0)=—p,(R) Rp+ =—(7+ 74p), (64)
Newtonian fluid is given bif RCa

P—0, asr—wx, 65
mptem (/122 O o ®
max 3 Here w=(We? p?), andu’ is defined analogously.
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The separation of variables  with P(r,6,t) Ca =240 (a)
=P(t,m)f(r,t,m)cosmd) leads to the linear two-point 8t We =0.1
boundary-value problem, of

19[ [m—2Weu'p? m? O

——{r(ﬂfﬂp’%}—z—_f:o, (66) )

r or 7 reuw of

f(r=R)=1, (67) R\

f—0, asr—o, (69)

(d)
The factorization ofp was chosen so thdt(R)=1, which
requires

P(t)=| A(We&/R(t)*)+ (1=m?) | N(t),

R(t) Ca

for the perturbation pressure to satisfy the boundary condi-
tion (64).

Equation(66) approaches its Newtonian counterpaut (
=1, u'=0) asr—, so we expect

FIG. 4. The growth rater for general shear-thinning fluitsee the text

fr(r)f~v—?f(r), (69 Increased wavelength selection, resulting from shear-
thinning, as well as the stabilization of short wavelengths,

to hold forr>1. We impose Eq(69) at a large, but finite €ncourages the idea that shear-thinning might lead to the
radiusr=r,,, instead of Eq.(68) when solving the two- suppression of tip-splitting. However, due to the intrinsic
point boundary value problent66)—(68) numerically. To- nonlinearity of the problem, we prefer not to make any defi-
gether with the kinematic boundary condition, this completegnite conclusions based on linear theory alone. Linear stability
the formulation of the problem, and the growth ratg is  analysis does, however, provide us with the basic under-

given by standing of the problem and guidance in performing fully
. e nonlinear time dependent simulations of an expanding
1 R_ p1—2 We uip; (R) bubble. This is the subject of the next section.
ImR[T "
IV. NUMERICAL SIMULATION
- 2
K|t RCa(l_ m )) fr(R)}' (70 In this section, we discuss the discretization and numeri-

o - T - cal solution of the full evolution problertt3)—(54) of a gas
where u;=u(WeEp,(R(1))?), ui=wn' (WEP,(R(t))%),  bubble expanding into a non-Newtonian fluid. As initial data,
andf, is obtained through numerical integration of E(6),  we take the interior interfacE; as a circle perturbed with a

(67) and(69). single azimuthal mode, and the outer bound&ly as a
circle.
C. Discussion The kinematic conditior{54) can be viewed roughly as

In Fig. 4 we show results of linear stability analysis for @1 ODE for the boundary of the bubble, with the right hand
the general shear-thinning fluid. First, in Figa¥decreasing side a complicated and nonlocal function of the boundary of

the shear-thinning parameterleads to an increased growth the domain. The numerical solution 3)—(54) using an
rate of the wave number of maximum growth, and its shiftexplicit time-integration scheme can then be outlined as fol-
toward lower wave numbers, as predicted by the weaklyOWs:

non-Newtonian model. Comparing Fig(a# with Fig. 4b), (1) Given the boundary position, solve for the pressure from
we see that an increase of We reduces the range of unstable (53),

wave numbers considerably; one mlght expect increased St@) Find the Ve|ocity from the pressure using Darcy's law
bility of short wavelengths for large We. Another point to (45).

note is that, contrary to Fig.(d), decreasinge does not (3) Find the new boundary position according(f).
necessarily lead to an increase of the growth rate of the mode

of maximum growth. Still, strongly shear-thinning fluids do The full evolution problem is much harder to solve nu-
show increased growth rates in the range of We mostly conmerically than the corresponding problem for a Newtonian
sidered in this paper (We0.5). The comparison of Figs. fluid, where the pressure is harmonic. In that case, boundary
4(a),(b) with Figs. 4c),(d) show the role of Ca; an increase integral methods coupled with the “small-scale decomposi-
of Ca makes shorter wavelengths unstable, increases thien” (Hou, Lowengrub and Shell8y make it possible to
growth rate of unstable wave numbers, and augments th&olve the problem efficiently. In the non-Newtonian case, the
effect of shear-thinning. pressure satisfies the nonlinear B{&3), and must be solved

Downloaded 28 May 2001 to 128.122.81.196. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 13, No. 5, May 2001 Pattern formation in non-Newtonian Hele—Shaw flow 1201

for in the whole domain. Since the problem is driven by the n—2We ' VpVp'

curvature of the boundaries, high spatial resolution is re- N'(p)q=V: =7 v

quired. Further, there is a severe stability constraint on the

time-step, leading to a computationally intensive problem. , L . . .

For efficiency, we impose a four-fold symmetry on the initial S_mce this linear problem is solv_ed approxm_wately n

bubble shape, and the solution. practice, the convergence of’ the resulting scheme_ is typlcz_;llly
Methods for solving the equation for the pressure aré_eSS than quadratft’. Newton's method can be quite sensi-

presented in Sec. IV A. Issues related to evolving the boundiVe 0 the choice of the initial guess, and can diverge if the
aries are addressed in Sec. IVB initial guess is poor. We encounter this problem in the simu-

lations when the interface begins to develop structure. In this
A Pressure solver case, we switch to the projection-iteration scheme.

The projection-iteration scherfdfor the solution 0f(72)
The solution of the pressure requires solving a nonlineafs defined by

elliptic PDE in a complicated evolving geometry. Although
solution methods for problems of this type have been con-
sidered in the literature, for example by Conéuthey have
typically been for steady state calculations, where efficiency . ) ]
was not as critical as in the present problem. wherek>0 is a parameter of t.hg.method. The |j[erat|0n can
We use a Lagrangian grid which conforms to the inter-P& Shown to converge for any initial gugss, provided that
faces and moves with the fluid. The fluid domain is mappedh® parametek is chosen appropriately. However, sufficient
onto an annulus, where the the nonlinear BVP is discretize§onditions that guarantee convergence for a rangle ap-
using finite differences, and the resulting system of equationB®2" to be far from tight, and we find that the convergence of
is solved. We introduce on the annulus the coordinéies, the method can pe enhan_ced considerably by ghoosmg the
where ¢ is a “radial” coordinate, andy is a 2m-periodic value ofk dynamically. This value may lay outside of the

azimuthal coordinate, so thét,») is mapped to the point fange of theoretically guaranteed convergence.
(x,y) in the fluid domain according to Finite differencing of the linear BVP produces a sparse,

but nonsymmetric linear system of equations for the un-
known pressure at the grid points. After a comparison with a
number of iterative schemé$ywe chose to use the biconju-

gate gradient method with a diagonal preconditioner to solve
The inner boundary’; corresponds t@’=1, and the outer the linear equations.

