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A mechanism by which smooth initial conditions evolve towards a topological reconfiguration of
fluid interfaces is studied in the context of Darcy’s law. In the case of thin fluid layers, nonlinear
PDEs for the local thickness are derived from an asymptotic limit of the vortex sheet representation.
A particular example considered is the Rayleigh–Taylor instability of stratified fluid layers, where
the instability of the system is controlled by a Bond numberB. It is proved that, for a range ofB and
initial data ‘‘subharmonic’’ to it, interface pinching must occur in at least infinite time. Numerical
simulations suggest that ‘‘pinching’’ singularities occur generically when the system is unstable,
and in particular immediately above a bifurcation point to instability. Near this bifurcation point an
approximate analytical method describing the approach to a finite-time singularity is developed. The
method exploits the separation of time scales that exists close to the first instability in a system of
finite extent, with a discrete spectrum of modes. In this limit, slowly growing long-wavelength
modes entrain faster short-wavelength modes, and thereby, allow the derivation of a nonlinear
evolution equation for the amplitudes of the slow modes. The initial-value problem is solved in this
slaved dynamics, yielding the time and analytical structure of a singularity that is associated with the
motion of zeros in the complex plane, suggesting a general mechanism of singularity formation in
this system. The discussion emphasizes the significance of several variational principles, and
comparisons are made between the numerical simulations and the approximate theory. ©1998
American Institute of Physics.@S1070-6631~98!01810-8#

I. INTRODUCTION

Since the work of Plateau in the 19th century and con-
tinuing with Rayleigh’s contributions, one focus in the study
of natural patterns has been hydrodynamic instabilities. By
and large, models of these phenomena were solved in their
linearized form. These solutions have provided us with a
great wealth of information such as characteristic length and
time scales associated with the incipient patterns. However,
it is clear that some of the most interesting situations occur
beyond the point at which these linearized approximations
break down. For example, linear theories are~usually! un-
able to provide us with finite time singularities. This fact
alone renders them inaccurate at best and plain and simply
wrong at worst. No linear theory can describe a phenomenon
as familiar as the splitting of a drop of water. This is but one
example of a more general question: How do smooth initial
conditions evolve to produce finite-time singularities?

Of the many different systems that present finite-time

singularities there is a whole class that can be formulated in
the flux form

ht1 j x50, with j 5h~hxxx1¯ !. ~1!

Equations of this type describe phenomena as diverse as in-
terface motion in thin-film flow, Marangoni convection,1 pat-
tern formation in population dynamics,2 the homogenized
model of Type-II superconductors,3 and the oxidation of
semiconductor surfaces.4

Within this group we study here the case of the
Rayleigh–Taylor~RT! instability of stratified fluid layers in
Hele–Shaw flow.5–7 This flow is described by Darcy’s law,
which is not only intrinsically interesting, but also of consid-
erable importance by being a prototype of models of continu-
ous media that display instabilities. Thus, it serves as a natu-
ral testing ground for methods of studying finite-time
singularities. In this context, we give a complete derivation
of a partial differential equation~PDE! that describes the
Rayleigh–Taylor instability of thin fluid layers, starting from
an exact vortex sheet formulation, the basic results of which
were announced earlier.6 This derivation provides a system-
atic justification for more phenomenological arguments used
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in related work,8,9 and is based on an expansion in powers of
the aspect ratio of the layer; truncation at second order gives
what is known as ‘‘lubrication theory.’’ Hereh is the layer
thickness. The fluxj 5hU in Eq. ~1! has a velocityU;
2Px arising from Darcy’s law, and the pressureP is set by
boundary conditions involving surface tension and gravity.
In other contexts, the velocity has the more general formU
;2hm¹P, such as in the spreading of drops (m52). Such
lubrication approximations have been the focus of a consid-
erable body of subsequent work on the flow and rupture of
thin films and the spreading of drops,6–17 and provided the
background for long-wave theories used to study the fission-
ing of axisymmetric18–22 and planar jets.23

Two of the works based on the derived lubrication
model~1! are of particular relevance here. First, Bertozzi and
Pugh14 analyze a class of lubrication-type PDEs which have
a long-wave instability. This class includes the PDE@Eq. ~9!,
below# that is the primary focus here. For this PDE they
provide ana priori upper bound onhmax, and prove that ifh
is positive then it is also smooth. Thus, smoothness can only
be lost though a pinching singularity, i.e.,h↓0. They also
prove the global existence of a nonnegative ‘‘weak’’ solu-
tion, a result that does not preclude the formation of pinching
singularities. They conjecture that one scenario for the ulti-
mate state of the system is relaxation to a set of compactly
supported positive regions, connected by zero sets. Second,
Almgren, Bertozzi, and Brenner12 have studied the ‘‘un-
forced’’ lubrication equation, which is a special case of the
system we consider, and which has no long-wave instability.
For a special class of smooth initial data forh, they observe
numerically and analyze three types of pinching singulari-
ties, two of which were found earlier7,9–11 and are central
here.

We obtain variational principles that allow us to study
the stability of nontrivial positive steady-states. For the
Rayleigh–Taylor case, these same variational principles also
allow us to prove that PDE must develop a pinch, orh↓0, in
at least infinite time, for a range of bond number and initial
data that is subharmonic to its associated~nondimensional!
length-scale. If a pinch occurs in finite time, thenh must
develop a singularity. Our numerical results suggest that the
approach to a pinch is generic when the system is unstable.
We also find strong numerical evidence to support a finite
time singularity in the PDE immediately above the bifurca-
tion to instability. Finally, we develop an approximate ana-
lytical technique to solve the initial-value problem, based on
a separation of time scales near this onset of instability. This
analysis involves the merging of two previously independent
ideas from dynamical systems theory: The coupling of
slaved small spatial scales to low-mode dynamics as in the
reduction of dissipative PDEs to inertial manifolds,24 and the
description of interface motion in terms of zeros or singulari-
ties in the complex plane.25 Comparison of this approximate
theory with our numerical simulations show very good
agreement until quite close to the apparent singularity time,
when the assumptions underlying the theory break down, and
the simulations show a divergence from its predictions.
Nonetheless, we do find that the ultimate spatial structure of
the singularity suggested by this analysis agrees very well

with that found in our numerical simulations.

II. THE EQUATIONS OF MOTION

In this section we derive the equation of motion of in-
terfaces bounding a thin layer of fluid in a Hele–Shaw cell.
The necessary mathematical formalism is best illustrated by
considering first the motion of a single interfaceG. The two
fluids which it separates are labeled 1 and 2, and likewise for
their densitiesr and viscositiesm, and are assumed to obey
Darcy’s law

vj52
b2

12m j
~¹Pj2r jF! and ¹•vj50. ~2!

Hereb is the gap width of the cell,vj andPj are the velocity
and pressure in each fluid (j 51,2), andF52¹f is a body
force~e.g., gravitational force!. Each pressurePj is harmonic
and acts as a velocity potential. We defineA5(m1

2m2)/(m21m1) as the Atwood ratio for the viscosities,
Dr5r12r2 , andu56(m11m2)/b2.

The boundary conditions at the interfaceG are ~i! the
kinematic condition

~v12v2!•nuG50, ~3!

and ~ii ! the Young–Laplace condition
P12P252Qk, ~4!

wheren is the upward normal toG, U is the surface tension,
andk is the curvature ofG. In addition,G is required to move
with the normal fluid velocity.

We assume thatG is a graph (x,h(x,t)), that is, its
heighth(x,t) is single valued inx. SinceG moves with fluid
in the normal direction,h(x,t) obeys

ht~x,t !5 v̄2ūhx~x,t !, ~5!

where (ū,v̄) is the mean fluid velocity atG.
The dynamics ofG can be given self-consistently by

using a vortex sheet representation for the fluid
velocity.5,26,27That is,Ū5(ū,v̄) can be expressed entirely in
terms ofh(x,t) and its derivatives

Ū@g#5
1

2p
PE

2`

1`

dx8g~x8!
~h~x8!2h~x!,x2x8!

~x2x8!21~h~x!2h~x8!!2 ,

~6!

where the vortex sheet strengthg satisfies a Fredholm inte-
gral equation of the second kind
g12AmŪ@g#•~1,hx!

5
1

u
$Qkx1Dr¹f~x,h~x!!•~1,hx!%. ~7!

For the problems of interest here, this integral equation has a
unique solution.

This framework is readily extended to the case of two
interfaces bounding a layer of fluid and yields a pair of
coupled equations analogous to~6! and~7!. We consider the
simplest case, shown in Fig. 1, where the interfaces are mir-
ror images with respect to thex axis. This is equivalent to the
case of a single interface bounding a fluid layer against a
wall.

To gain insight into this mathematically complicated
system, we simplify the equations of motion by considering
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a thin fluid layer. Let the fluid layer have lengthL and a
mean thicknessw. We considerL as scaling with the lateral
width of the cell. We define a thin fluid layer as one for
which e[w/L!1, and expand the full system ine. We will
see that retaining only the leading-order terms of this expan-
sion yields the so-called lubrication approximation.

The essential aspects of the expansion procedure are as
follows. We rescalex with L, h with w, and t with T
5Q/L3u ~g scales naturally then withL/T!. The expansion
in e of the vortex sheet integrals, which depend onh, hx , and
k5hxx /(11hx

2)3/2, is very involved; the details of the
method are given in Appendix A, and rely on techniques
developed in Ref. 28.

We consider two cases. The first consists of a fluid layer
against a wall, with the gravitational force acting perpendicu-
lar to the layer (F52gŷ). This leads to a Rayleigh–Taylor
instability. The second case is that of a gravity driven jet,
falling through another fluid. Here, the gravitational force is
parallel to the layer (F5gx̂). Unless stated otherwise, for the
remainder of the paper we consider 2p-periodic solutions to
the equations of motion.

A. The Rayleigh–Taylor instability

By expanding to second order ine, we find thath is
governed by the local PDE

~12Am!ht52e]x~h~hxxx1Bhx!!. ~8!

By defining a rescaled timet85et/(12Am) ~and immedi-
ately dropping the8!, we have

ht52]x~h~hxxx1Bhx!!. ~9!

Here the Bond number

B5
gDrL2

Q
, ~10!

measures the relative importance of buoyancy to the restor-
ing force of surface tension. WhenB50, we recover the
equation studied in earlier works.8,9

It is useful to compare the linear stability of a flat inter-
faceh(x)5h̄ in the lubrication approximation with the exact
vortex sheet calculation. In the lubrication approximation,
the growth rate of a disturbance of wave numberk is

sk52h̄~k42Bk2!, ~11!

as opposed to the exact result

sk52
1

2e
~ uku32Buku!~12e22ukueh̄!. ~12!

