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We study numerically the simplest model of two incompressible, immiscible fluids shearing past
one another. The fluids are two-dimensional, inviscid, irrotational, density matched, and separated
by a sharp interface under a surface tension. The nonlinear growth and evolution of this interface is
governed by only the competing effects of the Kelvin–Helmholtz instability and the dispersion due
to surface tension. We have developed new and highly accurate numerical methods designed to treat
the difficulties associated with the presence of surface tension. This allows us to accurately simulate
the evolution of the interface over much longer times than has been done previously. A surprisingly
rich variety of behavior is found. For small Weber numbers, where there are no unstable
length-scales, the flow is dispersively dominated and oscillatory behavior is observed. For
intermediate Weber numbers, where there are only a few unstable length-scales, the interface forms
elongating and interpenetrating fingers of fluid. At larger Weber numbers, where there are many
unstable scales, the interface rolls-up into a ‘‘Kelvin-Helmholtz’’ spiral with its late evolution
terminated by the collision of the interface with itself, forming at that instant bubbles of fluid at the
core of the spiral. Using locally refined grids, this singular event~a ‘‘topological’’ or ‘‘pinching’’
singularity! is studied carefully. Our computations suggest at least a partial conformance to a local
self-similar scaling. For fixed initial data, the pinching singularity times decrease as the surface
tension is reduced, apparently towards the singularity time associated with the zero surface tension
problem, as studied by Moore and others. Simulations from more complicated, multi-modal initial
data show the evolution as a combination of these fingers, spirals, and pinches. ©1997 American
Institute of Physics.@S1070-6631~97!02407-0#

I. INTRODUCTION

The Kelvin–Helmholtz~K–H! instability is a fundamen-
tal instability of incompressible fluid flow at high Reynolds
number, arising generally from the shearing of one fluid
mass past another. If the two fluids are immiscible, then they
are naturally separated by an sharp interface across which
there is a surface tension. The surface tension arises from the
imbalance of the two fluids’ intermolecular cohesive forces,
and exists even if the two fluids are density and viscosity
matched. Dynamically, surface tension acts as a dispersive
regularization of the K–H instability.

In this paper, we consider the simplest case. The two
shearing fluids are two-dimensional, inviscid, irrotational,
density matched, and separated by a sharp interface. This
interface can then be described as avortex sheet. That is, a
surface across which there is a discontinuity in tangential
velocity.1 The nonlinear growth and evolution of this inter-
face is governed by only the competing effects of the K–H
instability and the dispersion due to surface tension. Using
new numerical methods, developed partly in Hou, Lowen-
grub, and Shelley~HLS94!,2 we have been able to compute
accurately the nonlinear evolution of this system over much
larger times than previously possible. We find a surprisingly
rich variety of behavior within this relatively simple frame-
work. Using fixed initial data close to equilibrium, the ensu-
ing evolution is studied as the Weber numberWe is varied.

In effect,Wemeasures the strength of the K–H instability
relative to the dispersive stabilization associated with surface
tension. For smallWe, where there are no initially unstable
length scales~dispersively dominated!, the interface simply
oscillates in time, over tens of periods, with no apparent
development of the new structure. For intermediateWe,
where there are now a few initially unstable length-scales,
the interface forms elongating fingers that interpenetrate each
fluid into the other. This is illustrated in the right box of Fig.
4. At We ten times larger, where there are many more ini-
tially unstable length-scales~K–H dominated!, the interface
rolls up into a ‘‘Kelvin-Helmholtz spiral.’’ However, further
roll-up is terminated by the collision of the interface with
itself, forming trapped bubbles of fluid at the core of the
spiral. The development of this event is shown in Fig. 11.
Simulations from more general initial data show the evolu-
tion as a combination of these fingers, spirals, and pinches.

The collision of material surfaces, such as the self-
intersection of an interface, constitutes a singularity in the
evolution, implying at least the divergence of velocity gradi-
ents~an argument for this is given in Appendix C!. Here, the
collision is linked intimately to the creation of intense local-
ized jets produced by the surface tension. Our numerical re-
sults suggest that both the true vortex sheet strength~the
jump in tangential velocity across the sheet!, and the interfa-
cial curvature diverge at the collision time, with the interface
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apparently forming corners. Physically, this collision may
signal an imminent change in the topology of the flow and so
this event is referred to as atopologicalor pinchingsingu-
larity. Of course, such events are commonly observed, with a
standard example being the pinching and fissioning of three-
dimensional liquid jets. However, taking an axially symmet-
ric, inviscid jet as a prototype, the pinching occurs through
the nonlinear development of the classical Rayleigh
instability,3 itself driven strongly by the azimuthal compo-
nent of the surface tension contribution. This component is
completely absent in a two-dimensional flow, making the
appearance of such pinching singularities more surprising.

Because of its technological and scientific importance,
understanding the motion of interfaces that bound masses of
fluid undergoing fission has become an area of intense re-
search activity. A small sampling of recent studies includes
work in Stokes flows,4,5 lubrication models of thin-film and
Hele–Shaw flows,6–9 Hele–Shaw flows,10,8,11 and shallow
water approximations and experiments of axially symmetric
jets.12–14 Of particular relevance here, Keller and Miksis15

have given an asymptotic analysis of the immediate after-
math of a topological transition occurring when a tapered,
infinite layer of inviscid, incompressible fluid~surrounded by
air! breaks into two semi-infinite, finite-angled fluid wedges.
Supposing that the layer breaks at timet50, Keller and Mik-
sis use a similarity analysis to find the resulting flow velocity
and gap width fort.0. They find that the flow velocity is
initially infinite and decays in time like (tr/t)21/3 wherer is
the density of the fluid. The gap width grows like
(tAt/r)2/3. Their work does not apply directly to our ob-
served pinching singularity since in our case fluid is on both
sides of the self-intersecting interface. This introduces a fur-
ther, nontrivial nonlocality to the problem. Moreover, rather
than exiting a topological transition, our system is approach-
ing one. Nevertheless, our equations can be recast in self-
similar variables using these temporal exponents and as will
be described in Sec. IV, our numerical results suggest at least
partial agreement with the temporal exponents of Keller and
Miksis.

The behavior of vortex sheets in the absence of surface
tension is much different. In this case,We5` and the un-
regularized K–H instability produces infinitely many un-
stable scales. It is now well known that the interface devel-
ops isolated singularities that are not associated with any
large-scale structure of the sheet such as roll-up. In an
asymptotic analysis valid for initial data close to equilibrium,
Moore16 gave the first analytical evidence for this singular-
ity. Moore’s analysis suggests that at the timet5tM , the
interface profile, while still being nearly flat, acquires iso-
lated square-root singularities in its curvature. Moreover, the
true vortex sheet strength remains finite att5tM , but does
develop a cusp that is associated with a rapid compression of
circulation in the neighborhood of the singularity. The
We5` singularity is hereafter referred to as theMoore sin-
gularity.

Caflisch and Orellana17 later reinterpreted Moore’s
analysis and presented a class of ‘‘exact’’ solutions to the
full nonlinear equations. The Caflisch and Orellana solutions,
of which Moore’s is one case, develop singularities at finite

times. Numerical computations performed by Meiron, Baker,
and Orszag,18 Krasny,19 and particularly Shelley,20 suggest
that the generic singularity structure is given by the analysis
of Moore. In the absence of surface tension, Moore’s analy-
sis was extended to the Boussinesq problem by Pugh21 and to
the full Rayleigh–Taylor problem by Baker, Caflisch, and
Siegel22 ~also see Ref. 23!.

We do not observe the Moore singularity in the presence
of surface tension, though at largeWe its shadow is seen by
the rapid production of dispersive waves. While a topologi-
cal singularity is observed at late times, it is of a fundamen-
tally different type than the Moore singularity. Rather than
occurring through the rapidcompressionof circulation as in
the Moore singularity, the topological singularity is associ-
ated with the rapidproductionof new, localized circulation.

Siegel24 has recently extended Moore’s analysis to the
nonzero surface tension case~i.e.,We,`). Using a special
initial condition, Siegel constructs travelling wave solutions
to a reduced system of equations. Siegel’s analysis predicts
the formation of finite time singularities whenever there is at
least one linearly unstable Fourier mode. The predicted
structure of the singularity, however, is quite different from
that observed in our numerical simulations. This is further
discussed in the Conclusion.

Because an analysis of the full vortex sheet equations in
the presence of surface tension is so difficult, most of the
previous studies of surface tension effects have been numeri-
cal. Still, it has been problematic to pose stable numerical
methods, even in the semi-discrete case where time is not
discretized. Many numerical methods treat the small scales
incorrectly, either through the introduction of aliasing errors
or by artificial smoothing. This can lead to numerical insta-
bilities that are related to the K–H instability.25–27Examples
of this are seen in the computations of Zalosh28 and Pullin.29

In independent works, Baker and Nachbin25 and Beale, Hou,
and Lowengrub26,27 identified the source of numerical insta-
bility in these surface tension computations and gave alter-
native, stable numerical methods.

Additional difficulties occur when fully discrete methods
are considered. Surface tension introduces high-order spatial
terms through the interface curvature appearing in the
Laplace–Young boundary condition. These terms appear
nonlocally in the equations of motion due to the incompress-
ibility constraint, and are nonlinear functionals of the sheet
position due to their origin in the curvature. These terms
create dispersion in the dynamics and are dominant at small
length-scales. For explicit time-stepping methods, this intro-
duces high-order time-step stability constraints that depend
on the spatial resolution. We refer to such constraints as
‘‘stiffness.’’ These constraints can be made more severe by
the differential clustering of grid points along the interface.
For example, if the ‘‘Lagrangian’’ formulation and explicit
time stepping were used~as in Refs. 29,30,25,26! to calcu-
late the interface evolution shown in Fig. 11, then the stabil-
ity bound on the time step, for a fixed spatial resolution,
would decrease by a factor of 106 over the course of the
simulation.

