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3.1 Introduction

Complex fluids, such as polymer solutions, particulate suspensions, and many biolog-
ical fluids, form a broad class of liquids whose mechanical and dynamical properties
must be described on multiple length scales. In recent years, biological flow phenomena
involving complex fluids, such as peristaltic pumping and sperm motility in the
reproductive tracts, have received much attention. It has also been fruitful to consider
systems such as bacterial baths as complex fluids themselves when describing them
at the macroscopic scale. One of the most challenging issues when characterizing the
transport properties of these systems is capturing the interactions between the fluid
and the suspended microstructures (e.g. polymer coils, colloidal particles, flexible and
rigid fibers, and “active” particles such as bacteria). This is important, as it is these
couplings that lead to very complicated dynamical structures and large-scale flow
associated with mixing or enhanced swimming efficiency. In many cases, numerical
simulations are as challenging as model development, since complex fluid systems can
have many degrees of freedom.

The general field of complex fluids presents many interesting flow phenomena and
important applications, such as elastic turbulence and low-Reynolds-number mixing
(Groisman and Steinberg 2001, 2004), microscopic to macroscopic instabilities such
as coil-stretch (Arratia et al. 2006; Thomases and Shelley 2009) and stretch-coil
(Young and Shelley 2007), and the use of viscoelastic nonlinearities to perform logical
operations in microfluidic chips (Groisman and Quake 2004). Of particular interest
here are transport phenomena in active suspensions and complex fluids. This includes
mixing, pumping, and swimming, both of single organisms and collectively. The most
classical problem of swimming, in a biological fluid is that of sperm motility. In
studies of collective dynamics, Dombrowski et al. (2004) have observed the emergence
of large-scale vortices and jets in suspensions of swimming B. subtilis. The possible
utility of the transport and mixing in these systems has driven the development of
artificial analogues, such as the chemically driven synthetic microswimmers fabricated
by Paxton et al. (2004), which mimic the motile behavior of swimming bacteria.

The general mathematical framework for the derivation of many complex fluid
models can be summarized as follows. Consider a small fluid volume moving with the
fluid, filled with many “particles”, and over which the macroscopic velocity field and
its gradient can be assumed uniform. Given the current configuration of the particles,
approximate the “extra” stress that these particles induce in the surrounding fluid.
The evolution of the particle configuration (location, orientation, distension, etc.), from
which one approximates this extra stress, is described by a Smoluchowski equation (or
conservation of probability). The inclusion of the extra stress as a source of force in the
macroscopic momentum balance equations for a continuous medium often closes the
system. In Section 3.2 we develop these ideas, which from the basics of non-Newtonian
fluid mechanics. We then focus on the two main examples, of rod-shaped and dumbbell-
shaped immersed particles. The latter is a necessary element in the derivation of the
Oldroyd-B model and is described in Section 3.3. In order to find the extra stress
due to a suspension of rod-like bodies, the Kirkwood formula is recalled in Section
3.2.3 and its application to an actively swimming rod is presented. The last section,
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Section 3.4, consists of an overview of recent work on two important applications,
pumping and swimming. In-depth details are given about the continuum model
describing a suspension of active rods and its stability behavior around a state of
uniformity and isotropy.

3.2 Basics of non-Newtonian fluid mechanics

3.2.1 Conservation of probability

We consider a particle whose initial configuration (e.g. orientation, center of mass,
length, and volume) is given by z and which evolves according to

dZ
dt

= V(Z, t), Z(z, 0) = z.

Example 1 (dumbbell). The configuration variables are the position of the center
of mass Xc and the end-to-end vector R.

Example 2 (rod). The configuration variables are the position of the center of mass
Xc and the orientation vector p, with |p| = 1.

Let Ψ(Z, t) be the probability density for realizing a set of configuration variables
Z at time t, and let Ω(t) ⊂ R

n be an arbitrary volume that tracks a set of particle
trajectories from the initial configuration z through configuration space.

The “number” of particles in this evolving set, defined as N =
∫
Ω(t)

Ψ(Z, t) dVZ ,
is taken to be conserved. Diffusional processes will be added later. To express N
in the Lagrangian frame, we define the flow map J = ∇zZ. The derivation of the
conservation of probability follows the same argument as for the conservation of mass
in a continuum medium. First, by a change of variable, we express N in the reference
configuration Ω(0). Next, using Liouville’s formula ∂tJ = (∇Z · V)J (J = detJ) and
the fact that N is conserved, we have

0 =
dN

dt
=

∫

Ω(0)

[
∂Ψ
∂t

+ V · ∇ZΨ + (∇Z · V)Ψ
]

J dVZ .

Transforming back to the arbitrary Ω(t), we arrive at the Smoluchowski equation,

∂Ψ
∂t

+ ∇Z · (VΨ) = 0. (3.1)

In order to close eqn (3.1), we need boundary and initial conditions, as well as
equations for the particle fluxes V.

3.2.2 Kinematics of rods and dumbbells

We now develop kinematic equations for immersed rod and dumbbell- shaped particles.
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3.2.2.1 Rods

First, consider a slender object immersed in a Newtonian Stokesian fluid, described
by its centerline X(s, t), with s being its arc length (Batchelor 1970b; Keller and
Rubinow 1976; Johnson 1980). Here, we make use of the local slender-body-theory
approximation to the centerline velocity V(s, t),

8πμ [V(s, t) − U(X, t)] = −c(I + XsXT
s )f , (3.2)

where c = ln(eε2) < 0, with ε � 1 being the particle aspect ratio, U(X, t) is the
background velocity field, and f is the force per unit length exerted by the rod upon
the fluid. For brevity, we define η = 8πμ/(−c) > 0.

We will study three examples in detail: a straight rod in a linear background flow,
and a straight rod that locomotes through a prescribed surface stress, considered both
in the absence of a background flow and in a linear background flow.