Equation~11! follows from Eq. ~12! by expansion in small
keh̄, as the lubrication approximation is a long-wavelength
theory.

The relation~11! gives the familiar result that the fluid is
unstably stratified ifB.0, i.e., the heavier fluid is on top.
This Rayleigh–Taylor instability is suppressed at small
length scales by surface tension.

B. The gravity-driven jet

Again expanding to second order ine, and rescaling time
as above, we find thath is governed by the nonlocal PDE

ht~x,t !2
B

e
hx52]xH hS hxxx2B

m1

m2
H@hx# D J , ~13!

whereH represents the Hilbert transform

H@ f #5
1

p
PE

2`

1`

dx8
f ~x8!

x2x8
. ~14!

The nonlocal term in~13! is absent when there is no outer
fluid, resulting in the simpler local jet dynamics

ht~x,t !2
B

e
hx52]x~hhxxx!. ~15!

In either case, the term (B/e)hx arises only because of time
being scaled upone @as in Eq. ~9!#. This term is neutral
within the dynamics and can be removed by a change-of-
frame ~at least for periodic boundary conditions!.

Once again, the linearization of the full lubrication
theory result~13! about a jet of mean thicknessh̄ yields the
long-wavelength limit of the exact result from the vortex
sheet formulation. The growth rate from~13! is

sk5 i
B

e
k1 iBk

m1

m2
h̄uku2h̄k4. ~16!

Thus the density stratification, regardless of the sign ofB,
leads only to linearly dispersive waves damped by the sur-
face tension.

The equations of motion~9!, ~13!, and ~15! are in the
form of a conservation law forh

ht1 j x50, j 5hU, ~17!

where j is a current andU is the mean velocity given by
Darcy’s law. It follows from this form that ifh vanishes
anywhere in finite time there is a singularity in the velocity
gradientUx .8

III. VARIATIONAL PRINCIPLES AND THEIR
CONSEQUENCES

The equations of motion for both the Rayleigh–Taylor
problem~9! and the local jet dynamics~15! have the varia-
tional form

ht52]xH h]xS dF

dh D J . ~18!

The characteristic velocity

FIG. 1. A schematic of a thin layer of fluid, trapped between two others, in
the Hele–Shaw cell.
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U[2]xS dF

dh D , ~19!

is the gradient of a generalized pressure, according to Dar-
cy’s law. It follows from ~18! and ~19! that F decreases
monotonically in time

F t52E
0

2p

dxhU2, ~20!

provided the widthh is non-negative.
The functional that generates Eq.~9! from ~18! is

F RT@h#5 1
2E

0

2p

dx$hx
22B~h22h̄2!%

5 1
2(
kÞ0

~k22B!uĥku2, ~21!

whereĥk is thekth Fourier amplitude ofh. Note that when
B,1, F RT is strictly positive, but otherwise is of indefinite
sign. For the jet dynamics~15! the energy functional is

F jet@h#5E
0

2p

dxH 1

2
hx

21
B

e
hxJ . ~22!

In both cases, the term (1
2)hx

2 represents the excess arclength
of a curved interface, while the contribution proportional to
B is the potential energy of the fluid layer in the gravitational
field. This second term is invariant in time, and so does not
contribute to the evolution of the energy.

A quite different, but very useful, quantity is the entropy
of the system, defined as

S @h#52E
0

2p

dx f~x!ln f ~x!, ~23!

where f 5h/h̄. It satisfies S <0, and achieves its upper
bound only for the flat interfaceh[h̄.

For the Rayleigh–Taylor problem, the entropy evolves
in time according to

S t5
1

h̄
E

0

2p

dx~hxx
2 2Bhx

2!

5
1

2
(
kÞ0

k2~k22B!uĥku2. ~24!

Again, for B.1, this quantity is indefinite in sign, while for
B,1, S increases monotonically.

For B50 with periodic boundary conditions, Bertozzi
and Pugh13 have used estimates based in part upon the en-
tropy to prove the global existence of a weak solution, and
ultimate relaxation ofh to a flat state. The entropy also plays
a central role in their more recent work on unstable lubrica-
tion type equations14 ~as discussed in the Introduction!.

For the gravity-driven jet, the result is quite different.
Because the transformH is a skew-symmetric operator, ex-
plicit dependence uponB in the entropy evolution is lost. We
find that

S t5
1

h̄
E

0

2p

dxhxx
2 . ~25!

Now the entropy derivative is completely definite in sign,
and the entropy is monotonically increasing.

These variational principles lead very directly to several
results.

A. Steady states for the stratified layer

For the unstably stratified layer, the variational principle
allows an enumeration of possible steady states. Here, we
discuss smooth steady states and their stability.

Let h0(x) be a smooth and positive, 2p-periodic steady
state to Eq.~9!. Then, by Eq.~20!, h0(x) must satisfyU
[0, or equivalently,h0 must be in the null space of the
skew-symmetric linear operatorLB5]xxx1B]x . For B<0,
only the flat equilibrium,h0[h̄, is possible. However, for
B.0, this requirement gives two possibilities, either

~i! h0[h̄,

or, for B5m2, m an integer,
~ii ! h05h̄(11a cosABx).

Here a is an undetermined constant that satisfiesa,1.
These are the only possible smooth and positive steady
states. While terms involving sinABx are also allowed, they
can be subsumed into the form~ii ! above.

Figure 2 shows a bifurcation diagram of these steady
states, as a function of the bond numberB. The parametera
is a convenient amplitude. The stability associated with each
branch is indicated~solid is stable, dashed is unstable!. That
the branches bifurcating from the flat state do not bend with
B follows directly from U being a linear operator uponh.
This is a nongeneric behavior, which we will use later to our
advantage. The linearity ofU itself follows from the expan-
sion of the curvature terms in the vortex sheet strengthg in
the derivation of the lubrication approximation.

We can also find a set of weak solutions by knitting
together the cosinusoidal solutions with zero sets. These
weak solutions are the time independent solutions of the full
equation of motion for the interface and are given by:

h5H h0~11cosABx! uxu<p/AB

0 p/AB<uxu<p,
~26!

FIG. 2. Bifurcation diagram showing stable~solid! and unstable~dashed!
solution branches as a function of bond number. The solid circles represent
maximum amplitudes for positiveh.
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where h0 is an arbitrary constant that sets the maximum
height of the interface. This same set of solutions could be
obtained by using the variational principles for the energy
functional

F̃ 5E
0

2p

dx$ 1
2hx

21 1
2Bh2%2lE

0

2p

dxh, ~27!

since the weak solutions for the equations of motion are its
minimizers. The energy of these weak solutions is

F 52ph0
2B3/2. ~28!

While we have not been able to prove it, we suspect that
such weak equilibria are stable. Numerical solutions of a
‘‘regularized’’ PDE, that allows evolution past a putative
singularity time, show relaxation to nonoverlapping distribu-
tions of these solutions.29 This agrees with the conjecture of
Bertozzi and Pugh,14 and agrees with their simulations for a
related lubrication equation.

1. The stability of the smooth steady states

From Eq. ~11!, it is clear that the flat equilibrium is
stable forB<1 and unstable forB.1. The stability of the
nontrivial steady states, forB5m2, is likewise not difficult
to ascertain. Leth05h̄(11a cosmx), andh5h01ez, with
e!1 and^z&50. The linearized evolution abouth0 is given
by

z t52]x~h0Lm2z!. ~29!

Sincez is periodic and of zero mean, it can be represented as
the derivative of another periodic and zero mean function,
that is,z5hx , with ^h&50. The evolution is then rewritten
as

h t52h0Lm2hx . ~30!

Sinceh0 lies in the null space ofLm2, ^h&50 is preserved
by this evolution. We define the~squared! norm as

E5
1

2 E
0

2p h2~x,t !

h0~x!
dx, ~31!

whose time derivative satisfies

E t52E
0

2p

dx~hxx
2 2m2hx

2!52(
k

k2rkuĥku2, ~32!

whererk5k22m2 andĥk are the Fourier amplitudes ofh. It
is unclear whether there exists a straightforward physical in-
terpretation of the normE as defined above. However,E t is
clearly the equivalent of the functionalF introduced in Eq.
~18! for the full equations of motion. And so,E tt satisfies

E tt52E
0

2p

dxh0~Lm2hx!
2>0. ~33!

This yields the following inequality:

E tt>CE
0

2p

dx~Lm2hx!
25C(

k
k4rk

2uĥku2, ~34!

where C52 minxh0(x).0. Since rk is an integer forB
5m2, we have thatk4rk

2>6k2rk , which immediately
yields the two inequalities

E tt>6CE t , or E t>e6CtE t~0!. ~35!

These expressions will allow us to understand the stability of
the solutions to the evolution equations for different values
of the Bond numberB.

a. B5m251. The steady stateh0 is stable in the sense
that a perturbationh decays into the null-space ofL1 .

For m51, Eq.~32! impliesE t<0, and thatE t50 if and
only if h is entirely in the null space ofL1 ~in this latter case,
h is a steady state solution!. Now, making use of the in-
equalities we find the relationship

0>E t>E t~0!e2Ct, ~36!

whereE t(0)<0. This means thatE t→0 as t→` which in
turn implies thath0 is a stable equilibrium.

As an example the upper graph in Fig. 3 shows, forB
51, the evolution of a multimode initial condition forh, as it
relaxes to the null space ofL1 . This behavior reflects quite
well that observed in numerical simulations of the full PDE.

b. B5m2.1. The steady stateh0 is unstable to~at
least! subharmonic perturbations. The second inequality in
Eq. ~36! gives

E t>E t~0!eCt. ~37!

If we consider an initial condition forh occupying only Fou-
rier modes with 1<uku,m ~i.e., modes subharmonic toh0!,
then from Eq.~32! ~which yieldsE t(0).0) and the bound
above we deduce thatE t will grow at least exponentially.

The lower graph in Fig. 3 shows the growth ofh, pre-
dominantly in thek51 mode, from a multimode initial con-
dition for h with B54. Eventual instability seems generic
also for initial conditions for whichE t is initially negative,
and to which the instability arguments above do not directly
apply. While an initial decay ofE towards the null space of
Lm2 may be observed, mode coupling through the variable

FIG. 3. Illustrations of the effect of bond number on the stability of steady
states under perturbationsh, with a common initial condition~dashed!. ~a!
B51: Stable.~b! B54: Unstable.
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coefficient nature of the PDE~30! leads to an excitation of
the subharmonic modes, and to eventual growth.

Finally we note that for the dynamics of the gravity
driven jet the evolution of the entropy as defined in Eq.~25!
precludes the existence of any nontrivial, periodic steady
states.