Rangel and Sirignano30 attempt to circumvent these dif-
ficulties by using a redistribution algorithm that reparam-
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etrizes the interface uniformly in arclength after each time
step. This keeps points from clustering, but as a result of
repeated interpolations, it has also a strong smoothing effect
on the sheet. This yields results that disagree on several
points with other work. For example, Rangel and Sirignano
are able to compute the roll-up of a vortex sheetwithout
surface tension, with an accompanying divergence of the true
vortex sheet strength. This is in direct contradiction to the
results of Moore,16 and its associated, very accurate numeri-
cal studies.18–20

The numerical results presented in this paper rely on
numerical methods, designed for handling surface tension,
that were developed in part in HLS94. In HLS94, we pre-
sented a different formulation for computing the motion of
fluid interfaces with surface tension in two-dimensional, ir-
rotational and incompressible fluids. This formulation has all
the nice properties for time integration methods that are as-
sociated with having a linear highest-order term. The result-
ing numerical methods do not have the severe stability con-
straints usually associated with surface tension. Our
approach was based on a boundary integral formulation31

and was applied in HLS94 to Euler and Hele–Shaw flows.
Our approach applies more generally, though, even to prob-
lems beyond the fluid mechanical context. In the study of the
topological singularity presented in this paper, we addition-
ally incorporate local grid refinement and use a 4th-order
time-stepping method to achieve increased spatial and tem-
poral accuracy.

The organization of the paper is as follows. In Section II,
a boundary integral formulation is given for the motion of
fluid interfaces under surface tension in two-dimensional Eu-
ler flows. In Section III, the numerical methods are briefly
outlined. Many further details of implementation are found
in HLS94. Extensions to the work in HLS94 — a high-order
time-integration method and an implementation of local grid
refinement — are found in Appendices A and B. The results
of numerical simulations are presented in Section IV. Con-
cluding remarks are given in Section V.

II. THE EQUATIONS OF MOTION

Consider two inviscid, incompressible, and irrotational
fluids separated by the parametrized planar interfaceG given
by X(a)5(x(a),y(a)), as shown schematically in Fig. 1.
The lower fluid is denoted 1, and the upper fluid is denoted
2. n̂ and ŝ are respectively the unit normal and tangent vec-
tors toG, while k is its curvature. For simplicity, the density

is assumed to be constant on each side ofG. Here, the ve-
locity on either side ofG is evolved by the incompressible
Euler equations,

uj t1~uj•¹!uj52
1

r j
¹~pj1r jgy!, ¹•uj50, ~1!

where the subscriptj denotes the upper or lower fluid. There
are the boundary conditions,

~ i ! @u#G•n̂50, the kinematic boundary condition, ~2!

~ i i ! @p#G5tk, the Laplace –Young boundary condition,
~3!

~ i i i ! uj~x,y!→~6V`,0! as y→6`,

the far - field boundary condition. ~4!

Here,@•#G denotes the jump taken from above to belowG.
The tangential component of fluid velocity is typically dis-
continuous atG. Such an interface is called avortex sheet
~see Ref. 1!. The velocity at a pointX away from the inter-
face has the integral representation

u~X!5
1

2pE g~a8!
~X2X~a8!!'

uX2X~a8!u2
da8, ~5!

whereX'5(2y,x). g is called the~unnormalized! vortex
sheet strength. It gives the velocity difference acrossG by

g̃5
g~a!

sa
5@u#uG• ŝ, ~6!

where sa5Axa
21ya

2 is the arclength metric. The velocity
jump g̃ is called the true vortex sheet strength. This repre-
sentation is well known; see Ref. 31. We will consider flows
that are 1-periodic in thex-direction. The average value,
ḡ , of g over a period ina satisfies2 ḡ /25V` .

While there is a discontinuity in the tangential compo-
nent of the velocity atG, the normal component,U(a), is
continuous and is given by Eq.~5! as

U~a!5W~a!•n̂ ~7!

where

W~a!5
1

2p
P.V.E g~a8!

~X~a!2X~a8!!'

uX~a!2X~a8!u2
da8, ~8!

andP.V. denotes the principal value integral. This integral is
called the Birkhoff–Rott integral.

Using the representation~5! of the velocity, Euler’s
equation at the interface, and the Laplace–Young condition,
the equations of motion for the interface are

Xt5Un̂1Tŝ, ~9!

g t2]a~~T2W• ŝ!g/sa!

522Ar~saWt• ŝ1 1
8 ]a~g/sa!22~T2W• ŝ!Wa• ŝ/sa!

2Fr21ya1We21ka . ~10!

Here, the equations have been nondimensionalized on a pe-
riodicity lengthl ~so that the nondimensional period length
is 1) and the velocity scaleḡ , and

FIG. 1. A schematic of the fluid interface problem.
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Ar5
Dr

2 r̄
is the Atwood ratio , ~11!

Fr5
r̄ ḡ 2l2

g~Dr!l3 is the Froude number, ~12!

and

We5
r̄ l2ḡ 2

tl
is the Weber number, ~13!

whereDr5r12r2 , and r̄ 5(r11r2)/2. The Froude num-
ber measures the relative importance of inertial forces~the
K–H instability! to gravitational forces~the Rayleigh–
Taylor instability!, while the Weber number measures the
relative importance of inertial forces to surface tension forces
~dispersion!. T is an~as yet! arbitrary tangential velocity that
specifies the motion of the parametrization ofG. The so-
calledLagrangian formulationcorresponds to choosing the
tangential velocity of a point on the interface to be the arith-
metic average of the tangential components of the fluid ve-
locity on either side. That is, choosingT5W• ŝ, in which
case Eq.~10! simplifies considerably.

Equation~10! is a Fredholm integral of the second kind
for g t due to the presence ofg t in Wt . This equation has a
unique solution, and is contractive.31 The mean ofg is pre-
served by Eq.~10! and must be chosen initially to be
22V` , to guarantee that the far-field condition~iii ! is satis-
fied. Further, whileg is evolved as an independent variable,
it cannot be interpreted independently of the parametrization.
From Eq. ~6!, it is the ratio g̃5g/sa that has a physical
interpretation, andsa is determined by the choice ofT.

In this work, we study the simpler case when the two
fluids are density matched, that isAr505Fr21. The prob-
lem is then completely characterized by the Weber number,
and the Lagrangian formulation of the equations of motion
becomes simply

Xt~a,t !5W~a,t !, ~14!

g t~a,t !5We21ka . ~15!

The Lagrangian formulation is characterized by an elegant
compactness of statement. However, as we demonstrate in
Section III, it is not a good formulation for simulation due to
a differential clustering of computational points that leads to
severe time-step constraints in the presence of surface ten-
sion.

A. The energy

There are several invariants of the motion — the mean
andy-moment ofg, the means ofx andy, and the energy.
Of these invariants only the energy, through the interfacial
energy, contains an explicit contribution from the presence
of surface tension. Further, of these invariants, the energy is
the best indicator of accuracy. It is not conserved explicitly
by our numerical methods, and is a nontrivial constant of the
motion.

Neither the total interfacial energy, nor the kinetic en-
ergy over a period, is finite. However, both have finite parts

that together form a single invariant. The conserved~pertur-
bation! energyE(t) is the sum of the perturbation kinetic and
the perturbation interfacial energies given by

E~ t !5EL~ t !1EK~ t !, ~16!

where

EL~ t !5We21~L21!

is the perturbation interfacial energy, ~17!

EK~ t !5
1

2E0
1

c~a8,t !g~a8,t !da8

is the perturbation kinetic energy. ~18!

HereL is the length ofG over a single period, andc is the
stream function

c~a,t !52
1

2pE0
1

g~a8,t !logusin p~z~a,t !

2z~a8,t !!uda8, ~19!

wherez(a,t)5x(a,t)1 iy(a,t). The formula forc can be
rewritten, by explicitly subtracting off the logarithmic singu-
larity and integrating by parts, to yield an expression that can
be computed numerically with spectral accuracy. See
Pullin29 and Baker and Nachbin25 for details.

B. The linear behavior

Consider first the linearized motion about the flat equi-
librium, with x(a,t)5a1ej(a,t), y(a,t)5eh(a,t), and
g(a,t)511ev(a,t), with e ! 1. For definiteness, the La-
grangian frameT5W• ŝ is taken. The linearized system re-
duces to a single equation for the vertical amplitudeh,

h tt52
1

4
haa1

We21

2
H @haaa#. ~20!

H is the Hilbert transform,32 and is diagonalizable by the
Fourier transform asĤ@ f #52 i sgn(2pk) f̂ . The growth
rate for perturbations about the flat equilibrium is given by

sk
25~2p!2S 14 k222p

We21

2
uku3D . ~21!

The dispersion relation gives instability for wavenumbers
0,uku,We/4p, and dispersion for wavenumbers
uku.We/4p. The wavenumber of maximum growth is
uku5We/6p. The surface tension dispersively controls the
Kelvin–Helmholtz instability at large wavenumbers.

A more general linear analysis has been given by Beale,
Hou and Lowengrub.33 By linearizing around the time-
dependent vortex sheetG5(x(a,t),y(a,t)) with strength
g(a,t), Bealeet al. find thedominantbehavior forh, now
thenormal component of the perturbation, to be

h tt52
g2

4sa
4 haa1

We21

2sa
3 H @haaa#. ~22!
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The perturbation ing has been eliminated, to leading order,
by using two time derivatives onh. The same competition of
effects is observed in this more general variable coefficient
setting.