Example 3 (straight rod in a linear background flow). Consider a rigid rod of
fixed length l described by its center of mass and orientation: X(s, t) = Xc(t) + sp(t)
for −l/2 ≤ s ≤ l/2 and |p| = 1. The background flow is taken as linear: U(X) = AX,
with tr(A) = 0. We determine f and the evolution equations for Xc and p under the
conditions of zero net force and torque. Integrating eqn (3.2) with respect to s and
using the zero-force condition yields

Ẋc = AXc, f = sf1, (3.3)

where Ẋc = ∂X/∂t. From the zero-torque condition it follows that f1 = αp. Substi-
tuting eqn (3.3) into eqn (3.2) gives η(ṗ − Ap) = 2αp. Since p · ṗ = 0, α is found by
taking the dot product of the last equality with p. Combining everything, we obtain
Jeffery’s equation (Jeffery 1922),

ṗ = (I − ppT)Ap. (3.4)

The force per unit length is therefore f = −(ηs/2)(pT Ap)p.

Example 4 (propulsive rod with no background flow). Consider a rod where
a constant propulsive tangential stress −f‖p = −2πagp, where a is the particle radius
and g is the magnitude of the stress, is imposed on one half of its length (without loss
of generality, for s < 0) and a no-slip condition is imposed on the other half (s > 0)
(Saintillan and Shelley 2007). This model is an idealization of a “Pusher”, such as
B. subtilis, which generates a thrust (via rotary flagellar motion) through its trailing
flagellar bundle (schematically illustrated in Fig. 3.1). In this case, eqn (3.2) becomes

η
[
U + u‖(s)

]
p = (I + ppT)f1, − l

2
≤ s ≤ 0, (3.5)

ηUp = (I + ppT)f2, 0 ≤ s ≤ l

2
, (3.6)

where f1 = −f‖p = −2πagp is the motive force per unit length exerted by the rod
on the fluid, Ẋc = Up is the translational velocity of the rod, us = us(s)p is the
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Fig. 3.1 An ellipsoidal rod with propulsive stress on the posterior half of its body.

surface slip velocity, and f2(s) = f1p is the drag force. The zero-force condition yields
f2 = f‖, and thus we have U = (2/η)f‖ and us = −(4/η)f‖. Using the fact that η =
8πμ/| ln(eε2)|, we rewrite U as

U =
ε| ln(ε2e)|

2
lg

μ
= κ2

lg

μ
, (3.7)

where κ2 = ε| ln(ε2e)|/2 is a purely geometric constant. We will use this expression
later as the individual swimming speed in a suspension of many rods.

Example 5 (propulsive rod in linear background flow). We now look at the
same rod model swimming within a linear background flow U = AX. Equation (3.2)
becomes

η
[
Ẋc + usp + sṗ − A(Xc + sp)

]
= (I + ppT)f1(s), − l

2
≤ s ≤ 0, (3.8)

η
[
Ẋc + sṗ − A(Xc + sp)

]
= (I + ppT)f2(s), 0 ≤ s ≤ l

2
. (3.9)

From the zero-torque condition, both f1 and f2 are in the p-direction. Therefore, we
set f1 = −f‖(s)p = −(f0 + f1s)p and f2 = (f2 + f3s)p. As in Example 4, we consider
only a constant propulsive force f0 = 2πag and thus a slip velocity us(s) independent
of s. Upon integration of eqns (3.8) and (3.9) with respect to arc length, we obtain
the kinematic equation of the center of mass,

Ẋc = AXc −
us

2
p. (3.10)

Substituting into eqns (3.8) and (3.9), taking the dot product with p, and comparing
coefficients in s allows us to find all the remaining unknowns: us = −4/ηf0, f2 = f0,
f1 = (η/2)pTAp, and f3 = −(η/2)pTAp. From these expressions, we obtain again
Jeffery’s equation (3.4), and Ẋc = AX + (2/η) f0p.

Summarizing the kinematic equations for a general disturbance flow whose rate-of-
strain tensor is constant, we denote by u the linearized velocity field around the body
and denote its gradient by ∇xu. Again, we impose a constant propulsive stress f‖ =
f0 = 2πag on the posterior half of the body, and we let U = κ2lg/μ be the swimming
speed of an individual rod of length l. We have
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Ẋc = u + Up − dx∇x ln Ψ, (3.11)

ṗ = (I − ppT)∇xup − dp∇p ln Ψ, (3.12)

where we have introduced translational and rotational diffusion processes with
phase space (not particle) diffusion coefficients dx and dp, respectively (Doi and
Edwards 1986). Equations 3.11 and 3.12 give the particle fluxes of the Smoluchowski
equation.

3.2.2.2 Dumbbells

We now consider a dumbbell, or bead–spring, model. This model arises when a long
polymer chain is modeled as a succession of beads and springs as in Fig. 3.2. The
change in conformation of the chain is represented by its end-to-end displacement
vector R, and its response to distension is represented through the entropic spring
force

Fs = 2kBTβ2R, β2 =
3

2Nb2
, (3.13)

where kB is the Boltzmann constant, T is the temperature, N is the number of links,
and b is the length of a link (Doi and Edwards 1986; Larson 1995). Henceforth, the
end-to-end vector will be considered as that of a simple dumbbell. Assuming that the
beads are spherical and neglecting hydrodynamic effects between them, the drag force
is Fd = (1/2) ζ

(
Ṙ −∇uR

)
, where ζ = 6πμa is the Stokes drag and ∇uR is the rate

of stretching of a fluid element containing the beads. The Brownian force is given by
FB = kBT∇R ln Ψ. The balance of forces on the dumbbell gives Ṙ:

Ṙ = ∇uR − 2kBT

ζ

[
2β2R + ∇R ln Ψ

]
. (3.14)

Equation (3.11) and eqn (3.12) or (3.14) define the particle fluxes in the Smolu-
chowski equation (3.1). However, this requires knowledge of u (and hence ∇xu), which

Bead Spring

End-to-end vector

Fig. 3.2 Polymer chain modeled with beads and springs.
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is obtained by including both the particle stress produced by the suspension and the
Newtonian solvent stress in the macroscopic momentum balance equation:

ρ
Du
Dt

− μΔxu + ∇xq = ∇x · σ(p), (3.15)

where q is the pressure, μ is the Newtonian solvent viscosity, and ρ is the density.
Incompressibility is usually assumed, i.e. ∇x · u = 0. The extra stress σ(p) is given by
the Kirkwood formula, which is the subject of the next section.