boundaryl', to {=2. Formulas are modified when expressed
in the new coordinates, for example,Vp(x,y) B. Moving the interface
=J"Vp(¢, n), whereV is the gradient with respect to the
annular variables. In particular, we solve

Apn+l:Apn_kMpn)a in Q, ppe=Ff on 9Q,

X=X({,7n),
y=y({,n),

X Y¢

with Jacobian J= “ . (71

7 7

As is typical for curvature driven free boundary flows,
the computational problem is exceedingly stiff. The size of a
time-step is strongly constrained by numerical stability. We
]=O in Q, find that the stability constraint is always more restrictive
than say resolving the time-scale of the fastest growing linear
and mode. As is known for the Newtonian cadsend is sug-
(72) gested by our weakly non-Newtonian linear stability analysis
p=f on the boundarys(}, (Sec. ll), the step-sizeAt for an explicit scheme should
satisfy

Vp

Mp)zv'{mw@wmz)

for a givenf, with N expressed in the annular variables. We
present the numerical methods in the original variabeg)(
for clarity, but in practice, our computations are carried out ~ At<C(Aspp)®, (73

in the annular variables.

We use two iterative methods to solve the BVP2).  whereAs,,, is the minimum spacing of mesh points on the
Both iterations reduce the nonlinear probléi®) to a se- interfaces, and is a constant. We observe and enforce this
quence of linear elliptic BVP’s. The solution of these linear constraint in our code, using an empirically determined value
problems is an issue in itself. for C. For time-evolution, we use an explicit, two-stage

Typically, we use Newton’s methdd,for which a lin-  Runge—Kutta method with repeated Richardson extrapola-
earization, or Frehet-derivative, of\" has to be calculated. tion. The step-size is sometimes reduced after taking two
One then solves at each iteration the linear, variable coeffinalf-steps and comparing the error with that obtained after a
cient elliptic BVP, full step. An implicit time-stepping scheme would presum-

. ably ameliorate the stability constraint, but the implementa-

N'(Pn)Pa+1=N" (Pn)Pn = Appn), in €, tion of such a scheme in the present context is difficult. The

Poii=f on aQ, severe stability constrairi73) is a primary obstacle to long-
time simulation of the evolution proble®3)—(54).
for the approximatiorp,,, ;. Here the Frehet-derivative\’ Remarks (1) Number of grid pointsThe length of the
is given by interface increases by more than two orders of magnitude
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during the simulations. A large number of points would be Newtonian (@) Shear thinning ()

desirable for resolution, whereas a small number of points
would be preferred to alleviate the stability constraint. To | v
strike a balance, we begin typically with 64 points on a quar- A&
ter of an interface in the azimuthal direction, with the reso- i >m . '<
lution increased as needed up to 512 points. In the radial QAv
direction, we use a fixed number of points, typically 100— L
150. A lower resolution leads to a rapid loss of accuracy. 50 5
N ev\ftzgnTémrﬁ e?f): ct)rgl plglztﬁgzzen S;ﬁ/zstjgihs,eo:x:ilgllglf:;gcgl|?12¢':|G 5. The snap-shots of the_ ev_olving_ bubble interface(abNeMopian
- ! ) ~“Hluid and (b) strongly shear-thinning fluidCa=480 for both simulations,
the time steps are relatively small because of the stability,=0.15 we=0.15 for shear-thinning one
constraint, we can find a good initial guess for the solution at
the next time step by extrapolating the results from two pre-
vious time steps. However, when the bubble develops mora. The effect of shear-thinning on the dynamics of
structure, this initial guess might not be good enough to enthe interface
sure the convergence of Newton’s iteration. In this case, we
switch to the projection-iteration method.
(3) Clustering of grid pointsThe Lagrangian discretiza-
tion tends to move grid points away from the tips of the

From experiment?® theory’*=>3’and simulatiorf, the ba-

sic elements of pattern formation are well understood for a

gas bubble expanding into a Newtonian fluid in a radial

forming fingers, and into the fjords. This clustering is unde-.HeIe_ShaW cell. Very roughly, a perturbatlgn of the bubble
interface grows outwardly into an expanding petal. When

sirable; the flow near the tips is left underresolved, and the, . , )
. . . _This petal's radius of curvature exceeds the wavelength of an
fijords are overresolved. The unnecessary clustering of points i o .
) . iy . unstable mode, it “tip-splits” into two nascent petals, which
in the fjords also worsens the stability constraint. Conse- . . .
- Lo . hemselves broaden and split. This repeated process yields an
guently, regridding to equally spaced points in the azimutha . . .
i . . nterface described by a population of branches and fjords,
variable is performed when needed. An alternative approac o . "
nd whose evolution is characterized by strong competition

WOUIQ be to impose this dynamlgally by adding an aZImUIhagmong the branches, with some branches being “shielded”
velocity component to the velocity of the mesh points so as : . . .

. . 5 and retracting, and others advancing farther into the fluid.
to keep the grid points equally spaceste Houet al”’).

(4) Second order accuracyOur numerical scheme is Clearly, if tip-splitting can be suppressed a much different

second order accurate in time and space. Evaluating the Vg_attern morphology will follow.

: . . . The beginnings of the pattern formation scenario for a
locity from a pressure field througid5) requires special at- Newtonian fluid are seen in Fig(d, which shows the simu-
tention at the boundaries. We find that calculating a finite : ! L
difference approximation to a radiér £) derivative of the eIatlon of an expanding bubble, plotted at equal time intervals.

pressure at the boundaries by extrapolating from two interio-rrhe initial shape is a circle perturbed by am=4 cosinus

levels of points, as is commonly done, leads to anonsmootﬂmde of amplitudea, wherea/R,=0.1. In Fig. 3a) we
P ' y ' - observe the unstable mode growing into a pé&aly, about

radial error in the velocity: Although the one-sided approxrazo), which widens, and then splits into two as its radius of

mation used at the boundaries and the centered approxima- . )
. . Curvature increasesAgain, much more developed patterns
tion used away from the boundaries are both second order g . .
. L can be computed with higher accuracy using boundary inte-
accurate, the one-sided approximation has a much larger
0 : o Jgral method$)

constant multiplying the leading order error. To avoid this

. . : The bubble evolution in a strongly shear-thinning fluid is
problem, we have devised an improved extrapolation scheme . . : o g Y
: L S strikingly different, as is illustrated in Fig.(B). This simu-
which uses three layers of points in the interior to calculat

the derivatives at the boundaries. The new scheme vyiel gtlon has the same capillary number as the Newtonian simu-

second order accuracy, but with a smooth error in the veloc-
ity field. We have verified the second-order accuracy in
space and time of our code by varying the spatial and tem- ~~