III. THE SMALL-SCALE DECOMPOSITION AND
NUMERICAL METHODS

The primary impediment to performing long time com-
putations of vortex sheets with surface tension is the severe
time-dependent stability restriction — stiffness — imposed
by the surface tension through theka term appearing in Eq.
~15!. This is seen easily by a ‘‘frozen coefficient’’ analysis of
Eq. ~22!. This reveals that the least restrictive time-
dependent stability constraint on a stableexplicit time inte-
gration method is

Dt,CWe1/2•~ s̄ah!3/2, where s̄a5min
a

sa , ~23!

where h51/N is the grid spacing, withN the number of
points describingG. Since arclength spacing,Ds, satisfies
Ds'sah, Eq. ~23! implies that the stability constraint is in
fact determined by theminimumspacing inarclength be-
tween adjacent points on the grid. This can be strongly time
dependent. For example, our experience is that motion in the
Lagrangian frame@Eqs.~14! and ~15!# leads to ‘‘point clus-
tering’’ and hence to very stiff systems, even for flows in
which the interface is smooth and theWe is large. For sev-
eral ‘‘typical’’ simulations ~differing Weber numbers! dis-
cussed in the next section, Fig. 2 shows the evolution of
s̄a associated with the Lagrangian formulation, on a base-
ten logarithmic scale. This figure was not generated by com-
puting in the Lagrangian frame, but rather by using the meth-
ods described below, and evolving a mapping to the
Lagrangian frame. Over the times shown,s̄a decreases in
value by a factor of 104 or more. Consequently, the time-step
constraint~23! decreases by at least a factor of 106, even for
a fixed spatial grid sizeh. The steep drop at slightly less than
t50.5 is the result of the compression associated with the
shadow of the Moore singularity, which occurs attM'0.37

for this initial data.19 Such strongly time-dependent time-step
constraints have severely limited previous numerical investi-
gations.

The primary challenge to computing the long time evo-
lution of interfacial flows with surface tension lies in the
construction of time integration methods with good stability
properties. It is difficult to straightforwardly construct effi-
cient implicit time integration methods as the source of the
stiffness — theka in the g-equation — involves both a
nonlinear combination of high derivatives of the interface
position and contributes nonlocally to the motion through the
g in the Birkhoff–Rott integral. Our approach, first given in
HLS94, involves reformulating the equations of motion ac-
cording to the following three steps:„A… u2sa formulation;„B… small scale analysis;„C… special choices of reference
frames~tangential velocities!.

(A) u2sa formulation

Rather than usingx,y as the dynamical variables, repose
the evolution in variables that are more naturally related to
curvature. Motivated by the identityus5k, whereu the tan-
gent angle to the curveG, the evolution is formulated with
u and sa as the independent dynamical variables~see
Whitham34 for an early application!. The equations of mo-
tion are then given by

sat5Ta2uaU, ~24!

u t5
1

sa
Ua1

T

sa
ua , ~25!

g t5We21]a~ua /sa!1]a~~T2W• ŝ!g/sa!. ~26!

Given sa and u, the position (x(a,t),y(a,t)) is recon-
structed up to a translation by direct integration of

~xa ,ya!5sa~ cos~u~a,t !!, sin~u~a,t !!!, ~27!

which defines the tangent angle. The integration constant is
supplied by evolving the position at one pointX0(t).

(B) Small-scale analysis

Reformulate the equations by explicitly separating the
dominant terms at small spatial scales. The behavior of the
equations at small scales is important because stability con-
straints~i.e., stiffness! arise from the influence of high-order
terms at small spatial scales. In HLS94 we show that at
small scales the Birkhoff–Rott operator simplifies enor-
mously. A useful notation,f;g, is introduced to mean that
the difference betweenf andg is smoother thanf andg. In
HLS94 we show that

U~a,t !;
1

2sa
H@g#~a,t !. ~28!

That is, at small spatial scales, the normal~physical! velocity
is essentially the Hilbert transform with a variable coeffi-
cient. Now, Eq.~28! allows a rewriting of the equations of
motion in a way that separates the dominant terms at small
scales~these terms determine the stability constraints!:

FIG. 2. The evolution of log10( s̄a) for several Weber numbers.
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u t5
1

2

1

sa
S 1sa

H@g# D
a

1P, ~29!

g t5We21S ua

sa
D

a

1Q. ~30!

Here,P andQ represent ‘‘lower-order’’ terms at small spa-
tial scales. This is thesmall-scale decomposition~SSD!. As-
suming thatsa is given, the dominant small-scale terms are
linear inu andg, but also nonlocal and variable coefficient.
At this point, it is possible to apply standard implicit time
integration techniques where the leading-order ‘‘linear’’
terms are discretized implicitly. However, we have not yet
taken any advantage in choosing the tangential velocityT.
There are choices ofT that are especially convenient in con-
structing efficient time integration methods and in maintain-
ing the accuracy of the simulations.

(C) Special choices for T

Choose the tangential velocityT to preserve dynamically
a specific parametrization, up to a time-dependent scaling. In
particular, require that

sa~a,t !5R~a!L~ t !, withE
0

1

R~a!da51, ~31!

whereR(a) is a given smooth and positive function. The
lengthL(t) evolves by the ODE2

Lt52E
0

1

ua8Uda8. ~32!

If the constraint~31! is satisfied att50, then it is also satis-
fied dynamically in time by choosingT as

T~a,t !5T~0,t !1E
0

a

ua8Uda8

2E
0

a

R~a8!da8•E
0

1

ua8Uda8, ~33!

where the integration constantT(0,t) is typically set to zero.
We use different choices forR, and so forT. That which

is computationally most convenient isR[1, yielding what is
referred to as the uniform parametrization frame since a uni-
form discretization in a is then uniform in s, i.e.
s(a,t)5aL(t). In this case, the leading-order terms of
small-scale decomposition, Eqs.~29! and ~30!, are constant
coefficients in space, and implicit treatments in time of these
terms are directly inverted by the Fourier transform~see Ref.
2!.

Since the uniform parametrization frame keeps compu-
tational points equally spaced in arclength everywhere along
the curve, this frame can be deficient in capturing structures
such as the blow-up in curvature that apparently occurs in
the topological singularity. From Eq.~31!, if R,1 in such a
region, then there is a greater relative concentration of grid
points there. Accordingly, a nontrivial mappingR is used to
cluster computational points in regions of the curve where
local refinement is needed, yielding thevariable parametri-
zation frame. The regions where local refinement is neces-

sary are identified beforehand by examination of simulations
using the uniform parametrization. Our specific choice ofR
is given in Appendix A; an additional class of reference
frames is also given in Appendix 2 of HLS94.

Although the possibility of using nontrivialR was dis-
cussed in HLS94, only the trivial choiceR[1 was imple-
mented. For a nontrivialR, the leading-order terms in the
PDEs foru andg are still linear, but are variable coefficients
in space. After an implicit treatment of these terms in Eqs.
~29! and ~30!, the resulting time-discrete equations may be
solved as follows„i… The ODE ~32! for L can be solved by an explicit
method, and so its value is available at the new time-step.„ii … An implicit treatment of the leading-order terms in
the PDEs~29! and ~30! leads to a linear integro-differential
equation foru at the next time-step, having the form

R~a!u~a!2CS 1

R~a!
HFua

R G
a
D

a

5A~a!,

whereC, R(a), andA(a) are known, in part by virtue of„i…. The linear operator onu is symmetric and positive defi-
nite, and the equation is solved efficiently foru through it-
eration using a preconditioned conjugate gradient method.
Using pseudo-spectral collocation to evaluate the linear op-
erator, this iteration costs onlyO(NlnN) per step, and typi-
cally converges in a few steps. An implicit discretization of
the full equations of motion would typically involve the
much more expensive evaluation of the Birkhoff–Rott inte-
gral @O(N2) using direct summation# within an iteration
scheme. Details on the implementation are found in Appen-
dix B.

The extra difficulty in solving for the updated solution
by iteration motivates us to use the variable parametrization
frame only when it is crucial to obtain extra accuracy locally,
such as is the case at late times in the regions where~topo-
logical! singularities occur.

The use of the uniform or variable parametrization
frames alone, without theu2sa reformulation and an im-
plicit treatment of the equations of motion, does in fact pre-
vent sa from becoming small assa now scales with the
overall length of G. This removes the strong time-
dependency in time-step restriction~23!. However, the
3/2-order constraint relating the time-step to the spatial grid
size still remains. By using theu2sa reformulation and the
implicit treatment of the leading-order terms, this higher-
order constraint is removed as well, typically leaving only a
first-order Courant–Friedrichs–Lewy~CFL! type constraint
from advection terms, appearing in both theu andg equa-
tions, that are hidden inP andQ.

In the uniform parametrization frame, we use either the
2nd-order accurate Crank–Nicholson time discretization
given in HLS94 or the 4th-order accurate implicit, multi-step
method due to Ascher, Ruuth, and Wetton.35 The 4th-order
method is discussed in Appendix B. In the variable param-
etrization frame, only the 4th-order time integration method
is used. It is found in practice that a first-order CFL time step
constraint~as described above! must be satisfied.
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Spectrally accurate spatial discretizations are used in
both the uniform and variable parametrization frames. Any
differentiation, partial integration, or Hilbert transform is
found at the mesh points by using the discrete Fourier trans-
form. A spectrally-accurate, alternate-point discretization36,20

is used to compute the velocity of the interface from Eq.~8!.
As noted in HLS94, time-stepping methods for vortex sheets
suffer from aliasing instabilities since they are not naturally
damping at the highest modes. The instability is controlled
by using Fourier filtering to damp the highest modes; this
determines the overall accuracy of the method, and gives a
formal accuracy ofO(h16). An infinite-order filter could
have been used, but we did not do so.

Again, these methods are discussed further in the Ap-
pendices and especially in HLS94. Hou and Ceniceros37

have recently proved convergence of a SSD based formula-
tion for vortex sheet evolution. In their work, the system is
discretized in space, and continuous in time. Their analysis
includes the effects of Fourier filtering, and indeed shows its
sufficiency in achieving a good stability bound.

IV. NUMERICAL RESULTS

In the bulk of this section, we study the effect of varying
the Weber number upon the evolution of the sheet from a
single, fixed, near equilibrium initial condition. In particular,
we consider the initial data,

x~a,0!5a10.01 sin 2pa, y~a,0!520.01 sin 2pa,

g~a,0!51.0, ~34!

used by Krasny19 to study numerically the Moore singularity
(We5`). He found that a curvature singularity forms at
a51/2 (x51/2) attM'0.37. The singularity time and struc-
ture were in approximate agreement with Krasny’s extension
of Moore’s analysis to this initial data. ForWe,`, this is
not a pure eigenfunction~as it is forWe5`), but is rather a
combination of eigenfunctions, both stable and unstable, for
the linearized evolution. The true vortex sheet strength,g̃ , is
not initially constant, but instead has a single maximum in
the period ata51/2. Finally, initial data~34! is for the La-
grangian formulation, and is recast into the uniform param-
etrization to set initial data for our numerical method.