3.2.3 Kirkwood formula

The Kirkwood formula provides a means for determining the additional or “extra”
stress created by particles (rods as dumbbells) suspended in a Newtonian solvent.
Details can be found in Doi and Edwards (1986), Larson (1995), and Bird et al. (1987).

Example 6 (dumbbells). One basic construction of the Kirkwood formula assumes
that the suspension is composed of pairs of beads, with a connecting vector Rm,
between which there is a “nonhydrodynamic” force Fm. In particular, given a control
volume V , the Kirkwood formula for a suspension of N bead pairs is

σ(p) = − 1
V

N∑

m=1

〈FmRT
m〉. (3.16)

As in statistical physics, for large N it is useful to replace the average (1/N)
∑N

n=1 fn

by 〈f〉, the distributional average of f with respect to the probability density func-
tion Ψ.
Therefore, by defining the particle density as n = N/V , eqn (3.16) becomes

σ(p) = −n〈FRT〉. (3.17)

The Kirkwood formula as given by eqn (3.17) is particularly suitable for the dumbbell
model. Application of eqn (3.17) to the dumbbell model, where F is the entropic spring
force given by eqn (3.13), gives

σ(p) = 2nkBTβ2〈RRT〉. (3.18)

Example 7 (rods). Another form of the extra stress in a suspension, with slender
bodies in mind, was proposed by Batchelor (1970a, 1977). Let σ be the microscopic
stress evaluated on the surfaces ∂Bm of N bodies. Then in a volume V , Batchelor’s
formula is

σ(p) =
1
V

N∑

m=1

∫

∂Bm

dA [σn̂XT
c − μ(un̂T + n̂uT)]. (3.19)

Here n̂ is the unit outward normal to the surface and u is the microscopic velocity on
the surface. For slender bodies, the surface velocity is only a function of the arc length
along the centerline, and therefore the surface integral containing u = u(s) vanishes.
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Denoting by f = −σn̂ the force the body exerts on the fluid, eqn (3.19) therefore
reduces to

σ(p) = − 1
V

N∑

p=1

∫
ds fXT. (3.20)

The Kirkwood formula given by eqn (3.20) leads to the calculation of the extra stress
generated by a single rod and then by a suspension of such rods.

Applying eqn (3.20) to a propulsive rod as described in Example 4 gives the
contribution to the stress from a single swimmer stress,

S = −κ1l
3gppT = −σ0ppT, (3.21)

where κ1 = (πε)/2 is another geometric constant. We remark that the units of σ0 =
κ1l

3g are force times length; note these are the units of the strength of a force dipole
or stresslet.

Next, we combine eqns (3.20) and (3.21) to find the volume-averaged extra stress
in a box of volume L3 containing N such swimmers. We assume that there are M
swimmers in a smaller control volume L3

M and that the rate-of-strain tensor is constant
over this smaller volume. Further, we assume a separation of scales l ≤ LM ≤ L. After
some manipulation, we find

σ(p) = −nCσ0
1
M

M∑

m=1

ppT, (3.22)

where n = N/L3 is the number density and C = (M/L3
M )/(N/L3) is the local con-

centration.
For large M , the weighted sum converges to the configurational average with

respect to ΨM , the probability density function for finding a rod with a given center-
of-mass position and orientation in the small volume. In passing from the local
distribution function and concentration to the macroscopic distribution function, we
write ΨM = Ψ/C and the extra stress becomes σ(p) = −nσ0〈ppT〉. Redefining Ψ as
nΨ, we obtain the extra stress generated by a suspension of rear-activated swimmers,

σ(p) = −σ0〈ppT〉. (3.23)

As an aside, we note that the normalization of Ψ is
∫

dVx

∫
dSp Ψ = nL3.

3.3 Viscoelastic fluid

One of the simplest models of a viscoelastic fluid is given by the Oldroyd-B equations.
There, the polymer chains are modeled as dumbbells (see Fig. 3.2) that have a linear
force response to distension. The Smoluchowski equation, eqn (3.1), gives the evolution
of a probability density function whose configuration variables are the end-to-end
displacement vector R and the center-of-mass location Xc:
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Ψt + ∇x · (ẊcΨ) + ∇R · (ṘΨ) = 0. (3.24)

Again, the Oldroyd-B model assumes that the force exerted by the dumbbell is that
of a linear spring given by eqn (3.13). The particle fluxes are given by Ẋc = u and
eqn (3.14) for Ṙ (here, the effect of center-of-mass diffusion has been neglected). The
macroscopic velocity u satisfies the momentum conservation equation (3.15), which
balances viscous stress against the extra stress given by the Kirkwood formula, eqn
(3.18).