. . . . I
poral resolutions, and estimating the numerical errors. JlEMERETY

l 0.95
0.89
V. DISCUSSION OF THE RESULTS | 0.4

In this section we discuss the simulational results. First, l 2;2
a study of the influence of shear-thinning fluid behavior on ulﬁa

pattern formation is given. A more detailed analysis of the
influence of nondimensional parameters in the problem fol-
lows, as well as some comments on the effect of using dif-
ferent effective viscosity functions. Finally, we address the

question of _the dEpende_n(?e of emerging length-scales on thgs. 6. (Color) Contour plot of the viscosity of the driven fluiWe
flow and fluid characteristics. =0.15, «=0.15, Ca=480).

0.63
0.58
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22 ©
2 FIG. 7. (& The viscosity of the fluid
18 along the interface for a nontip-
v splitting finger (S is the arc length
1.6 measured from the tp (b) the time
14 evolution of the viscosity at the tigc)
the time evolution of the curvature of
1.2 the tip.
L é 0 L
TIME TIME

lation, and again has initial data unstable to the Saffman— It is this phenomena that results in the narrowed petals
Taylor instability. The first and plainest effect of shear- observed from the nonlinear development of the Saffman—
thinning is to suppress the tip-splitting of the outwardly Taylor instability: The fluid velocity is locally accentuated
growing petal. As the petal expands outwards, it appears tby the non-Newtonian effect, which pulls the interface out-
near a splitting, but then “refocuses,” leaving behind “side- wards at the tips. Thus, a tip remains a tip, and thereby the
branches,” and continues to grow outwards. This refocusingonditions for a lower local viscosity are maintained. Of
occurs twice during the shown course of the evolution, withcourse, this effect is limited by capillarity, which seeks to
the larger(and latey side-branches themselves beginning tolower the length to area ratio, and which is also likely related
grow outwards and giving the impression of a trifurcation ofto the production of “side-branches” left behind the advanc-
the petal, rather than the bifurcation associated with tiping tip. As is shown in Sec. V C, one can actually induce the
splitting in the Newtonian flow. We note that the presence offormation of fingers(rather than narrowed petalby a dif-
a single mode h=4) at t=0 necessarily influences the ferent choice of viscosity function, even in the open radial
shape of evolving patterns by imposing a symmetry which igeometry.
not present in a physical experiment. By performing addi-  More information on the production of side-branches is
tional simulations, characterized by different mogesand  found in Figs. Tb) and 7c), which show, respectively, the
also by a combination of differemh’s, we have verified that time evolution of the viscosity and curvature at a petal tip
the main resultgin particular, the phase diagrams of Sec.(about §=0). In the viscosity, we observed an early time
V B, and the length-scale results of Sec. Y&e not modi- behavior characterized by only small changes in absolute
fied by this assumption. value, but having fast, irregular oscillations. We find these
Figures 6, 7 and 8 provide us with some intuitive under-oscillations curious, and have no explanation for them, ex-
standing of the source of suppression of tip-splitting. Figurecept to note that they persist under refinement in both the
6 shows the viscosity.,(We? |V p|?) in the fluid external to  space and time resolution. In particular, even if it is not ob-
the bubble, at the final time shown in Fighh As expected, vious from Fig. Tb), these small oscillations are smooth:
we see that the lowest viscosity appears at the ends of thEhere are approximately 1500 computational time steps and
petals. The viscosity increases sharply as one moves awd0 data points presented in this oscillatory region. During
from the tips, and is highest within the fjords, where it is this period, the curvature shows little change. These oscilla-
nearly a constant unitgrecall that the “zero shear” viscosity tions are followed by a period of monotonic increase in tip
is normalized to one Figure 1& shows the viscosity along viscosity, as the radius of curvature likewise increadkes
the bubble interface at several times, including0, and petal spreads At somewhere less thar= 3, the velocity at
shows that the viscosity is always lowest in a fairly localizedthe petal tips increases relative to the surrounding parts of
region around the tip. the interface(a suppression of tip-splittingwhich leads to

-0.3
-0.6
-0.9
-1.2
-1.5
-1.9
-2.2

(b)

FIG. 8. (Color) The pressure contours and velocity vectors of the driven fluid at the final tansdtewtonian fluid;(b) shear-thinning fluidthe parameters
are the same as in Fig).5
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i FIG. 10. Phase diagram for pattern formation in the strongly shear-thinning
5 '_ fluid, «=0.15, for small values of We0.25. InA one gets wide “New-
“ tonian” petals, inB tip-splitting is suppressed, and @ narrow(relative to
| A), but tip-splitting petals are observed.
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tured that shear-thinning would not influence considerably

FIG. 9. The pressure in front of the growing tip as a function of radial the instability structure. Figure 9 shows the pressure in the
distance. The data are taken at nondimensional tis®.0 both for New- driven fluid in front of the growing tip versus radial distance
tonian and shear-thinning case. The parameters are as in Fig. 5. . . . ’
for a Newtonian and a non-Newtonian fluid. The data pre-
sented in Fig. 9 are taken at the same time for Newtonian and
ear-thinning simulations. The tip of the finger expanding
o the shear-thinning fluid has propagated out farther than
he tip of the splitting petal growing into the Newtonian

the shedding of a side-branch, and an ensuing decrease in ﬁrﬁ
viscosity and radius of curvature. Somewhat later the de!

crease in tip viscosity slows, the radius of curvature agairj, . . ; . L .
b y g uid. Despite this, the pressure in front of the tips is quali-

decreases, but this is followed by yet another shedding of a4". o ) ;
ut s | W y Y ng tively similar in both cases. Away from the tips, the differ-

side-branch, a decrease in the radius of curvature, andamo‘i%t h f the interf for the Newtoni d the sh
rapid decrease in tip viscosity. ent shapes of the interfaces for the Newtonian and the shear-

