The long-time motion of vortex sheets with surface tension
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We study numerically the simplest model of two incompressible, immiscible fluids shearing past
one another. The fluids are two-dimensional, inviscid, irrotational, density matched, and separated
by a sharp interface under a surface tension. The nonlinear growth and evolution of this interface is
governed by only the competing effects of the Kelvin—Helmholtz instability and the dispersion due
to surface tension. We have developed new and highly accurate numerical methods designed to treat
the difficulties associated with the presence of surface tension. This allows us to accurately simulate
the evolution of the interface over much longer times than has been done previously. A surprisingly
rich variety of behavior is found. For small Weber numbers, where there are no unstable
length-scales, the flow is dispersively dominated and oscillatory behavior is observed. For
intermediate Weber numbers, where there are only a few unstable length-scales, the interface forms
elongating and interpenetrating fingers of fluid. At larger Weber numbers, where there are many
unstable scales, the interface rolls-up into a “Kelvin-Helmholtz” spiral with its late evolution
terminated by the collision of the interface with itself, forming at that instant bubbles of fluid at the
core of the spiral. Using locally refined grids, this singular eanttopological” or “pinching”
singularity) is studied carefully. Our computations suggest at least a partial conformance to a local
self-similar scaling. For fixed initial data, the pinching singularity times decrease as the surface
tension is reduced, apparently towards the singularity time associated with the zero surface tension
problem, as studied by Moore and others. Simulations from more complicated, multi-modal initial
data show the evolution as a combination of these fingers, spirals, and pinch&997CAmerican
Institute of Physicg.S1070-663197)02407-0

I. INTRODUCTION In effect, We measures the strength of the K—H instability
relative to the dispersive stabilization associated with surface
The Kelvin—HelmholtZK—H) instability is a fundamen-  tension. For smalWe, where there are no initially unstable
tal instability of incompressible fluid flow at high Reynolds |ongth scalegdispersively dominated the interface simply
number, arising generally from the shearing of one fluidyggijliates in time, over tens of periods, with no apparent
mass past another. If the two fluids are immiscible, then the)éievelopment of the new structure. For intermedisie,

are naturally separated by an sharp interface across whifj,qre there are now a few initially unstable length-scales,

_thebrel ISa su;f?r::e ttensfllo r.‘d 'I:hetsurfalce t(Tnsmnhan_ses ffrom ﬂfﬁe interface forms elongating fingers that interpenetrate each
imbajance of the two flulds: Intermolecuiar CONEsSIVE T0TCES.g iy intq the other. This is illustrated in the right box of Fig.

and exists even if the two fluids are density and viscosity4 At We ten times larger, where there are many more ini-

matche_d. l_)ynammally, su_rface tension acts as a dISperSIV’ueally unstable length-scale&—H dominateg, the interface
regularization of the K—H instability.

In this paper, we consider the simplest case. The tW(golls up into a “Kelvin-Helmholtz spiral.” However, further
shearing fluids a,re two-dimensional, inviscid, irrotational,m"'UIO is terminated by the collision of the interface with

density matched, and separated by a sharp interface. Thiitasfalf’ forming trapped bubbles of fluid at the core of the
interface can then be described agatex sheetThat is, a

spiral. The development of this event is shown in Fig. 11.

surface across which there is a discontinuity in tangentiabimulations from more general initial data show the evolu-
velocity! The nonlinear growth and evolution of this inter- 10N as a combination of these fingers, spirals, and pinches.
face is governed by only the competing effects of the K—H The collision of material surfaces, such as the self-
instability and the dispersion due to surface tension. Usingntersection of an interface, constitutes a singularity in the
new numerical methods, developed partly in Hou, Lowen-evolution, implying at least the divergence of velocity gradi-
grub, and ShelleyHLS94),2 we have been able to compute ents(an argument for this is given in Appendix.GHere, the
accurately the nonlinear evolution of this system over muctgollision is linked intimately to the creation of intense local-
larger times than previously possible. We find a surprisinglyized jets produced by the surface tension. Our numerical re-
rich variety of behavior within this relatively simple frame- sults suggest that both the true vortex sheet strefi
work. Using fixed initial data close to equilibrium, the ensu-jump in tangential velocity across the sheeaind the interfa-
ing evolution is studied as the Weber numbee is varied.  cial curvature diverge at the collision time, with the interface
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apparently forming corners. Physically, this collision maytimes. Numerical computations performed by Meiron, Baker,
signal an imminent change in the topology of the flow and saand Orszad® Krasny?® and particularly Shelle$® suggest
this event is referred to astapological or pinchingsingu-  that the generic singularity structure is given by the analysis
larity. Of course, such events are commonly observed, with af Moore. In the absence of surface tension, Moore’s analy-
standard example being the pinching and fissioning of threesis was extended to the Boussinesq problem by Puagid to
dimensional liquid jets. However, taking an axially symmet-the full Rayleigh—Taylor problem by Baker, Caflisch, and
ric, inviscid jet as a prototype, the pinching occurs throughSiegef? (also see Ref. 23
the nonlinear development of the classical Rayleigh  We do not observe the Moore singularity in the presence
instability? itself driven strongly by the azimuthal compo- of surface tension, though at larg¢ée its shadow is seen by
nent of the surface tension contribution. This component ishe rapid production of dispersive waves. While a topologi-
completely absent in a two-dimensional flow, making thecal singularity is observed at late times, it is of a fundamen-
appearance of such pinching singularities more surprising. tally different type than the Moore singularity. Rather than
Because of its technological and scientific importancepccurring through the rapidompressiorof circulation as in
understanding the motion of interfaces that bound masses tiie Moore singularity, the topological singularity is associ-
fluid undergoing fission has become an area of intense reated with the rapigproductionof new, localized circulation.
search activity. A small sampling of recent studies includes  Siegef* has recently extended Moore’s analysis to the
work in Stokes flowd;® lubrication models of thin-film and nonzero surface tension caée., We<). Using a special
Hele—Shaw flow§;® Hele—Shaw flowg%8! and shallow initial condition, Siegel constructs travelling wave solutions
water approximations and experiments of axially symmetrido a reduced system of equations. Siegel’s analysis predicts
jets1271% Of particular relevance here, Keller and MikSis the formation of finite time singularities whenever there is at
have given an asymptotic analysis of the immediate afterleast one linearly unstable Fourier mode. The predicted
math of a topological transition occurring when a taperedstructure of the singularity, however, is quite different from
infinite layer of inviscid, incompressible fluidurrounded by that observed in our numerical simulations. This is further
air) breaks into two semi-infinite, finite-angled fluid wedges. discussed in the Conclusion.
Supposing that the layer breaks at titse0, Keller and Mik- Because an analysis of the full vortex sheet equations in
sis use a similarity analysis to find the resulting flow velocitythe presence of surface tension is so difficult, most of the
and gap width fot>0. They find that the flow velocity is previous studies of surface tension effects have been numeri-
initially infinite and decays in time liketp/7) " *3wherep is  cal. Still, it has been problematic to pose stable numerical
the density of the fluid. The gap width grows like methods, even in the semi-discrete case where time is not
(t\/Tp)z’g. Their work does not apply directly to our ob- discretized. Many numerical methods treat the small scales
served pinching singularity since in our case fluid is on bothincorrectly, either through the introduction of aliasing errors
sides of the self-intersecting interface. This introduces a furer by artificial smoothing. This can lead to numerical insta-
ther, nontrivial nonlocality to the problem. Moreover, rather bilities that are related to the K—H instabilify-?’ Examples
than exiting a topological transition, our system is approachef this are seen in the computations of Zaf§sind Pullin?®
ing one. Nevertheless, our equations can be recast in selfr independent works, Baker and NacHBiand Beale, Hou,
similar variables using these temporal exponents and as wiind Lowengruf?” identified the source of numerical insta-
be described in Sec. IV, our numerical results suggest at leabtlity in these surface tension computations and gave alter-
partial agreement with the temporal exponents of Keller andhative, stable numerical methods.
Miksis. Additional difficulties occur when fully discrete methods
The behavior of vortex sheets in the absence of surfacare considered. Surface tension introduces high-order spatial
tension is much different. In this cas@d/e=« and the un- terms through the interface curvature appearing in the
regularized K—H instability produces infinitely many un- Laplace—Young boundary condition. These terms appear
stable scales. It is now well known that the interface develnonlocally in the equations of motion due to the incompress-
ops isolated singularities that are not associated with anipility constraint, and are nonlinear functionals of the sheet
large-scale structure of the sheet such as roll-up. In aposition due to their origin in the curvature. These terms
asymptotic analysis valid for initial data close to equilibrium, create dispersion in the dynamics and are dominant at small
Moore'® gave the first analytical evidence for this singular-length-scales. For explicit time-stepping methods, this intro-
ity. Moore’s analysis suggests that at the titret,,, the  duces high-order time-step stability constraints that depend
interface profile, while still being nearly flat, acquires iso- on the spatial resolution. We refer to such constraints as
lated square-root singularities in its curvature. Moreover, thé'stiffness.” These constraints can be made more severe by
true vortex sheet strength remains finitetatt,,, but does the differential clustering of grid points along the interface.
develop a cusp that is associated with a rapid compression &or example, if the “Lagrangian” formulation and explicit
circulation in the neighborhood of the singularity. The time stepping were use@s in Refs. 29,30,25,260 calcu-
We=o singularity is hereafter referred to as thwore sin-  late the interface evolution shown in Fig. 11, then the stabil-
gularity. ity bound on the time step, for a fixed spatial resolution,
Caflisch and Orellartd later reinterpreted Moore’s would decrease by a factor of A@ver the course of the
analysis and presented a class of “exact” solutions to thesimulation.
full nonlinear equations. The Caflisch and Orellana solutions,  Rangel and Sirignarid attempt to circumvent these dif-
of which Moore’s is one case, develop singularities at finiteficulties by using a redistribution algorithm that reparam-
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n is assumed to be constant on each sidé'oHere, the ve-
Fluid 2 locity on either side of" is evolved by the incompressible
Euler equations,