Because of the simple Hookean response in the Oldroyd-B model, a macroscopic
evolution equation for σ(p) can be found directly, without recourse to any “closure
approximation”. Substituting the expressions for the particle fluxes into eqn (3.24)
together with incompressibility yields

Ψt + u · ∇xΨ + ∇R ·
[

Ψ∇xuR − 2kBT

ζ

(
2β2RΨ + ∇RΨ

)
]

= 0. (3.25)

Since σ(p) is proportional to 〈RRT〉, the evolution equation for σ(p) is found by
multiplying eqn (3.25) by RRT and integrating over the R volume. The derivation
requires the following tensor equalities (Larson 1995):

∫
dVR RRTΨt =

∂

∂t
〈RRT〉,

∫
dVR RRT∇R · (Ψ∇uR) = −

[
∇u〈RRT〉 + 〈RRT〉∇uT

]
,

∫
dVR RRT∇R · (ΨR) = −2〈RRT〉,

∫
dVR RRT∇R · (∇RΨ) = 2I.

Applying these identities, we find

D

Dt
σ(p) −

(
∇xuσ(p) + σ(p)∇xuT

)
+ τ−1(σ(p) − GI) = 0, (3.26)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, τ = ζ/(8kBTβ2), and G =
νkBT . Defining the upper convective derivative

�
σ = D/Dtσ − (∇xuσ + σ∇xuT), eqn

(3.26) takes the form

τ
�
σ

(p)

+ (σ(p) − GI) = 0. (3.27)

In a state of rest with no flow, the extra-stress tensor is isotropic: σ(p) = GI. Equation
(3.27) is called the upper convected Maxwell equation or the Oldroyd-B equation, and
is a simple model for a so-called Boger fluid.

Phenomenologically, viscoelastic fluids are characterized by a relaxation time for
stress fluctuations. In the Oldroyd-B equations, this timescale is provided by τ . To see
this, we rewrite eqn (3.27) in the Lagrangian frame. We denote by X the Lagrangian
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variable which gives initial data to the Lagrangian flow map x = χ(X, t), where x
is the Eulerian spatial variable. Let Fij(t) = ∂xi/∂Xj be the deformation tensor and
C(t) = FTF be the right Cauchy–Green tensor. It is straightforward to show that
Ḟ = ∇xuF. Multiplying eqn (3.26) by F−1 on the left and by F−T on the right, we
obtain

(
F−1σ(p)F−T

)

t
+

1
τ

(
F(−1)σ(p)F−T

)
=

G

τ
C−1. (3.28)

Integrating with respect to time then gives

σ(p)(t) = e−t/τFσ(p)(0)FT +
G

τ

∫ t

0

ds e−(t−s)/τF(t)C−1(s)FT(t), (3.29)

where F(0) = I. Equation (3.29) shows that memory of the current stress state is lost
on a timescale of O(τ).

To nondimensionalize the Oldroyd-B equation, eqn (3.27), let τf be some timescale
characterizing the fluid flow; for example, given a system length scale L and an external
force of size F , this gives τf = μ/(ρLF ), and we can define the dimensionless relaxation
time, the Deborah number, as De = τ/τf . For a shear flow with characteristic time
γ̇−1 = L/U (where L is the channel height and U is the velocity), the Deborah number
is replaced by the Weissenberg number Wi = τ γ̇.

Rescaling time by τf , length by L, extra stress by G, and velocity by L/τf , eqn (3.15)
becomes

Re
Du
Dt

= −∇xp + �xu + β∇x · σ(p),

where β = Gτf/μ measures the dimensionless size of the extra-stress-to-overall-
momentum balance, and Re = ρUL/μ is the Reynolds number. Equation (3.27)
becomes

De
�

σ(p) = −(σ(p) − I).

Note that De β = τG/μs is the ratio of the polymer viscosity to the solvent viscosity,
and is a material constant. Moreover, in the limit of large Weissenberg number, the
Navier–Stokes/Oldroyd-B equations describe an incompressible neo-Hookean solid.

In the next section (Section 3.4), we discuss applications to pumping and to
swimming of small organisms, which is characterized by a low Reynolds number but
usually not by a low Weissenberg number. Therefore, we replace the Navier–Stokes
equations by the Stokes equations and obtain the Stokes–Oldroyd-B (Stokes-OB)
equations

−∇xp + �xu = −β∇x · σ − f , ∇x · u = 0, (3.30)

Wi
�
σ = −(σ − I), (3.31)

where f is some external force. Here we have dropped the subscript (p) and are using
a Weissenberg number rather than a Deborah number.
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Before moving on to applications, we discuss some properties of eqns (3.30) and
(3.31). First, we note that the existence of global solutions is unknown, even for two-
dimensional flows. A good measure of the stress fluctuations in the system is the
relative strain energy E = 1

2

∫
dVx tr(σ(p) − I). The first property gives an equation

for the time evolution of E , while the other two are more general properties and pertain
to the mathematical structure of the Stokes-OB equations.

3.3.1 Properties

1. If E is the symmetric rate-of-strain tensor, then

Ė + Wi−1 E = β−1

(∫
u · f − 2

∫
E : E

)

.

Physically,
∫

u · f is the input power from the background force and
∫

E : E is
the rate of viscous dissipation.

2. Equations (3.30) and (3.31) lack scale-dependent dissipation.
3. Unlike the Newtonian Stokes equations, eqns (3.30) and (3.31) are not time-

reversible.

Proof

1. By the transport theorem, we have Ė = (1/2) tr
∫

Dσ/Dt and, with Dσ/Dt given
by eqn (3.31),

Ė =
1
2
tr

∫ [
∇xuσ + σ∇xuT

]
− Wi−1 E .

This equation can be further simplified by integrating by parts, assuming either
periodic or no-slip boundary conditions, to give

Ė = −1
2

∫
[ui(∇xσ)i + ui(∇xσ)i] − Wi−1 E = −

∫
u · (∇xσ) − Wi−1 E .