It is worth re-emphasizing that the side-branches did nog;inning fluid modify the pressure distribution considerably

originate at the sides of the petal, but rather formed near th ig. 8).
tip during the growth of the radius of the curvature, and wereB Parametric dependence
left behind the propagating tip. This observation points to the™ P
similarity of the pattern formation mechanism in this system  Here we explore the role which the three dimensionless
to the formation of dendrites in solidificatiofieven though parameterse, Ca and We, play in the bubble evolution.
our system lacks any imposed directionality. Figures 10—12 summarize the results of simulations in
Finally, Fig. 8 shows the pressure distributions at thedifferent regions of this parameter spaém all cases the
final times for the Newtonian and non-Newtonian simula-initial bubble size is the same. The patterns are enlarged for
tions, overlaid by their respective velocity vector fields. Wepresentational purpose$n each of these “phase diagrams,”
do not observe flattening of the pressure in the shear-thinninthere is a regioiiB) of the parameter space where splitting of
fluid, in contrast to what the linear stability analysis in Dac-the finger tips is suppressed. Figure 10 illustrates some of the
cord and Nittmant? and Nittmann, Daccord and Stant€y effects of strong shear-thinninge& 0.15). For small We we
suggests. Based on this predicted flattening, it was conje@bserve “Newtonian” patterns—i.e., widening petals that

0.25 (a) N
“T oNe c 05r % (b)
) ( i &
/)5\ \\V// 0.45F (o FIG. 11. Phase diagram for fixed Ca
I S5 C 0.4F =240. Part(a) shows the results for
0'2f \“:‘ /7 v ’ rather strongly shear-thinning fluia
lrr N A 0.35F ‘Z@@g}l <0.25, with small values of We
o RN N v o3k & ‘\% = & <0.25. InA one gets wide “Newton-
= I M = ) ian” fingers, in B tip-splitting is sup-
0'15,_ \_} f_/ B T~ ‘le Do 0.25F pressed, and i€ narrow (relative to
: I («co@rm) 2 - A), but tip-splitting fingers are ob-
I /-}"D' '\\');:p- - ? ‘,\ 0'23 “&\L’ R ,Q Oi served. Partb) gives the results for a
01k A ) ( 0.15F A’;Y_‘_\ s N\ wide range ofa and We.
ot 7 \ ol © A
1 ! o L 1 | Rl RIS EPETENENES SEVEVIVE SVETEVANN SPATENAE APETETAE VAN |
0.15 ” 0.2 0.25 0 01 02 0.3a0.4 05 06 0.7
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05 C QS tained, correspond to the situation where viscosity varies
T considerably along the interface—this seems to be a neces-
QS 3 \?/ sary condition for the suppression of tip-splitting. At even
0.4F .2 p < o higher values of We, the viscosity at the tips moves to the
0.35F e 4ﬁ‘\ lower plateau of the viscosity curve. One might be tempted
035_ )& { to explain the observed nonsplitting, narrow, fingers in terms
ST A, _ /N of a local capillary number by using the viscosity at the tips
025 Y g instead of a constant capillary number. However, this would
0.2F . B e UL lead to small values of this “effective” Ca, which would
0_155_ wla JI,\) L/( 3 . predict larger length-scales in regié@) than in region(A),
o1F g% ’7},\ N‘) {J\ contraﬁ/ to oulr resultls. Thefirr;}portant point hec;e is that thelre
R S A R SRS are still very low values of the pressure gradient not only
0 250 5003 750 1000 deep in fjords, but also on the finger sidese Figs. 6 and)8

The flow still sees the steep part of the viscosity curve.

FIG. 12. Phase diagram for fixed W.15, and for a range a#<0.50, Higher viscosity for low pressure gradients further sup-

and Car1000. presses the motion of the finger sides, leading to the decrease
of the resulting length-scales.

split (regionA). Increasing We brings us to regi@where Figure 11b) shows a larger range af and We of the

splitting is suppressed. Even higher values of We yield narphase diagram in 14). Large values ofa and small We

rowed petals, which tip-splitsee also Fig. 11 yield Newtonian patterns. On the other hand, smathnd

Note that these general observations agree with what irge We lead to petals which split, but which are narrower
seen by comparing Figs.(d and Xb) with Figs. 1c) and than those in regiom\. In this case, the boundary between
1(d). For a fixed capillary number, the Weissenberg numbethe regionsA and C is not very sharp; there is a transition
decreases by 2.5 in moving from Figgalland Xb) to Figs. region for large values off and We. An interesting case is
1(c) and Xd). In this decrease the re-emergence of a morexr=0.40, We=0.15, where the effect of shear-thinning is
Newtonian pattern is observéde., more tip-splitting. strong enough to prevent splittirigt least at this stage of the

An increase of Ca leads to the same consequences as fgrowth of the bubblg but not strong enough to produce
Newtonian fluids: Shorter wavelengths become unstablenarrow pointed fingers, such as those formed at smaller val-
which induces tip-splittingsee also Fig. )2 The increase of ues ofa. The inspection of Fig. 11 clearly shows that de-
Ca leads also to a narrowing of regiBn where tip-splitting  creasinga leads to the decrease of the resulting length-
is suppressed. In Fig. 10, the size of the window of We forscales. This effect was observed in experiments with water
which tip-splitting is suppressed is decreased for-680.  based mudS$® which were performed in a channel geometry,
Also, increasing Ca shifts this window towards lower We. Inwhere the increase of colloid concentration led to stronger
an experiment this would mean that if one uses a higheshear-thinningi.e., a decrease af), and to the decrease of
pumping pressure, the fluid should have a shorter relaxatiofinger width. Similarly, the recent experimettswith hy-
time if nonsplitting tips are to be observed. This effect has, irdroxypropyl methyl cellulos€HPMC) solutions in a radial
fact, been observed by Buka, Kertesz and Vistekexperi-  Hele—Shaw cell showed the decrease of the resulting length-
ments with nematic liquid crystal$,where the driving pres- scales with the increase of the concentration of HPMC,
sure was varied. At low driving pressures, the pattern wasvhich corresponds to stronger shear-thinning.
Newtonian(corresponding here to small Ca and We—region  In Fig. 12, where We 0.15, we observe again narrow
A in Fig. 10. At intermediate driving pressures, the tips did pointed fingers for smalk and Ca(regionB); narrow, split-
not split(as in regionB), and finally, high driving pressures ting petals for smalk, and larger values of CaegionA),
(large Ca and Weresulted again in a tip-splitting phasas  and patterns resembling the Newtonian case for larger values
in regionC). These experimental observations agree remarkef « (regionC).
ably well with our results. Figures 10-12 demonstrate that a strongly shear-

Figure 11 shows the phase diagram@snd We are thinning fluid is required in order to prevent tip-splitting. We
varied while Cas 240 is fixed (We cannot explore the region do not observe narrow, nonsplitting fingers fer>aq
where a<1/9, where the production of slip layers in the =0.35. Also, larger values of Ca typically lead to tip-
driven fluid might be expected) We focus first on Fig. splitting. Finally, there is a window of We, where tip-
11(a), wherea and We are rather small, and where the re-splitting is suppressed: This window is shifted towards lower
sulting patterns depend quite sensitively on changes of thealues of We as Ca is increased, becomes narrower for larger
parameters. As in Fig. 10, a larger We leads to tip-splittingvalues of «, and disappears completely whem> a;
and narrow petals, in contrast to the ones produced for sma# 0.35.