1
X(o,t) ujt+(uj-V)uj=—;V(pj+pjgy), V.u;=0, 1)
J
. where the subscrigt denotes the upper or lower fluid. There
Fluid 1 are the boundary conditions,
FIG. 1. A schematic of the fluid interface problem. (i) [u]r-n=0, the kinematic boundary condition,  (2)
(i) [plr=7«, the Laplace —Young boundary condition,
etrizes the interface uniformly in arclength after each time ®
step. This keeps points from clustering, but as a result ofiii) u;(x,y)—(*V.,0) asy—*x,
repeated interpolations, it has also a strong smoothing effect the far - field boundary condition, @

on the sheet. This yields results that disagree on several
points with other work. For example, Rangel and SirignandaHere,[ - |- denotes the jump taken from above to belbw
are able to compute the roll-up of a vortex sheathout  The tangential component of fluid velocity is typically dis-
surface tension, with an accompanying divergence of the trueontinuous af’. Such an interface is called\artex sheet
vortex sheet strength. This is in direct contradiction to the(see Ref. 1 The velocity at a poinX away from the inter-
results of Mooré?® and its associated, very accurate numeri-face has the integral representation
i Ad8-20
cal studies" ' o 1 (X=X(a'))!
The numerical results presented in this paper rely on  y(X)=-—| y(a') ———~>da’ (5)
. . . . 2 Yl |X_X ! |2 a,
numerical methods, designed for handling surface tension, ™ (a’)

that were developed in part in HLS94. In HLS94, we pre-where X' =(—vy,x). v is called the(unnormalizedl vortex

sented a different formulation for computing the motion of sheet strength. It gives the velocity difference acidsy

fluid interfaces with surface tension in two-dimensional, ir-

rotational and incompressible fluids. This formulation has all = _ v(a) _
X . o ) 04

the nice properties for time integration methods that are as- Sq

sociated with having a linear highest-order term. The result:

; . o where sazx/x2+ 2 is the arclength metric. The velocit
ing numerical methods do not have the severe stability con- o« Ya g y

straints usually associated with surface tension. OUI’ump; Is called the true vortex sheet strength. This repre-

approach was based on a boundary integral formuBtion sentation is well known; see Ref. 31. We will consider flows

and was applied in HLS94 to Euler and Hele—Shaw flowsmat are 1-periodic in the<-d|rect|on._The average value,

Our approach applies more generally, though, even to prob¥: Of ¥ Over a period ina satisfies— y/2=V.,.
lems beyond the fluid mechanical context. In the study of the ~ While there is a discontinuity in the tangential compo-
topological singularity presented in this paper, we addition"€nt of the velocity af’, the normal component)(a), is
ally incorporate local grid refinement and use a 4th-ordeffontinuous and is given by E¢) as
time-stepping method to achieve increased spatial and tem- U(a)=W(a)-ﬁ )
poral accuracy.

The organization of the paper is as follows. In Section 1I,where
a boundary integral formulation is given for the motion of 1 (X(a)=X(a'))*
fluid interfaces under surface tension in two-dimensional Eu- W(a)= —P.V.f y(a’)mda’, ©)]

[ullr-s, (6)

ler flows. In Section lll, the numerical methods are briefly 2m

outlined. Many further details of implementation are foundandP.V. denotes the principal value integral. This integral is
in HLS94. Extensions to the work in HL89— a high-order called the Birkhoff—Rott integral.

time-integration method and an implementation of local grid  Using the representatiob) of the velocity, Euler's
refinement — are found in Appendices A and B. The resultequation at the interface, and the Laplace—Young condition,
of numerical simulations are presented in Section IV. Conthe equations of motion for the interface are

cluding remarks are given in Section V.

X =Un+Ts, (9)
Il. THE EQUATIONS OF MOTION Y= 3. ((T=W-9)y/s,)
Consider two inviscid, incompressible, and irrotational =—2Ap(saWt-§+%&a(y/sa)z—(T—W~%)Wa-élsa)
fluids separated by the parametrized planar interfagéven —Frly +We lk, . (10

by X(a)=(x(a),y(a)), as shown schematically in Fig. 1.
The lower fluid is denoted 1, and the upper fluid is denotedHere, the equations have been nondimensionalized on a pe-
2.n ands are respectively the unit normal and tangent vec-iodicity length\ (so that the nondimensional period length
tors toI", while « is its curvature. For simplicity, the density is 1) and the velocity scale, and
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Ap _ that together form a single invariant. The conseryeertur-
Ap=2—— is the Atwood ratio, (1) bation energyE(t) is the sum of the perturbation kinetic and
p the perturbation interfacial energies given by
2\2 -
Fr= —gp i is the Froude number, (12 EO=E(O)+E(), (16
g(Ap)A
where
and
E (H)=We }(L-1)
2.2
We= PN is the Weber number (13) is the perturbation interfacial energy, (17)
_ 1t
whereAp=p,;—p,, and p=(p;+p,)/2. The Froude num- Ex(t)= zfo P(a' ) y(a' t)da’
ber measures the relative importance of inertial fonghe
K—H instability) to gravitational forces(the Rayleigh— is the perturbation kinetic energy. (18

Taylor instability), while the Weber number measures the ) ) . .
relative importance of inertial forces to surface tension forcediereL is the length off” over a single period, and is the
(dispersion. T is an(as yel arbitrary tangential velocity that Stréam function

specifies the motion of the parametrization Iof The so- 1 (1

called Lagrangian formulationcorresponds to choosing the la,t)=— z—f y(a',t)log|sin 7m(z(a,t)

tangential velocity of a point on the interface to be the arith- mJo

metic average of the tangential components of the fluid ve- —z(a',1))[da’, (19
locity on either side. That is, choosing=W-s, in which

case Eq(10) simplifies considerably. wherez(a,t)=x(a,t) +iy(a,t). The formula foryg can be

Equation(10) is a Fredholm integral of the second kind fewritten, by explicitly subtracting off the logarithmic singu-
for v, due to the presence af in W,. This equation has a larity and integrating by parts, to yield an expression that can
unique solution, and is contracti?é The mean ofy is pre- Pe computed numerically with spectral accuracy. See
served by Eq.(10) and must be chosen initially to be Pullin®and Baker and Nachbinfor details.

—2V,,, to guarantee that the far-field conditiGi) is satis-

fied. Further, whiley is evolved as an independent variable,

it cannot be interpreted independently of the parametrizations. The linear behavior

From Eq.(6), it is the ratio y=y/s, that has a physical
interpretation, and, is determined by the choice af.

In this work, we study the simpler case when the two

Consider first the linearized motion about the flat equi-
librium, with x(a,t)=a+ eé(a,t), y(a,t)=en(a,t), and

fluids are density matched thatA§=0=Fr‘1. The prob- Na =1+ eo(al), vyith € < 1. For definiteness, the La-
lem is then completely characterized by the Weber numbegrangian framer =W-s is taken. The linearized system re-
and the Lagrangian formulation of the equations of motiondUces to a single equation for the vertical amplitugle

becomes simply ! Wele .
Xi( e, t)=W(a,t), (14) M=~ g Maet 5 H [Maaal (20
y(a,)=We lx,,. (15 H is the Hilbert transforni? and is diagonalizable by the

_ o _ Fourier transform asH[f]=—i sgn(2rk)f. The growth
The Lagrangian formulation is characterized by an eleganfae for perturbations about the flat equilibrium is given by
compactness of statement. However, as we demonstrate in

Section Ill, it is not a good formulation for simulation due to
a differential clustering of computational points that leads to

severe time-step constraints in the presence of surface ten- _ _ _ _ _.
sion. The dispersion relation gives instability for wavenumbers

0<|k|<wWe4m, and dispersion for wavenumbers
|k|>We/4mr. The wavenumber of maximum growth is
There are several invariants of the motion — the meaﬂk|=We/67T. The surface tension dispersively controls the
andy-moment ofy, the means ok andy, and the energy. Kelvin—Helmholtz instability at large wavenumbers.
Of these invariants only the energy, through the interfacial A more general linear analysis has been given by Beale,
energy, contains an explicit contribution from the presencéiou and LowengruB® By linearizing around the time-
of surface tension. Further, of these invariants, the energy idependent vortex shedt=(x(a,t),y(a,t)) with strength
the best indicator of accuracy. It is not conserved explicitlyy(«a,t), Bealeet al. find the dominantbehavior for, now
by our numerical methods, and is a nontrivial constant of théhe normal component of the perturbation, to be
motion. 2 4
Neither the_tota! in_te_rfacial energy, nor the ki_n_etic en- M= — 7_4 Naat —=3H [ Tawel- (22)
ergy over a period, is finite. However, both have finite parts 4s, 2s,

—1

2

1
o2=(2m)? Zk2—27r k|2 ]. (21)

A. The energy
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Log10 Plot of Minimum Lagrangian Spacing for this initial data'® Such strongly time-dependent time-step
‘ ' ' ' constraints have severely limited previous numerical investi-
gations.

The primary challenge to computing the long time evo-
lution of interfacial flows with surface tension lies in the
construction of time integration methods with good stability
properties. It is difficult to straightforwardly construct effi-
cient implicit time integration methods as the source of the
stiffness — thex, in the y-equation — involves both a
nonlinear combination of high derivatives of the interface
position and contributes nonlocally to the motion through the
v in the Birkhoff—Rott integral. Our approach, first given in
HLS94, involves reformulating the equations of motion ac-
cording to the following three stepé?A) #—s, formulation;

" . ‘ ‘ . (B) small scale analysis(C) special choices of reference

0 0.5 1 15 2 2.5 . .
Time frames(tangential velocities

2.5

log10 min s_p
%)
T

@
3
T

We=142.86

) — (A) 6—s, formulation
FIG. 2. The evolution of logy(s,) for several Weber numbers.

