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Recent worl{ Phys. FluidslO, 2701(1998] has shown that for Hele-Shaw flows sufficiently near

a finite-time pinching singularity, there is a breakdown of the leading-order solutions perturbative in
a small parameter controlling the large-scale dynamics. To elucidate the nature of this breakdown
we study the structure of these solutions at higher order. We find a finite radius of convergence that
yields a new length scale exponentially smalkimhat length scale defines a ball in space and time,
centered around the incipient singularity, inside of which perturbation theory fails. Implications of
these results for a possible matching of outer solutions to inner scaling solutions are discussed.
© 1999 American Institute of Physids$1070-663(199)00910-1

Pinching singularities in Hele-Shaw flows arise typically inconsistency in the asymptotic perturbative results. An un-
either through intrinsic instabilitiés* or through driving via ~ derstanding of this has been lacking.
boundary conditions=® This class of dynamical systems is ~ Here we study in detail the structure of the perturbation
most readily studied through equations of motion for inter-theory at higher order and find that the previously seen dis-
faces between fluids, and recasting the problem of singularrépancies and inconsistencies actually stem from the exis-
ties as one of interface collision. In this context, numericalteCe Of a finite radius of convergence. This result then im-

datd"” suggest for both cases that the type of singularity ma)P“eS that_ there is a ball around the Incipient singularity,
L . ; exponentially smalin a parameter controlling the large-scale
be very sensitive to the details of the large-scale forcing. | L : .
: . .flow, within which perturbation theory breaks down. We
has also been observed that the scaling properties of the

faceh h litativel Kabl ”'anjecture that this fact may underlie the aforementioned
terfaceh(x,t) can change qualitatively at remarkably sma sensitivity to large-scale forcing, that appears to be qualita-

distances from the singularity poink(,t,). There has been ey different from the three-dimensional casMoreover,
no analytic explanation for this. There is also a growing bodyhis will perhaps provide a clue as to how to define the length
of evidence supporting the existence of similarity solutionsscale at which outer flows match to the inner similarity so-
for the innermost region, of the tyg®(x,t)~(t,—t)“F((x Iutions that are by now well-understood from local expan-
—X,)/(t,—1)?), but no clear understanding either of how to sions around the singular pofht.
connect such solutions to the outer flow far from the singu-  Figure 1 shows the physical situation of interest: an in-
larity or of the origin of the inner length scale. terface in a gravitational field) separating two fluids, the

Given the highly nonlinear nature of these problems ofhieavier on top. Let(x,t) be the interface height above a
interface motion, it is perhaps not surprising that the singubounding plane; a singularity will occur whem—0 at a
larity structure would depend in a very nontrivial way on the Pinching” point x,. By suitably rescaling space and time
large-scale forcing. Nevertheless, we recently féuihét a and Intro_duu_ng the Bond numb&xApg/a, whereAp is
lowest-ordetperturbativesolution to one particular problem, the Qen3|ty difference betweer} the fluids andhe surface

. . . tension, Darcy’s Law for a thin layer can be shovirto

the Rayleigh—Taylor instability in Hele-Shaw flow, actually reduce to
provided an accurate and fairly detailed description of the
approach to interface touchdown. Intriguingly, close to the  ht=—dx(h(hy+Bhy)). (1)
singularity we observed a divergence between the perturbap/e are particularly interested in the case of system of finite
tive results and numerical studies, traceable to an interndhateral extent(say, 2w), for which B=1 is the threshold
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FIG. 1. Thin layer of fluid of heighh(x,t) in a Hele-Shaw cell, trapped Note that the left-hand side of each equation in &j.is a

between a wall and a heavier fluid. total derivative that integrates up ¢§? + g™, whose homo-
geneous solutions are skp(and cosX), with WronskianwW

of instability. A perturbative theory can be constructed near=1. The method of variation of parameters yields the gen-

this point by setting eral solution

B=1+e¢, t=Tle, 0 X ) =
@ q'"(x,T)=cosx) f dé sin(§)T ™ (£,T)
h=q9+eqV+€%q'?+
X
The scaling of time is motivated by the linear stability —sin(x)f décog &) TM(E,T). (7)
analysis® and reveals that corresponds to a singular pertur-
bation in time(i.e., multiplying the highest time derivatiye Thus far, these perturbative formulas are exact. Since