We. The role of We is to determine which part of the vis- Another effect of tip-splitting is to modify the velocity
cosity curve(Fig. 3) governs the viscous response of theof the finger tip. Figure 13 shows the tip velocity for two
fluid. For small values of We, the viscosity in the neighbor-choices of parameters which lead to tip-splittifewtonian
hood of the tip does not change very much, and the resultingnd «=0.15, We=0.15, and Ca& 600), and one choice for
patterns are close to NewtonidA). In Figs. 10-12, the which tip-splitting is suppressetlr=0.15, We=0.15 and
patterns in region(B), where nonsplitting fingers are ob- Ca=240). (Specifically, the tip velocity is calculated &
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0, = 1.0, Ca=240 5t
09F | ----- o =0.15, We =0.15, Ca= 240
0.8 o = 0.15, We = 0.15, Ca =600
ot
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5 0 5

FIG. 14. The snap-shots of the evolving bubble interface for a different
viscosity model. Herex=0.30, We=0.30, and C&240.

2.3
TIME

FIG. 13. The velocity of tip propagation, along tkexis. The arrows show . . . . . .
the point where curvature of the tip changes sign. A dashed line shows theectly, instead of starting with a viscosity functiqn and
simulation where fingers do not split. finding the corresponding through(43), (46). It is possible

to find the physical viscosity: that yields the effective vis-
cosity in Eq.(74); see Appendix A4,
=0, whered is an azimuthal angle measured from a positive ~ In Fig. 14 we see that the growing fingers are much
x axis) The velocity of the splitting petal is continuously nharrower and more elongated than the fingers obtained pre-
decreasing, as the tip of the petal is widening on its route te/iously. The oscillatory mode is still present as in Figh)s
become a fjord, whereas the velocity of a nonsplitting fingereven if rather strongly suppressed. We conjecture that the
is rough|y a Constar[ﬂ:he arrows show the points where the shear-thinning behavior of the driven fluid alone can lead to
curvature of the(formen tip changes sigh This effect has the suppression of tip-splitting. This feature is independent
been noted by Meiburg and Hon8yn a theoretical study of ~ Of the particular model, although the choice of the viscosity
channel flow of Newtonian fluid, where the curvature of themodel is important if one is interested in the details of the
finger tip was held constant artificially. The same study ob-attern formation.
served also dendritic modes and side-branches.
Remark:There is an intriguing similarity in our results D. Emerging length-scales
to simulations of Newtonian Hele—Shaw flow with aniso- A typical length-scalel() of patterns which develop in a

P it ,10 i i . . . . .
tropic boundary conditions,™ where side-branching was radial Hele—Shaw flow for Newtonian fluids is determined
also observed, as well as to local solidification models withyy the capillary number Ca. For large Ca, linear stability

: 0 e i . : <
anisotropy>” Further, power-law fluids in a rectangular gggests that a length-scale associated with the initial growth
Hele—Shaw cell were recently the subject of a theoreticaps the patterns is given 8§

study (Poireand Ben Ama®?y. Experiments with foam¥

where elastic properties might be of importance, and both _ 27R ~2R /i (75
miscible and immiscibl&®" polymeric liquids, can also mT et TN Ca

roduce structures quite similar to ours. . . . .
P q where R is the time-dependent radius of the expanding

bubble, and we have used the expression for the wavenum-
ber of maximum growth(61). Such a scaling is observed
The form of the developing patterns in Hele—Shaw flowapproximately in both simulation and experint&rit-®3for
of non-Newtonian fluids is very sensitive to a variation of theNewtonian flows, and experimentally for non-Newtonian
parameters which define the viscous response of the fluidiows>%°We look into our simulation results for a similar
Similar sensitivity has been also widely observed in experi{ength scaling in shear-thinning liquids.
ments with polymeric fluids and claysee, e.g., McCloud Figure 15 shows the length-scales emerging from the
and Maher, Van Damme and Lemait8. Consequently, one simulation of a strongly shear-thinning fluid, as well as the
also expects that the choice of the non-Newtonian viscosityesult of linear stability analysis and a fit of the form
model would influence considerably the response of the\ Ca Y2 Here the length-scale was approximated by mea-
driven fluid and pattern formation. suring the radius of curvature at the tip of a growing finger.
While the use of the viscositf40) is motivated by the  As we have shown, the curvature can oscillate at the tip and
fact that it follows from the well-established JSO model for so we plot a representative value where the error bars show
viscoelastic fluids, it is also of interest to study the patternshe size of the fluctuations. Note that this length-scale is
resulting from a different viscosity model. Figure 14 showsmeasured in the strongly nonlinear regime, where the results
the evolution of the interface for a fluid with the effective of linear theory would not be expected to apply. The linear

C. Different viscosity models

viscosity, stability result is obtained by assuming that the radius of the
B , 1+ aWe? |Vp|? bubble is equal tg its initial sizg, sB=1 in (75). In theT
w(We|Vp|?)= TTWE [V’ (74 apparent form of its decrease with Ca, the results of linear

stability for the shear-thinning liquid is consistent with the
where 1/9<a<1. That is, we defineu,(We?|Vp|?) di- fit. And while it is unclear that the simulational length-scale
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FIG. 15. Capillary number dependence of the length-sdgl®f(the most

unstable modes following from linear stabilitdasheg, emergent length- > De =ngtn ‘
scales from the simulation@ots and the fit of the formA Ca Y2 (solid), 6P°¢ is the the driving pressure which gives €240 and We=0.15. Linear

whereA is taken from the first data point. Here=0.15 and We=0.15. stability results (dashedi simulation results (doty and fit |
~k(8P/8P°) 12 (solid) are shown. The constaktis determined from the

data pointéP = §P°.