B. Touchdown of the interface

The usefulness of the variational principle that governs
these motions is not just limited to the study of linear stabil-
ity. It can also be used to prove that for the full system~as
opposed to the linearized version! there are initial data which
will give rise to pinches, at least in infinite time. As was
important in the previous section in the demonstration of
linear instability of steady states forB.1, this initial data is
again subharmonic toAB.

Consider the energy functional for the Rayleigh–Taylor
PDE

F 5 1
2E

0

2p

dx$hx
22B~h22h̄2!%5 (

k>1
rkuĥku2, ~38!

and its time derivative

F t52E
0

2p

dxh~hxxx1Bhx!
2. ~39!

If hmin(t)5min` h(x,t), then we obtain directly

F t<2hminE
0

2p

dx~hxxx1Bhx!
2,

52hmin (
k52`

1`

k2rk
2uĥku2. ~40!

It can be shown that foruku>1 and B>2, the inequality
k2rk

2.2rk is satisfied. Equation~40! then directly yields
F t<2hmin(t)F , which can be transformed upon application
of the Gronwall inequality into

F ~ t !<expS 2E
0

t

dshmin~s! DF ~0!. ~41!

As has been proved by Bertozzi and Pugh,14 the only singu-
larity that can be realized by the equation of motion~9! is
one associated withh↓0. We now assume that such an event
does not occur at a finite time. In this circumstance it has
also been proved in Ref. 14 that there is the global existence
of a smooth solution, which we also henceforth assume.
Then ast→` the function

E
0

t

dshmin~s!, ~42!

must be either finite or infinite. Assume the latter, as would
be the case whenhmin is strictly bounded away from zero.

We show now that this assumption implies thath must
pass through zero at a finite time. Consider initial data which
is subharmonic toAB, giving F (0),0. Then

lim
t→`

F ~ t !→2`. ~43!

For simplicity, we restrictB to the values 2<B,4, so that
k51 is the only mode that is subharmonic toAB. Thus, in
Eq. ~38! the contributions of the Fourier modes can be sepa-
rated into positive and negative, yielding

F 52~B21!uĥ1u21 (
k>2

rkuĥku2, ~44!

and negativity ofF gives immediately that

(
k>2

rk

uĥku2

uĥ1u2
,B21. ~45!

From Eq.~43! it follows that that the first term of Eq.~44!,
which is the only negative contribution and measures the
subharmonic amplitude, must diverge and souĥ1u2→` as
t→`.

Now observe thath(x,t) itself is given by

h~x,t !5h̄1ĥ1eix1ĥ1* e2 ix1 (
uku>2

ĥke
ikx

5h̄1uĥ1uS 2 cos~x1f!1 (
uku>2

ĥk

ĥ1

eikxD
5h̄1uĥ1ug~x,t !, ~46!

whereeif5ĥ1 /uĥ1u. The functiong(x,t) can be uniformly
bounded in bothx and t since

U (
uku>2

ĥk

ĥ1

eikxU,2AB21S (
k>2

1

rk
D 5MB . ~47!

This inequality follows from the Ho¨lder inequality and in-
equality ~45!. MB is known in closed form, and is finite
except whenB5m2, m integer. For a small range of
B(2<B<2.075), MB,2. This implies thatg̃(t)<MB22
,0, whereg̃5minx g. As ĥ1 diverges, this implies then that
h(x,t) becomes negative in a finite time, i.e., a pinch.

We extend this conclusion to 2<B,4 by a straightfor-
ward argument using

~ i! E
0

2p

dxg~x,t !50,

~ ii ! E
0

2p

dxg2~x,t !521 (
uku>2

U ĥk

ĥ1
U2

>2 and

~ iii ! ug~x,t !u<21MB . ~48!

Without loss of generality, assume thath̄51. Then there is a
time T>0 for which minxuĥ1(t)ug(x,t)<21, i.e., pinching. To
see this, assume that there is not such a time. Then given any
e, there is a timeTe such that 0>g̃>2e for t>Te . Then
property~i! implies that

E
0

2p

dxugu<4pe, ~49!

which with property~iii ! implies

E
0

2p

dxugu2<4pe~21MB!. ~50!
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But this contradicts property~ii ! for e chosen sufficiently
small.

Thus, the hypothesis of no finite time pinching is contra-
dicted, and it must be that

E
0

`

dshmin~s!,`. ~51!

That is, if there is no finite time pinching,hmin must vanish
faster thant21.

There are a few important points to be noted:
~i! These arguments can be extended to other ranges ofB

by simple rescalings of the equation. However, it would be
most useful to extend these arguments to the range 1,B
,2, where the Gronwall inequality we have used here does
not hold. Numerical experiments indicate nonetheless that
pinching occurs generically in this range ofB as well, and
singularity formation there is the object of an approximate
theory given in Sec. V.

~ii ! There are two other constraints onh that can be
derived. First, an isolated minimumhmin(t) itself obeys the
flux equation

d

dt
hmin~ t !52hmin~ t !Ux~X~ t !,t !, ~52!

whereX(t) tracks the location of the minimum ofh. Then if
there is no finite time pinching, we formally integrate this
equation and apply Eq.~51!, to obtain

E
0

`

expS 2Es

dsUx~X~s!,s! D,`. ~53!

Second, the same arguments can be applied to

hm~ t !5
*0

2pdxhU2

*0
2pdxU2 , ~54!

and which boundshmin from above, to conclude also that

E
0

`

dshm~s!,`, ~55!

if there is no finite time pinching.

IV. INSTABILITIES, BIFURCATIONS, AND
SINGULARITIES

In this section, we present simulations of the evolution
of the full equation of motion in the lubrication approxima-
tion for the Rayleigh–Taylor problem~9!. These simulations
indicate that, at least forB.1, finite-time pinching singulari-
ties are generic. Further, as the bond number is increased,
there is a change in both the form and the number of singu-
larities produced.

A. Numerical methods

The simulations use pseudo-spectral collocation meth-
ods, both uniform and adaptive in space, and implicit in time
to control the high-order stability constraints. The PDE has
the form

ht52]x~hLh!,

with L a linear operator. A simple implicit, second-order
treatment of this PDE is the mixed Crank–Nicholson differ-
encing

hn112hn

Dt
52]xS 1

2
~hnLhn111hn11Lhn! D . ~56!

We find no high order time-step constraint arising from this
implicit differencing.

For evolution that is not yet near a singularity, the op-
eratorLh is typically evaluated on a uniform mesh using the
Discrete Fourier Transform~DFT!, and the quadratic nonlin-
earities are evaluated pseudo spectrally. Near an incipient
singularity, we introduce a smooth and graded mesh that is
reformed periodically, and that collapses as the singularity is
approached. This amounts to a periodic change of variable,
where the new spatial variabley satisfies

xy

Ah
5

1

2p E
0

2p dx

Ah
.

It is motivated by the observation that the observed pinching
singularities are usually close to assuming a local scaling
form h;z(t)2H(h), whereh5(x2xp)/z, and z is a col-
lapsing length scale. Then, locally to the point of pinching,
xh5z;Ah, and soy is such a scaling variable in the neigh-
borhood of the singularity. The constant on the right hand
side ~rhs! is chosen to enforce periodicity of the mapping.
We take this approach because it required relatively minor
changes to the uniform mesh spectral code. In either case,
this change of variable simply introduces metric factors into
the evaluation of spatial derivatives, and produces at the next
time step a full system of equations forhn11 on the mesh,
which we write as

Ahn115r . ~57!

This system is solved using the iterative linear solver
GMRES~see Ref. 30!, which requires only the result of ma-
trix multiplications byA upon a vector. This is accomplished
in O(N ln N) operations by pseudo-spectral collocation,
whereN is the number of grid points. The iteration is accel-
erated by a finite difference based preconditioner, and the
first guess at each time step is given by an extrapolation of
solutions at previous time steps. Convergence to the solution
requires typically only a few iterations.

An alternative approach is a self-similar adaptive mesh
scheme, developed by Bertozzi10 and others, which uses fi-
nite differences. It is especially effective in resolving the fine
structure of symmetric singularities, where round-off error
can be reduced by special choices for mesh point locations.

B. Numerical results

The initial condition chosen is a perturbation of the flat
interface:

h~x,t50!5h̄~11a cosx!, 0<x<2p. ~58!

For B.1, this is an unstable eigenfunction of the linearized
problem, and is also an exact~stable! steady state forB51.
For B,1, simulations from this data show only decay to the
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mean h̄, as expected from linear theory. We note that
Almgren et al.12 have found special initial data which forB
50 show the formation of pinching singularities.

We consider here in greatest detail the caseB slightly
greater than unity, where the singularity occurs through a
single, symmetric touchdown, and which allows comparison
with a nonlinear theory developed in Sec. V. AsB is in-
creased, allowing more unstable length scales, there is an
eventual ‘‘splitting’’ of this single singularity into two, as
well as an apparent change in its type.

1. B 511e, e!1

WhenB511e, linear theory gives for the initial condi-
tion ~58! a growth rateh̄e. Data will typically be plotted
relative to this~long! time scale. Whene!1 only thek51
mode is unstable, while all higher modes are damped~the
k52 mode becomes linearly unstable only forB>4!. Figure
4~a! shows the evolution ofh for B51.05, with h̄50.1 and
a50.5. ~h̄ can be scaled out of the equation, but we did not
do so.! This simulation uses adaptive time stepping and grid-
ding, and quadruple precision, allowing us to followhmin to
very small levels. The simulations indicate thath(x,t)
reaches zero at the single pointx5p, at the finite timetp

'173.7. To demonstrate this, Fig. 4~b! showshmin on a log–
log scale, relative to an estimated pinch timetp ~see below!,
over many decades of decrease inhmin . The curve is very
close to being of unit slope, a point to which we will return.

A central point to much of what follows is the observa-
tion that as the minimum slowly descendsh retains very
closely a cosinusoidal shape. This is consistent with the lin-
ear analysis around the flat equilibrium, as noted above, and
also with the PDE system being in proximity to theB51
case, for which initial data~58! is a stable steady state for

any a. Despite the oncoming singularity associated with the
collapse, this observed separation of scales—thek51 mode
being active with higher modes remaining damped—is main-
tained surprisingly well.

To examine this, consider the two integral quantities as-
sociated with this system that decompose naturally in Fourier
space—the energyF and the entropy time derivativeS t .
Both are quadratic and so are expressible as sums of squared
amplitudes. OnlyF has a prescribed behavior; it must
monotonically decrease.S t is examined also because of its
modal separability, though from the simulation forB
51.05,S itself decreases monotonically~i.e., motion away
from the mean!. If h5p1q, wherep is the Fourier projec-
tion of h onto them lower modes, andq the remainder, then
the energyF divides naturally as

F p1F q52p (
uku<m

rkuĥku212p (
uku.m

rkuĥku2, ~59!

whererk5k22B and a conserved part due to the mean ofh
has been dropped. One has a like expression forS t5S t

p

1S t
q . Figure 5~a! shows F p ~solid! and h̄S t

p ~dashed!,
while Fig. 5~b! showsF q and h̄S t

q for B51.05. Choosing
m51 gives definite signs to the separate elements of the
decomposition~r1,0, rk.0 for k.1!. For the energyF ,
F p, andF q remain separated by three orders of magnitude,
even as the singularity is approached.