Rather than using,y as the dynamical variables, repose
the evolution in variables that are more naturally related to
The perturbation iny has been eliminated, to leading order, curvature. Motivated by the identit§,= «, whered the tan-
by using two time derivatives on. The same competition of gent angle to the curvE, the evolution is formulated with
effects is observed in this more general variable coefficieny and s, as the independent dynamical variablésee

setting. Whithan™ for an early application The equations of mo-
tion are then given by

Il. THE SMALL-SCALE DECOMPOSITION AND o

NUMERICAL METHODS Sa=Ta™ bl @49
The primary impediment to performing long time com- 0 =£U i 10 (25)

putations of vortex sheets with surface tension is the severe ' S, * S, *

time-dependent stability restriction — stiffness — imposed . .

by the surface tension through tle term appearing in Eq. N=We 704(0,/5,) + 3 ((T-W-95)y/s,). (26)

(15). This is seen easily by a “frozen coefficient” analysis of Given s, and 6, the position k(a,t),y(a.t)) is recon-

Eg. (22). This reveals that the least restrictive time- gu,cted up to a translation by direct integration of
dependent stability constraint on a stabblicit time inte-

gration method is (Xg,Ya) =Sal COLO(a 1)), SIN(O(a,t))), (27)
At<CWe*2 (s _h)¥2 wheres,=mins,, (23)  which defines the tangent angle. The integration constant is
@ supplied by evolving the position at one poiX(t).

whereh=1/N is the grid spacing, wittN the number of
points describingl’. Since arclength spacind\s, satisfies
As=~s_h, Eq. (23) implies that the stability constraint is in
fact determined by theninimumspacing inarclength be-
tween adjacent points on the grid. This can be strongly time  Reformulate the equations by explicitly separating the
dependent. For example, our experience is that motion in thdominant terms at small spatial scales. The behavior of the
Lagrangian framgEqgs.(14) and(15)] leads to “point clus- equations at small scales is important because stability con-
tering” and hence to very stiff systems, even for flows in straints(i.e., stiffnes$ arise from the influence of high-order
which the interface is smooth and tki¢e is large. For sev- termsat small spatial scalesin HLS94 we show that at
eral “typical” simulations (differing Weber numbejsdis- small scales the Birkhoff-Rott operator simplifies enor-
cussed in the next section, Fig. 2 shows the evolution ofmously. A useful notationf~g, is introduced to mean that
's,, associated with the Lagrangian formulation, on a basethe difference betweehandg is smoother thari andg. In

ten logarithmic scale. This figure was not generated by comtiLS94 we show that

puting in the Lagrangian frame, but rather by using the meth- 1

ods described below, and evolving a mapping to the U(a,t)~ gH[y](a,t). (28
Lagrangian frame. Over the times shows, decreases in “

value by a factor of 1bor more. Consequently, the time-step That is, at small spatial scales, the norrfgilysica) velocity
constraint(23) decreases by at least a factor of 16ven for  is essentially the Hilbert transform with a variable coeffi-
a fixed spatial grid sizh. The steep drop at slightly less than cient. Now, Eq.(28) allows a rewriting of the equations of
t=0.5 is the result of the compression associated with thenotion in a way that separates the dominant terms at small
shadow of the Moore singularity, which occurstgt=0.37  scales(these terms determine the stability constraints

(B) Small-scale analysis
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1 sary are identified beforehand by examination of simulations
=55 ( S HIlv]

+P, (29 using the uniform parametrization. Our specific choicdRof

@ is given in Appendix A; an additional class of reference

N frames is also given in Appendix 2 of HLS94.
%ZWel(s— +Q. (30) Although the possibility of using nontriviaR was dis-

“la cussed in HLS94, only the trivial choid®@=1 was imple-

Here,P andQ represent “lower-order” terms at small spa- mented. For a nontriviaR, the leading-order terms in the

tial scales. This is themall-scale decompositidi$SD. As- PDEs for6d andy are still linear, but are variable coefficients

suming thats, is given, the dominant small-scale terms arein space. After an implicit treatment of these terms in Egs.

linear in & andy, but also nonlocal and variable coefficient. (29) and (30), the resulting time-discrete equations may be

At this point, it is possible to apply standard implicit time solved as follows

integration techniques where the leading-order “linear” (i) The ODE (32) for L can be solved by an explicit
terms are discretized implicitly. However, we have not yetmethod, and so its value is available at the new time-step.
taken any advantage in choosing the tangential veldEity (i) An implicit treatment of the leading-order terms in

There are choices df that are especially convenient in con- the PDEs(29) and (30) leads to a linear integro-differential
structing efficient time integration methods and in maintain-equation foré at the next time-step, having the form
ing the accuracy of the simulations.

1 a
(C) Special choices for T R(Of)e(a)—c(mH[EL)aZA(a),
Choose the tangential velocilyto preserve dynamically

a specific parametrization, up to a time-dependent scaling. In . .
particular, require that whereC, R(«), andA(«a) are known, in part by virtue of

(i). The linear operator oA is symmetric and positive defi-
nite, and the equation is solved efficiently férthrough it-
eration using a preconditioned conjugate gradient method.
Using pseudo-spectral collocation to evaluate the linear op-
erator, this iteration costs onl®(NInN) per step, and typi-
cally converges in a few steps. An implicit discretization of
1 the full equations of motion would typically involve the
L=~ Jo 6, Uda'. (32 much more expensive evaluation of the Birkhoff—Rott inte-
gral [O(N?) using direct summatidnwithin an iteration
If the constraint(31) is satisfied at=0, then it is also satis- scheme. Details on the implementation are found in Appen-

Sy(a,t)=R(a)L(t), Withle(a)daZL (31
0

where R(«) is a given smooth and positive function. The
lengthL(t) evolves by the ODE

fied dynamically in time by choosing as dix B.
o The extra difficulty in solving for the updated solution
T(a,t)ZT(O,t)-i‘f 6, Uda’ by iteration motivates us to use the variable parametrization
0

frame only when it is crucial to obtain extra accuracy locally,
@ 1 such as is the case at late times in the regions wttepm-
—f R(a')da“f 0, Uda’, (33)  logical) singularities occur.
0 0 The use of the uniform or variable parametrization
where the integration constaf{0,) is typically set to zero. frames alone, without th&—s, reformulation and an im-
We use different choices f&, and so fofT. That which  plicit treatment of the equations of motion, does in fact pre-
is computationally most convenientis=1, yielding whatis vent s, from becoming small as, now scales with the
referred to as the uniform parametrization frame since a unieverall length of I'. This removes the strong time-
form discretization in « is then uniform in's, i.e. dependency in time-step restrictiof23). However, the
s(a,t)=al(t). In this case, the leading-order terms of 3/2-order constraint relating the time-step to the spatial grid
small-scale decomposition, EqR9) and (30), are constant size still remains. By using thé—s, reformulation and the
coefficients in space, and implicit treatments in time of thesémplicit treatment of the leading-order terms, this higher-
terms are directly inverted by the Fourier transfdisee Ref.  order constraint is removed as well, typically leaving only a
2). first-order Courant—Friedrichs—Lew{CFL) type constraint
Since the uniform parametrization frame keeps compufrom advection terms, appearing in both theand y equa-
tational points equally spaced in arclength everywhere alongons, that are hidden i andQ.
the curve, this frame can be deficient in capturing structures In the uniform parametrization frame, we use either the
such as the blow-up in curvature that apparently occurs ir2nd-order accurate Crank—Nicholson time discretization
the topological singularity. From E@31), if R<1 in such a given in HLS94 or the 4th-order accurate implicit, multi-step
region, then there is a greater relative concentration of grignethod due to Ascher, Ruuth, and WettdriThe 4th-order
points there. Accordingly, a nontrivial mappifyis used to  method is discussed in Appendix B. In the variable param-
cluster computational points in regions of the curve whereetrization frame, only the 4th-order time integration method
local refinement is needed, yielding thariable parametri-  is used. It is found in practice that a first-order CFL time step
zation frame The regions where local refinement is neces-constraint(as described aboyenust be satisfied.
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Spectrally accurate spatial discretizations are used in We=10, 1=0-100 We=12.5, t=0-100
both the uniform and variable parametrization frames. Any ' ' ' '

differentiation, partial integration, or Hilbert transform is o¢—————— oF———

found at the mesh points by using the discrete Fourier trans. | = = =]
form. A spectrally-accurate, alternate-point discretizafigh ~ ————————— e
is used to compute the velocity of the interface from &8). - T~
As noted in HLS94, time-stepping methods for vortex sheets [ | = "
suffer from aliasing instabilities since they are not naturally -———————] A T T
damping at the highest modes. The instability is controlled —  —— | e e
by using Fourier filtering to damp the highest modes; this [ — 1 W ]
determines the overall accuracy of the method, and gives ¢ T
formal accuracy ofO(h'®). An infinite-order filter could I T
have been used, but we did not do so. A ] AT T T T

Again, these methods are discussed further in the Ap- }—uo —n — —
pendices and especially in HLS94. Hou and Cenicgros
have recently proved convergence of a SSD based formula . . . .
tion for vortex sheet evolution. In their work, the system is . 0 1 2 . 0 1 2
discretized in space, and continuous in time. Their analysis @ ®
includes the effects of Fourier filtering, and indeed shows |t§:IG. 3. The long-time evolution from initial dat@4), with We— 10 (ieft)

sufficiency in achieving a good stability bound. and 12.5(right). Three spatial periods are shown every 5 time units.

IV. NUMERICAL RESULTS

In the bulk of this section, we study the effect of varying bers are neutrally stable and dispersive, and the period of
the Weber number upon the evolution of the sheet from ascillation for thek=1 mode isw~3.95. To the final time
single, fixed, near equilibrium initial condition. In particular, shown(25 periodg, the motion is very well described by the
we consider the initial data, linear behavior. Indeed, oscillatory behavior seems domi-

_ . _ . nant, even very close to the stability threshold, as the

X(@,0)=a+0.0Lsin2re, y(a,0)=-001sin2ra, We=12.5 results indicate. The impression of standing wave
v(a,0)=1.0, (39 behavior was reinforced by examination of the maximum
amplitude and interfacial energy for these two cases, which
we do not show here.