FIG. 17. The dependence of the length-scales on driving preggurélere

behaves as Cd’%, there is a reasonable agreement in mag-
nitude between the simulations and the result of linear nq driving pressure is another control parameter whose
theory. . _ o , _influence on emerging length-scales can be explored. In ex-
In experiments using a shear-thinning polymeric SOIUt'onperiments[air displacing water based mddsand HPMC
being displaced by watéf;>® emerging length-scales have (polymerid solution§'57 increasing the driving pressure
been measured as the gap wibtfs varieq, apparently while typically decreases the observed length-scKt&557 How-
holding fixed the characteristic velocifg,. These results ever, these experimental data are not very precise in express-
suggest that the length-scale scales linearly Wwitfor New-  ing the length-scale dependence upon the driving pressure.
tonian fluids this observation confirms the result of linearFigure 17 compares the length-scales obtained from our
stability, since Ca 1/b? if the characteristic velocity is fixed simulations to the results of linear stability, and to a fitting
independently ob. However, the flow also depends up the function of the forml~1/\/6P, where 6P is the driving
Weissenberg number, We, which is itself a functiooSo,  pressure. The motivation for this particular fit arises from
one should modify both Ca and We accordingly, in order toanalogy with Newtonian fluids where~1/\/Ca, and Ca
obtain a realistic comparison with experimental results~ 5P (see also Fig 15 Here we observe that linear stability
These resulting length-scales measured in this way are givaheory and simulational results agree rather well at smaller
in Fig. 16. Since our simulational resuf@nd the experimen-  driving pressures. For larger values &®, the length-scales
tal observation¥*>9 suffer from relatively large uncertainty, resulting from linear stability analysis saturate to a constant,
we cannot conclude from this that scalihgb is satisfied.  while the results of the simulations fit~1/\/6P very
Still there is a good qualitative agreement of the simulationgjosely. We hope to verify this prediction experiment&fly.
and the experimental results. Figure 18 shows the possible source of emerging length-
scales for shear-thinning fluids. This figure presents the
variation of viscosity in radial direction in front of the tip
u(r), the viscosity in the fluid adjacent to the interfacéS)

— —
o ®
T

INTERFACE r
b 2

—
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: linear stability o075
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FIG. 16. The dependence of the length-schjeof plate separation. Here TIP S

by is the plate separation which gives €340 and We=0.15 att=0. Lin-

ear stability result¢dasheg] simulation result¢dotg and fitl ~b (solid) are FIG. 18. The curvature of the interfae€S), viscosity in the fluid along the
shown (@=0.15). The constark required for fitting lineL=kb is deter- interfacew(S) and viscosity in the radial direction(r) are shown. Here
mined from the data poirt=b,. is radial distance from the tip arfflis the arc-length measured from the tip.
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and the curvaturec(S) along the interface, where is the  shearing flows with slip layers though having a nonmono-
radial distance from the tip arfflis the arc-length along the tonic stress/rate-of-strain relatigfor «<<1/9).
interface, measured from the tip. The data are taken from the Nonetheless, given that our presdéntlatively simple
last time presented in Fig. 5. It is intriguing that the length-approximation seems to capture many of the salient features
scales on which each of these quantities vary substantiallgf shear-thinning flows—in particular the suppression of tip-
are comparabldof course, the curvature of the tip gives splitting—there are some fundamental questions to be an-
approximately the length-scale on which curvature along thewered. A central one is understanding at a detailed level
interface changes signin particular, we observe that the how this system, without any explicit anisotropy, forms fin-
variation of viscosity in the radial direction compares well gering structures so reminiscent of directional solidification.
with the variation of viscosity along the interfa¢gig. 6).  Obviously, an effective anisotropy is being created nonlin-
We conjecture that the length-scale associated with the visarly by the shear-thinning, and is intimately related to the
cosity variation in a driven fluid relates closely to the length-suppression of tip-splitting. Understanding this will require
scale of emerging patterns. mathematical analyses combined with refined experiments
and accurate numerical simulation.

The analysis of Poirand Ben Am&®?on finger selec-
tion in weakly shear-thinning, power law fluids is a first ef-

In this paper we have shown that, under certain assumgort in this direction. Another mathematical approach that
tions, flow in a Hele—Shaw cell of a complex viscoelasticcould be fruitful to expand upon follows from the work of
fluid simplifies to that of a generalized Newtonian fluid. Full Miranda and Widorff on tip-splitting in Newtonian flows.
numerical simulations of the two phagbquid/gas flow  They execute a slightly nonlinear analysis to understand how
show that shear-thinning behavior of the driven fluid modi-mode coupling dynamics leads to tip-splitting. Perhaps for a
fies significantly the morphology of the patterns, relative toshear-thinning flow such an approach would show how mode
those for Newtonian liquids, by suppressing tip-splitting.coupling instead suppresses tip-splitting. Improved numeri-
This can lead to structures of dendritic appearance resengal approaches to evolving the interface efficiently, and es-
bling those occurring in quasistatic solidification. These refecially accurately, will also allow a calculation of the pat-
sults are consistent with available experimental results. Fuiterns over a longer time, as has been done for Newtonian
ther, we provide morphological phase diagrams that sholows? to see whether the structures we have found here
the flow and fluid parameters required to suppress tippersist, and how the patterns are characterized. It is also im-
splitting. Lastly, the varying of length-scales emerging fromportant to understand how the patterns observed depend on
our simulations, as parameters are changed, is in reasonalilee details of the particular viscosity model. In this vein,
agreement with those observed in experiments. In particulagiven the gross similarity of patterns observed in liquid
we observe in our simulations that the typical length-scale otrystals'*?and foam& to those seen in shear-thinning lig-
the patterns scales with driving pressurelangl’z—this uids, one might expect to find modified Darcy’s laws that are
prediction is still to be verified experimentally. similar to those found here.