Is mode damping responsible for keepingF q small? To
study this further, we examine the relative importance of the
time derivativespt andqt of the decomposed functionht . If
qt is small relative topt , then the dynamics of the modes in
q are slaved to those inp. Fore50.05, 0.1, and 0.2, Fig. 6~a!
shows the ratiouqt /ptu usingm51, atx5p. The singularity
time—shown as a dashed line and decreasing withe—is at
the point whereqt reaches its greatest amplitude. We see
three distinct behaviors. First, for a short initial time interval,

FIG. 4. ~a! The slow evolution towards pinching forB51.05.~b! The van-
ishing of the minimum thickness on a log–log scale.

FIG. 5. Time evolution of energyF and entropy derivativeSt . ~a! Contri-
bution of the lower modesp. ~b! Contribution of the higher modesq.
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whose length decreases withe, pt , andqt are of the same
order and the ratio quickly relaxes to much smaller values.
That these quantities must initially be of the same order fol-
lows simply from initial mode mixing in the quadratic non-
linearity. Second, until close to the singularity time, the ratio
maintains a small value, with amplitude that decreases with
e. And third, near the singularity time,pt andqt become of
the same order~although oppositely signed!, though again
the length of the time interval over which this is true de-
creases withe. Lastly, inspection ofqt shows that the spatial
extent aroundx5p over which it is comparable topt de-
creases withe.

Figure 6~b! compares the ratiosuqt /ptu for m51 and 2,
with e50.05. Form52, the initial relaxation period is re-
moved, the ratio is smaller overall, and remains small until
yet closer to the singularity time. In summary, it appears that
over the the bulk of the evolution of the PDE, until very near
the singularity time, the modes ofq are slaved to those ofp.

Separation of scales and slaving underlie an approximate
‘‘slaving theory,’’ developed in detail in Sec. V. However, to
assist in the further interpretation of our numerical simula-
tions, it is useful here to outline several of the theory’s re-
sults.

In the simplest case,~settingh̄51! we decomposeh as

h~x,t !511a~ t !cosx1q~x,t !5p1q,

i.e., m51. By assuming thatq is small and slaved top, that
is qt'0, q can be found as a functional ofp and the ampli-
tudea(t) determined. Such a single mode representation for
p is only accurate fore!1, as suggested by Fig. 6. From
these approximations we find that:

~1! a(t)→1 at a finite timetp . This corresponds to a
pinch in our slaving theory, and we find that near the singu-
larity time pmin(t);(tp2t)1O((tp2t)3/2).

~2! q(x,t) has the Fourier series representation

q~x,t !5A~a!(
k52

`

~21!k
e2a~a!k

k32Bk
coskx, ~60!

which corresponds to a pair of complex pole singularities in
the complex extension ofqxxx , located atx5p6 ia. As
t→tp , a→0, and analyticity ofq is lost as the poles collide
on the real axis atx5p.

~3! A local scaling form can be found forqxx andqxxx as
t→tp

qxx; ln Atp2t1 lnS 11
1

2
h2D

qxxx;;
1

Atp2t
F 1

h2& i
1

1

h1& i
G , ~61!

whereh5Const•(x2p)/Atp2t.
True to its derivation, we do find that the slaving theory

describes very well the approach of the system to the singu-
larity, at which point its underlying assumptions break down
~i.e., qt becomes comparable topt!, and some divergences
are observed. However, using a change of scaling variableh
very near the singularity time, as suggested by Almgren
et al.,12 we find that Eq.~61! do predict the apparent spatial
form of the singularity. We turn back now to the results of
the numerical simulations.

Again, much of the behavior of the PDE forB511e
can be collapsed by considering motion on the normalized
time t85eh̄t. Figure 7~a! showshmin ~the solid curves! for
several values ofe, with h evolved from the same initial
condition as above. The solid curve closest to the dashed
curve is that forB51.05. The dashed curve arises from the
slaving theory discussed in Sec. V; it is clearly the limiting
behavior ase↓0.

We have fit the collapsing width with the Ansatz

hmin~ t8!;~ tp82t8!c, ~62!

using a nonlinear least-squares method over a sliding set of
ten data points. Figure 7~b! showstp8 as a function ofe. This
figure shows the singularity times to deviate linearly ine
from a limiting value, determined by the slaving theory. Fig-
ure 7~c! shows the result of sliding fits toc, for several
values ofe, as the singularity time is approached. The non-
linear theory gives thathmin(t8);(tp82t8)1O((tp82t8)3/2), and
we include its fit, even though the form is known, as a check
on the fitting procedure; the influence of the higher-order
correction term is clear, though the ultimate convergence of
c to unity is also apparent. Somewhat similar behavior is
seen for finite values ofe. For times away fromtp , for each
e, the fit c is more or less constant, with value varying al-
most linearly ine from unity. But very close to the singular-
ity, the fit value forc begins a rapid decrease, perhaps to
one.

Rather than examining the precise details of the singu-
larity form, we first discuss an analytic structure ofh(x,t)

FIG. 6. Plots of the relative magnitudes of time derivatives of upper and
lower modes. ~a! Ratios as functions of ~rescaled! time for B
51.05,1.10,1.20. Dashed lines are estimated pinching times~decreasing
with e!. ~b! Comparison of the ratio forB51.05 for m51 ~upper solid
curve! andm52 ~lower solid curve!.
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that emerges at early times and persists until quite close to
the singularity. To do this, we study the Fourier spectrum
ĥk . Figure 8 shows log10uĥku for B51.05 for times near the
singularity time. This simulation was performed on a uni-
form mesh, again in quadruple precision~29 digits!, rather
than double precision~15 digits!, to provide more of the
decaying range of the spectrum for data fitting~see also Ref.
31!.

The approaching loss of smoothness inh is evidenced by
a loss of decay inĥk ~for k@1! as the singularity time is
approached. If the oncoming singularity is algebraic and iso-
lated, then we anticipate that the largek behavior of the
Fourier spectrum can be interpreted as that induced by two
algebraic singularities, one above and one below the real axis

uĥk~k,t !u'C~ t !k2b~ t !e2a~ t !k ~63!

~see also Refs. 28, 31, and 32!. These singularities would be
of order b11, and lie a distancea above and below thex
axis ~i.e., a is the analyticity strip width!. In this Ansatz, the
singularity is signaled bya becoming zero at some time, and
exponential decay in the spectrum being lost. The algebraic
order of the singularity is then revealed byb. Using the
approach in Shelley31 ~see also Sulem, Sulem, and Frisch33!,
we have fit values toC, b, and a, using a sliding fit to
successive quadruplets~in k! of uĥku.

Figure 9 shows these fits at the times of the previous
figure. The upper graph is that fora. The uppermost curve is
the earliest time shown, and is the fit for the leftmost graph
in Fig. 8. That the curves show irregular spacing reflects the
use of adaptive time stepping in the numerical code. The fits
are very flat ink, as desired, becoming noisier as decaying
amplitudes approach the round-off level~at earlier times!. As
time proceeds, the amplitude at the Nyquist frequency rises
above the round-off level, and the domain ink over whicha
achieves a flat fit decreases as truncation errors become im-
portant. At the last time shown, very close to the singularity
time, the fit is hardly satisfactory. This also reflects the ex-
pectation that the calculation should become inaccurate as
the analyticity strip width of the solution approaches the
mesh spacing. And indeed, at the next-to-last time shown,
the fit to a is ;0.011, while the mesh spacing itself is
2p/2048'0.006.

FIG. 7. Properties of the singularity.~a! The minimum ofh, for several
values ofB, as a function of rescaled time. Inset: Close-up of behavior near
pinch time. ~b! Rescaled pinch time as a function of bond number.~c!
Effective exponent near the pinch point as a function of time.

FIG. 8. Fourier spectrum ofh as a function of time. Increasing time corre-
sponds to decreasing decay.

FIG. 9. Coefficients of the spectrum ofh in Eq. ~63!. ~a! The effective decay
constant as a function of wave number and time.~b! The effective power-
law exponent as a function of wave number very near the pinch time.
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The fits to b are represented by the one shown in the
lower graph, which corresponds to the 12th time shown in
the upper (t8'0.867). On the region ofb having a smooth
fit, it appears very close to three. All the other times, in their
respective regions of displaying a good fit, also lie close to
three—this particular fit is shown because it has the broadest
such domain ink. We note that becauseb governs the less
dominant, algebraic part of the spectral decay, it is usually
more difficult to determine well thana. Nonetheless, thatb
is very well fit by three is confirmed by Fig. 10, whose upper
graph shows the discrepancy between three and the fit tob as
a function of k. The difference seems to be decreasing as
1/k2 for k@1. The lower graph of Fig. 10 showsa at the
representative valuek5300 as a function of time. It shows
clearly the oncoming loss of smoothness. The singularity
time predicted bya becoming zero corresponds closely to
that ofhmin(t). And so, examination of the spectrum from the
uniform grid simulations suggests that its largek behavior is
given by

ĥk;A~ t !~21!k
e2a~ t !k

k3 , ~64!

in good agreement with the slaving theory. While we have
been focusing on the behavior of the spectrum ofh very near
the singularity time, we emphasize again that this emerges at
early times in the evolution.

If this precise spectral behavior were maintained to the
singularity time, then in physical space there would occur a
logarithmic spatial singularity inhxx , with hxx↓2` logarith-
mically in time, as in Eq.~61!. However, as A. Bertozzi34 has
pointed out,hxx becoming negative atx5p is inconsistent

with having a single minimum ofh as the singularity time is
approached. In light of this we examine our adaptive simu-
lations.

Figure 11~a! showshxx(x,t) at several times near the
singularity time, which is seen to be developing a very sharp
structure aroundx5p, while Fig. 11~b! showshxx(p,t) on a
logarithmic time scale, again relative totp . While hxx(p,t)
is decreasing, it is doing so very slowly, and is certainly not
becoming negative on the range of scales to which we have
been able to compute. Moreover, this graph has a persistent
upward curvature which is not consistent with a logarithmic
divergence, as predicted by Eq.~61!, and may instead be
showing saturation to a finite value astp is approached.