We had hoped to see some repartition of energy from the
r|1(:1 mode to smaller scales over large times. However, for
: ; A o We=10.0 only a very slow increase is observed, if any, of
of Moore’s analysis to this initial data. Faie<ce, this is the width of the active spatial spectrum. Initially, 8—9 modes

not a pure eigenfunctiofas it is forWe=), but is rather a . . )
combination of eigenfunctions, both stable and unstable fog e required to resolve the dat‘?‘ to Fo_uner amphtudes of or-

_ , , : " “der 10 2. By t=1000 (250 period} this had increased by
the linearized evolution. The true vortex sheet strengthis

o ) : : . only 2 modes.
not initially constant, but instead has a single maximum in

_ a ) " _ These calculations us&=64 points and time-step
the period atw=1/2. Finally, initial data(34) is for the La-  Ay— 1073, Increasing the spatial resolution gives no change
grangian formulation, and is recast into the uniform param

2 S X in the results. The total enerdyis conserved over this time,
etrization to set initial data for our numerical method. in both cases, to a relative error of 10 For We=10, the

At the end of this section more general initial data isme_stepping errors were checked directly by halving the
considered. This includes multi-modal initial data, and datatime-step and again running te=1000. The error in total

with random amplitudes and phases. Moreover, of the SimMUaerqy decreased by a factor of four, consistent with the
lations presented in this section, only &=

_ / 200 case Uses  yank_Nicholson integration being of second-order accu-
the fourth-order accurate time-stepping scheme and the Valacy. The pointwise error i was estimated by assuming

able parametrization frame. All oth& e simulations utilize that time-stepping error is dominant, and of second-order.

the second-order Crank-Nicholson time-stepping SChémgpen the maximum, relative time-stepping error is approxi-
given in HLS94 and the uniform parametrization frame. | oiaq by

A. Small We

4
The small amplitude, small Weber number behavior is EAt:§ max Ox¢(aj,t) = Oayal @ O[] Ol @y D]

quite predictable by linear theory, even over long times. As “

seen from Eq(21), there are no unstable linear modes for This error increases slowly but steadily in timetat0.1 the
We<47~12.56. ForWe=10 and 12.5, the upper boxes of error is approximately X 10”4 while att=1000 the error is

Fig. 3 show the computed interface positions over 3 periodsipproximately 2 10 3. The pointwise error iny and the
every 5 time units, fromt=0 up tot=100. Time increases error inL are about of the same magnitude. These results
moving down the figure. FONe= 10, all allowed wavenum- suggest that the energy is much less sensitive than the point-

used by Krasn¥’ to study numerically the Moore singularity
(We=2). He found that a curvature singularity forms at
a=1/2 (x=1/2) atty,~0.37. The singularity time and struc-
ture were in approximate agreement with Krasny’s extensio
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We=16.67, t=0-80 We=20.0, =0-80 Min Distance, We=20.0; (b)
. . Close-up, We=20.0, T=80; (a) 0.14

0| t=0 _— 0 10
=0 M 0.12
9 0.1
S =20 N N
0.08
8
-10) -19) 0.06
=30 7 0.04
-15) -15 ] 0.02
% 7 -6 -5 4 3 0
200 t=40 20 0 20 40 60 80
Time
-2 25 FIG. 5. A close-up of the finger tifleft box). The X denotes the point of
maximum sheet strength. The right box shows the neck width of the finger
300 t=80 -30 as a function of time.
-35 -35 ) )
smooth evolution. This does not appear to be the case, at
4 : - - a—— - - least for this initial data over these times, as Fig. 5 makes
5 0 5 -5 0 5

clear. Fort=80 the left box shows a close-up of the tip
region and its pocket of fluid. The neck below the tip is
FIG. 4. Growing fingers of interpenetrating fluid fo¥e=16.67 and 20. becoming thinner in time. The right box of the figure shows
Again, three spatial periods are shown at each time. the minimum width of the neck as a function of time. So far
as can be discerned, it seems that the neck is thinning expo-
nentially, and that the neck is a stable feature of the flow;

wise datad to errors in the time integration. Given that the nerhaps the neck is convectively stabilized by the stretching
motion here is very nearly linear, these errors should bgy the interfaces.

() ®)

mostly dispersive in nature. For We= 20, Fig. 6 shows the true vortex sheet strength
_ y(a,t), over one period, at the same times as shown in Fig.
B. Intermediate  We 4. This figure shows that the finger lengthening is associated

The evolution is much more interesting for intermediateWith the fluxing of fluid into the finger, and with the forma-
We where the interface is initially unstable to only a few tion of a concentrated peak of positive circulation at the tip
modes. Figure 4 shows the temporal behavior for two Webe®f the finger. The right peak’s location is indicated by the
numbers We=16.67 andWe= 20, fromt=0 to 80 over 3  Cross on the interface close-up of Fig. 5. To the left and right
spatial periods. In both cases, only e 1 mode is linearly gf this peak, and so on the lower and upper sides of the neck,
unstable; thek=2 mode becomes unstable only for vy is positive and negative, respectively. This indicates an
We>25. The evolution of the interfaces is striking. The in- influx of fluid from below, into the finger lengthening up-
terface now deforms into elongated fingers that penetrateards. At the tip of every finger, there is a concentration of
each fluid into the other. Lengthening, the interface acquirepositivey. Taken alone, these “vortices” might be expected
the shape of a blunted needle or finger, with a small pocketo induce a rotation in the angle of inclination of the array of
of fluid at its end. While the linear analysis is a rough guide fingers, by the mutual induction of the upper and lower lines
we have not sought to pinpoint the Weber number at which
this transition from oscillation to growth occurs; this value is
undoubtedly a function of the initial data.

For these two values of Weber number, the maximum \ }
amplitude and interfacial energi, follow one another 160 5 Tst sofid: 1=0 3

True Vortex Sheet Strength, We=20
T T T T T

which predicts exponential growth. As the total energy is
conserved, the perturbation kinetic energy of the fluid shows
a corresponding decrease. Nothing is seen here that indicate
an eventual halt to the lengthening. If the perturbation kinetic
energy were a strictly positive quantity, then the interfacial
energy(and so the lengthcould be bounded from above.
However, the perturbation kinetic energy is not signed and
so no such conclusion can be made.

As the fingers lengthen, they also thin. This feature does
not follow from mass conservation arguments, as the mass o
each fluid is infinite. Given the behavior at larger Weber
numbers, it seems possible that the sides of the fingers might
also collide at some finite time, and so abbreviate their FIG. 6. y(a,t) at the same times as shown in Fig. 4.

. . ' dot: =1 §
closely. The growth of, appears to become linear in time, | i e o . |
and lies generally below the prediction of linear theory, a3 dashed: =35 o
1.21 t solid: t=80 i B
! i
1
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Comparison at T=4.7 with Different We
0.6 T T T T T T T T T

solid: We=62.5
dashed: We=58.8 -

XY Plot at Time=10.0, different We

0.2r

L L L 1 1 1 .
-04 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 16

FIG. 9. The superposition of the two profilestat4.7.

FIG. 7. The interfacial position for several values of intermediate at
t=10.

event that is apparently the collision of the fluid interfaces.
This collision is observed in the evolution from this initial
data for every larger value aVe. Figure 9 superposes the

of vortices upon each other. However, no such rotation igespective interface positionstat 4.7. Though not apparent

seen, and the fingers seem to lengthen more or less along@m the scale of the figure, the colliding portions of inter-
fixed angle from the-axis. face forWe=62.5 are still separated from one another by a

Finally, Fig. 7 shows at= 10 the interfacial position for finite distance, though this distance is~diminishing rapidly.
several intermediate values oWe For the largest, The upper two boxes of Fig. 10 shows thet several times,
We=50, there are 4 modes initially unstable in the period.for both values ofWe. The lowest box of the figure super-
As the K—H instability becomes more important with in- posesy att=4.7 for both values ofVe. The crucial differ-
creasing/V e number, the fingers become more curved by theence is the appearance fte=62.5 of pairs of positive and
greater relative concentration of vorticity at the origin. At negative spikes. These new peaks in sheet strength are situ-
values ofWe slightly larger than this, a sharp departure isated on the colliding portions of the interface, coming in
found from the formation and smooth elongation of fingers.pairs, positively signed on one side, negatively on the other.

As an examination of the accuracy of these simulationsThis “jet” fluxes fluid through the narrowing neck, inflating
the We=50 simulation is chosen. This simulation usesthe forming bubble.

N=1024 andAt=10"3, up tot=7.0, at which poinfN was We will not focus on the collapse process near these
doubled, andAt halved. This was to resolve the evident ap-values ofWe; they are too close to the bifurcation in evolu-
proach of two disparate portions of the sheet. The entirgion from elongating fingers. Instead, we turn our attention to
calculation, for G=st<10, was repeated with a halved time- the flow forWe= 200, where the collapse occurs earlier, and
step. Assuming that time-stepping errors are dominant, thethe evolution is more representative of that for yet larger
for the first simulation the maximum relative error ¢hat  values ofWe

t=10 is estimated to bE,,~1x10 %,

C. Large We and pinching

first solid: t=0, dot: t=1.0, dashed: 1=3.0, solid: t=4.7, dot—dash: t=10.0

T T T T T T
True Vortex Sheet Strength, We=58.8; (b)

Figure 8 shows two simulationdVe=58.8 and 62.5
(both have initially 4 unstable modedt is between these
two values ofWethat is seen the transition from the forma-
tion of continuously elongating fingers, to an intervening

- N
T

We=58.8, Time=0-10.0; (a)

We=62.5, Time=0~-4.7; (b)

of t=0 of t=0
-1 =1 ~S—ss -1 t=1 ~Ss—s——s—
2 =2 SSs=s 2 =2 SIS
-3l =83 =SS 31 =3 SN
S SN 4 SN

-5
-6
-7

FIG. 8. The results of two simulations witVe=58.8 (left box) and 62.5

(right box).
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FIG. 10. y(a,t) at several timestop two boxes The lowest box super-
poses the vortex sheet strengths-atl.7.
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(2) (b) T=0.0; (a) T=0.60; (b)
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] ] FIG. 12. y(a,t) at the same times as the previous figure. The bottom right
FIG. 11. The long-time evolution from a nearly flat sheetWe=200. The  figure highlights the location of the strength extrema in the region of the
bottom right box shows a close-up of the thinning neck=af..4. thinning neck at=1.4.

time [box (f)] indicates there is still a finite distance between
the upper finger and the inner roll. The same is true for the
For We=200, there are 16 modes initially unstable in lower finger by symmetry, although that symmetry is not
the period, withk=11 the most unstable wavenumber. Forexplicitly imposed in the simulation.
We=< the flow forms a curvatur¢Moore) singularity at At this time, the gap between the two approaching por-
ty~0.371° We study first the evolution for8t<1.4 using tions of interface is but 5 grid lengths wide, and the calcu-
the uniform parametrization frame. In addition, we use theation is stopped here. As shown in Baker and Shéfieg-
implicit fourth-order time integration scheme of Ascher, curacy is rapidly lost in trapezoidal quadratures of the
Ruuth, and Wettoft coupled to the SSD, as described in the Birkhoff—Rott integral as the distance between the interfaces
Appendix. The pinching singularity time is estimated to befalls below a few mesh spaces. By this time, the length of the
t,~1.427, and the behavior for :4<t, will be consid- interface has increased by a factor of 2.6 .
ered separately using both the uniform and variable param-  Figure 12 shows the vortex sheet strengthvs a. It is
etrization frames. A time sequence of interface positions igyorth recalling here a few properties of the Moore singular-
shown in Fig. 11. This simulation us&s=2048 points, and ity for We=0. As the singularity time is approached, the