At the end of this section more general initial data is
considered. This includes multi-modal initial data, and data
with random amplitudes and phases. Moreover, of the simu-
lations presented in this section, only theWe5200 case uses
the fourth-order accurate time-stepping scheme and the vari-
able parametrization frame. All otherWe simulations utilize
the second-order Crank–Nicholson time-stepping scheme
given in HLS94 and the uniform parametrization frame.

A. Small We

The small amplitude, small Weber number behavior is
quite predictable by linear theory, even over long times. As
seen from Eq.~21!, there are no unstable linear modes for
We,4p'12.56. ForWe510 and 12.5, the upper boxes of
Fig. 3 show the computed interface positions over 3 periods
every 5 time units, fromt50 up to t5100. Time increases
moving down the figure. ForWe510, all allowed wavenum-

bers are neutrally stable and dispersive, and the period of
oscillation for thek51 mode isv'3.95. To the final time
shown~25 periods!, the motion is very well described by the
linear behavior. Indeed, oscillatory behavior seems domi-
nant, even very close to the stability threshold, as the
We512.5 results indicate. The impression of standing wave
behavior was reinforced by examination of the maximum
amplitude and interfacial energy for these two cases, which
we do not show here.

We had hoped to see some repartition of energy from the
k51 mode to smaller scales over large times. However, for
We510.0 only a very slow increase is observed, if any, of
the width of the active spatial spectrum. Initially, 8–9 modes
are required to resolve the data to Fourier amplitudes of or-
der 10212. By t51000 ~250 periods! this had increased by
only 2 modes.

These calculations useN564 points and time-step
Dt51023. Increasing the spatial resolution gives no change
in the results. The total energyE is conserved over this time,
in both cases, to a relative error of 1028. ForWe510, the
time-stepping errors were checked directly by halving the
time-step and again running tot51000. The error in total
energy decreased by a factor of four, consistent with the
Crank–Nicholson integration being of second-order accu-
racy. The pointwise error inu was estimated by assuming
that time-stepping error is dominant, and of second-order.
Then the maximum, relative time-stepping error is approxi-
mated by

EDt5
4

3
max
a j

uuDt~a j ,t !2uDt/2~a j ,t !u/uuDt~a j ,t !u.

This error increases slowly but steadily in time; att50.1 the
error is approximately 131024 while at t51000 the error is
approximately 231023. The pointwise error ing and the
error in L are about of the same magnitude. These results
suggest that the energy is much less sensitive than the point-

FIG. 3. The long-time evolution from initial data~34!, with We510 ~left!
and 12.5~right!. Three spatial periods are shown every 5 time units.
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wise datau to errors in the time integration. Given that the
motion here is very nearly linear, these errors should be
mostly dispersive in nature.

B. Intermediate We

The evolution is much more interesting for intermediate
We where the interface is initially unstable to only a few
modes. Figure 4 shows the temporal behavior for two Weber
numbers,We516.67 andWe520, from t50 to 80 over 3
spatial periods. In both cases, only thek51 mode is linearly
unstable; the k52 mode becomes unstable only for
We.25. The evolution of the interfaces is striking. The in-
terface now deforms into elongated fingers that penetrate
each fluid into the other. Lengthening, the interface acquires
the shape of a blunted needle or finger, with a small pocket
of fluid at its end. While the linear analysis is a rough guide,
we have not sought to pinpoint the Weber number at which
this transition from oscillation to growth occurs; this value is
undoubtedly a function of the initial data.

For these two values of Weber number, the maximum
amplitude and interfacial energyEL follow one another
closely. The growth ofEL appears to become linear in time,
and lies generally below the prediction of linear theory,
which predicts exponential growth. As the total energy is
conserved, the perturbation kinetic energy of the fluid shows
a corresponding decrease. Nothing is seen here that indicates
an eventual halt to the lengthening. If the perturbation kinetic
energy were a strictly positive quantity, then the interfacial
energy ~and so the length! could be bounded from above.
However, the perturbation kinetic energy is not signed and
so no such conclusion can be made.

As the fingers lengthen, they also thin. This feature does
not follow from mass conservation arguments, as the mass of
each fluid is infinite. Given the behavior at larger Weber
numbers, it seems possible that the sides of the fingers might
also collide at some finite time, and so abbreviate their

smooth evolution. This does not appear to be the case, at
least for this initial data over these times, as Fig. 5 makes
clear. For t580 the left box shows a close-up of the tip
region and its pocket of fluid. The neck below the tip is
becoming thinner in time. The right box of the figure shows
the minimum width of the neck as a function of time. So far
as can be discerned, it seems that the neck is thinning expo-
nentially, and that the neck is a stable feature of the flow;
perhaps the neck is convectively stabilized by the stretching
of the interfaces.

ForWe520, Fig. 6 shows the true vortex sheet strength
g̃ (a,t), over one period, at the same times as shown in Fig.
4. This figure shows that the finger lengthening is associated
with the fluxing of fluid into the finger, and with the forma-
tion of a concentrated peak of positive circulation at the tip
of the finger. The right peak’s location is indicated by the
cross on the interface close-up of Fig. 5. To the left and right
of this peak, and so on the lower and upper sides of the neck,
g̃ is positive and negative, respectively. This indicates an
influx of fluid from below, into the finger lengthening up-
wards. At the tip of every finger, there is a concentration of
positiveg̃ . Taken alone, these ‘‘vortices’’ might be expected
to induce a rotation in the angle of inclination of the array of
fingers, by the mutual induction of the upper and lower lines

FIG. 4. Growing fingers of interpenetrating fluid forWe516.67 and 20.
Again, three spatial periods are shown at each time.

FIG. 5. A close-up of the finger tip~left box!. The3 denotes the point of
maximum sheet strength. The right box shows the neck width of the finger
as a function of time.

FIG. 6. g̃ (a,t) at the same times as shown in Fig. 4.
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of vortices upon each other. However, no such rotation is
seen, and the fingers seem to lengthen more or less along a
fixed angle from thex-axis.

Finally, Fig. 7 shows att510 the interfacial position for
several intermediate values ofWe. For the largest,
We550, there are 4 modes initially unstable in the period.
As the K–H instability becomes more important with in-
creasingWenumber, the fingers become more curved by the
greater relative concentration of vorticity at the origin. At
values ofWe slightly larger than this, a sharp departure is
found from the formation and smooth elongation of fingers.

As an examination of the accuracy of these simulations,
the We550 simulation is chosen. This simulation uses
N51024 andDt51023, up to t57.0, at which pointN was
doubled, andDt halved. This was to resolve the evident ap-
proach of two disparate portions of the sheet. The entire
calculation, for 0<t<10, was repeated with a halved time-
step. Assuming that time-stepping errors are dominant, then
for the first simulation the maximum relative error inu at
t510 is estimated to beEDt'131024.

C. Large We and pinching

Figure 8 shows two simulations:We558.8 and 62.5
~both have initially 4 unstable modes!. It is between these
two values ofWe that is seen the transition from the forma-
tion of continuously elongating fingers, to an intervening

event that is apparently the collision of the fluid interfaces.
This collision is observed in the evolution from this initial
data for every larger value ofWe. Figure 9 superposes the
respective interface positions att54.7. Though not apparent
from the scale of the figure, the colliding portions of inter-
face forWe562.5 are still separated from one another by a
finite distance, though this distance is diminishing rapidly.
The upper two boxes of Fig. 10 shows theg̃ at several times,
for both values ofWe. The lowest box of the figure super-
posesg̃ at t54.7 for both values ofWe. The crucial differ-
ence is the appearance forWe562.5 of pairs of positive and
negative spikes. These new peaks in sheet strength are situ-
ated on the colliding portions of the interface, coming in
pairs, positively signed on one side, negatively on the other.
This ‘‘jet’’ fluxes fluid through the narrowing neck, inflating
the forming bubble.

We will not focus on the collapse process near these
values ofWe; they are too close to the bifurcation in evolu-
tion from elongating fingers. Instead, we turn our attention to
the flow forWe5200, where the collapse occurs earlier, and
the evolution is more representative of that for yet larger
values ofWe.

FIG. 7. The interfacial position for several values of intermediateWe, at
t510.

FIG. 8. The results of two simulations withWe558.8 ~left box! and 62.5
~right box!.

FIG. 9. The superposition of the two profiles att54.7.

FIG. 10. g̃ (a,t) at several times~top two boxes!. The lowest box super-
poses the vortex sheet strengths att54.7.
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1. The evolution for We 5200

For We5200, there are 16 modes initially unstable in
the period, withk511 the most unstable wavenumber. For
We5` the flow forms a curvature~Moore! singularity at
tM'0.37.19 We study first the evolution for 0<t<1.4 using
the uniform parametrization frame. In addition, we use the
implicit fourth-order time integration scheme of Ascher,
Ruuth, and Wetton35 coupled to the SSD, as described in the
Appendix. The pinching singularity time is estimated to be
tp'1.427, and the behavior for 1.4<t,tp will be consid-
ered separately using both the uniform and variable param-
etrization frames. A time sequence of interface positions is
shown in Fig. 11. This simulation usesN52048 points, and
a time-step ofDt51.25•1024 on the interval 0<t<0.36,
andDt55•1025 thereafter.