This discrepancy from the slaving theory is reinforced
by Fig. 12~a!, which showshxxx in rescaled coordinates as
the singularity time is approached. We have plotted
shxxx(h,t), whereh5(x2p)/s ands5A(tp2t)1/2, where
A is a constant. This rescaling does only a fair job of col-
lapsing the behavior ofhxxx as it varies over five orders of
magnitude, but suggests thathxxx is diverging as something
close to an inverse square-root behavior. This rescaling was
motivated by Fig. 12~b!, which shows the the divergence of
max uhxxxu, on a log–log scale~relative totp!. On this scale,
the curve is quite flat with a slope very close to21

2.
A far superior rescaling of the data is found by following

the suggestion of Almgren, Bertozzi, and Brenner12 in their
study of symmetric singularity formation in the unforced
case (B50), namely to collapse the data very near the sin-
gularity time on the intrinsic length scale z
5@h(p,t)/hxx(p,t)#1/2. As an Ansatz we consider the scal-
ing functions suggested by the slaving theory, Eq.~61!

FIG. 10. Spectral coefficients.~a! The deviation of the power-law exponent
from three.~b! Loss of the exponential decay.

FIG. 11. ~a! hxx at several times as the singularity time is approached.~b!
hxx at x5p on a logarithmic time scale, relative to the estimated singularity
time.
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hxx;C1D ln~11 1
2h

2!, hxxx;
D

z

h

11 1
2 h2

, ~65!

with h5(x2p)/z. C andD are then determined as

C5hxx~p,t ! and D5z2hxxxx~p,t !.

To lay bare this presumed scaling in the numerical solution,
we plot (hxx2C)/D andzhxxx /D, as functions ofh andt, in
Figs. 13~a! and 13~b!, respectively. At earlier times, we see
the emergence of scaling behavior ath50, with both func-

tions converging to a single form. These forms do indeed
seem to be given by the scaling functions ln(11h2/2) and
h/(11h2/2), also plotted in Figs. 13~a! and 13~b!, respec-
tively, as dashed curves but obscured by the converging
graphs.

And so the slaving theory appears to predict the spatial
forms of the singularity, though there are departures in terms
of the inner scaling and temporal behavior. This is also the
same singularity structure uncovered by Almgrenet al.12 in
their study of symmetric singularities in the unforced case,
and they also give numerical evidence for the emergence of a
larger, second length scale around the singularity region. If
interpreted in the language of complex singularities, this sug-
gests the development of a singularity structure more com-
plicated than, say, a single pair of poles inhxxx , though that
form does apparently govern the innermost scale.

C. As B increases

The number of unstable length scales in the 2p period
increases asAB with increasingB. This increase in the num-
ber of unstable scales leads eventually to a splitting of the
singularity forB sufficiently large, i.e., forB'1.35. The up-
per graph of Fig. 14 showsh(x,t) near pinching forB
51.5, 4.0, and 10, respectively. AsB increases, the distance
between the bifurcated singularities increases, leaving
trapped regions of fluid between the ‘‘Rayleigh–Taylor’’
spikes aboutx50 and 2p. The lower graph shows the loca-
tion of the two critical points as a function ofB ~the solid
curves!. The dashed curves are (B,p/AB) and
(B,p(221/AB). These curves correspond to a spike width
of 2p/AB, the most unstable length scale, as well as give the
width of the weak solution~26!, given in Sec. III A. For

FIG. 12. ~a! hxxx in rescaled coordinates as the singularity time is ap-
proached. See text for details.~b! The divergence of maxuhxxxu on a log–log
scale, relative to the estimated singularity time.

FIG. 13. Results of rescaling on an intrinsic length.

FIG. 14. Singularity splitting.~a! Interfaces near touchdown for various
bond numbers.~b! Bifurcation of the touchdown points~solid! compared
with asymptotic form~dashed!.
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largerB, this length not only describes the width of the ob-
served spikes, but the weak solution with properly chosen
amplitude also fits closely the spatial form of the spike.

We concentrate on theB510 case, for which the most
unstable wave number isk* '2.2. Figure 15~a! showsh(x,t)
at several times, as the lubrication approximation is evolved
from the initial condition~58!. Again, an approach to pinch-
ing is observed, and as remarked previouslyh(x,t) pinches
asymmetrically, in contrast to the symmetric pinching ob-
served for values ofB near one. Figure 15~b! shows
log10 hmin(t). In the initial stages of the collapse,hmin is
given byh(p,t) as the unstablek51 mode grows in ampli-
tude. However, nonlinearity feeds energy into the smaller
scales, including those near that which is most unstable, and
new minima appear at the sides of the developing spikes.

Figure 16 showshxx , with the inset showing the details
in the pinch region. In further contrast to the behavior forB
near one, nowhxx appears to develop a jump discontinuity,
with an accompanying divergence inhxxx . This ultimate
jump discontinuity inhxx would suggest again@as in Eq.
~64!# a largek behavior governed by a cubic algebraic decay
multiplied by an exponential decay that is being lost. In such
a form, it is anticipated that the approach to the realx axis of
two simultaneous, oncoming singularities inh will produce
an additional oscillation ink of wavelength 2p/xp . This is
consistent with the observed behavior in Fig. 17, which
shows log10uk3ĥku ~from a uniform mesh simulation! versus
k, as the singularity is approached. While we have not tried
to fit this behavior, on a logarithmic scale it shows the an-
ticipated linear decrease, overlaid by an oscillation of the
expected wavelength.

Again, if this spectral behavior persisted, it would indi-
cate the ultimate collision on the real axis of pole singulari-
ties in the analytic extension ofhxxx . We consider again our
adaptive simulations in the neighborhood of the incipient
singularity, again rescaling the data on the variable

h5(x2xmin)/s, s5@h(xmin ,t)/hxx(xmin ,t)#1/2. We find that in
this rescaled variable thathxxx is very nearly an even func-
tion, suggesting that in terms of poles

hxxx;
A

11 1
2 h2

5
A

& i
S 1

h2& i
2

1

h1& i
D ,

whereA5hxxx(xmin ,t). In Figs. 18~a! and 18~b! we plot the
even and odd parts ofhxxx(h,t)/A. In Fig. 18~a! is also
plotted, as a dashed curve, the scaling form 1/(11h2/2),
again obscured by the relaxation of other curves to it. We see
in the odd part@Fig. 18~b!# the appearance of a persistent
correction~at about 3%! to the apparent~even! pole struc-
ture. At early times in the figure, the odd part has the appear-
ance of the pole arrangement seen for the symmetric singu-

FIG. 15. The functionsh(x,t) ~a! andhmin(t) ~b! as pinching in the system
is approached. Inset in~b! shows detail ofhmin near the end of the simula-
tion.

FIG. 16. hxx(x,t) as pinching in the system is approached. Inset shows
detail of jump discontinuity in the pinch region.

FIG. 17. Spectrum ofh, multiplied byk3, corresponding to evolution in Fig.
16.
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larity structure at smaller bond numbers, but it develops into
a more complicated form as the singularity develops.

For these simulations, we have skirted the issue of
whether hmin↓0 at a finite time. Up to aboutt'0.9798
(hmin'231027) hmin shows a rate of decrease that if main-
tained would yield a finite time pinch. However, at this time,
there is an abrupt slowing ofhmin in its descent. This is
shown in the inset of Fig. 15~b!, showing this slowing on a
log scale inh. It is also at this slowing time that there is a
transition in the odd part ofhxxx(h,t) ~see Fig. 18! from
what looks like the odd two pole arrangement of Eq.~65!, to
some more complicated structure.

In the unforced (B50) case Almgrenet al.12 also stud-
ied ‘‘exploding’’ singularities, in which two singularities
emerge from what is initially a single minimum, and which
may describe the double singularity that appears in the split-
ting near the bifurcation point in Fig. 14. Such singularities
were studied and quantified earlier by Dupontet al.9 for the
B50 equation being forced by boundary conditions. In their
analyses of this singularity, both studies predict a behavior of
hmin;((tp2t)/ln(tp2t))2. However, the descent here is slower,
showing a nearly linear decrease on the log scale. Of course,
from our spectral simulations we have less than two decades
of decrease in this regime. Though not shown here, less ac-
curate finite-difference simulations~these are considerably
faster to perform! show an apparent continuation of this be-
havior. In some agreement with these studies, we do observe
at this transition a ‘‘slowing down’’ in the motion ofxp ,
though it is unclear if the post-transition behavior will be to
a constant velocity, as predicted in Refs. 9 and 12. We do not
yet know if the behavior found in these other studies is uni-
versal, and applies here. Indeed, another possibility is infinite
time relaxation, without intervening singularity, to an
asymptotic state incorporating a weak solution~see Sec.
III A !. Such a situation was studied by Constantinet al.8 for
a B50 case, again being forced by boundary conditions. We

do note that a two-mode slaving approximation~discussed in
the next section!, which may serve to describe an ‘‘outer
solution’’ at least near the bifurcation~in B! to two touch-
downs, does not show any transitions in behavior as touch-
down is approached. There we find thatxp approaches the
pinch with constant velocity, withpmin decreasing to zero
linearly in time ~as did the single mode case!.

V. THE DYNAMICS OF SMALL-SCALE SLAVING

A. Partitioning of scales

We have seen in the previous section that the global
aspects of the Rayleigh–Taylor instability in Hele–Shaw
flow are primarily controlled by the Bond number. Beyond
but still near the critical valueB51, a single unstable mode
dominates the flow, leading to a symmetric touchdown atx
5p. Even at the singularity time the amplitudes of the
higher Fourier modes remain small, although decaying only
algebraically with mode number. Further increase inB lead-
sultimately to singularity splitting; two asymmetric touch-
downs straddlingx5p. This phenomenon is associated with
the presence of an appreciable amplitude of the first har-
monic (cos 2x). Still, modes three and above remain small.
Based on the linear stability analysis of the previous section,
we see that whenB is close to unity the growth rates of the
higher modes are all negative andO ~1!, while that of the
unstablem51 mode is small. This suggests a separation of
time scales like that used in the derivation of amplitude
equations for convective and lasing instabilities.

These observations further suggest that one might con-
struct an approximate dynamics based on the dominance of
the active modes over the linearly stable small-scale modes.
A natural approach is to partitionh into low ~p! and high~q!
modes by means of an operatorP m that projects a periodic
function onto its lowerm modes, where the numberm in-
cludes at least those that are linearly unstable. Thus we write

h5p1q ~P mp5p, P mq50!, ~66!

and seek a reduced dynamics for the lower modes in terms of
their time-dependent amplitudes.

A useful simplification in developing the slaved dynam-
ics arises from the fact that the RHS of the Rayleigh–Taylor
Eq. ~9! may be integrated further, so that it has the form

ht52]xx~hhxx2
1
2hx

21 1
2Bh2!. ~67!