. _ — 4 ; ~
a time-step ofAt=1.2510"" on the interval 8<t<0.36, maximum in+y sharpens to form a finite cusp at=1/2. In

— —5
andAth-lo the_reafter. i the same approach, the curvaturediverges positively at
While at early times the interface steepens and behaves_ 15~ nq negatively atr=1/2*. And so as« diverges

very similarly to the zero su_rface Fens_ion case, it passeﬁa diverges negatively ak=1/2. In the presence of a small
smoothly through the Moore singularity time. ¥ 0.45, the . . . . . ~

. : ; urface tensiofiusing Eq.(10)], this behavior will causey,
interface becomes vertical at its center, and subsequent| b i tth K thereby reduci d tall
rolls over and produces two fingens<{0.50). These grow in .e r-1ega Ve a ) € pe-a~, ereby reducing and eventually
length in the sheet-wise directidhox (b)]. The tips of the fissioning the maximum iry (see also Ref. 33 .
fingers broaden and roll with the sheet. This is clearly seen at 1 NS effect, explained heuristically above, likely explains
t=0.80 [box (0)], as are evident capillary waves, seen as:[f‘e appearance of the two dominant, positive peaks seen in
oscillations along the sheet. These waves are approximately att=0.6. Small waves have also formed at the outer edges
on the scale of the most unstable wavelength given by thef these peaks, and are presumably dispersive waves pro-
linear analysis. Byt=1.20[box (d)], the sheet produces an- duced by the surface tension saturation of the Moore singu-
other turn in the spiral, and the fingers become broader ani@rity. At t=0.80 [box (¢)], the peaks have saturated and
larger. Additional capillary waves are produced and traversénore waves have been produced. These disperse outward
the interface outwards from the center region. This disperalong the interface. The strength has also formed down-
sive effect of the surface tension is seen more clearly in plotsvard peaks at the edge of the wave packet. The saturation
of the curvature and vortex sheet strength. Note that the padnd dispersion continues through 1.20 [box (d)]. How-

of the interface(on the inner turhclosest to the fingers has ever, when the interface begins to self-approach, the vortex
become quite flat and bends very slightly towards the fingersheet strength refocuses, forming a jet. This jet is seen at
At later times, this part bends even more towards the fingers,=1.40[box (e)] in the pairs of positive and negative peaks
the tips of the fingers narrow, and both pieces of the interfacef vortex sheet strength that have formed in each pinching
approach each other. At=1.40[box (e)], the interface ap- region. These peaks have been isolated for the top pinching
pears to self-intersect, but a close-up of the region at thisegionin box (f). The top of the pinching regiotinner turn

1. The evolution for We =200
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h h left b h h luti f th FIG. 14. The decomposition of the total energy into the perturbation kinetic
FIG. 13. The curvature. The upper left box shows the evolution of t eenergy(upper boy, and the interfacial energower bo.

inverse curvature. The remaining boxes show the curvature of the interface
at the same times as the previous figure.

spatial resolution suggest that temporal errors are dominant,

and the error of this simulation was again checked by halv-
of the spiral comes with a negative signed vortex sheeting the time-step. The estimated relative erromiis found
strength and the bottom comes with a positive sign. Thigo pe approximately X107 att=1.2, and 4.5%10 7 at
implies fluid is streaming through the gap towards the centef—1 4. We found that use of the fourth-order time-

(single-signed sheet strengtisuch a sign change in the vor- second-order Crank—Nicholson method for the same time-
tex sheet strength can occonly in the presence of surface step(see HLS94.

tension.
Saturation and refocusing are also observed in the CUl> Near the singularity time
vature. Its evolution is plotted in Fig. 13. The first graph

shows the inverse maximum of the absolute curvature as a Maintaining numerical resolution is critical as the singu-
function of time. There is an initial region of rapid growth in 1ty ime is approached. There are several possible sources

the curvaturedecay in the plotdue to the Moore singular- of error. Eirs_t, t'h(.a thickness of the collapsing pec_k decreases
ity. But, the curvature growth saturates and its spatial peakl Zero with infinite slopéclose to a 2/3 power in timeand
break up into dispersive wavéboxes(d) and (e)] moving  as this distance decreases,and the curvaturec both di-
outwards from the center. By=1.40, the maximum of the Vverge. Time-steps must be taken small enough to resolve
curvature nearly reaches that attained during the initial pethese trends. Spatial resolution must also be sufficiently high
riod of growth, and the new refocusing and growth occurs ath the regions of close approach to resolve both the spatially
the points of nascent pinching. These points are associatetivergingy and «, and to evaluate accurately the contribu-

with pairs of like-signed peaks in the curvature. tion of the collapsing neck region to the Birkhoff—Rott inte-
Figure 14 shows the decomposition of the total energygral.
into the perturbation kinetic energypper box, and the in- Due to their relative efficiency, the uniform parametriza-

terfacial energy(lower boX. The beginning of roll-up is tion simulations are pushed as closely as is practical towards
plainly seen by the transfer of energy into the interfacialthe collapse time. This is accomplished by using successive
energy. This occurs soon after the Moore singularity timedoublings of the spatial pointd, and halvings ofAt. The
Nothing is seen in this figure that indicates the oncomingdoubling is done by Fourier interpolation, at times when the
collision of interfaces, except perhaps a slight increase ithickness of the collapsing neck is still approximately 10 grid
slope for the interfacial energy. lengths wide, for which the trapezoidal sum is still very
There are two events which cause losses of accuracy iaccurate®® For N=2048 this time i2=1.34. Examination of
the time integration. The first is the shadow of the Moorethe spatial Fourier spectrum at this time shows also that the
singularity. At times less thamy,,=0.37, there are nearly active part of the spectrum is well away from the Nyquist
14 digits of accuracy in the energy. At times slightly beyondfrequencyk=N/2. The table below tabulates resolutions and
tu, the number of accurate digits in the energy drops to 1intervals for the various runs. By increasing the spatial reso-
where it remains until the sheet approaches self-intersectiofution, 11 digits of accuracy in the energy can be maintained
In this second loss, near 1.4, a number of accurate digits until t=1.39 for N=2048, t=1.41 for N=4096, and
in the energy drops to 10. As is typical, estimates of thet=1.42 forN=2048.
point-wise relative errofdiscussed beloware larger than The variable parametrization runs are all begun at
those of the energy. Comparison with simulations with lowert=1.413 (this choice of time is again made by the same
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TABLE I. The two tables show, with associated time intervals, the spatial
and temporal resolutions of both the uniform and variable parametrization
simulations.

0.1 T T T

Uniform parametrization Variable parametrization

N At N At
> 0.05

2048 12510 % 0<t<0.36 2048 5<10°° 1.413<t<1.427

5X10°° 0.36s<t<1.4 4096 2.X10° 1.413<t<1.427
4096 2.5<107° 1.34<t<1.427 8192 1.2510°° 1.413<t<1.427
8192 1.25¢107° 1.39<t<1.427

0.45 0.5 047 0.475
X

rule— the neck width is at least 10 grid Ieng)th‘som the FIG. 16. The left t_)ox shows a close-up of the top pinching region of the
N=28192 uniform parametrization data. Again the initial datatrﬁ”m'Up sheet at times= 1.4135(dashefland 1.427solid), both very near
e collapse time. The right box magnifies this close-up by another factor of

is generated by Fourier interpolation. The mapping whichio.
generates the parametrization of the curve is described in
Appendix A. It clusters points locally about the collapse re-
gions; the parameters of this remapping are chosen so that . | . . ) .
the local resolution is 8 times greater than for the uniform€trization simulations do give better results near the singu-
parametrization with the same value Nf The mapping is @Mty time..
completely fixed during the calculation by the choice of tan- AN @lgebraic fit of the form
gential velocityT in Eq. (33). Again, the Table | shows the
values ofN andAt. A resolution study near the singularity Least Distance d(t)=A(t,—t)%, (35
time will be presented later in this section.
the zzskt(i)r? t%r:%h O(:rFi?r;clh?nsh:)ewiso;heTrk?;n:rTeudriTJr\;]Vi?j?sr?fei made to the neck width. This is done as a sliding fit to
curve is the widthpﬁ\eaZured f?om%lhé; 8192 uniform pa- uccessive triples of dafdt; ,d(t;)), =1_,2,ﬂ to determine

o . . . S the three unknown8, t,, and,. The fits toyy are shown
rametrization simulation, while the solid is that from the p

. R . . . in the lower graph of the figure. While the fits are not com-
variable parametrization simulatigalso forN=28192). This ; . L
minimum width is computed by minimizing the distance pletely flat, particularly very near the singularity time, they

. X . . r nerally cl 2/@hown he horizontal h
function between the opposing sections of the interface, cona—\ e generally close to 2/Ghown as the horizontal dashed

X N '_curve. Recall thatyy=2/3 is the temporal exponent ob-
structed using the Fouf'er interpolant of the.curve posn!on' ained through similarity considerations. The fit to the col-
The trend of the least distance towards zero is clear. While i