Substituting eqn (3.30) for σ, the claim follows by another integration by parts.
2. To understand dissipation in the Stokes-OB equations, we study the dynamics

under a small background force perturbation f = εg. Setting σ = I + εT and
p = εq, eqns (3.30) and (3.31) are easily linearized. The linearized polymer extra-
stress equation is

Wi
(

∂T
∂t

− (∇xv + ∇xvT)
)

= −T. (3.32)

Assuming a periodicity of 2π, we transform the linearized equations using a
spatial Fourier transform with wave vector k. After manipulation of the Fourier
transform of the Stokes equations, we obtain the following equation for the
k−component of the Fourier transform of T:

Wi
∂Tk

∂t
= −Tk − βWi Q

(
k
|k|

)

Tk − i
Wi
k

P
(

k
|k|

)

gk,
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Fig. 3.3 Cylindrical pegs used to mix and then unmix a Stokes-OB fluid, showing the
time irreversibility of the equations. The gray level represents the normal stress in the fluid.
Reproduced with permission from Teran et al. (2008).

where Q is a rank-four tensor and P is a rank-three tensor. Since Q depends
only upon the direction of the wave vector and not its amplitude, there is no
scale-dependent damping.

3. This is immediately apparent from the energy dissipation law of Property 1,
and follows by replacing t with −t in eqn (3.31). A striking illustration of this
irreversibility is provided by Fig. 3.3, from Teran et al. (2008). This figure shows
the simulated motion of material points in an Oldroyd-B fluid as a pair of mixing
pegs undergo a displacement with time-reversal symmetry (the pegs depart from
and arrive back at their initial positions along the same spatio-temporal path).
If the dynamics were time reversible, then the labeling “Re � 1′′ in the figure,
transported as material lines by the flow, would reappear undeformed at the
final time. The evolution of the polymer stress is shown by the gray level of the
background.

We conclude with two simple rheological flows for the Stokes-OB model that
illustrate the model’s properties and limitations.

Example 8 (shear flow). We consider a shear flow u = (γ̇y, 0, 0), where γ̇ is the
shear rate between two plates at z = 0 and z = L, and seek the tensor σ(p) in the
steady state. From eqn (3.27), we have

σ(p) = G

⎛

⎝
2Wi2 + 1 Wi 0

Wi 1 0
0 0 1

⎞

⎠.
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The first normal-stress difference is N1 = σ11 − σ22 = 2GWi2 > 0, showing that this
system develops normal stresses, as is typically found in viscoelastic fluids. This is
unlike the case of a Newtonian fluid, for which N1 = 0. The shear viscosity is likewise
calculated as μ = σ12/γ̇ = μs + τG, showing that μ is independent of γ̇, and hence the
system does not capture shear thinning. In this sense, the Oldroyd-B equations model
a Boger fluid (Larson 1995).

Example 9 (extensional flow). Consider an extensional flow u = (ε̇x,−ε̇y/2,
−ε̇z/2), where ε̇ is the elongation rate. The steady-state solution for σ(p) is given
by

σ(p) = G

⎛

⎝
1/(1 − 2ε̇τ) 0 0

0 1/(1 + ε̇τ) 0
0 0 1/(1 + ε̇τ)

⎞

⎠.

The extensional viscosity is μe = (σ11 − σ22)/ε̇ and is divergent at ε̇ = 1/(2τ). This
divergence of viscosity at a finite strain rate is a consequence of the assumption of a
linear force response to distension in the microscopic model. That is, there is no limit
to the stretching of polymer coils in the Oldroyd-B model.

That said, recent numerical studies by Thomases and Shelley (2007) suggest
that such divergences are only realized exponentially in time, and their singular
character is strongly dependent upon the Weissenberg number and the flow geometry.
Further, flows associated with polymer stretching in hyperbolic stagnation can undergo
symmetry-breaking instabilities at critical values of the Weissenberg number of the
flow, and these instabilities can lead to new dynamical states associated with coherent
structures and fluid mixing (Arratia et al. 2006; Thomases and Shelley 2009).

The Oldroyd-B model is one of the simplest models of a viscoelastic fluid that
is derived from microscopic principles. It has the advantage of being closed at the
macroscopic level, but it is limited by the absence of shear thinning and, more notably,
by the lack of a limit on polymer distension. FENE (finitely extensible nonlinear elastic
spring) models overcome the latter shortcoming by using a nonlinear spring law that
diverges at a finite distension length. However, FENE models do not generally close
at the macroscopic level, requiring the evolution of a Smoluchowski equation at every
point in the domain. A commonly used closure approximation is the so-called FENE-P
model, which replaces tr(RRT) in the nonlinear force law by tr〈RRT〉. Other models
with different transport operators and nonlinearities include the Johnson–Segalman
model and the Giesekus model (Larson 1995).

3.4 Applications

Owing to the wide range of elastic moduli (0.1–10Pa), viscosities (0.1–10Pa s), and
relaxation times (1–10 s) (Lauga 2007; Smith et al. 2009), relating complex biological
fluids to viscoelastic flow models can be challenging. We focus now on two applica-
tions, peristaltic pumping and swimming, which illustrate the effect of viscoelasticity
upon these fundamental means of biological transport. The examples show complex
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dynamical behavior fundamentally different from that in a Newtonian fluid, and fall
into the broad category of complex biofluids.

3.4.1 Pumping a viscoelastic fluid

We start by first considering peristaltic pumping, which is a fundamental transport
mechanism for bulk fluids and materials, in both biological and industrial settings.
Peristalsis occurs when contractile waves propagate down a fluid-containing tube
and is schematically illustrated in Fig. 3.4a. It is the dominant means of material
movement in digestive and reproductive tracts, and can involve complex biofluids
such as cervical mucus. Fauci and Dillon (2006) have reviewed this area within the
context of reproductive fluid dynamics.