Now substituting the decomposition~66! into the lubrication
PDE ~67!, we make the fundamental slaving hypotheses;~a!
ignore contributions of orderq2, and ~b! ignore the time
dependence of the high modes (qt.0). We obtain the linear
inhomogeneous differential equation for the high modesq

pqxx2pxqx1~pxx1Bp!q52p5 t2 J̃p1C, ~68!

where Jp5pLBp is the flux associated with the lower
modes,C is an integration constant, and for any function
f (x) we define

f̃ 5Ex

dx8 f ~x8!. ~69!

FIG. 18. The decomposition ofhxxx(h,t)/A into even~a! and odd~b! parts,
as a function ofh.
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By construction, the functionp is periodic inx, and thus Eq.
~68! is the inhomogeneous Hill equation,35 in which both the
functionq and the time dependence of the lower modes,p5 t ,
are unknowns.

Equation~68! may be cast in the more standard form of
Hill’s equation by the transformation

q~x!5Ap~x!Q~x!, ~70!

whereQ obeys

S d2

dx2 1B13
2ppxx2px

2

4p2 DQ5
p5 t1 J̃p2C

p3/2 . ~71!

The explicit appearance of the factor ofB inside the operator
in ~71! makes it clear that the natural periodicity of the sys-
tem, at least for small deviations from a planar state, isAB,
incommensurate with that of the lower modes whenBÞ1.
This representation has the disadvantage that the clear sepa-
ration of modes in the initial partition~66! has been lost in
the transformation~70!.

1. Spectral properties of q

To illustrate the means by which Eq.~68! is solved both
for q andp5 t , consider the simplest hypothesis for the active
modes

p511a~ t !cosx. ~72!

In light of the linear stability resultat5h̄(B21)a and the
similar scaling of the fluxJp with (B21), a natural set of
rescalings to adopt is

t5~B21!h̄t; q5~B21!Q, ~73!

reducing~68! to an inhomogeneous form of Ince’s equation35

~11a cosx!Qxx1a sin xQx1@B1~B21!a cosx#Q

5~at2a!cosx2
a2

4
cos 2x, ~74!

where we have determined the integration constant in Eq.
~68! to beC5(11a2/2)/2 in order that the RHS of~74! have
zero mean value.

Now we turn to the solution of the inhomogeneous Ince
Eq. ~74! for general values of the bond number. It is an
alternating Fourier series of the form

q5 (
n52

`

~21!nCn cosnx. ~75!

Direct substitution into Eq.~74! yields the relations for the
first two modes

C25
2

a~B27!
~at2a!,

C35
2

a~B213! Fa2

4
1~B24!C2G , ~76!

while for n>4 the recursion relation is

a

2
~n213n132B!Cn112~n22B!Cn

1
a

2
~n223n132B!Cn2150. ~77!

A first observation concerns the asymptotic behavior of the
Cn’s for n@1, which may be deduced using standard meth-
ods for difference equations.36 In brief, for n→` the recur-
sion relation~77! simplifies to

a

2
Cn112Cn1

a

2
Cn2150, ~78!

for which one readily verifies the exponential behavior

Cn;ln, ~79!

wherel satisfies the quadratic equation

al222l1a50, l65
1

a
@16A12a2#. ~80!

Note thatl1l251, and in general,l1>1 andl2<1. The
equality holding only whena51, which corresponds to a
touchdown of the lower modes.

More information on the large-n behavior is obtained by
writing Cn5lnDn and using the same methods, whereby
one findsDn;n23 independent ofB. We thus conclude that
for largen the solution to the recursion relation has the form

Cn; (
n56

An

ln
n

n3 ~n@1!. ~81!

Clearly the solution corresponding tol1 does not satisfy the
requirement of boundedness. The solvability condition is that
the solution be bounded, which now means thatat , the only
unknown in the recursion relations~76!, should be chosen
such thatA150. We have not succeeded in finding a closed
form analytic solution fora(t) for generalB, although one
can be found in the special limitB→1 ~see below!. Never-
theless,at as a function ofa, and thencea(t), may be found
through a very straightforward numerical procedure de-
scribed below.

The goal of the numerical procedure is to findat , for
given B and a, such that the growing solution given by the
recursion relation is eliminated. Note the crucial feature that
with B and a fixed, A1 is a linear function ofat since the
only place in the recursion in whichat occurs explicitly is in
the amplitudeC2 . Thus, an arbitrary guess forat can be
used to find the exact value by means of a Newton–Raphson
method that will converge in a single step.

Figure 19~a! shows the functionat(a) so obtained for
several different values of the Bond number. Even forB
quite far from unity the general features of the function re-
main unchanged. In particular, all of the curves asymptote to
the same linear behaviorat5a as a→0, simply reflecting
the analytic linear stability result. Moreover, all converge to
1
2 from above asa→1. Finally, note that the larger isB, the
lower is the curveat(a). This implies a delay in the rescaled
pinch time that grows larger withB.
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It can be shown that any Ansatz for the active modes
contained inp generates a set of zeros in the complex plane,
and the asymptotic spectrum is always of the form

Cn; (
n51

2m

An

ln
n

n3 ~n@1!. ~82!

Elimination of the secular solutions associated with them
values ofl.1 constitutes them solvability conditions that
determine the time evolution of the mode amplitudes. Some
of these singularities will move toward, although not all
reach the unit circle as the pinch time is approached.

2. An alternative slaving approximation

We now discuss an alternative version of the slaving
approximation that makes use of these results on the spec-
trum of q. The difference of this new approach lies in the
possibility of neglecting one other term that can be shown to
be of higher order. A remarkable consequence of the irrel-
evance of that term will be a partial decoupling of the lower
and higher modes, achieved through the definition of an aux-
iliary function.

We shall now proceed with the detailed explanation. By
substitution of the spectral decomposition ofh(h5p1q)
into the full equation of motion, Eq.~9!, it becomes clear that
for the largek limit there is a termqLp which is of even
higher order than the temporal derivativeqt and thus that can
be consistently neglected. These manipulations lead to a sim-
pler slaving approximation, that can be summarized in the
following set of equations:

pt52~pL~p1q!!x , P mp5p, P mq50, ~83!

whereP m is the projection operator for the firstm modes.
Notice the very important feature that the shallow-water
form persists after all the transformations and approxima-
tions.

It is possible to introduce still some further simplifica-
tions of this system. In fact, aspt has zero mean, we define a
new functiony such thatyx5pt . After replacing it in Eq.
~83! and integrating once with respect to the variablex the
slaving equation reduces to

y

p
52L~p1q!. ~84!

The lack of an arbitrary constant of integration is the conse-
quence ofpLp being a perfect derivative, and the orthogo-
nality of the functionsp andq. It is possible to decouple the
evolution ofp from q

Now we apply the projection operatorsP m and Qm ,
whereP m is defined as before andQm is the operator that
projects a periodic function onto its modes higher thanm.
The slaving approximation then becomes

pt5yx , P m

y

p
52Lp, ~85!

Qm

y

p
52Lq. ~86!

In this description, the determination of the correctionq is
now completely decoupled from the evolution ofp. The sys-
tem of Eq. ~85! is a natural, albeit nonstandard, Galerkin
approximation to the lubrication equation, and one that re-
tains the variational features of the original equation.
Namely, the functionalsF @p# and S @p#, as defined in the
previous section, are the energy and the entropy, respec-
tively, and satisfy the same evolutions and inequalities~see
Appendix C; also see Ref. 37 for dissipative Galerkin
schemes for the Kuramoto–Sivashinsky equation!.

The functionp is the finite Fourier series

p~x,t !5 (
k52m

m

ak~ t !eikx. ~87!

Since p is even and real, the coefficientsak are real and
satisfyak5a2k . We now introduce the analytic continuation
of the functionp through the new variableu5x1 iv. For
convenience we use the notationz5eiu . Therefore, Eq.~87!
can be rewritten as

p~z,t !5
1

zm (
k52m

m

akz
k1m5

1

zm U~z!, ~88!

where the functionU(z) is a polynomial of degree 2m, and
so has 2m zeros. Since the amplitudesak are real and sym-
metric, if l is a complex zero ofU, then its conjugate,l*
and its inverse 1/l will also be zeros ofU. If p.0 for uzu
51, thenU has no zeros on the unit circle. Then obviouslym
of the zeros lie within the unit circle, andm without. This
allows us to rewriteU(z) as the product

U~z!5A)
k51

m

~z2lk~ t !!S z2
1

lk~ t ! D , ~89!

whereulku,1 andA andl are functions of the amplitudes
ak .

FIG. 19. Curves corresponding to the solvability condition for bond num-
bers 1.05, 1.5, and 2.0.
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Now we construct the functiony from p, using ~83!.
Sincey has zero mean value, it can be written in the form

y~z,t !5 i
z221

zm (
k51

m

Ũk~z!ȧk~ t !, ~90!

where Ũk is a polynomial of degree 2m22. The left hand
side of~85! involves applying the projection operatorP m to
the ratioy/p. This is simply a matter of finding 2m11 Fou-
rier amplitudes. Using the properties of evenness and area
conservation, the projection actually involves onlym contour
integrals fork52m,2m11,...,21 of the form

1

2p E
0

2p

dxe2 ikxf ~x!5
1

2p i Euzu51
dzz2k21f ~z!. ~91!

When applied tof 5y/p these projections become the sum of
residues at the zeroslk . Assuming that thelk’s are all
simple zeros, the system~85! can be calculated as the linear
set of equations forȧk(t)

(
n51

m S (
j 51

m
l j

kŨn~l j !

P
pÞ j
p51
m

~l j2lp!~l j21/lp!D ȧn~ t !

52A~a!~k32Bk!ak . ~92!

Equation~92! constitutes a closed set of algebraic relations
that completely determines the time evolution of the modes
ak(t).

B. The dynamics of zeros

Once the values of all thelk’s are obtained, every other
related quantity can be determined, at least in an implicit
fashion. Indeed, since the mean ofp is conserved, the pref-
actor A can be given, in general, as a function of thelk’s,
which we represent asA5A(l), yielding in turn theak’s.
As a consequence of this, the system~85! can also be recast
as the dynamics of the zeros ofp by means of a residue
calculation analogous to the previous one. The end result is

(
n51

m S (
j 51

m
l j

kÛn~l j ;l!

P
pÞ j
p51
m

~l j2lp!~l j21/lp!D l̇n~ t !

52A~l!~k32Bk!ak~l!, ~93!

where Ûk(z;l) is a polynomial of degree 2m22, with its
coefficients being functions of thelk’s.

1. Special cases for modal dynamics

m51: We choosep511a cosx and deduce from~92!

at5~B21!
a

2
~11A12a2!. ~94!