While at early times the interface steepens and behaves
very similarly to the zero surface tension case, it passes
smoothly through the Moore singularity time. Att50.45, the
interface becomes vertical at its center, and subsequently
rolls over and produces two fingers (t'0.50). These grow in
length in the sheet-wise direction@box ~b!#. The tips of the
fingers broaden and roll with the sheet. This is clearly seen at
t50.80 @box ~c!#, as are evident capillary waves, seen as
oscillations along the sheet. These waves are approximately
on the scale of the most unstable wavelength given by the
linear analysis. Byt51.20 @box ~d!#, the sheet produces an-
other turn in the spiral, and the fingers become broader and
larger. Additional capillary waves are produced and traverse
the interface outwards from the center region. This disper-
sive effect of the surface tension is seen more clearly in plots
of the curvature and vortex sheet strength. Note that the part
of the interface~on the inner turn! closest to the fingers has
become quite flat and bends very slightly towards the fingers.
At later times, this part bends even more towards the fingers,
the tips of the fingers narrow, and both pieces of the interface
approach each other. Att51.40 @box ~e!#, the interface ap-
pears to self-intersect, but a close-up of the region at this

time @box ~f!# indicates there is still a finite distance between
the upper finger and the inner roll. The same is true for the
lower finger by symmetry, although that symmetry is not
explicitly imposed in the simulation.

At this time, the gap between the two approaching por-
tions of interface is but 5 grid lengths wide, and the calcu-
lation is stopped here. As shown in Baker and Shelley38 ac-
curacy is rapidly lost in trapezoidal quadratures of the
Birkhoff–Rott integral as the distance between the interfaces
falls below a few mesh spaces. By this time, the length of the
interface has increased by a factor of 2.6 .

Figure 12 shows the vortex sheet strengthg̃ , vsa. It is
worth recalling here a few properties of the Moore singular-
ity for We5`. As the singularity time is approached, the
maximum in g̃ sharpens to form a finite cusp ata51/2. In
the same approach, the curvaturek diverges positively at
a51/22, and negatively ata51/21. And so ask diverges,
ka diverges negatively ata51/2. In the presence of a small
surface tension@using Eq.~10!#, this behavior will causeg̃ t

to be negative at the peak, thereby reducing and eventually
fissioning the maximum ing̃ ~see also Ref. 33!.

This effect, explained heuristically above, likely explains
the appearance of the two dominant, positive peaks seen in
g̃ at t50.6. Small waves have also formed at the outer edges
of these peaks, and are presumably dispersive waves pro-
duced by the surface tension saturation of the Moore singu-
larity. At t50.80 @box ~c!#, the peaks have saturated and
more waves have been produced. These disperse outward
along the interface. The strengthg̃ has also formed down-
ward peaks at the edge of the wave packet. The saturation
and dispersion continues throught51.20 @box ~d!#. How-
ever, when the interface begins to self-approach, the vortex
sheet strength refocuses, forming a jet. This jet is seen at
t51.40 @box ~e!# in the pairs of positive and negative peaks
of vortex sheet strength that have formed in each pinching
region. These peaks have been isolated for the top pinching
region in box ~f!. The top of the pinching region~inner turn

FIG. 11. The long-time evolution from a nearly flat sheet forWe5200. The
bottom right box shows a close-up of the thinning neck att51.4.

FIG. 12. g̃ (a,t) at the same times as the previous figure. The bottom right
figure highlights the location of the strength extrema in the region of the
thinning neck att51.4.
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of the spiral! comes with a negative signed vortex sheet
strength and the bottom comes with a positive sign. This
implies fluid is streaming through the gap towards the center
and into the downwardly pointing finger. For this initial data
~single-signed sheet strength!, such a sign change in the vor-
tex sheet strength can occuronly in the presence of surface
tension.

Saturation and refocusing are also observed in the cur-
vature. Its evolution is plotted in Fig. 13. The first graph
shows the inverse maximum of the absolute curvature as a
function of time. There is an initial region of rapid growth in
the curvature~decay in the plot! due to the Moore singular-
ity. But, the curvature growth saturates and its spatial peaks
break up into dispersive waves@boxes~d! and ~e!# moving
outwards from the center. Byt51.40, the maximum of the
curvature nearly reaches that attained during the initial pe-
riod of growth, and the new refocusing and growth occurs at
the points of nascent pinching. These points are associated
with pairs of like-signed peaks in the curvature.

Figure 14 shows the decomposition of the total energy
into the perturbation kinetic energy~upper box!, and the in-
terfacial energy~lower box!. The beginning of roll-up is
plainly seen by the transfer of energy into the interfacial
energy. This occurs soon after the Moore singularity time.
Nothing is seen in this figure that indicates the oncoming
collision of interfaces, except perhaps a slight increase in
slope for the interfacial energy.

There are two events which cause losses of accuracy in
the time integration. The first is the shadow of the Moore
singularity. At times less thantM50.37, there are nearly
14 digits of accuracy in the energy. At times slightly beyond
tM , the number of accurate digits in the energy drops to 11
where it remains until the sheet approaches self-intersection.
In this second loss, neart51.4, a number of accurate digits
in the energy drops to 10. As is typical, estimates of the
point-wise relative error~discussed below! are larger than
those of the energy. Comparison with simulations with lower

spatial resolution suggest that temporal errors are dominant,
and the error of this simulation was again checked by halv-
ing the time-step. The estimated relative error inu is found
to be approximately 131027 at t51.2, and 4.531027 at
t51.4. We found that use of the fourth-order time-
integration improved our accuracy by 3 to 4 digits over the
second-order Crank–Nicholson method for the same time-
step~see HLS94!.

2. Near the singularity time

Maintaining numerical resolution is critical as the singu-
larity time is approached. There are several possible sources
of error. First, the thickness of the collapsing neck decreases
to zero with infinite slope~close to a 2/3 power in time!, and
as this distance decreases,g̃ and the curvaturek both di-
verge. Time-steps must be taken small enough to resolve
these trends. Spatial resolution must also be sufficiently high
in the regions of close approach to resolve both the spatially
diverging g̃ andk, and to evaluate accurately the contribu-
tion of the collapsing neck region to the Birkhoff–Rott inte-
gral.

Due to their relative efficiency, the uniform parametriza-
tion simulations are pushed as closely as is practical towards
the collapse time. This is accomplished by using successive
doublings of the spatial pointsN, and halvings ofDt. The
doubling is done by Fourier interpolation, at times when the
thickness of the collapsing neck is still approximately 10 grid
lengths wide, for which the trapezoidal sum is still very
accurate.38 ForN52048 this time ist51.34. Examination of
the spatial Fourier spectrum at this time shows also that the
active part of the spectrum is well away from the Nyquist
frequencyk5N/2. The table below tabulates resolutions and
intervals for the various runs. By increasing the spatial reso-
lution, 11 digits of accuracy in the energy can be maintained
until t51.39 for N52048, t51.41 for N54096, and
t51.42 forN52048.

The variable parametrization runs are all begun at
t51.413 ~this choice of time is again made by the same

FIG. 13. The curvature. The upper left box shows the evolution of the
inverse curvature. The remaining boxes show the curvature of the interface
at the same times as the previous figure.

FIG. 14. The decomposition of the total energy into the perturbation kinetic
energy~upper box!, and the interfacial energy~lower box!.
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rule— the neck width is at least 10 grid lengths! from the
N58192 uniform parametrization data. Again the initial data
is generated by Fourier interpolation. The mapping which
generates the parametrization of the curve is described in
Appendix A. It clusters points locally about the collapse re-
gions; the parameters of this remapping are chosen so that
the local resolution is 8 times greater than for the uniform
parametrization with the same value ofN. The mapping is
completely fixed during the calculation by the choice of tan-
gential velocityT in Eq. ~33!. Again, the Table I shows the
values ofN andDt. A resolution study near the singularity
time will be presented later in this section.

The top graph of Fig. 15 shows the minimum width of
the neck in the upper pinching region. The medium dashed
curve is the width measured from theN58192 uniform pa-
rametrization simulation, while the solid is that from the
variable parametrization simulation~also forN58192). This
minimum width is computed by minimizing the distance
function between the opposing sections of the interface, con-
structed using the Fourier interpolant of the curve position.
The trend of the least distance towards zero is clear. While it
is not clear here, it will be seen later that the variable param-

etrization simulations do give better results near the singu-
larity time.

An algebraic fit of the form

Least Distance5d~ t !5A~ tp2t !cd, ~35!

is made to the neck width. This is done as a sliding fit to
successive triples of data@(t i ,d(t i)),i51,2,3# to determine
the three unknownsA, tp , andcd . The fits tocd are shown
in the lower graph of the figure. While the fits are not com-
pletely flat, particularly very near the singularity time, they
are generally close to 2/3~shown as the horizontal dashed
curve!. Recall thatcd52/3 is the temporal exponent ob-
tained through similarity considerations. The fit to the col-
lapse timetp was given consistently astp51.42736.0002.
This is shown as the vertical dashed line in both graphs of
the figure.

While the collapse of the neck width must be~and is!
accompanied by the divergence of velocity gradients in the
fluid, as demonstrated in Appendix C, it is also accompanied
by loss of smoothness in geometric quantities of the sheet,
notably its curvature. The left graph of Fig. 16 shows a
close-up of the top pinching region of the rolled-up sheet at
timest51.4135~dashed! and 1.427~solid!, both very near to
the collapse time. The right graph magnifies this close-up by
another factor of 10 to show that the neck at the later time
has not yet collapsed. It appears that the sheet is forming two
opposing corners on either side of the neck. This is in agree-
ment with the upper graph in Fig. 17, which shows the tan-
gent angleu, as a function of normalized arclength~this
would bea in the uniform parametrization frame!. Arrows
indicate two of the four locations along theu curve where
the curvature,k5us , is diverging. These sections are shown
as close-ups in the lower graph of the figure, again at times
t51.4135 ~dashed! and t51.427 ~solid!. It appears from
these~most especially in the left graph! that u is sharpening
to a jump discontinuity with the collapse, indicating the for-
mation of a corner in the sheet profile. It does not appear
from these figures that the two angles are equal. The curva-
ture itself is shown in the top graph of Fig. 18, at both of
these times.

FIG. 15. The upper box shows the minimum width of the neck in the upper
pinching region. The lower box shows the exponent in an algebraic fit to the
minimum width. The vertical dashed line in both boxes marks the fit to the
singularity time. The horizontal dashed line is at 2/3.

FIG. 16. The left box shows a close-up of the top pinching region of the
rolled-up sheet at timest51.4135~dashed! and 1.427~solid!, both very near
the collapse time. The right box magnifies this close-up by another factor of
10.