As already stated, in many biological settings the pumped fluid is non-Newtonian.
To study peristaltic pumping of such fluids, Teran et al. (2008) developed a numerical
method based on the immersed boundary method of Peskin (2002) for the simulation
of the Stokes-OB equations in a time-dependent geometry. For boundaries with moving
peristaltic waves of deformation (see Fig. 3.4(a), Teran et al. showed that viscoelastic-
ity produces fundamentally different results from the Newtonian case. Figure 3.4(b)
shows the mean flow rate Θ as a function of the occlusion ratio χ (the ratio of the
wave amplitude to the mean channel width; χ = 1 means complete occlusion), for
various Weissenberg numbers. The flow rate Θ was computed at long times in order
to remove the effect of the particular initial data for the polymer extra stress. For
small Weissenberg numbers, Θ increases monotonically with χ in a fashion similar to
that for a Newtonian fluid, albeit with smaller values. For larger Weissenberg numbers,
the flow rate reaches its maximum and then declines, well before complete occlusion
occurs. In short, viscoelasticity can significantly limit pumping by peristalsis.

L

V, wave speed

u, bulk flow
0.1

0.1

0.2

0.3

0.4

0.5

q

0.6

0.7

0.8
Jaffrin

Stokes computed

Stokes-OB, Wi = .5

Stokes-OB, Wi = 1

Stokes-OB, Wi = 2

Stokes-OB, Wi = 5

0.15 0.2 0.25 0.3
c

0.35 0.1 0.45 0.5

(b)(a)

Fig. 3.4 (a) A peristaltic wave of wall deformation propagates with speed V down a channel
in the direction of the bulk fluid flow. (b) The dimensionless mean flow rate Θ as a function
of the wave amplitude ratio χ and Weissenberg number Wi. The upper curve compares the
asymptotic result of Jaffrin and Shapiro (1971) with a Newtonian Stokes simulation (second
curve from top). The other curves are for nonzero Wi. Reproduced with permission from Teran
et al. (2008).
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Fig. 3.5 Contours of the polymer stress components at t0 = 0.63, t1 = t0 + 2, and t2 = t0 +
9, for Wi = 5 and χ = 0.5. The peristaltic wave moves from right to left. Reproduced with
permission from Teran et al. (2008).

As an illustrative example of the dramatic effects of viscoelasticity, Fig. 3.5, from
Teran et al. (2008), shows the evolving polymer stress components σ11 and σ12 from
simulations with Wi = 5 and χ = 0.5. Unlike the case of a Newtonian Stokes flow, the
material stresses now show strong time dependencies, and develop asymmetries that
are associated with flow irreversibility. Over time, the viscoelastic polymer stresses also
develop strong gradients in the neighborhood of the pump neck, and these structures
are implicated in the strong viscoelastic refluxes that can inhibit pumping at even
moderate occlusion ratios.

3.4.2 Swimming

The study of undulatory swimming at low Reynolds number in Newtonian fluids dates
back to classical work by Taylor (1951), Lighthill (1960), and Purcell (1977). This
continues to be a very active area, and recent example studies include those by Tam
and Hosoi (2007) and Spagnolie and Lauga (2010), who both studied optimization of
swimming strokes for speed and efficiency in a Newtonian fluid. In the Newtonian
regime, there are a wealth of numerical and analytical tools, such as singularity
and boundary integral methods that reduce representations of three-dimensional
Stokes flows to two- or even one-dimensional problems; see Pozrikidis (1992). As
with peristaltic pumping, the situation is more difficult when one studies the effect of
viscoelasticity upon swimming.
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3.4.2.1 Swimming sheet

For the Newtonian case, an analysis of swimming by a periodic bi-infinite sheet was
provided by Taylor (1951), who performed a small-amplitude analysis and showed that
with a sinusoidal deformation of amplitude A, the swimming speed scaled like O(A2).
This problem was reexamined by Lauga (2007) for the viscoelastic case. He considered
solutions that are steady in the traveling-wave frame, found the same small-amplitude
scaling as Taylor, and showed that a swimmer in a Newtonian Stokes fluid was always
faster than a Stokes-OB swimmer. A similar study was performed by Fu et al. (2007,
2009) for small-amplitude flagellar swimming.

To study the influence of viscoelasticity on the speed and efficiency of undulatory
swimming in the time-dependent, large-amplitude case, Teran et al. (2010) developed
a numerical model, based on the immersed boundary method of Peskin (2002), for
the swimming of an undulating sheet immersed in a Stokes-OB fluid. The immersed
sheet is an effectively inextensible surface along which a traveling bending wave moves.
Wave motion is induced through an immersed boundary force derived from an elastic
energy with a time-dependent preferred curvature (Fauci and Peskin 1988).

For small amplitudes and doubly periodic sheets, Teran et al. (2010) recovered the
Taylor/Lauga scaling of swimming speed. Moreover, they found that as the amplitude
increased, the Newtonian swimmer (i.e. an infinite sheet in a Newtonian liquid) was
always faster than an Oldroyd-B swimmer, as predicted by Lauga (2007).

If the sheet is allowed to have a head and a tail, i.e. is a free swimmer, these results
change drastically at large amplitudes. Figure 3.6(a) shows the horizontal displacement
of the center of mass of the swimmer for varying De with β = 1/2, for a swimming
stroke whose amplitude increases towards the tail, as is typical of sperm locomotion.
Since the initial data for the polymer stress was the identity in all cases, all swimmers
start off at the same speed. However, at long times, the swimming speeds rearrange
themselves and reveal that the fastest swimmer has an O(1) Deborah number. Figure
3.6(b) shows the fastest swimmer (De = 1), the slowest (De = 5, the largest value
considered), and the Newtonian case, at the final time t = 20. Despite the substantially
slower speed of the De = 5 swimmer, it is almost tied with the Newtonian free swimmer
at this final time owing to its faster swimming speed at intermediate times.