We have ignored in this work several potentially impor-
tant aspects of these flows, that precludg us from having R CKNOWLEDGMENTS
fuller understanding of these problems. First, better compre-
hension is needed of the flows close to the interface. Correc- We would like to thank Bastiaan Braams, Jens Eggers,
tions to the simple Laplace—Young boundary condition haveand David Muraki for useful conversations. This work was
been derived for Newtonian fluidsee Homs$’ and the ref-  supported in part by National Science Foundation Grants No.
erences therejrthat account for the presence of a meniscusDMS-9404554 and No. DMS-9396403/1.J.S., P.B, AL-
and of films wetted to the cell plates. This has been done t€OM Grant No. DMR89-20147 and AFOSR MURI Grant
a lesser degree for non-Newtonian fluidlRo and No. F4962-97-1-0014(P.P-M), Department of Energy
Homsy®>3). An elastic response is also likely to be impor- (DOE) Grant No. DE-FG02-88ER250581.J.S., P.F., L.K),
tant in the neighborhood of the meniscus, and an improvednd NJIT Grant No. 42121Q..K.). A part of this work was
understanding of the boundary flows would lead to a morgerformed under the auspices of the U.S. Department of En-
quantitative understanding of the coil—stretch transiffon. ergy by University of California Lawrence Livermore Na-
Second, in our scaling we do not allow for an elastic re-tional Laboratory under Contract No. W-7405-Eng-48.
sponse in the bulk fluid, that is, we look at flow only at order
one Weissenberg number. To con_S|der hlgher Welss.enber,@PPENDIX: PROPERTIES OF THE EFFECTIVE
numbers would apparently require solving fully time- VISCOSITY ji
dependent PDEs for the extra stress in the bulk fluid. It
would be of interest to find some scaling of the equations  Our theory builds upon two basic assumptiofi$:The
that would allow this to be done in a tractable way. Lastly,transformation defined by Eq&t3),(46), from x to 7z andu
by our construction of the effective viscosities, we have ceris well-defined, andii) the nonlinear BVR51) has a solu-
tainly not allowed for the possibility of slip-layer formation tion. We show here that a reasonable condition that guaran-
(see Kondic, Palffy-Muhoray and Shelléyand the refer- tees the existence of the effective viscosiyis also suffi-
ences therein Though the origin of wall slip is still cient for Eq. (51) to be solvable. Further, we show in
controversiaf® the JSO equations do formally allow for Appendix A2 that the monotonicity of is inherited byz

VI. CONCLUSION
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andu, and in Appendix A 4 that given a, we can find the
correspondingu, under suitable restrictions. A closed form
expression fo is given in Sec. Ab.

1. Invertibility

The following theorem gives a sufficient condition for
the inverse viscosity{, of u to be well-defined.

Proposition 1: Let u(s?)>0 for all s, f(s)=u(s?)s be
continuously differentiable, and

0<Co=pu(s?) +25%u'(s?)<C <, (A1)

for some constants G C,. Then the inverse viscosify can
be defined by43), and it satisfies

w(z%) =225 (2%)
(2%
Proof: The functionf is strictly increasing, so its inverse
function g=f~1 exists. Sinceg’(f(s))=1/f'(s), and 0
<Co=f'(s’)<C;<> by (Al), we obtain 0<1/C,
<g'(z%)<1/C,. At z=0 we haveg(0)=0,

0<Cy= <C;<co. (A2)

z

a(2)

#(0)=lim 9'(0)

z—0

=1'(0)=w(0),

andg(z)>0 for z#0.

The inverse viscosity can now be defined &¢z?)
=1z/g(z) for all z. Equation(A2) follows by notingg’(z)
=(w(2%) —22°1" () p*(2%).

This motivates the following definitions.

Definition 2: A functionu:R—R is called a viscosity
(function) if u=C>0 for a constant G and f(s) = u(s%)s is
continuously differentiable

The viscosity function is called monotonigufis mono-
tonically increasing or decreasing. A viscosity function is
called bounded iD<C=su<C’'<w,

Definition 3: A viscosity functiop is called invertible if

0<Co=u(s?)+2s%u’'(s?)<C,;<os,

for some constants G C; .

We will not consider viscosity functions that are not in-
vertible in the sense of Definition 3 in this work, although
they are certainly interestirfd. The definitions given above

are natural, as one sees from the solvability conditions dis-

cussed in Sec. A3.

2. Monotonicity and derivatives of the viscosities

The inverse viscosityii and the effective viscosityr
inherit the monotonicity of the original viscosity functiqn

Proposition 4: Letu be a monotonic, invertible viscosity
function. Therw', " and u’ have the same sign

Proof: By a direct calculation. First considgr, and note
that

2
=l
for any z by Eq. (43). Taking az-derivative of Eq.(A3)

together with Proposition 1 shows that andz’ have the
same sign.

ﬁ(22)=,u< (A3)

Pattern formation in non-Newtonian Hele—Shaw flow 1209

To showu’ andz’ have the same sign, differentiate the
definition of u. Together with the first part this implies that
M, . and u have the same sign.

3. Solvability of the BVP

In this section, we find conditions gathat are sufficient
Vp

for
V'(mvm?‘)

to have a unique classical solution. Hedeis a connected,
bounded domain in the plangjs a given andu is an effec-
tive viscosity.

To avoid technicalities, we assume the boundary of the
domain and all functions to be sufficiently smooth when the
underlying theorems require, e.g., Holder-continuitee
Gilbarg and Trudingéf for details) Continuous differentia-
bility is sufficient for most purposes here. Classical solutions
of (A4) are at least twice continuously differentiable. Note
that the results give sufficient conditions, and one could cer-
tainly look for more general results.

The main result of this subsection is given by the fol-
lowing.

Proposition 5: Let the effective viscosity correspond
to a viscosity functionu that satisfies

)=O, in O, p=f, on 9Q, (A4)

0<Co=pu(s?) +28u'(s?)<C,<, (A5)

for some constants ¢ C;. Then the nonlinear BVP (A4)
has a unique classical solution

The essence of this proposition lies within two fagfs:
The solvability of Eq.(A4) is expressed in terms of the
physical viscosityx, and(2) the solvability is guaranteed by
the same condition as the invertibility of the viscosity. The
proof amounts to showing th&&4) satisfies the conditions
of a classical resul{Lemma 6. We have collected the re-
quired calculations in a sequence of lemmas.

Equation(A4) can be written in an equivalent, noncon-
servative form as

a(py rpy) Pxxt2b(py, py) Pxyt C(Px apy) Pyy= 0, (A6)
where

— 2— —
a= M= 2Py _ 2py Py n
w7 w7
and
o w—2p5
Ez .

We write w= (| Vp|?) andu’ =’ (|Vpl|?) for clarity.
Lemma 6: Assume the coefficientp @ are smooth, and
the eigenvaluea, A of the coefficient matrix

a b
b

are strictly positive and satisfil<A/A<y<o for some
constanty. Then (A4) has a unique classical solution

: (A7)

c
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Proof: Gilbarg and Trudinget’ Theorem 12.5. where G,...,C3 are constants. Then the inverse viscgsity
Lemma 7: The coefficient matr{A7) has the eigenval- o
ues 2 n(4€°)
M) ) 3 agm 4 "
w—|VplPa’ | |Vpl? . A
)\ += — + —5 . -
m w? satisfies Eqs(43), (46).