This result can also be obtained analytically within the pre-
vious slaving approximation in the limitB→1.7 It is found
from Eq. ~74! by settingB511e, rescalingt, and applying
the solvability condition through the method of variation of
parameters. For this purpose, we note that a general feature
of the Ince Eq.~68! is that the Wronskian is equal to the
lower mode functionp(x). A third approach, different from
the two ‘‘slaving’’ approximations given here, is found in

Appendix B. In this approach,p andq are found simply as
successive terms in an asymptotic expansion ofh in powers
of e.

In the rescaled timet5(B21)t, Eq.~94! is solved as an
implicit equation fora(t), given the initial valuea0[a(t
50)

f ~a0!2 f ~a!5t ~95!

where

f ~a!5
12A12a2

a2 2 logS 12A12a2

a D . ~96!

Pinching occurs whena(t)↗1 at the time

tp5 f ~a0!21, or tp5
f ~a0!21

~B21!
. ~97!

Let us note several important features of solutions~94!–
~97!. First, when the interface is nearly flat we obtain a
weakly nonlinear equation of motion

at.a2
1

4
a31¯ , ~a!1!, ~98!

showing that the nonlinearities of the lubrication dynamics
slow down the exponential growtha(t)5a0 exp(t) de-
scribed by the linear stability analysis. Indeed, near the pinch
time the amplitude is linear in time

a~t!.12 1
2~tp2t!1¯ , ~t↗tp!. ~99!

A second issue concerns the scaling of the pinch time. When
the initial amplitude is small, so that its initial growth is well
described by exponential amplification, we find

tp;
log~2/a0!

h̄~B21!
. ~100!

The logarithmic form of this behavior is what one would
obtain by simply continuing the exponential growth untila
51, although the particular factor of 2 in~100! does not
emerge from so simple an estimate.

Figure 20 shows excellent agreement between these
asymptotic results and numerical studies of the lubrication
PDE ~9! for the pinch timestp(a0), and for the minimum
heighthmin5(12a(t)).

The correction functionq can now be obtained in closed
form

q~x!5l1HA12a2 sin x tan21S l2 sin x

11l2 cosxD
1

1

2
~a1cosx!ln~112l2 cosx1l2

2 !

2aS 3

4
l2 cosx1

1

2D J . ~101!

Here l6 are the two real zeros of the quadratic previously
introduced in Eq.~80!. As a↗1, l2→1, and thus within this
analysis the interface curvature, throughq9(x), develops a
logarithmic singularity. This divergence can also be inter-
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preted as the collision on the real axis of two singularities,
located atp6 i lnul2u in the complexx plane.

Observe also that the Fourier-space representation of
q(x) has the very simple form

q~x!5A~a! (
n52

`

~21!n
l2

n

n32n
cosnx, ~102!

whereA(a) is a smooth function of the time-dependent am-
plitude a(t). Sincel2<1, and equality holds only whena
51, the power-law spectrum ofq is cutoff by an exponential
factor whose range diverges to infinity as the low mode
touches down. This is fully consistent with the asymptotic
results of Eq.~82! and the numerical results described ear-
lier.

One interesting point to note is that near the singularity
time tp and singularity pointxp5p, the asymptotic behavior
of the correction function is not of scaling form
(tp2t)aF((x2xp)/(tp2t)b).

Until times very close to the singularity, full simulations
show very good agreement between the form of the correc-
tion function ~and its spectrum! with the asymptotic result
~101!. Figure 21 shows a comparison between the two in real
space.

m52: Here we choose

p511a~ t !cosx1b~ t !cos 2x. ~103!

This case is interesting for two main reasons. First, it allows
us to examine a correction to the single mode truncation,
where thek52 mode now has its own independent dynam-
ics. Second, beyond a threshold value of the bond number, it
is possible to observe the development of two singularities
instead of one.

Substitution into~92! yields two evolution equations for
the amplitudes of the independent modes

S ȧ

ḃD5
b

j S 12j1h2 2h

22h 2 D S 1

2
~B21!a

~B24!b
D , ~104!

whereh5l11l2 andj5l1l2 are both real. The four zeros
~l i andl i

21! are found as solutions to the pair of equations

l22yl1150,
b

2
y21

a

2
y1~12b!50. ~105!

Let us now examine the two-dimensional~a,b! phase
space as a function ofB. This space is constrained by requir-
ing thatp>0 and is reflection symmetric abouta50. Figure
22 shows the constrained domain. In the right half-plane (a
>0), the lineb5a21, for 21<b< 1

3, defines those pinch-
ing configurations with a single touchdown atx5p. For

FIG. 20. Comparison betweenB511e calculation and numerical results.
~a! Singularity time as a function of initial amplitude.~b! Minimum inter-
face height as a function of time.

FIG. 21. Comparison between analytical correction function~solid! and
numerical results~dotted! near the singularity.

FIG. 22. Division of the phase domain for the two-mode approximation,
indicating behavior of the interface.
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1
3,b,1 the ellipsea5@8b(12b)#1/2 is the locus of con-
figurations with two touchdowns. The functionp is strictly
positive in the interior of the ice cream cone-shaped region.
This domain is divided by the lineb5a/4 into regions where
p has a single minimum and where it has two. The domain
can also be divided in terms of the locations of the complex
zerosl1 andl2 within the unit circle in thez plane. Within
the ellipse defined above,l15l2* and they are complex,
while exterior to that ellipse both zeros lie on the real axis.

We focus now on the organization of the phase trajecto-
ries defined by Eq.~104!. Linearization about the steady state
(a,b)5(0,0) givesȧ5(B21)a and ḃ52(B24)b, as also
found from linear analysis of the full PDE. Thus, forB,1
the point ~0,0! is asymptotically stable. For 1,B,4, the
local stable manifold is theb axis, while thea axis is an
unstable invariant manifold.

Figure 23 shows the~a,b! phase domain forB51.05,
1.50, 2.15, and 2.50. Recall that a point on the domain
boundary (ulu51) with b, 1

3 has a single touchdown, while
for b. 1

3 there are two. The boundary point withb5 1
3 is

shown as a solid dot. ForB51.05, the unstable manifold to
~0,0! is very flat across the phase domain, and its terminus
lies on the domain boundary withb very slightly positive
(b'0.008). As for them51 case, intersection with the do-
main boundary gives a singularity in the evolution of the
ordinary differential equation. It appears that any initial con-
dition within the phase domain that is not upon the stable
manifold will intersect the domain boundary within a finite
time. Orbits are attracted strongly onto the unstable mani-
fold, in accordance with our slaving picture; the unstable
manifold is clearly the organizing structure of the phase
flow.

As B is increased further, the unstable manifold bends
upwards, and its terminus on the domain boundary also
moves to larger values ofb. At B5B̄'2.1, this terminus
crossesb5 1

3, and there is a bifurcation to two touchdowns.
Figure 24 shows the motion of orbits ofl1 ~solid! and l2

~dashed when off the real axis! within the unitl-circle. For
small B (B51.05,1.5) the unstable manifold maps com-
pletely onto the reall-axis—i.e., the manifold lies entirely
beneath the lower boundary of the ellipse. The two real zeros
then evolve along the real axis, and one of these zeros moves
out and collides with the unit circle, producing again a single
touchdown. ForB.B̄, the unstable manifold crosses into the

ellipse as the unit circle is approached. ForB52.15, the two
initially real zeros collide at some time, and bifurcate off into
the complex plane. Then they flow together as a conjugate
pair towards the unit circle. The point of collision is where
the unstable manifold crosses the ellipse. ForB52.5 the en-
tire unstable manifold lies within the ellipse, and the two
zeros evolve directly as conjugate pairs towards the unit
circle. The presence of a conjugate pair would give a spec-
trum similar to that seen in Fig. 17. Examination of the nu-
merical evidence suggests thathmin approaches zero linearly
in time, as for the single mode case, and thatxp(t) also
approaches linearly toxp(tp).

VI. CONCLUSIONS

In this work, we have developed an approximate analyti-
cal description of finite-time singularities in a class of vis-
cous flows. Starting from the exact highly nonlocal vortex
sheet description of interface motion in Hele–Shaw flow, we
have developed a systematic procedure for generating equa-
tions of motion valid for asymptotically thin layers. This
asymptotic limit is more tractable and retains many of the
important features of the full problem, such as its conserva-
tion laws, linear stability properties, and variational struc-
ture.

We have focused on a dynamic that is intrinsically un-
stable, and thus for which a topological transition would ap-
pear to be inevitable. This Rayleigh–Taylor problem, with
its simple competition between buoyancy and surface ten-
sion, has an underlying variational principle that allows us to
prove that interface pinching must occur, at least in infinite
time. The adjustable parameter that controls the instability
~the bond number! may be tuned so that the unstable mode
evolves arbitrarily slowly compared to all others. With this
separation of time scales, and an associated partitioning of
modes into ‘‘active’’ and ‘‘slaved’’, a systematic perturba-
tion theory can be developed that leads to explicit expres-
sions for the time evolution of all modes. Most importantly,
these results constitute an approximate solution to the initial
value problem. They predict quite accurately the singularity
time observed in numerical studies of the full equation of
motion. This partitioning of the modes can be generalized
through the introduction of suitable projection operators, and
can be recast naturally as the dynamics of zeros in the com-
plex plane, a picture of singularity formation found in other
systems as well.25,38 Another natural question is whether

FIG. 23. Trajectories of solutions in thea-b phase domain for increasing
bond number. Motion is towards and out along the curved unstable mani-
fold.

FIG. 24. Trajectories of zeros in the complexl plane as a function of
increasing bond number. Solid and dashed lines represent complex conju-
gate pairs. Motion is towards the unit circle.
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such techniques might be extended to the unforced (B50)
case, such as studied by Almgrenet al.,12 for which there is
no apparent division of scales.

Many important unanswered questions remain for this
class of problems, perhaps the most notable being how to
prove that there is indeed finite-time pinching in the
Rayleigh–Taylor problem. As well one would like a more
rigorous understanding of the slaving analysis, perhaps using
the techniques developed for proving the existence of inertial
manifolds for dissipative PDEs. All of the results we have
discussed pertain to finite systems in two dimensions, for
which the spectrum of modes is discrete. One very natural
issue is whether the slaving approximations developed here
can be generalized to infinite systems with a continuous
spectrum. Likewise, the extension of these ideas to more
complicated free-surface flows remains an open problem.
Examples include pattern formation through the nonlinear
development of the Saffman–Taylor instability of an ex-
panding gas bubble, and the Rayleigh instability of a fluid
column or a soap film.39 Finally, and on a more general level,
we do not have a good understanding of how smooth large-
scale flows induced by instabilities connect up with scaling
solutions near singularities. This aspect appears to be central
to the determination of singularity exponents in the scaling
forms.
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APPENDIX A: THE LUBRICATION EXPANSIONS

Here we show some of the technical details involved in
the expansions of the vortex sheet integrals that lead to the
lubrication equations of motion. This uses an asymptotic
technique developed in Baker and Shelley28 for studying thin
vortex layers~Moore40 used a matched asymptotics approach
for this same problem!. Generalizing the expression for the
fluid velocity ~6! to the case of two interfaces located at
positionsz1 andz2 , the equation of motion for either is

]zj*

]t
~p,t !5

1

2p i
PE

2`

1`

dp8
g1~p8!

zj~p!2z1~p8!