. o . apse timet, was given consistently as=1.4273+.0002.
is not clear here, it will be seen later that the variable paramMs. e shown as the vertical dashed line in both graphs of

the figure.
While the collapse of the neck width must kend ig
0.01 ; accompanied by the divergence of velocity gradients in the
0008 - 5 fluid, as demonstrated in Appendix C, it is also accompanied
® L i by loss of smoothness in geometric quantities of the sheet,
§0.006 B e notably its curvature. The left graph of Fig. 16 shows a
go'om K \‘\\\ close-up of the top pinching region of the rolled-up sheet at
g L T~ timest=1.4135(dashedand 1.427solid), both very near to
0.002 - \ the collapse time. The right graph magnifies this close-up by
S T B | C another factor of 10 to show that the neck at the later time
1.38 1.39 14 1.41 142 143 has not yet collapsed. It appears that the sheet is forming two
. opposing corners on either side of the neck. This is in agree-
L ment with the upper graph in Fig. 17, which shows the tan-
08 - gent angled, as a function of normalized arclengtthis
O would be « in the uniform parametrization frameArrows
N L indicate two of the four locations along thecurve where
04 the curvaturex= 6y, is diverging. These sections are shown
0.2 L as close-ups in the lower graph of the figure, again at times
T t=1.4135 (dashedl and t=1.427 (solid). It appears from
g 139 T4 Iy 142 143 these(most especially in the left graplthat 6 is sharpening
t to a jump discontinuity with the collapse, indicating the for-

mation of a corner in the sheet profile. It does not appear

FIG. 15. The upper box shows the minimum width of the neck in the UPPe oM these figures that the two angles are equal The curva-
pinching region. The lower box shows the exponent in an algebraic fit to the '

minimum width. The vertical dashed line in both boxes marks the fit to thelUre its_elf is shown in the top graph of Fig. 18, at both of
singularity time. The horizontal dashed line is at 2/3. these times.
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FIG. 17. The upper box showsas a function of normalized arclength. The G, 19. The upper shows the time evolution of the two extremal true vortex
lower boxes show close-ups of the regl_ons indicated by arrows in the Uppe&fj,eet strengths. The lower box shows the fititpfor these two extrema.
box, att=1.4135(dashedland 1.427(solid). The horizontal dashed lines are-ai/4 and—1/3. The vertical dashed line

is a fit to the singularity time.

The lower graph of the figure showsat these times. Its
apparent divergence fulfills the requirement that at least ve-
locity gradients diverge as a collapse is approached. uniform (dashedl and variable(solid) parametrizations. The

If the collapse is governed by similarity, as might be branching near the singularity time in these mostly overlap-
indicated by the fits tayy for the neck width, then the pre- ping fits is caused by a loss of accuracy in the uniform pa-
dicted similarity exponents arg,= — 2/3 for curvature, and rametrization simulation.
¥, = —1/3 for the vortex sheet strength. This scenario is now  The lesser of the two curves is the negative extremum of

complicated by the fact that there are two valueypaind of "y on the upper side of the neck, and the other curve the
k, to be considered, one on either side of the collapsingositive extremum on the lower side. They both appear to be
neck. The upper box of Fig. 19 shows the growth of theseiiverging. The lower box of the figure shows the fitytg for

two extremal vortex sheet strengths, again for he8192  these two extrema. The lower curve is again that for the

2000

1500

1000

500

negative extremum. The dashed curves arg,at — 1/3 and
—1/4. The fit for¢,, for the positive extremum is fairly flat,
lying somewhere between these two values. On the other
hand, the assumption of a uniform value ffy of the nega-

tive extremum is plainly inappropriate, though the two val-

3 . ues of ¢, might be converging to each other as the critical
* 500 [ time is approached. At any rate, an argument for precise
1000 | similarity scaling is not much strengthened by these fits.
1500 | We did attempt to refine the fit by using a higher-order
2000 L | Ansatz(adding another algebraic tejrut found that attain-
0 0.5

(o)

05
s{a)/s(1)

ing convergence of Newton’'s method was difficult. No better
agreement with similarity was found by using the value of
'y at the point of least separation distance, rather than the
maximum value ofy.

Similar fits for the extremal curvatures are shown in Fig.
20. The respective signs of the curvatures match those of

'y, and again, the lower curve in the upper graph is that of

the negative curvature on the upper side of the neck. Now

the appropriateness of the algebraic fit is suspect in either
case, though the two fits seem to be approaching each other
in value (but not to—2/3) as the critical time is approached.

FIG. 18. The top box shows the curvature at the same times as in thEI€r€, the two horizontal dashed lines apg=—2/3, the

previous figure. The lower box shows true vortex sheet strength.
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Hou, Lowengrub, and Shelley 1945



2000

1500

1000

max |k

-0.2

-0.4

-0.6

-0.8

0.006

c ezg)

0.002

0.004
e;(t)

0.006

FIG. 20. The upper shows the time evolution of the two extremal curva-FIG. 21. ,(t) versusc- e,(t) calculated on both sides of the ne@ipper

tures. The lower box shows the fit i, for these two extrema. The hori-
zontal dashed lines are atl/2 and—2/3. The vertical dashed line is a fit to
the singularity time.

branching near the singularity time is due to loss of accurac
in the uniform parametrization simulation.
While the divergence ok does not apparently conform

to similarity, there is some evidence for a local scaling be-
havior consistent with forming a corner singularity. SupposeS

that « behaves locally in the neck region as

|

wheree; ,—0 ast—t,, ands, locates an extremum of.
Then,e,(t) = €,(t) corresponds t@ forming a jump discon-
tinuity at (t,s) = (t,,sp(ty)). We sete; to 14«(s,,t)|, and
estimate e, by |«(s,t)/ksdS,,t)|Y2 Figure 21 shows
€,(t) versusc- e,(t) calculated on both sides of the neck
(dots are the upper side, crosses the lower)sidberec is a

S—sp(t)

w(st)~ )

(36)

ank

constant of proportionality determined from the first data
point in the upper right corner. It is especially for the upper

side of the neck tha¢; ande, appear to be linearly related.
We have also tried to find local scaling behavior in the

divergence ofy by using a scaling Ansatz as in E§6). The
similarity exponents fory suggest then that, o ef. While
we did find collapsing scales , accompanying the diver-
gence, it was not found that; and e, were related in this
way.

side as dots, lower side as crogsegherec is a constant of proportionality
determined from the first data poifih the upper right corngr

While our results do not suggest strict conformance with

§imilarity behavior, we must emphasize the usual caveats

when dealing with the numerical analysis of numerical data.

It is quite possible that similarity does govern the oncoming

singularity, but that we have not yet been able to reach, with
ufficient accuracy, the regime governed by similarity. Fur-

ther, perhaps our results would show better agreement with
similarity by using other data fitting tools that stably account

for corrections from higher-order behavior.

3. An analysis of numerical errors near t t

P

For the case ofNe=200, we give a discussion of the
accuracy of our numerical simulations near the singularity
time, focusing on quantities especially relevant to the singu-
larity development. As an initial measure of the error, we
note that while the energy is generally very well conserved,
the uniform mesh calculations lose accuracy rapidly as the
singularity time is approached. Since extra filtering is re-
quired to control the stronger aliasing instabilities associated
with the variable mesh, this results generally in less accuracy
in the variable mesh simulations, relative to the uniform pa-
rametrization simulations, at times away from the singularity
time. For example, at timé=1.415, there are 8 accurate
digits in the energy for the variable mesh calculati¢csm-
pared to 11 for the uniform mesh witli=8192). However,
in the variable mesh simulations, there is almost no degrada-

Such well-resolved, variable parametrization calcula-tion in the number of accurate digits in the energy near the

tions have also been performed for #e= 100 case but are

singularity time.

not presented here. The results are basically consistent with A stronger test is to look for consistency with conver-
those for 200: only a partial conformance with similarity gence in some pointwise quantity. First, considér), the
behavior, but the apparent formation of a corner singularitycollapsing least distance of the neck region, with the
in the sheet profile. The apparent limiting exponents, such asl=8192 variable parametrization simulation serving as the
suggested by Fig. 20, were yet further from the similarity“exact” solution. Figure 22 shows the number of significant
exponents. digits of agreement inl(t) of the reference simulation with
1946
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1/We vs. Singularity Time
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FIG. 22. The number of significant digits of agreementdift) with the 0.004} 1
highest resolution simulations.
0.002- B
the other simulations, as estimated by log;gd,(t) % %5 1 15 2 25 85 35 4 45 &
—d(t)|/]d,(t)| whered, is the reference solution. Consis- Singulariy Time

tency with convergence is eVIC.Iem' The two S.O“d. curyes ar?:IG. 24. The pinching singularity time as a function of decreasthg ?,
for the N=2048 and 4096 variable parametrization simula-y; the moore singularity time included ae =0,
tions. The latter lies above the former, and is thus presum-
ably more accurate. As before, the dashed curves are for the
N=4096 (short dashand 8192(long dash uniform param-  points than the uniform mesh, and does not suffer from the
etrization simulations, with the more resolved calculationoscillations of the uniform parametrization calculation. To
showing more agreement with the reference solution, andnalyze the accuracy in the curvature quantitatively, the con-
again losing accuracy as the singularity time is approachedergence of the maximum curvatukg,,, is examined as a
This study does not measure the accuracy in the referendgnction of the spatial resolution, just as was done above for
simulation, and théN=_8192 variable parametrization simu- the least distancé(t). Again, theN=_8192 variable param-
lation presumably has yet higher accuracy. etrization computation serves as the reference simulation.
The upper box of Fig. 23 shows &t 1.427 a blow-up of The lower box of Fig. 23 shows the number of significant
a curvature spikésee Fig. 18in the thinning neck region, as digits of agreement i, of the reference simulation with
computed by both thal=8192 uniform and variable resolu- the other simulations. The curve marked with crosses is the
tion simulations. The crosses mark the computational mesHtariable parametrization calculation with= 4096, the solid
points. The differences in resolution of the spike are obviouscurve is the variable parametrization calculation with
Within this region the variable mesh has about 8 times mord=2048 and the dashed curve is the uniform parametriza-
tion calculation withN=8192. Consistency with conver-
gence is again evident and the results are quite similar to
those obtained for the least distarafg) in Figure 22.