TABLE I. The two tables show, with associated time intervals, the spatial
and temporal resolutions of both the uniform and variable parametrization
simulations.

Uniform parametrization Variable parametrization
N Dt N Dt

2048 1.2531024 0<t<0.36 2048 531026 1.413<t<1.427
531025 0.36<t<1.4 4096 2.531026 1.413<t<1.427

4096 2.531025 1.34<t<1.427 8192 1.2531026 1.413<t<1.427
8192 1.2531025 1.39<t<1.427
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The lower graph of the figure showsg̃ at these times. Its
apparent divergence fulfills the requirement that at least ve-
locity gradients diverge as a collapse is approached.

If the collapse is governed by similarity, as might be
indicated by the fits tocd for the neck width, then the pre-
dicted similarity exponents areck522/3 for curvature, and
cg521/3 for the vortex sheet strength. This scenario is now
complicated by the fact that there are two values ofg̃ , and of
k, to be considered, one on either side of the collapsing
neck. The upper box of Fig. 19 shows the growth of these
two extremal vortex sheet strengths, again for theN58192

uniform ~dashed! and variable~solid! parametrizations. The
branching near the singularity time in these mostly overlap-
ping fits is caused by a loss of accuracy in the uniform pa-
rametrization simulation.

The lesser of the two curves is the negative extremum of
g̃ on the upper side of the neck, and the other curve the
positive extremum on the lower side. They both appear to be
diverging. The lower box of the figure shows the fit tocg for
these two extrema. The lower curve is again that for the
negative extremum. The dashed curves are atcg521/3 and
21/4. The fit forcg for the positive extremum is fairly flat,
lying somewhere between these two values. On the other
hand, the assumption of a uniform value forcg of the nega-
tive extremum is plainly inappropriate, though the two val-
ues ofcg might be converging to each other as the critical
time is approached. At any rate, an argument for precise
similarity scaling is not much strengthened by these fits.

We did attempt to refine the fit by using a higher-order
Ansatz~adding another algebraic term! but found that attain-
ing convergence of Newton’s method was difficult. No better
agreement with similarity was found by using the value of
g̃ at the point of least separation distance, rather than the
maximum value ofg̃ .

Similar fits for the extremal curvatures are shown in Fig.
20. The respective signs of the curvatures match those of
g̃ , and again, the lower curve in the upper graph is that of
the negative curvature on the upper side of the neck. Now
the appropriateness of the algebraic fit is suspect in either
case, though the two fits seem to be approaching each other
in value~but not to22/3! as the critical time is approached.
Here, the two horizontal dashed lines areck522/3, the
putative similarity exponent, andck521/2. Again, the

FIG. 17. The upper box showsu as a function of normalized arclength. The
lower boxes show close-ups of the regions indicated by arrows in the upper
box, att51.4135~dashed! and 1.427~solid!.

FIG. 18. The top box shows the curvature at the same times as in the
previous figure. The lower box shows true vortex sheet strength.

FIG. 19. The upper shows the time evolution of the two extremal true vortex
sheet strengths. The lower box shows the fit tocg for these two extrema.
The horizontal dashed lines are at21/4 and21/3. The vertical dashed line
is a fit to the singularity time.

1945Phys. Fluids, Vol. 9, No. 7, July 1997 Hou, Lowengrub, and Shelley



branching near the singularity time is due to loss of accuracy
in the uniform parametrization simulation.

While the divergence ofk does not apparently conform
to similarity, there is some evidence for a local scaling be-
havior consistent with forming a corner singularity. Suppose
thatk behaves locally in the neck region as

k~s,t !;
1

e1~ t !
KS s2sp~ t !

e2~ t !
D , ~36!

wheree1,2→0 as t→tp , andsp locates an extremum ofk.
Then,e1(t) } e2(t) corresponds tou forming a jump discon-
tinuity at (t,s)5(tp ,sp(tp)). We sete1 to 1/uk(sp ,t)u, and
estimate e2 by uk(sp ,t)/kss(sp ,t)u1/2. Figure 21 shows
e1(t) versusc•e2(t) calculated on both sides of the neck
~dots are the upper side, crosses the lower side!, wherec is a
constant of proportionality determined from the first data
point in the upper right corner. It is especially for the upper
side of the neck thate1 ande2 appear to be linearly related.

We have also tried to find local scaling behavior in the
divergence ofg̃ by using a scaling Ansatz as in Eq.~36!. The
similarity exponents forg̃ suggest then thate2 } e1

2. While
we did find collapsing scalese1,2 accompanying theg̃ diver-
gence, it was not found thate1 and e2 were related in this
way.

Such well-resolved, variable parametrization calcula-
tions have also been performed for theWe5100 case but are
not presented here. The results are basically consistent with
those for 200: only a partial conformance with similarity
behavior, but the apparent formation of a corner singularity
in the sheet profile. The apparent limiting exponents, such as
suggested by Fig. 20, were yet further from the similarity
exponents.

While our results do not suggest strict conformance with
similarity behavior, we must emphasize the usual caveats
when dealing with the numerical analysis of numerical data.
It is quite possible that similarity does govern the oncoming
singularity, but that we have not yet been able to reach, with
sufficient accuracy, the regime governed by similarity. Fur-
ther, perhaps our results would show better agreement with
similarity by using other data fitting tools that stably account
for corrections from higher-order behavior.

3. An analysis of numerical errors near t 5t p

For the case ofWe5200, we give a discussion of the
accuracy of our numerical simulations near the singularity
time, focusing on quantities especially relevant to the singu-
larity development. As an initial measure of the error, we
note that while the energy is generally very well conserved,
the uniform mesh calculations lose accuracy rapidly as the
singularity time is approached. Since extra filtering is re-
quired to control the stronger aliasing instabilities associated
with the variable mesh, this results generally in less accuracy
in the variable mesh simulations, relative to the uniform pa-
rametrization simulations, at times away from the singularity
time. For example, at timet51.415, there are 8 accurate
digits in the energy for the variable mesh calculations~com-
pared to 11 for the uniform mesh withN58192). However,
in the variable mesh simulations, there is almost no degrada-
tion in the number of accurate digits in the energy near the
singularity time.

A stronger test is to look for consistency with conver-
gence in some pointwise quantity. First, considerd(t), the
collapsing least distance of the neck region, with the
N58192 variable parametrization simulation serving as the
‘‘exact’’ solution. Figure 22 shows the number of significant
digits of agreement ind(t) of the reference simulation with

FIG. 20. The upper shows the time evolution of the two extremal curva-
tures. The lower box shows the fit tock for these two extrema. The hori-
zontal dashed lines are at21/2 and22/3. The vertical dashed line is a fit to
the singularity time.

FIG. 21. e1(t) versusc•e2(t) calculated on both sides of the neck~upper
side as dots, lower side as crosses!, wherec is a constant of proportionality
determined from the first data point~in the upper right corner!.
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the other simulations, as estimated by2 log10udr(t)
2d(t)u/udr(t)u wheredr is the reference solution. Consis-
tency with convergence is evident. The two solid curves are
for theN52048 and 4096 variable parametrization simula-
tions. The latter lies above the former, and is thus presum-
ably more accurate. As before, the dashed curves are for the
N54096 ~short dash! and 8192~long dash! uniform param-
etrization simulations, with the more resolved calculation
showing more agreement with the reference solution, and
again losing accuracy as the singularity time is approached.
This study does not measure the accuracy in the reference
simulation, and theN58192 variable parametrization simu-
lation presumably has yet higher accuracy.

The upper box of Fig. 23 shows att51.427 a blow-up of
a curvature spike~see Fig. 18! in the thinning neck region, as
computed by both theN58192 uniform and variable resolu-
tion simulations. The crosses mark the computational mesh
points. The differences in resolution of the spike are obvious.
Within this region the variable mesh has about 8 times more

points than the uniform mesh, and does not suffer from the
oscillations of the uniform parametrization calculation. To
analyze the accuracy in the curvature quantitatively, the con-
vergence of the maximum curvaturekmax is examined as a
function of the spatial resolution, just as was done above for
the least distanced(t). Again, theN58192 variable param-
etrization computation serves as the reference simulation.
The lower box of Fig. 23 shows the number of significant
digits of agreement inkmax of the reference simulation with
the other simulations. The curve marked with crosses is the
variable parametrization calculation withN54096, the solid
curve is the variable parametrization calculation with
N52048 and the dashed curve is the uniform parametriza-
tion calculation withN58192. Consistency with conver-
gence is again evident and the results are quite similar to
those obtained for the least distanced(t) in Figure 22.

4. Relations to the Moore singularity

In previous studies on the effects of regularization on the
Moore singularity — usingd-smoothing,39 contour-dynam-
ics,40 or by adding viscosity41,42— it was generally observed
that a spiral structure would emerge in the flow. As the regu-
larization parameter was taken to zero, this spiral would ac-
quire more and more structure, and its time of emergence
would decrease towards the Moore singularity time. It is
known that these regularized flows exist and are smooth for
all time.43–45With small surface tension, the emergence of a
spiral is again observed, but now the smooth evolution of the
flow is abbreviated by the appearance of the pinching singu-
larity.

An upper bound on the time at which the spiral emerges
in the surface tension case is the time at which the pinching
singularity occurs. Figure 24 shows the pinching singularity
time as a function ofWe21, with the Moore singularity time
included. It does appear that the Moore singularity time is
the limit of the pinching times and thus the time of emer-
gence of the spiral also decreases to the Moore singularity
time. The largest Weber number used for this initial data is
We5800. Figure 25 shows sheet profiles over several dou-

FIG. 22. The number of significant digits of agreement ind(t) with the
highest resolution simulations.

FIG. 23. A blow-up of a curvature spike in the thinning neck region, as
computed by both theN58192 uniform and nonuniform resolution simula-
tions, at t51.427. The crosses mark the computational mesh points. The
lower graph shows the number of significant digits of agreement in the
maximum curvature with the highest resolution simulations.

