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Recent work@Phys. Fluids10, 2701~1998!# has shown that for Hele-Shaw flows sufficiently near
a finite-time pinching singularity, there is a breakdown of the leading-order solutions perturbative in
a small parametere controlling the large-scale dynamics. To elucidate the nature of this breakdown
we study the structure of these solutions at higher order. We find a finite radius of convergence that
yields a new length scale exponentially small ine. That length scale defines a ball in space and time,
centered around the incipient singularity, inside of which perturbation theory fails. Implications of
these results for a possible matching of outer solutions to inner scaling solutions are discussed.
© 1999 American Institute of Physics.@S1070-6631~99!00910-1#

Pinching singularities in Hele-Shaw flows arise typically
either through intrinsic instabilities1–4 or through driving via
boundary conditions.5–8 This class of dynamical systems is
most readily studied through equations of motion for inter-
faces between fluids, and recasting the problem of singulari-
ties as one of interface collision. In this context, numerical
data4,7 suggest for both cases that the type of singularity may
be very sensitive to the details of the large-scale forcing. It
has also been observed that the scaling properties of the in-
terfaceh(x,t) can change qualitatively at remarkably small
distances from the singularity point (xp ,tp). There has been
no analytic explanation for this. There is also a growing body
of evidence supporting the existence of similarity solutions
for the innermost region, of the typeh(x,t);(tp2t)aF((x
2xp)/(tp2t)b), but no clear understanding either of how to
connect such solutions to the outer flow far from the singu-
larity or of the origin of the inner length scale.

Given the highly nonlinear nature of these problems of
interface motion, it is perhaps not surprising that the singu-
larity structure would depend in a very nontrivial way on the
large-scale forcing. Nevertheless, we recently found4 that a
lowest-orderperturbativesolution to one particular problem,
the Rayleigh–Taylor instability in Hele-Shaw flow, actually
provided an accurate and fairly detailed description of the
approach to interface touchdown. Intriguingly, close to the
singularity we observed a divergence between the perturba-
tive results and numerical studies, traceable to an internal

inconsistency in the asymptotic perturbative results. An un-
derstanding of this has been lacking.

Here we study in detail the structure of the perturbation
theory at higher order and find that the previously seen dis-
crepancies and inconsistencies actually stem from the exis-
tence of a finite radius of convergence. This result then im-
plies that there is a ball around the incipient singularity,
exponentially smallin a parameter controlling the large-scale
flow, within which perturbation theory breaks down. We
conjecture that this fact may underlie the aforementioned
sensitivity to large-scale forcing, that appears to be qualita-
tively different from the three-dimensional case.9 Moreover,
this will perhaps provide a clue as to how to define the length
scale at which outer flows match to the inner similarity so-
lutions that are by now well-understood from local expan-
sions around the singular point.6,7

Figure 1 shows the physical situation of interest: an in-
terface in a gravitational fieldg separating two fluids, the
heavier on top. Leth(x,t) be the interface height above a
bounding plane; a singularity will occur whenh˜0 at a
‘‘pinching’’ point xp . By suitably rescaling space and time
and introducing the Bond numberB}Drg/s, whereDr is
the density difference between the fluids ands the surface
tension, Darcy’s Law for a thin layer can be shown3,4 to
reduce to

ht52]x~h~hxxx1Bhx!!. ~1!

We are particularly interested in the case of system of finite
lateral extent~say, 2p!, for which B51 is the threshold
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of instability. A perturbative theory can be constructed near
this point by setting

B511e, t5T/e,
~2!

h5q~0!1eq~1!1e2q~2!1¯ .

The scaling of time is motivated by the linear stability
analysis,4 and reveals thate corresponds to a singular pertur-
bation in time~i.e., multiplying the highest time derivative!,
while associated with a regular perturbation in space. As is
often found in singular perturbations, we would anticipate
the emergence of a newtimescale controlled bye. However,
the coupling of space and time within the lubrication PDE
implies an associated length scale as well.

The flux form of the governing equation allows a first
integration,

h̃t52h~hxxx1Bhx!, ~3!

where we define4

f̃ ~x,t !5E dx f~x,t !, ~4!

for any functionf. Substituting from Eq.~2! into Eq. ~3! and
grouping terms by powers ofe we obtain the first few equa-
tions in the hierarchy:

O~e0!:q3x
~0!1qx

~0!50,

O~e1!:q3x
~1!1qx

~1!52qx
~0!2q̃T

~0!
1

q~0! ,

~5!