400 4. Relations to the Moore singularity

Gl In previous studies on the effects of regularization on the

Moore singularity — usings-smoothing®® contour-dynam-
ics*® or by adding viscosit{**>— it was generally observed
. | . | . | . \ . that a spiral structure would emerge in the flow. As the regu-
2000 77 pp— 03774 03776 03778 0378 larization parameter was taken to zero, this spiral would ac-
s(a)/s(0) quire more and more structure, and its time of emergence
would decrease towards the Moore singularity time. It is
known that these regularized flows exist and are smooth for
all time **-%>With small surface tension, the emergence of a
spiral is again observed, but now the smooth evolution of the
flow is abbreviated by the appearance of the pinching singu-
larity.
An upper bound on the time at which the spiral emerges
i in the surface tension case is the time at which the pinching
0 ‘ ; : singularity occurs. Figure 24 shows the pinching singularity
' t ' time as a function ofWe !, with the Moore singularity time
included. It does appear that the Moore singularity time is
FIG. 23. A blow-up of a curvature spike in the _thinning nec_k region, asthe limit of the pinching times and thus the time of emer-
computed by both th&l=8192 uniform and nonuniform resolution simula- . . .
tions, att=1.427. The crosses mark the computational mesh points. Theq.ence of the splral also decreases to the Moore .Smgmar.lty
lower graph shows the number of significant digits of agreement in theime. The largest Weber number used for this initial data is
maximum curvature with the highest resolution simulations. We=2800. Figure 25 shows sheet profiles over several dou-

-1200

-1600

Digits in Max Curvature
H
T
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Plot of Interface Positions at Different We Near Sing. Time Interface Positions at t=.59 with Different We

1 — : . : : : : : 0.5 . : : .
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1=3.4995 os
0.6} | -
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0.4} |
0.1 \_j\
0.2] we=200 .
ot We=400 .
t=1.427

FIG. 27. The interface positions for the various Weber numbers, at

FIG. 25. The sheet profiles, over several doublingsV& at times close to t=0.59, approximately the pinching time fave= 800,

their pinching singularity times.

blings of We, at times close to their pinching singularity

times. AsWe is increased, the pinching occurs earlier, andAS Weis increased, this packet becomes both narrower and

the spiral becomes smaller, but it does not turn a great de f higher frequency — its wavelength decreases linearly

. . 71 - .
further, or acquire much more structure. The dispersive ef-Very approximatelywith We = It is not clear whether its

fect of surface tension is seen in the packet of small amplif"mplltude also generally increases. &t0.59, approxi-

tude waves spreading out from the spiral region. As dis__mately the pinching time foWe=800, Fig. 27 shows the

cussed earlier, this packet is associated with the shadow gpterface positions for the various Weber numbers, and Fig.
the Moore singularity. 28 showsy.

Figue 26 shows a hese imes,fkewise revaing a |4 STPI® LA 30 epore fescang seeme o o
complicated structure. In the center region are the peaks ?Fc))ore sinqularity time. In particular. we have att)(/am ted to
positive and negative sheet strength associated with the je > scribe tr?e Ienyth ana tinf)e scales’of the “tonaue” gf fluid
in the neck regions. This is separated from a smooth regioqh t initiall g in th i the t bg £ Fi
outside of the spiral, by the travelling wave packet. This at initially emerges in the cen ésee the top box of Fig.
wave packet might be termed a dispersive “internal Iayer.”30)' Consider the rescaled time,

Normalized Vortex Sheet Strength
5F T T T T : ; . . . Vortex Sheet Strength at t=.59 with Different We

We=100, 1=3,4995 6 y : . ‘ . : ' . i

. NN Wes100

4L N
0 0.1 02 03 04 05 06 07 08 0.9 1 s We=200

s5F . .

T
We=200, t=1.427
OF B of We=400 1

-5¢ . . 1 . . ) . . 1 b

0 01 02 03 04 05 06 07 08 09 1
We=400, t=0.82
oﬁmj—uﬁrw |
-5t ‘ . . . ) . . . .
0 01 02 03 04 05 06 07 08 09 1
We=800, t=0.59
O_—ﬁ%\ruﬁrw_, |
-5 : L L L L L ! I I | 12 L L ) . I L ' L L
0 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1
FIG. 26.y at the same times as the previous figure. FIG. 28.y for the various Weber numbers, tat 0.59.
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Scaling of Inverse of Maximum Curvature Tongue Formation
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FIG. 29. Rescaled lengths and widths of the interface “tongue,” for several
values ofWe, soon after the Moore singularity time.

0.4 05 0.6

FIG. 30. Sheet position for the three largest Weber numbers, at times near
We t’=0.30. The bottom box superposes the three center tongues after spatial
t'=——(t—ty) rescaling by We (We=200 solid, We=400 dash—dotted,We=800
M/
Wey dashedl

whereWe,=100 is used as a reference value, ayds the ) )
Moore singularity time. Using this rescaled time, the top boxD- Simulations from more general data

of Fig. 29 shows the rescaled width, Finally, we have performed simulations of yet more
complicated initial data for a single sheet. The upper box of

Worlt) = We 1 Fig. 31 shows two periods of the evolution, wifiie= 200,

we Wep (t’)’ from a nearly flat sheet. The initial data lies in tkke 1 and

3 modes, with randomly chosen phaseskAs3 is the more

where « is the maximum absolute curvature of the sheetUnstable mode, the dominant structures appear at that scale,
This extremum occurs at the tip of the tongue, anevgg is but with considerable asymmetry introduced by the subhar-

a measure of the tongue width. The bottom box of Fig. ogmonic part of the perturbation. Again, the evolution is appar-
shows the rescaled curve length, ently terminated by the appearance of a pinching singularity

in the rightmost spiral. The lower boxes shows evolution

We
lwe(t)= W—Q)(L(t')—Lo),
o2r ;;J?ﬂgag)o I I I unsymm.l i.c. J

wherel is the length of the vortex sheet, with no surface | W _
tension, at the Moore singularity time. The quantify, is oz
then a measure of the length of the tongue. These two length . S : = s -
scales seem well-described by this rescaling, at least fol ' ' '
times soon after the Moore singularity. The top box of Fig. o2} ;hgfzébgo 1
30 shows the sheet position, for the three largest Weber num

bers, near the rescaled time=0.3. The lower box shows

the superposition of the three center tongues after the spatic %[, . K . . ]
rescaling byWe/We, as suggested abov&Ve=200 solid, ° 08 ! 5 2 25
We=400 dash—dotted)/e=800 dashed The three tongues  ,,[ T=10t: (9

lie nearly on top of each other.
As is clear from Fig. 29, these rescalings do not appear °[ 1

to describe behavior up to the pinching time. However, the -02r ‘ ‘ ‘ ' 1
results do suggest that some aspects of the flow might bt 0 05 1 15 2 25
described by the emergence of simple, self-similar structures
— here the tongues — soon after the Moore singularity timeFIG. 31. The development of the Kelvin—Helmholtz instability, with
A self-similar structure has been conjectured to describe th¥/6=200; over two periods from nonsymmetric initial data The initial

. . . .. ata is in th&k=1 and 3 modes, each with a randomly chosen pHaseand
spirals that emerge in th&smoothing regularization of the (¢) The initial data is in the first 30 modes, with randomly chosen initial

Kelvin—Helmholtz problen’?.9 amplitudes and phases.

ol S —_— A et = 4
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0.15 . . ; - - 0.5

T=1.01; close-up ——: T=0; (a) symm i.c
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FIG. 32. A blow-up of the pinching singularity ift) of the previous figure.
_0'5 1 1 1
-0.5 0 0.5 1 15

from an even more complicated initial condition, again for

We=200. Here the first 30 modes have randomly chosemIG. 33. (a) The formation of a pinching singularity in a symmetric jet
amplitudes and phases. The amplitude as a functiok ief between two interfaces with surface tensi¢in. The same aga) but the
cut off exponentially, so that the=30 amplitude lies below upper interface has zero initial circulation and is flat.

the order of the round-off (10"%). Now, one sees an even
grﬁa(tjer vane}y ofltstructuresth—t tﬁoth hgr|0W|tng tfmggrs an(éaossible, consider first two vortex shedts and 2 under
rofied up regions. 1t appears that the Whole SIruclure 1S Someg, ¢4 ¢ tension, with initial conditions satisfying

what stabilizedagainstpinching by the fingers, which stretch

the interface. Nonetheless, the evolution is again terminated X;=Xz,Y1=—Y2, and y;=—1y,.

by a pinching singularity, this time along the side of a down-ry;g /down symmetry is preserved by the subsequent evo-
wardly propagating finger. The pinching occurs between thigion The upper box of Fig. 33 shows the simulations of the
finger and the leftmost downward finger in the periodic ex-c,ianse of such a jet, with the data chosen so that there is

ten.sion of the interface. This is most clearly seen in Fig. 3 nly one linearly unstable mode in the period. Clearly, the
which shows a close-up of the interface profile. The solidyinching singularity occurs directly in this setting, without

and dash-dotted curves show the interface and its periodifye aqditional feature of the roll-up into a spiral. Figure 34

extension, respectively. shows evolution from the same initial ddtiasheg, but with
We=x. The final time showr(solid) is that very near the

V. DISCUSSION AND CONCLUSION formation of a Moore singularity, appearing simultaneously

on the upper and lower sheets. The solid dots mark the loca-

The precise mechanisms that might link the Moore sin-, ' " o0 oveof the emerging singularity. It seems evi-

gularity to the pinching singularity are unclear. However, thedent that the beginnings of the collapse are seen in the dy-
pinching does seem to follow from the concatenation of S8V mics of a jet without surface tension. Perhaps a
eral physical processes. The first is the Kelvin—Helmholtz '
instability, which concentrates circulation at points along the
vortex sheet. As this concentration intensifies, the dispersion

from surface tension becomes important, and both “splits” dashed - 1-0.0
the peak iny and creates oscillatior(see Fig. 26 Simulta- solid ~ t=.60
neously, due to the bulk concentration of circulation, the
sheet begins to roll up into a spiral. The spiral structure al- » o A
lows the oscillations along disparate sections of the sheet ta
strongly interact and couple, ultimately creating oppositely
signed circulation on either side of a now thinning neck. This
interaction and ensuing neck formation we do not understand s 0 05 1 15
well. x

. With .the formation of th? jet, the neck _CO”ap'?eS rapld_ly. FIG. 34. The formation of the Moore singularity in a symmetric jet between
This motivates us to examine the dynamics of isolated jetgyq interfaces without surface tension. The solid dots mark the location of
between two interfaces. To make the situation as simple agverging curvature.