Figure 3.7 shows graphically the distension of the polymer stress field at late times
for the fastest swimmer (De = 1). In Fig. 3.7a, the free swimmer is very near the
time of peak forward velocity during its stroke, when the backward moving wave
has approached the tail, which is itself moving slightly upwards. Owing to the strong
straining of the fluid by the motion of the tail, there is a large concentration of polymer
stress concentration aft of the swimmer. Figure 3.7(b) is about one-quarter of a stroke
later. The stress is now much more anisotropic, and the swimmer is actually slipping
backwards. However, in comparison with the Newtonian case, the backwards slippage
is of smaller magnitude, leading to an overall faster swimmer.

Note that these results for large-amplitude free swimmers are different from those
of Lauga (2007) for small-amplitude periodic sheets. In particular, the study of Teran
et al. (2010) predicts that both swimming speed and efficiency are maximized at a
Deborah number of O(1), when the stroke period is nearly matched to the relaxation
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Fig. 3.6 (a) The location of the x-component of the center of mass of a free swimmer with
A = 0.05 and various values of De. Inset: long-time behavior. (b) Shape and displacement of
three free swimmers (De = 0, 1, 5) after 20 periods. Reproduced with permission from Teran
et al. (2010).

time of the fluid. These results seem to be in qualitative agreement with recent
experimental work of Smith et al. (2009), who found that human spermatozoa swim at
a Deborah number of O(1) in synthetic cervical mucus, and show greater displacement
per stroke than in less viscoelastic media.

3.4.2.2 Active suspensions of swimming rods

The previous example considered the locomotion of single microswimmers in a vis-
coelastic fluid and showed the fundamental differences from locomotion in a Newtonian
fluid. We now address instead the collective hydrodynamics of many active swimmers
in a Newtonian fluid, i.e., an active suspension. Experiments by Kessler, Goldstein,
and co-workers (Dombrowski et al. 2004; Tuval et al. 2005; Sokolov et al. 2007)
showed that in the case of concentrated bacterial baths, large-scale vortices and jets
emerged. These flow features were reproduced qualitatively by Graham and co-workers
(Hernández-Ortiz et al. 2005; Underhill et al. 2008), using a force-dipole (dumbbell)
model, and by Saintillan and Shelley (2007) using a more detailed model of the
rod-like swimmer described in Example 4. Figure 3.8 shows a particle simulation
from Saintillan and Shelley (2007) of 2500 Pusher particles (rods) in a box of size
10 × 10 × 3 (in units of particle length). Initially, the rods are aligned, though with
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Fig. 3.7 Distension of polymer stress field by a free swimmer with De = 1 at late times. The
ellipses represent σ; the major axis is aligned with the principal eigenvector of σ, with its length
scaled by the associated eigenvalue, and the minor axis is associated with the second eigenvector.
The vectors represent the fluid velocity on the swimmer. Reproduced with permission from
Teran et al. (2010).

randomly chosen positions. As time increases, instabilities develop that move the rods
away from global alignment, and eventually there emerge system-scale vortices and
jets that are reminiscent of the experimental observations of Kessler, Goldstein, and
co-workers (Dombrowski et al. 2004; Tuval et al. 2005; Sokolov et al. 2007). Although
the initial global orientational order is destroyed, the subsequent dynamics preserves
the local alignment of co-swimming particles over about a body length. Whereas the
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Fig. 3.8 Particle simulation of 2500 initially aligned Pushers in a box of size 10 × 10 × 3 (in
units of particle length) at an effective volume fraction ν̃ = ν/8 = 1, showing the different stages
of the dynamics (a)–(d). Reproduced with permission from Saintillan and Shelley (2007).

background flow is on the scale of the system, the individual swimmers show random
walk statistics, where the random-walk seems to result from pair interactions, at least
at lower volume concentrations. The onset of the large-scale instabilities appears to
depend upon the effective volume concentration ν̃ = ν/8 (ν = (Nl3)/L3) of swimmers
(see Fig. 2b of Saintillan and Shelley 2007).

Saintillan and Shelley (2008a,b) subsequently developed a continuum model to
describe large-scale macroscopic phenomena, based on the evolution of the probability
distribution function (see Section 3.2), which we now discuss.

The configuration variables of a swimming rod are its center-of-mass position and
its orientation. Therefore, the Smoluchowski equation (3.1) becomes

∂Ψ
∂t

= −∇x · (ẋΨ) −∇p · (ṗΨ). (3.33)

The particle fluxes are given by eqns (3.11) and (3.12). Recall that the normalization
of Ψ is such that

∫
dVx

∫
dSpΨ = nL3:

ẋ = Up + u − Dp∇x ln Ψ, (3.34)

ṗ = (I − ppT) · ∇up − dp∇p ln Ψ. (3.35)
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The background flow satisfies the incompressible Stokes equations, forced by the extra
stress generated by the swimming rods:

−μΔxu + ∇xq = ∇x · σ, ∇x · u = 0. (3.36)

We consider two broad categories of swimmers: Pushers and Pullers. A Pusher, whose
motion is actuated along the posterior of the body, served as motivation in Example
4. In contrast, the motion of a Puller is actuated along the anterior of the body,
resulting in an oppositely signed extra-stress contribution (while moving in the same
direction). Bacteria such as B. subtilis might be described as Pushers, while algae such
as Chlamydomonas might be roughly described as Pullers. Figure 3.9 illustrates the
flow lines for Pushers and Pullers and shows schematic pictures. We remark that
there are other swimming microorganisms, such as the multicellular algae Volvox
and densely covered ciliates, that may not fall into these categories. Following the
discussion in Section 3.2, the extra stress for a Pusher is σ = −σ0