1
1

2p i
PE

2`

1`

dp8
g2~p8!

zj~p!2z2~p8!
, ~A1!

where P means the principal value integral of the self-
interaction term. Now letQ* (zj )5]zj* /]t. By the assumed
symmetry of the interfaces, the vortex sheet strengths are
equal in magnitude and opposite in sign and satisfy

g12Am Re$zpQ* ~z!%5]p~k1Bf~z!!. ~A2!

The two interfaces are located atx6 i eh(x), and we
seek expansions ine of the vortex sheet strength

g5g~0!1eg~1!1e2g~2!1¯ . ~A3!

This requires the calculation of expressions of the type

I 12I 25
1

2p i E2`

1` g~x8!dx8

~x2x8!1 i eh1

2
1

2p i
PE

2`

1` g~x8!dx8

~x2x8!1 i eh2
, ~A4!

whereh65h(x)6h(x8).
Of the two integralsI 1 and I 2 , the former is the more

difficult. The evaluation ofI 2 involves geometric expansions
of the integrand, together with integrations by parts, and is
possible because the quantity (h(p)2h(q))/(p2q) is
bounded for smoothh. The unboundedness of the quantity
(h(p)1h(q))/(p2q) as p2q→0 renders the integralI 1

and its kindred more difficult. The coefficients of their Tay-
lor expansions are instead obtained through a limiting proce-
dure of the form

I 1~e!. lim
e→0

I 1~e!1e lim
e→0

dI1~e!

de
1¯ . ~A5!

This procedure amounts to an application of the Plemelj for-
mulas, and generates both local and nonlocal terms. After
considerable algebra, we obtain

I 1@g#2I 2@g#5U@g#2 iV@g#, ~A6!

where

U@g#5 (
m50

`
~21!me2m

2~2m!!

d2m

dx82m ~g~x8!h1
2m!ux85x

1 (
m50

`
~21!me2m11

2~2m11!!
HF d2m11

dx82m11 $g~x8!D2m11%G ,
~A7!

where

D2m115h1
2m112h2

2m11, ~A8!

and

V@g#52 (
m50

`
~21!me2m11

2~2m11!!

d2m11

dx82m11 ~g~x8!h1
2m11!ux85x

1 (
m50

`
~21!me2m

2~2m!!
HF d2m

dx82m $g~x8!D2m%G . ~A9!

Noting that Re$(]pz2)Q* %5U1Vehx in Eq. ~A2!, and
substituting from~A3! we obtain

U1Vehx. 1
2g

~0!1e~ 1
2g

~1!1H@$g~0!h%x# !1e2~ 1
2g

~2!

1H@$g~1!h%x#2]x~h]x~hg~0!!!!1¯ .

~A10!

The right-hand side of~A2! has also an expansion ine

]x~k1Bf~z2!!5P~0!1eP~1!1e2P~2!1¯ , ~A11!
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whose coefficientsP(n) depend only on the functionh, its
spatial derivatives, and the parameterB. Then order by order
in e ~A2! becomes

P~0!5~11Am!g~0!,

P~1!5~11Am!g~1!12AmH@$g~0!h%x#, ~A12!

P~2!5~11Am!g~2!12AmH@$g~1!h%x#

22Am]x~h]x~hg~0!!!.

Solving this order by order ine yields the functionsg (n)

g~0!5
1

11Am
P~0!,

g~1!5
1

11Am
P~1!2

2Am

11Am
H@$P~0!h%x#, ~A13!

and so on.
Finally, the equation of motion for the interface takes the

general form

ht52]x$h~g~0!1eg~1!1e2g~2!1eg~0!H@hx#

1e2H@~g~1!h!x#2e2g~0!~hhx!x1¯ !%. ~A14!

APPENDIX B: A PERTURBATIVE APPROACH TO
TOUCHDOWN SINGULARITIES

In this Appendix, we present two examples of a pertur-
bative approach to understanding touchdown singularities. In
each case, we again exploit the existence of a slow time
scale. The first example is the Rayleigh–Taylor problem,
with B511e for e!1. Rescaling time as in Eq.~73!, the
lubrication equation reads

eht52]x~h~L1h1ehx!!. ~B1!

We assume thath can be expanded ine as

h5j01ej11¯ . ~B2!

At O(1) in this expansion, we have

2]x~j0L1j0!50. ~B3!

It is straightforward to show that with periodic boundary
conditions

j0511a~ t !cosx. ~B4!

While sinx is also in the null space ofL1 , it can be sub-
sumed into the above form through a phase shift. As before,
the time dependence ina is determined by a solvability con-
dition that allows a continuation of the asymptotic expan-
sion. At the next order we have the shallow-water form

jt
052]x~j0~L1j11jx

0!!. ~B5!

Again, if j0→0 then j1 must develop a singularity. This
equation can be integrated up once, and written as a differ-
ential equation forj1

L1j152
j̃ t

0

j02jx
0[R. ~B6!

To solve forj1, the Fredholm Alternative must be sat-
isfied. There are three independent solutions toL1c50:
c151, c25cosx, c35sinx. Thus, to find a solution to Eq.
~B6!, it must be that

^R,c1&5^R,c2&5^R,c3&50, ~B7!

are satisfied, wherê•,•& is the usualL2@0,2p# inner product.
The first two are trivially satisfied, the last is not. One veri-
fies by direct integration that the last condition reproduces
the equation of motion for the amplitudea(t) found in Eq.
~94!.

As mentioned above, this has further implications forj1.
Applying the solvability condition, that is, the ODE fora,
gives

L1j15
1

2
a

~12A12a2!12a cosx

11a cosx
sin x. ~B8!

Integration of this equation forj1 gives the expression found
for q in Eq. ~101!. As a→12, the right-hand-side acquires a
pole singularity atx5p. The local behavior ofL1j1 can be
rewritten in a scaling form

L1j1.
1

Atp2t

h

11h2 , h5
x2p

Atp2t
. ~B9!

This implies thatjxx
1 diverges ast→tp .

In our second example, we apply this asymptotic ap-
proach to a thin layer of liquid pinching under a slow outflux
of fluid. We consider the lubrication equation with surface
tension alone

ht52]x~hhxxx!, ~B10!

but with the modified boundary conditions

h~1,t !51, hxxx~1,t !5e!1, ~B11!

with h even aboutx50. The mass flux ishhxxx , and so these
boundary conditions atx51 correspond to an imposed, slow
outflux of liquid from the layer.

We expandh as in Eq.~B2!, and again rescale time as
t5et. At first order we find

2]x~j0jxxx
0 !50, ~B12!

with the boundary conditions

j0~1,t!51, jxxx
0 ~1,t!50, ~B13!

andj0 even aboutx50. This yields

j0~x,t !511a~t!~x221!, ~B14!

wherea(t) is determined at next order. AtO(e) we have

at~x221!52]x~j0jxxx
1 !, ~B15!

with j1 even aboutx50 and

j1~1,t!50, jxxx
1 ~1,t!51. ~B16!

Integrating up once, and using eveness atx50, gives

at~
1
3x

22x!52j0jxxx
1 . ~B17!
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Where before we applied a solvability condition to determine
a(t), we now use boundary conditions. Applying the bound-
ary conditions atx51 on j0,1, we find

a~t!5 3
2t1a0 , ~B18!

which gives a timetp5( 2
3)(12a0) when the zeroth-order

solution pinches. As before, this has consequences for the
next order correctionj1. Namely, Eq.~B15! becomes

jxxx
1 52

3

2

1
3 x32x

11a~t!~x221!
, ~B19!

and at the pinch time

jxxx
1 52

3

2

1
3 x221

x
, ~B20!

which has a pole singularity atx50. Once again,jxx
1 is loga-

rithmically divergent at the pinching time.

APPENDIX C: PROPERTIES OF DECOUPLED
SLAVING APPROXIMATION

In this section, we prove several properties of the alter-
native slaving system~85!

pt5yx , P m

y

p
52Lp.

We first prove thatP mp21 is symmetric and positive definite
in L2@0,2p#. Let Pm be the set of real valued, finite Fourier
polynomials of orderm, i.e.,Pm5$r (x)uP mr 5r %. The inner
product of any two polynomials inPm will be defined as the
usualL2@0,2p# inner product.

Lemma: The operator P mp21: Pm→Pm, for p.0
smooth and periodic, is a symmetric and positive definite
operator.

This follows directly from the simple statement that any
wPPm is orthogonal toQmv for anyv periodic and smooth.
That is,

E
0

2p

dxw~x!v~x!5E
0

2p

dxw~x!~P mv !~x!. ~C1!

Then givenr, sPPm

E
0

2p

dxr~x!S P m

s

pD ~x!5E
0

2p

dx
1

p~x!
r ~x!s~x!

5E
0

2p

dxs~x!S P m

r

pD ~x!, ~C2!

which shows symmetry. Positive definiteness follows by set-
ting r 5s.

We now show thatF @p# andS @p#, as defined by Eqs.
~21! and ~23!, serve as energy and entropy for the system
~85!.

Theorem: Let pPPm be a solution to system~85!. Then,

d

dt
F @p#5

d

dt

1

2 E
0

2p

dx~px
22Bp2!

52E
0

2p

dxpS y

pD 2

,0, ~C3!

d

dt
S @p#5

d

dt
S 2E

0

2p

dx f~x!ln f ~x!D
5

1

h̄
E

0

2p

dx~pxx
2 2Bpx

2!, ~C4!

where f 5p/ p̄, andyx5pt .
Beginning with the energy, we have

d

dt
F 5E

0

2p

dxyLBp52E
0

2p

dxyP m

y

p
, ~C5!

52E
0

2p

dxy
y

p
52E

0

2p

dxpS y

pD 2

. ~C6!

The first line of equalities are obvious. The last line follows
from the fact that for anyaPPm, and smooth, periodicb

E
0

2p

dxab5E
0

2p

dxa~P m1Qm!b

5E
0

2p

dxaP mb. ~C7!

The identity for the entropy follows in a similar fashion.
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