FIG. 24. The pinching singularity time as a function of decreasingWe21,
with the Moore singularity time included atWe2150.
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blings of We, at times close to their pinching singularity
times. AsWe is increased, the pinching occurs earlier, and
the spiral becomes smaller, but it does not turn a great deal
further, or acquire much more structure. The dispersive ef-
fect of surface tension is seen in the packet of small ampli-
tude waves spreading out from the spiral region. As dis-
cussed earlier, this packet is associated with the shadow of
the Moore singularity.

Figure 26 showsg̃ at these times, likewise revealing a
complicated structure. In the center region are the peaks of
positive and negative sheet strength associated with the jets
in the neck regions. This is separated from a smooth region,
outside of the spiral, by the travelling wave packet. This
wave packet might be termed a dispersive ‘‘internal layer.’’

AsWe is increased, this packet becomes both narrower and
of higher frequency — its wavelength decreases linearly
~very approximately! with We21. It is not clear whether its
amplitude also generally increases. Att50.59, approxi-
mately the pinching time forWe5800, Fig. 27 shows the
interface positions for the various Weber numbers, and Fig.
28 showsg̃ .

A simple spatial and temporal rescaling seems to col-
lapse some of the sheet behavior immediately after the
Moore singularity time. In particular, we have attempted to
describe the length and time scales of the ‘‘tongue’’ of fluid
that initially emerges in the center~see the top box of Fig.
30!. Consider the rescaled time,

FIG. 25. The sheet profiles, over several doublings ofWe, at times close to
their pinching singularity times.

FIG. 26. g̃ at the same times as the previous figure.

FIG. 27. The interface positions for the various Weber numbers, at
t50.59, approximately the pinching time forWe5800.

FIG. 28. g̃ for the various Weber numbers, att50.59.
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t85
We

We0
~ t2tM !,

whereWe05100 is used as a reference value, andtM is the
Moore singularity time. Using this rescaled time, the top box
of Fig. 29 shows the rescaled width,

wWe~ t8!5
We

We0

1

k̄ ~ t8!
,

where k̄ is the maximum absolute curvature of the sheet.
This extremum occurs at the tip of the tongue, and sowWe is
a measure of the tongue width. The bottom box of Fig. 29
shows the rescaled curve length,

l We~ t8!5
We

We0
~L~ t8!2L0!,

whereL0 is the length of the vortex sheet, with no surface
tension, at the Moore singularity time. The quantityl We is
then a measure of the length of the tongue. These two length-
scales seem well-described by this rescaling, at least for
times soon after the Moore singularity. The top box of Fig.
30 shows the sheet position, for the three largest Weber num-
bers, near the rescaled timet850.3. The lower box shows
the superposition of the three center tongues after the spatial
rescaling byWe/We0 as suggested above (We5200 solid,
We5400 dash–dotted,We5800 dashed!. The three tongues
lie nearly on top of each other.

As is clear from Fig. 29, these rescalings do not appear
to describe behavior up to the pinching time. However, the
results do suggest that some aspects of the flow might be
described by the emergence of simple, self-similar structures
— here the tongues — soon after the Moore singularity time.
A self-similar structure has been conjectured to describe the
spirals that emerge in thed-smoothing regularization of the
Kelvin–Helmholtz problem.39

D. Simulations from more general data

Finally, we have performed simulations of yet more
complicated initial data for a single sheet. The upper box of
Fig. 31 shows two periods of the evolution, withWe5200,
from a nearly flat sheet. The initial data lies in thek51 and
3 modes, with randomly chosen phases. Ask53 is the more
unstable mode, the dominant structures appear at that scale,
but with considerable asymmetry introduced by the subhar-
monic part of the perturbation. Again, the evolution is appar-
ently terminated by the appearance of a pinching singularity
in the rightmost spiral. The lower boxes shows evolution

FIG. 29. Rescaled lengths and widths of the interface ‘‘tongue,’’ for several
values ofWe, soon after the Moore singularity time.

FIG. 30. Sheet position for the three largest Weber numbers, at times near
t850.30. The bottom box superposes the three center tongues after spatial
rescaling by We (We5200 solid, We5400 dash–dotted,We5800
dashed!.

FIG. 31. The development of the Kelvin–Helmholtz instability, with
We5200, over two periods from nonsymmetric initial data.~a! The initial
data is in thek51 and 3 modes, each with a randomly chosen phase.~b! and„c… The initial data is in the first 30 modes, with randomly chosen initial
amplitudes and phases.
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from an even more complicated initial condition, again for
We5200. Here the first 30 modes have randomly chosen
amplitudes and phases. The amplitude as a function ofk is
cut off exponentially, so that thek530 amplitude lies below
the order of the round-off (10214). Now, one sees an even
greater variety of structures — both growing fingers and
rolled up regions. It appears that the whole structure is some-
what stabilizedagainstpinching by the fingers, which stretch
the interface. Nonetheless, the evolution is again terminated
by a pinching singularity, this time along the side of a down-
wardly propagating finger. The pinching occurs between this
finger and the leftmost downward finger in the periodic ex-
tension of the interface. This is most clearly seen in Fig. 32
which shows a close-up of the interface profile. The solid
and dash-dotted curves show the interface and its periodic
extension, respectively.

V. DISCUSSION AND CONCLUSION

The precise mechanisms that might link the Moore sin-
gularity to the pinching singularity are unclear. However, the
pinching does seem to follow from the concatenation of sev-
eral physical processes. The first is the Kelvin–Helmholtz
instability, which concentrates circulation at points along the
vortex sheet. As this concentration intensifies, the dispersion
from surface tension becomes important, and both ‘‘splits’’
the peak ing̃ and creates oscillations~see Fig. 26!. Simulta-
neously, due to the bulk concentration of circulation, the
sheet begins to roll up into a spiral. The spiral structure al-
lows the oscillations along disparate sections of the sheet to
strongly interact and couple, ultimately creating oppositely
signed circulation on either side of a now thinning neck. This
interaction and ensuing neck formation we do not understand
well.

With the formation of the jet, the neck collapses rapidly.
This motivates us to examine the dynamics of isolated jets
between two interfaces. To make the situation as simple as

possible, consider first two vortex sheets~1 and 2! under
surface tension, with initial conditions satisfying

x15x2 ,y152y2 , and g152g2 .

This up/down symmetry is preserved by the subsequent evo-
lution. The upper box of Fig. 33 shows the simulations of the
collapse of such a jet, with the data chosen so that there is
only one linearly unstable mode in the period. Clearly, the
pinching singularity occurs directly in this setting, without
the additional feature of the roll-up into a spiral. Figure 34
shows evolution from the same initial data~dashed!, but with
We5`. The final time shown~solid! is that very near the
formation of a Moore singularity, appearing simultaneously
on the upper and lower sheets. The solid dots mark the loca-
tion on the sheets of the emerging singularity. It seems evi-
dent that the beginnings of the collapse are seen in the dy-
namics of a jet without surface tension. Perhaps a

FIG. 32. A blow-up of the pinching singularity in~c! of the previous figure.

FIG. 33. ~a! The formation of a pinching singularity in a symmetric jet
between two interfaces with surface tension.~b! The same as~a! but the
upper interface has zero initial circulation and is flat.

FIG. 34. The formation of the Moore singularity in a symmetric jet between
two interfaces without surface tension. The solid dots mark the location of
diverging curvature.
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‘‘secondary’’ Kelvin–Helmholtz instability is intimately re-
lated to the formation of the pinching singularity. In this
direction, Pugh and Shelley46 have been studying asymptotic
models of such jets with surface tension.

The lower box of Fig. 33 shows a much different simu-
lation. The lower interface has the same initial data as in the
previous simulation, but the upper interface now begins with
zero vortex sheet strength, and is flat. Therefore, at early
times the upper interface behaves as a curve material to the
flow. The lower interface is unstable to the K–H instability,
and its amplitude grows. This growth perturbs the upper in-
terface, and appreciable circulation is produced. The two in-
terfaces couple together, and pinch.

There has been some recent work by Siegel24 that ex-
tends Moore’s analysis of the Kelvin–Helmholtz instability
and includes the effect of surface tension. While his work
predicts the formation of corner singularities in the sheet
profiles, it differs from our results in several important ways.
First, the corner singularities found in Siegel’s analysis are
isolated and are not associated with the formation of a topo-
logical singularity. That is, there isno pinching. Second, his
analysis predicts the formation of such a corner singularity
for any value ofWe for which there is an unstable wave-
length. We find instead that for moderateWe with a few
unstable modes, the formation of interpenetrating fingers that
apparently elongate continuously without interruption by any
singularity. Pinching singularities appear only at yet larger
values of the Weber number. Finally, Siegel’s work appar-
ently predicts the algebraic exponents, associated with the
singularity, to beck521/3 andcg522/3. While we did
not find very conclusive values for these exponents, our fits
do seem well away from these values. However, as Siegel
remarks, Moore’s approximation often gives incorrect values
for temporal exponents, while giving correct results on the
spatial form of the singularity.47 On the qualitative side, the
solutions he finds do bear some resemblance to the growing
fingers at early times.

As Siegel also remarks, the approximations inherent in
his analysis may lose their validity as the singularity time is
approached, and so may not capture the interactions neces-
sary to observe pinching. One such interaction that is critical
to pinching is the nonlocal coupling, though the Birkhoff–
Rott integral, between separated parts of the sheet. Siegel’s
system is local in space. Another consideration is that Sie-
gel’s conclusions are based on specific initial data that cor-
respond to special ‘‘travelling wave’’ solutions of his ap-
proximate equations. We have not investigated this particular
set of initial data.

Very similar pinching singularities have been observed
in other situations where the Kelvin–Helmholtz instability is
operative. In HLS94, we observed the beginnings of a pinch-
ing singularity in plume vortices formed by the Rayleigh–
Taylor instability in the Boussinesq approximation~see Fig.
18 there!. In a very recent study of the application of SSD
methods to water waves and fully density-stratified flows~as
in this study, incompressible, inviscid, irrotational, and 2-d!,
Hou and Ceniceros37 have also observed such singularities,
and measured length collapse exponents very close to 2/3.
As has been the case for the basic description of Moore

singularity in stratified flow without surface tension,22 it
seems likely to us that the prototype pinching singularity is
found in the simplest case of no stratification at all.