O~e2!:q3x
~2!1qx

~2!52qx
~1!2q̃T

~1!
1

q~0! 1q̃T
~0!

q~1!

q~0!2 ,

O~e3!:q3x
~3!1qx

~3!52qx
~2!2q̃T

~2!
1

q~0! 1q̃T
~1!

q~1!

q~0!2

2q̃T
~0!Fq~1!2

q~0!32
q2

q~0!2G .
This yields the lowest-order solution

q~0!511a~T!cos~x!, ~6!

which touches down atxp5p asa˜1. The time dependence
of the mode amplitudea(T) and the first-order correction
q(1) were determined by a solvability condition at the next
order.4

Proceeding to higher orders, we find the general right-
hand side of Eq.~5! at ordern to be

f ~n![2 (
k50

n21 q̃T
~n212k!

q~0!

3 (
j 1 ,...,j k51

( i 51
k i j i5k

k S (
i 51

k

j i D !)
i 51

k
~2q~ i !/q~0!! j i

j i !
.

Note that the left-hand side of each equation in Eq.~5! is a
total derivative that integrates up toqxx

(n)1q(n), whose homo-
geneous solutions are sin(x) and cos(x), with WronskianW
51. The method of variation of parameters yields the gen-
eral solution

q~n!~x,T!5cos~x!Ex

dj sin~j! f̃ ~n!~j,T!

2sin~x!Ex

dj cos~j! f̃ ~n!~j,T!. ~7!

Thus far, these perturbative formulas are exact. Since
here we are only interested in the neighborhood of the touch-
down, we shall focus on the dominant terms at each order
that lead to a singularity.10 To that end, we recall4 that the
first-order solutionq(1) has a logarithmic singularity in its
second derivative. Introducingx5x2p, the distance from
the pinch point, and the timet5Tp2T from the singularity,
the mode amplitudea(t) behaves as

a~t!.12 1
2t1¯ , ~t>0!. ~8!

Then, the two first orders have the asymptotic forms

q~0!. 1
2~t1x2!,

~9!
q~1!.2 1

4~t2x2!ln~t1x2!.

The higher-order corrections consistent with these leading-
order terms are obtained using the asymptotic form of Eq.
~7!:

q~n!~x,t!.Ex

djj f̃ ~n!~j,t!2xEx

dj f̃ ~n!~j,t!. ~10!

Systematic analytic calculation up to seventh order reveals a
simple procedure to compute the most singular contribution
at a given order, once those at previous orders are known.
The steps are as follows:~i! every term on the right-hand-
side of the hierarchy Eq.~5! contributes to the leading order
behavior of f̃ (n), with successive terms having a common
factor of lnn21(t1x2) multiplying a polynomial int and x;
~ii ! a similar pattern results after performing the two integra-
tions in Eq. ~10!—the first integral isK(t1x2)lnn(t1x2),
while the second is 2KX lnn(t1x2), with K a calculable con-
stant. Collecting together terms, we obtain at second order

q~2!.1 1
8~t2x2!ln2~t2x2!, ~11!

or, in general, forn>1,

q~n!.~21!nan~t2x2!lnn~t1x2!, ~12!

where we have computed analytically

a35
1

12
, a45

13

192
, a55

59

960
, ~13!

FIG. 1. Thin layer of fluid of heighth(x,t) in a Hele-Shaw cell, trapped
between a wall and a heavier fluid.
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a65
172

2880
, a75

4901

80 640
. ~14!

Using these results and the expression forf̃ , one can
construct arecursion relationfor the coefficientsan . The
complexity of evaluating this relation at high order centers
around the combinatorics of the constrained sums. We have
not succeeded in finding the general terman . However, we
have solved this recursion relation numerically for coeffi-
cients up to ordera22. Figure 2~a! displays those coeffi-
cients, while Fig. 2~b! displays the successive ratiosan11 /an

as a function ofn. We fitted the approach to an asymptote as
an inverse power ofn and deduced the approximate numeri-
cal value of the ratio asn˜`,

lim
n˜`

Uan11

an
U[R.1.32. ~15!

Figure 2~c! illustrates the fit.
The fact thatRÞ0 implies that the second spatial de-

rivative of h(x,t),

hxx.2(
n50

`

~21!n11an@e ln~t1x2!#n, ~16!

fails to converge if

t1x2<expS 2
1

eRD . ~17!

Since t is proportional to the minimum height of the
interface andx measures the spatial distance from the touch-
down point, we see from Eq.~17! that there is a ball centered
at t5x50 inside of which perturbation theory breaks down
~Fig. 3!. Remarkably then, the bifurcation parametere,
which controls the large-scale flow, defines a new length
scale in the problem.

It is reasonable to conjecture that:~a! the breakdown of
perturbation theory connected to a feature of the large-scale
flow would persist even in situations in which the touchdown
is driven by far-field boundary conditions instead of an in-
trinsic instability,5–7 and~b! this new length scale may be the
matching point for outer flows and inner self-similar solu-
tions. Solving these two issues may finally explain how
smooth initial conditions lead to finite-time singularities.3
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FIG. 2. Top to bottom: coefficients, ratios, and convergence properties of
the series$an%, obtained from a numerical solution of the recursion relation.

FIG. 3. Ball of nonconvergence of perturbation theory.
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