05 I
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“secondary” Kelvin—Helmholtz instability is intimately re- singularity in stratified flow without surface tensiéhit
lated to the formation of the pinching singularity. In this seems likely to us that the prototype pinching singularity is
direction, Pugh and Shell&have been studying asymptotic found in the simplest case of no stratification at all.
models of such jets with surface tension. An intriguing question is whether “bubble” formation
The lower box of Fig. 33 shows a much different simu- as apparently predicted by these calculations, is observable
lation. The lower interface has the same initial data as in thén an experimental setting. In Ref. 48, Thorpe presents an
previous simulation, but the upper interface now begins withexperimental study of the development of the K—H instabil-
zero vortex sheet strength, and is flat. Therefore, at earlity in a sharply stratified shear flow between two nearly im-
times the upper interface behaves as a curve material to thiscible fluids. Of course, in such an experimental situation
flow. The lower interface is unstable to the K—H instability, there are many additional effects, such as viscosity, three-
and its amplitude grows. This growth perturbs the upper indimensionality, and partial miscibility, that we have ne-
terface, and appreciable circulation is produced. The two inglected in our model. However, Thorpe does remark that the

terfaces couple together, and pinch. interface between the two fluids “became very irregular,
There has been some recent work by Si#gedat ex- sometimes being broken and drops of one fluid being pro-
tends Moore’s analysis of the Kelvin—Helmholtz instability duced in the other, ... .” The effects of additional physics

and includes the effect of surface tension. While his workare currently being considered in other works, see Refs. 49—
predicts the formation of corner singularities in the shee®4, for example. While these additional effects could cer-
profiles, it differs from our results in several important ways.tainly play an important role in determining the overall struc-
First, the corner singularities found in Siegel’s analysis ardure of the flow, there is no doubt that topological transitions/
isolated and are not associated with the formation of a toposingularities are a fundamental feature of the motion of real
logical singularity. That is, there iso pinching. Second, his fluids. We hope to have suggested one of the simplest set-
analysis predicts the formation of such a corner singularityfings in which such phenomena occur.

for any value ofWe for which there is an unstable wave-

length. We find instead that for moderatée with a few

unstable modes, the formation of interpenetrating fingers thaAACKNOWLEDGMENTS
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sary to o_bse_rve pinching. One such interaction that is criticahppeNDIX A: CONSTRUCTING THE NONUNIFORM

to pinching is the nonlocal coupling, though the Birkhoff— pMESH MAPPING

Rott integral, between separated parts of the sheet. Siegel's

system is local in space. Another consideration is that Sie- As described in our previous papethe construction of
gel's conclusions are based on specific initial data that corthe nonuniform mesh requires a scaling functiRinSuppose
respond to Specia| “trave”ing wave” solutions of his ap- that « is the uniform parametrization variable. We introduce

proximate equations. We have not investigated this particula® New parametrization3 such that a=a(B) and that

set of initial data. R(B)=ag is small in regions where the interface is most
Very similar pinching singularities have been observegsingular. This has the effect of clustering grid points since

in other situations where the Kelvin—Helmholtz instability is 1

operative. In HLS94, we observed the beginnings of a pinch-  Sg(8,t)=L(1)R(B), WithJ R(B")dB" =1, (A1)

ing singularity in plume vortices formed by the Rayleigh— 0

Taylor instability in the Boussinesq approximati(see Fig. whereL(t)=f$sﬁ,d,8’ is the total arclength of the interface

18 therg. In a very recent study of the application of SSD at timet.

methods to water waves and fully density-stratified flgas Suppose first that the interface is most singular near a

in this study, incompressible, inviscid, irrotational, and)2-d single region centered aroungl=«.. Then, one natural

Hou and Cenicerd$ have also observed such singularities, choice forR is to setR(8) to be a step function which takes

and measured length collapse exponents very close to 2/8.small value neaB= 3., wherea(B:) = «.. The relation-

As has been the case for the basic description of Moorship betweerw and 3 is given by
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B du
a(B)=fo R(B")dg’, (A2) a=f(U)+ vg(u), (B1)

which maps the unit intervl0,1] onto itself. SinceR is  \hereg is a linear operator containing high-order derivatives
chosen to be positive, the mapping is strictly monotonegnq f(u) is a nonlinear function which we do not want to
Therefore the inverse always exists. In general, before Wetegrate implicitly in time. To avoid using excessively small
constructR, we do not know howg. relates toa.. HOW-  time steps, we would like to treat they(u) term implicitly
ever, wherR is a step function, there is an explicit relation- \ypile treating the nonlinear ter(u) explicitly. Typically,
ship between the two. For example, cho®seo be the fol-  f(y) involves only first-order derivatives from convective
lowing step function satisfying R(8)=Rmin for B  terms, so the stiffness induced from the nonlinear term is not
€ [Bc=6,Bc+ 6], andR(B) =Rmax otherwise. GiverRmin  as severe as that from the linear operagm).

a?d 9, Rmax IS uniquely determined by satisfying A straightforward implicit/explicit time integration
JoR(B)dB=1. This gives Ryax=(1-26Rmin)/(1-268).  scheme is to use the second-order Adams—Bashforth scheme
Moreover, usingA2) and the relationship(8;)=ac, We  for the explicit term and the Crank—Nicholson scheme for

obtain the explicit formula relating. to «.: the implicit term. This gives
Bc= 5+(ac_5Rmin)/Rmax- (A3) Ul gn 1 ”
However, choosinR to be a step function does not provide — ;= 5 f(u") ~ Ef(un_1)+ §[Q(U”+1)+9(Un)],
a smooth enough parametrization for our numerical simula- (B2)

tions. Therefore, we actually obtaiR by smoothing the

above step function by convolving it with the heat kernel.where At is the time step size anal is the numerical ap-
This amounts to diffusing the step function for the short timeproximation tou(nAt). In general, one can construct a fam-
ta . Since this diffusion does not change the mean of a funcly of high-order implicit/explicit schemes based Taylor ex-
tion and only slightly changes the position of its local ex-pansions. However, they do not all share the same stability
trema, the above formula fg8. remains valid. properties.

We can easily generalize this idea for the case in which  The fourth-order implicit/explicit scheme considered by
local mesh refinement is required for more than one regionAscher, Ruuth, and Wetton seems to be quite stable. The
For example, consider a refinement in regions centeredcheme is given as follows:
around ag; and a.,. Define R(B)=Rn, for g
€ [Bc,l_ 5!30,1"’ 5_] and B € [Bc,z___aﬁc,z"’ 5]! and i 2_5un+1_4un_|_ 3un—l_ iun—z_'_ Eun—B (B3)
R(B)=Rmax Otherwise. Then, the explicit formulae f@,;  At|12 3 4
and g, are

Bea1= o+ (a'c,l_ ORmin)/ Rmax:
,Bc,2: 36+ (ac,z_ 35Rmin)/Rmax-

In our simulations, we used®=0.05, R,,;,=0.06, and For example, iff(u)=au,, g(u)=u,, and a spectral dis-
t,=0.005. After the diffusion process, the minimum value Cretization is used in space, then a von-Neumann stability
of R is about 0.1 in a small neighborhood of tge. This  analysis shows that the scheme is stableAfos 0.52h/a.%®
gives approximately 8 more points near the local singular ~We now apply this fourth-order implicit/explicit scheme
region. To find thex,, we ran the uniform parametrization to our problem,
calculation and determined where the local maxima of the

curvature, or the minima of the pinching distance, occur. at:i(in)) +P (B5)
Finally, onceR is constructed as above, the grid mapping 2s,\S, '

aj=a(p;), whereg;=jh is found using a spectral approxi-

mation of the integral ifA2). Spectral interpolation is also 0,
used to obtain the values of the interface quantities on the 7t~ _S(g
new grid{a}jL .

=4f(u")—6f(u"" 1) +4f(u"" ) —f(u"" %)
+pg(u"tly. (B4)

a

+Q, (B6)

a

whereP andQ are the nonlinear terms. We obtain the fol-
lowing system:
APPENDIX B: TIME-INTEGRATION METHODS

1 (250n+1_40n+30n1_ ian*Z_i_ lanS)

The time-integration scheme we used in this paper, font | 12 3 4
the We=200 simulation, is a fourth-order multi-step
implicit/explicit scheme studied in Ref. 35 by Ascher, Ruuth, 1 1
and Wetton. Consider a time-dependent PDE in which the :W<@H(V“”) +4P"—6P""*

a

spatial derivatives have been discretized by either central dif-
ferences or by spectral or pseudo-spectral methods. This +4pn-2_pn-3
gives rise to a large system of ODEs in time which typically

has the form and
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1(25 ., PR SN SN singularity we observe is accompanied by the blow-up of the
At ( Y A3 T T Y fluid velocity itself which assure&C1) is satisfied. The proof
of Eq. (C1) is straightforward and we sketch it briefly here.
gn*t | I he2  ~ne3 Let ¢ be a smooth scalar field da(0) taking the value 1 on
=S g1 +4QT-6QT T H4QT T -QT one of the colliding surfaces and 0 on the other. Edbe
¢ e advected by the fluid velocity. Then, it can be shown that
By substitutingy"*? into the equation foré"*!, we can
eliminatey"** and obtain a single equation féf "1, which V&G Dlizaw <IVECOllaaon
takes the form t ’ ,
X ex f0||VU(',t ML=@arydt’ |-
(C2

S(12\? 1
Sg+len+1_§<25) Atz( n+1H
(B7) Using the mean value theorem for integrals and incompress-

S
whereN is a known quantity depending on the solutions atiPility, one obtains

the previous time steps. The spatial derivative is discretized |V ¢(x,,t)|<||V&(- L=

by a spectral method. In the case of uniform parametrization t

formulation,s,, is independent o#. In this case, the opera- « f / /

1 Sa ' ex Vu(-,t)| =qqyndt’|, (C3
tor in the left hand side ofB7) is a linear constant coefficient o|| Sl (@) ©3
operator which is diagonalized by the Fourier transform
Therefore, in the uniform case, we solve #@f"* explicitly

n+1
=N(a),

o

a
n+1
Sa

a

for somex, € (t). Since this is true for any material do-
) : main Q(t) and sincgV £ — at the collision point{) can
\ljzlrri]agbrze Z;Sr:]g: ;g;:;:i?;::er(f&:gﬂvz\frér\:\:jhsegrg]e be taken sufficiently localized about the collision point so
P o ) - dep . that |V (xo,t)| becomes arbitrarily large ds-t., the col-
and so the equation is no longer diagonalized by the Fourlelr
i

. . Jision time.
transform. Consequently, in the variable case, we use an it-
erative method to solve fai"**. Note that the linear opera-

tor in the left hand side ofB7) is symmetric, positive defi- ) ) .
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