Proof: It follows from Eq. (46) by taking a derivative

Proof: By a direct calculation. and integration by parts. Then

Lemma 8: Let a viscosity function be bounded and

invertible. Then —2&u' (&%) _2{ 73 12 112 372dz
“—|Vpl2& wA(€9) D) o EuED
0<D0$ +$D1<%'
B 3 3

for some constants ) D;. _ _ O E(E%14) N Eu(&)’ (A10)
We defer the proof of this technical Lemma after the )

following. so thatzu can be solved as a function pf to get Eq.(A9).
Proof of Proposition 5:We will show that the assump- The expressioifA9) is valid as long as the denominator

tions of the Proposition imply those of Lemma 6. First, con-IS ot zero. This is clear for shear-thinning fluids, for which
sider a shear thinning fluid witp’ (s?)<0. Then by Lemma # <0 by Sec. A2 In fact, Eq(A9) holds forall uniquely

7 the eigenvalues of the coefficient matrix are invertible viscosity functions _
. . Let »’(s?)>0 and consider the denominator of Eq.
- 1 A= w—2|Vp|°u (A9). It can be bounded from below by using the definition
w’ w? ’ of w and Eq.(A10) to yield
and we have &EA<A. The ratio of these satisfies G482 — 2. 4820 (462
A u—|Vp)P _ -
L 'ﬁp' P ycon > H(482) ~ 2(4€0) 5 (4€9)

~ 2 2\ 52~ 1 2,2
where the lower bound follows from shear thinning, and the :12ﬁ2(4§2)f1/2 2 w(4E5)—2(46)2° ' (4¢°2 )dz
upper bound follows from Lemma 8 withy a constant. —12 (488 7%

Lemma 6 can now be applied. The case of a shear thickening

viscosity, u'(s?)>0, follows similarly with A and A >0,
switched. for any &, since the integrand is strictly positive]if satisfies
Proof of Lemma 8Denote¢=|Vp|, and note that the invertibility condition(A2).

. d ¢ a—280 Ex.ample:lnstead of using the effective viscosity corre-
’“d_g(_(gz)) =—— sponding tou(s?) = (1+ as?)/(1+s?), one could consider

K K more general effective viscosities. A particularly interesting

(12 [(£227) - 282 PR (£ ) choice is
=12u [ s z%dz.
-1/2 n(&°2%) — 1+ as?
(A8) M= 15 (ALD)

Since u is bounded and invertible, the term in the squarewhich is also discussed in Sec. V C. Note thais specified
brackets is StrlCtly positive and bounded by PrOpOSItlon 1. |fdirect|y, instead of going through the transforma‘[(@@)_

wis invertible then the corresponding effective viscogitys Using the inversion formul#A9), we can find the vis-
bounded and strictly positive, as one sees from its definitioosity function . corresponding to the effective viscosity
(46). It follows that function of Eq.(A11). This requires the invertibility condi-

T T—282T W tions for u to hold, soa>1/9.

o< Kmin _ £ _§ # B Equation(A9) gives now

Ci M Co -
where wmin, #min IS @ lower and upper bound @f, respec- W(22) = 3(1t+4az7)
tively. 3+4(5+a)2°+48a Z*

An analytical expression for the correspondingeems un-
attainable. However, we can still plot the corresponding
The transformationu—i— u can be inverted, that is, using the following simple observation.

4. Inverting the transformation

given a suitableu it is possible to find the correspondifig First, define s=s(z) in Eqg. (43. Then one has

and therebyu, in Eq. (46). w(s(2)®)=7(z%). This allows us to plot(s,u(s?)) as
Proposition 9: Letu satisfy (s(2),(z%)), wheres(z) =z/7u(z?). Figure 19 compares the
(i) 0<Co=mu(£d) —2&%u (2)<C <o, forall & effective viscosity given by EqA11) to those obtained from
(i) 0<Cr=u(&?)<Cy<oe, JSO, and the corresponding physical viscosities.
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(a) Effective viscosity (b) Physical viscosity
NN
0.9 '~§..\-\ o
0.8 \ NN FIG. 19. Comparing the effective vis-
N N cosity u(§)=(1+ agz)/(1+§2)_ to
0.7 N S~ those obtained from JSO. Varyingin
N RN - JSO does not significantly change the
0.6 RN T slope of the effective viscositysee
\-\. (8], or the physical viscositjsee(b)],
05 Eq A1), 0x03 0.5 T~ at small shear-rates. The sh_ear-ri_ate_de-
T~ pendency of the effective viscosity in
0.4} [~ JSoe0b 0.4 Eg. (A11) at small shear rates is much
1T 80, 0=0.30 stronger than that in JSO.
0.3 = - uso,e=050 0.3
0.2 0.2
0 0.5 1 1.5 2 0 0.5 1 1.5 2

5. Explicit u for JSO

The gap-averaging46) of the viscosity requires the in-
tegration of the inverted viscosify. For completeness, we
show here how to find a closed form expressiondomwhich
is defined as

1 J' 12 7Z2dz
12u(€?) )1 (€229 (A12)
Now, let z(s)=u(s’)s and note that s

=2(s)/7.(z(s)?), so that especiallfi(z(s)?)= u(s?) holds.
By changing the variable of integration soand integration
by parts we obtain

1 2 (&2(u(s?)s)® d
W:?L ’L(—Sz)d—s(u(sz)S)ds, (A13)
1+as® |2
oy Xu(x?)*- fx 1:? s ds], (A14)

where y=(£/2)/1(£%14), and we specialized to JSQlhe
same approach works for other viscosity functipfi$e final
result for the gap-averaged viscosity is given by

3 az
(&)= _ 2.2y~ |.3
m(&9) >4 20(a 1)X+(M(X) 3 /X
c ! 12X N Al5
—Earctanx—i-z(a— ) W s ( )
whereC=(5a%—6a+1),
5 1 1-322
,U«(ZZ)=§+Q1/3+9—ql/—,
and
_2+9(3a—1)7
a= 54
2 1/2
+ Z—(4Z4+(3(3a—1)2—4)22+4a)
108

Equation (Al5), although exact, is numerically ill-

)
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