while associated with a regular perturbation in space. As ifiere we are only interested in the neighborhood of the touch-
often found in singular perturbations, we would anticipatedown, we shall focus on the dominant terms at each order
the emergence of a netime scale controlled by. However,  that lead to a singularit}f To that end, we recdllthat the

the coupling of space and time within the lubrication PDEfirst-order solutionq® has a logarithmic singularity in its

implies an associated length scale as well. second derivative. Introducing=x— 1, the distance from

The flux form of the governing equation allows a first the pinch point, and the time=T,—T from the singularity,
integration, the mode amplitude(r) behaves as

:_h(hxxx+th): (3) a(T)Zl_%T+"'a (7'20)- (8)

where we defird Then, the two first orders have the asymptotic forms

_ O=3(r+x),

o= [ axtoon, @ ©

qV=— = xAIn(+x?),

for any functionf. Substituting from Eq(2) into Eq.(3) and  The higher-order corrections consistent with these leading-
grouping terms by powers @fwe obtain the first few equa- order terms are obtained using the asymptotic form of Eq.

tions in the hierarchy: (7):
O(e%):q5) +0a,” =0, X o X~
. dV(x,m)= | degf Mg —x | dEFV(E ). (10
(1) (1) — (0) 0)_—_ 1 - - :
O(e"):05 + a3 = —a” — Gy qo" Systematic analytic calculation up to seventh order reveals a
®) simple procedure to compute the most singular contribution
) ) ) , 1 o q? at a given order, once those at previous orders are known.
O(e?):05) +a?' =~V —G¢ )q(O) +7 )W' The steps are as followsi) every term on the right-hand-
side of the hierarchy Ed5) contributes to the leading order
1 q behavior of f(™, with successive terms having a common
3y-q3) 4+ (3)_ (2) _x(2)_—_ 12 ! L L
O(€):a3x Ox —Aar q@ +Gy q? factor of If""(r+»?) multiplying a polynomial inr and y;
o ) (i) a similar pattern results after performing the two integra-
olaP? g tions in Eq.(10)—the first integral isK (r+ x2)In"(r+x2),
q( ) — —5 . . .
T q@3 g2 while the second is RX In"(+x%), with K a calculable con-
o ) stant. Collecting together terms, we obtain at second order
This yields the lowest-order solution 2 ) - ,
q“=+3g(7—x)In“(7—x), (11)
q¥=1+a(T)cogx), (6) ’

or, in general, fon=1,
which touches down at,= 7 asa— 1. The time dependence 4" | - 5
of the mode amplitude(T) and the first-order correction =(=D"an(r=x)IN"(r+x%), (12)
q(;) were determined by a solvability condition at the nextynere we have computed analytically
order?
Proceeding to higher orders, we find the general right- 1 13 a _ 99
5— i
960

hand side of Eq(5) at ordern to be 3T 1 T gy (13
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- 1.2 z— — Since 7 is proportional to the minimum height of the
S 10 E — interface andy measures the spatial distance from the touch-
- E 3 down point, we see from Eq@l7) that there is a ball centered

L 0B8E = . . .

o 3 3 at 7= x=0 inside of which perturbation theory breaks down
08F | | E (Fig. 3. Remarkably then, the bifurcation parameter
0.4 ——1 L Lt which controls the large-scale flow, defines a new length

0 10 20 30 scale in the problem.
It is reasonable to conjecture th&) the breakdown of
1 — T — perturbation theory connected to a feature of the large-scale
? ~ | ] flow would persist even in situations in which the touchdown
~ os5F ] is driven by far-field boundary conditions instead of an in-
H i ] trinsic instability>~" and(b) this new length scale may be the

T‘“ matching point for outer flows and inner self-similar solu-

Q 0.2 7 tions. Solving these two issues may finally explain how

- o1 . s . L smooth initial conditions lead to finite-time singularities.
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