An intriguing question is whether ‘‘bubble’’ formation
as apparently predicted by these calculations, is observable
in an experimental setting. In Ref. 48, Thorpe presents an
experimental study of the development of the K–H instabil-
ity in a sharply stratified shear flow between two nearly im-
miscible fluids. Of course, in such an experimental situation
there are many additional effects, such as viscosity, three-
dimensionality, and partial miscibility, that we have ne-
glected in our model. However, Thorpe does remark that the
interface between the two fluids ‘‘became very irregular,
sometimes being broken and drops of one fluid being pro-
duced in the other, . . . .’’ The effects of additional physics
are currently being considered in other works, see Refs. 49–
54, for example. While these additional effects could cer-
tainly play an important role in determining the overall struc-
ture of the flow, there is no doubt that topological transitions/
singularities are a fundamental feature of the motion of real
fluids. We hope to have suggested one of the simplest set-
tings in which such phenomena occur.
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APPENDIX A: CONSTRUCTING THE NONUNIFORM
MESH MAPPING

As described in our previous paper,2 the construction of
the nonuniform mesh requires a scaling functionR. Suppose
thata is the uniform parametrization variable. We introduce
a new parametrizationb such that a5a(b) and that
R(b)5ab is small in regions where the interface is most
singular. This has the effect of clustering grid points since

sb~b,t !5L~ t !R~b!, withE
0

1

R~b8!db851, ~A1!

whereL(t)5*0
1sb8db8 is the total arclength of the interface

at time t.
Suppose first that the interface is most singular near a

single region centered arounda5ac . Then, one natural
choice forR is to setR(b) to be a step function which takes
a small value nearb5bc , wherea(bc)5ac . The relation-
ship betweena andb is given by
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a~b!5E
0

b

R~b8!db8, ~A2!

which maps the unit interval@0,1# onto itself. SinceR is
chosen to be positive, the mapping is strictly monotone.
Therefore the inverse always exists. In general, before we
constructR, we do not know howbc relates toac . How-
ever, whenR is a step function, there is an explicit relation-
ship between the two. For example, chooseR to be the fol-
lowing step function satisfying R(b)5Rmin for b
P @bc2d,bc1d#, andR(b)5Rmax otherwise. GivenRmin

and d, Rmax is uniquely determined by satisfying
*0
1R(b)db51. This gives Rmax5(122dRmin)/(122d).
Moreover, using~A2! and the relationshipa(bc)5ac , we
obtain the explicit formula relatingbc to ac :

bc5d1~ac2dRmin!/Rmax. ~A3!

However, choosingR to be a step function does not provide
a smooth enough parametrization for our numerical simula-
tions. Therefore, we actually obtainR by smoothing the
above step function by convolving it with the heat kernel.
This amounts to diffusing the step function for the short time
tD . Since this diffusion does not change the mean of a func-
tion and only slightly changes the position of its local ex-
trema, the above formula forbc remains valid.

We can easily generalize this idea for the case in which
local mesh refinement is required for more than one region.
For example, consider a refinement in regions centered
around ac,1 and ac,2 . Define R(b)5Rmin for b
P @bc,12d,bc,11d# and b P @bc,22d,bc,21d#, and
R(b)5Rmax otherwise. Then, the explicit formulae forbc,1

andbc,2 are

bc,15d1~ac,12dRmin!/Rmax,

bc,253d1~ac,223dRmin!/Rmax.

In our simulations, we usedd50.05, Rmin50.06, and
tD50.005. After the diffusion process, the minimum value
of R is about 0.1 in a small neighborhood of thebc . This
gives approximately 8 more points near the local singular
region. To find theac , we ran the uniform parametrization
calculation and determined where the local maxima of the
curvature, or the minima of the pinching distance, occur.
Finally, onceR is constructed as above, the grid mapping
a j5a(b j ), whereb j5 jh is found using a spectral approxi-
mation of the integral in~A2!. Spectral interpolation is also
used to obtain the values of the interface quantities on the
new grid$a j% j51

N .

APPENDIX B: TIME-INTEGRATION METHODS

The time-integration scheme we used in this paper, for
the We5200 simulation, is a fourth-order multi-step
implicit/explicit scheme studied in Ref. 35 by Ascher, Ruuth,
and Wetton. Consider a time-dependent PDE in which the
spatial derivatives have been discretized by either central dif-
ferences or by spectral or pseudo-spectral methods. This
gives rise to a large system of ODEs in time which typically
has the form

du

dt
5 f ~u!1ng~u!, ~B1!

whereg is a linear operator containing high-order derivatives
and f (u) is a nonlinear function which we do not want to
integrate implicitly in time. To avoid using excessively small
time steps, we would like to treat theng(u) term implicitly
while treating the nonlinear termf (u) explicitly. Typically,
f (u) involves only first-order derivatives from convective
terms, so the stiffness induced from the nonlinear term is not
as severe as that from the linear operatorg(u).

A straightforward implicit/explicit time integration
scheme is to use the second-order Adams–Bashforth scheme
for the explicit term and the Crank–Nicholson scheme for
the implicit term. This gives

un112un

Dt
5
3

2
f ~un!2

1

2
f ~un21!1

n

2
@g~un11!1g~un!#,

~B2!

whereDt is the time step size andun is the numerical ap-
proximation tou(nDt). In general, one can construct a fam-
ily of high-order implicit/explicit schemes based Taylor ex-
pansions. However, they do not all share the same stability
properties.

The fourth-order implicit/explicit scheme considered by
Ascher, Ruuth, and Wetton seems to be quite stable. The
scheme is given as follows:

1

Dt S 2512un1124un13un212
4

3
un221

1

4
un23D ~B3!

54 f ~un!26 f ~un21!14 f ~un22!2 f ~un23!

1ng~un11!. ~B4!

For example, iff (u)5aux , g(u)5uxx , and a spectral dis-
cretization is used in space, then a von-Neumann stability
analysis shows that the scheme is stable forDt<0.52h/a.35

We now apply this fourth-order implicit/explicit scheme
to our problem,

u t5
1

2sa
S 1sa

H~g! D
a

1P, ~B5!

g t52SS ua

sa
D

a

1Q, ~B6!

whereP andQ are the nonlinear terms. We obtain the fol-
lowing system:

1

Dt S 2512un1124un13un212
4

3
un221

1

4
un23D

5
1

2sa
n11 S 1

sa
n11H~gn11! D

a

14Pn26Pn21

14Pn222Pn23

and
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1

Dt S 2512gn1124gn13gn212
4

3
gn221

1

4
gn23D

5SS ua
n11

sa
n11 D

a

14Qn26Qn2114Qn222Qn23.

By substitutinggn11 into the equation forun11, we can
eliminategn11 and obtain a single equation forun11, which
takes the form

sa
n11un112

S

2 S 1225D
2

Dt2S 1

sa
n11HFua

n11

sa
n11G

a
D

a

5N~a!,

~B7!

whereN is a known quantity depending on the solutions at
the previous time steps. The spatial derivative is discretized
by a spectral method. In the case of uniform parametrization
formulation,sa is independent ofa. In this case, the opera-
tor in the left hand side of~B7! is a linear constant coefficient
operator which is diagonalized by the Fourier transform.
Therefore, in the uniform case, we solve forun11 explicitly
using the Fast Fourier transform~FFT!. However, when the
variable parametrization frame is used,sa

n11 depends ona
and so the equation is no longer diagonalized by the Fourier
transform. Consequently, in the variable case, we use an it-
erative method to solve forun11. Note that the linear opera-
tor in the left hand side of~B7! is symmetric, positive defi-
nite. Thus, we use the preconditioned conjugate gradient
method to solve forun11. The preconditioning operatorM is
given by

M ~un11!5smaxu
n112

S

2smin
2 S 1225D

2

Dt2~H@ua
n11#a!a ,

~B8!

wheresmin5 minasa
n11 andsmax5 maxasa

n11 . Thus,M is a
constant coefficient and is diagonalized by the Fourier trans-
form:

M ~u!ˆ ~k!5S smax1
S

2smin
2 S 1225D

2

Dt2uku3D û~k!. ~B9!

So, invertingM only requiresN log(N) operations using the
FFT. We also use the solutions from the previous four time
steps to extrapolate a fourth-order initial guess forun11.
Typically it takes a few iterations to converge with an itera-
tive error of 1310211 until very close to the singularity time.

APPENDIX C: THE CONSEQUENCES OF INTERFACE
COLLISION

We show that the collision~or self-intersection! of ma-
terial surfaces, such as vortex sheets, corresponds to a true
fluid dynamic singularity. In particular, ifV(t) is any mate-
rial volume ~or area! strictly betweenthe colliding material
surfaces, then

E
0

t

i“u~•,t8!iL`~V~ t8!!dt8→`, as t→tc , ~C1!

wheretc is the time that the collision occurs. Thus, the strain
rates diverge in a pointwise sense and must do so at least as
rapidly as 1/(tc2t). As will be shown in section IV, the

singularity we observe is accompanied by the blow-up of the
fluid velocity itself which assures~C1! is satisfied. The proof
of Eq. ~C1! is straightforward and we sketch it briefly here.
Let j be a smooth scalar field onV(0) taking the value 1 on
one of the colliding surfaces and 0 on the other. Letj be
advected by the fluid velocityu. Then, it can be shown that

i“j~•,t !iL2~V~ t !!<i“j~•,0!iL2~V~0!!

3expF E
0

t

i“u~•,t8!iL`~V~ t8!!dt8G .
~C2!

Using the mean value theorem for integrals and incompress-
ibility, one obtains

u“j~x0 ,t !u<i“j~•,0!iL`~V~0!!

3expF E
0

t

i“u~•,t8!iL`~V~ t8!!dt8G , ~C3!

for somex0 P V(t). Since this is true for any material do-
mainV(t) and sinceu“ju→` at the collision point,V can
be taken sufficiently localized about the collision point so
that u“j(x0 ,t)u becomes arbitrarily large ast→tc , the col-
lision time.
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