∫
dSp(ppT − I/3)Ψ

(see also eqn (3.23)); for a Puller, σ is identical in magnitude but oppositely signed.
To nondimensionalize eqns (3.33)–(3.36), we choose the rescaling x → lcx, u →

Uu, t → (lc/U)t, and Ψ → nΨ. Here lc is an intrinsic length scale to be determined.
With the appropriate rescaled pressure, we obtain the following for the Smoluchowski
equation and particle fluxes:

∂Ψ
∂t

= −∇x · (ẋΨ) −∇p · (ṗΨ), (3.37)

ẋ = p + u − D∇x ln Ψ, (3.38)

ṗ = (I − ppT)∇xup − d∇p ln Ψ. (3.39)

The forced Stokes equations become

−Δu + ∇q = ∇ · Σa, ∇x · u = 0, (3.40)

Σa = α

∫
dVx

∫
dSp (ppT − I/3)Ψ. (3.41)

The nondimensional constants are D = Dp/(lcU0), d = dplc/U0, L̃ = L/lc, and α =
−(lcσ0n)/(μU0).

Drag Thrust

Pullers: α > 0

DragThrust

Pushers: α < 0

MotionMotion

Fig. 3.9 Flow lines for Pushers (α < 0) and Pullers (α > 0).
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To determine lc, we rewrite α using the expressions for σ0 and U derived in
Examples. 7 and 4, respectively, σ0 = κ1l

3g and U = κ2lg/μ. With these substitutions
and ν = (Nl3)/L3 for the volume concentration, we obtain α = −(lcν/l)(κ1/κ2).
Choosing lc = l/ν turns α into a purely geometric constant, α = −κ1/κ2.

In their particle simulations of rod-like swimmers, Saintillan and Shelley (2007)
observed that at low volume concentrations (up to effective volume concentrations
somewhat greater than ν̃ = ν/8 = 1) dp ≈ νd̄p and Dp ≈ ν−1D̄p. If we assume these
observed scalings of dp and Dp with ν, the nondimensional diffusion coefficients become

d =
ld̄p

U0
and D =

D̄p

lU0
.

That is, d and D depend only upon the speed and length, of the swimmer, and the
system size and the volume concentration of swimmers appear only in the normalized
system size L̃.

We are interested in the nonlinear dynamics of this system, of partial differential
equations, and its stability around simple steady states. Before getting into the
specifics, we introduce the configurational entropy, which is a natural measure of
the fluctuations in this system. The relative configurational entropy is defined as
S =

∫
dVx

∫
dSp (Ψ/Ψ0) ln(Ψ/Ψ0), where Ψ0 is the constant value taken by Ψ when

the system is uniform and isotropic (no concentration or orientation fluctuations).
This quantity has the following properties:

1. S ≥ 0, and S = 0 if and only if Ψ ≡ Ψ0. That is, a nonzero S measures the size
of the fluctuations away from uniform isotropy, realized when Ψ = Ψ0.

2. The entropy evolves via

Ψ0Ṡ = − 6
α

∫
dVx E : E −

∫
dSp

∫
dVxΨ

[
D|∇x ln Ψ|2 + d|∇p ln Ψ|2

]
,

where E is the symmetric rate-of-strain tensor. The first term on the right-
hand side is proportional to the rate of viscous dissipation, and the second is
strictly negative and reflects diffusional processes which serve to drive S towards
its minimum (the uniform and isotropic state). The scalings of the system used
here give Ψ0 = 4π.

We omit the proofs, which are straightforward, of these statements.
The configurational entropy and its evolution establish the uniform isotropic state

as a natural steady state to be examined for this system. Given their relevance to
the study of biological flocking, the stability of aligned suspensions has also been
examined, by Simha and Ramaswamy (2002) and by Saintillan and Shelley (2007,
2008a,b), among others. These authors find that aligned suspensions are generically
unstable, particularly in the absence of diffusional processes, regardless of swimmer
type (Pusher or Puller). Here we focus on the stability of the uniform isotropic state,
which relates naturally to measures of fluctuations in the system, and whose analysis
reveals strong differences depending on swimmer type and geometry.
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We now turn our attention to the details of the stability of a uniform, isotropic
suspension of active swimmers. First, some general conclusions can be drawn from
Property 2 of the configurational entropy. For suspensions of Pullers, where α > 0,
we have Ṡ < 0, and fluctuations away from the uniform, isotropic state are expected
to decay. On the other hand, for Pushers (α < 0), the leading term is now positive,
which allows the possibility of fluctuation growth and eventual balance with diffusion.
Furthermore, if there is no diffusion, fluctuations should grow. These issues were
analyzed in a detailed study of a system linearized near uniform isotropy (Hohenegger
and Shelley 2010).

Let Ψ = 1/(4π) (1 + εψ), v = εu, and q → εq with ε � 1. Keeping only linear-
order terms and using the identity ∇p · (f1θ̂ + f2φ̂) = (1/ sin φ)(∂θf1 + ∂φ(sin φf2)),
eqns (3.37)–(3.41) become

ψt + p · ∇xψ − 3ppT : ∇xu = D∇2
xψ + d∇2

pψ, (3.42)

− Δxu + ∇xq = ∇x · σ, ∇x · u = 0, (3.43)

where σ = (α/4π)
∫

dSp ψ (pp − I/3).
The first step of the stability analysis is to transform the equations using a spatial

Fourier transform in x, f̃k =
∫

dV e−ik·xf(x), to decouple eqns (3.42) and (3.43) in
the wave vector k (k = |k|, k = kk̂). From eqn (3.43), ũk = (i/k)(I − k̂k̂T) · σ̃k · k̂,
and eqn (3.42) then becomes

∂tψ̃k = − ikk̂ · p ψ̃k − Dk2ψ̃k + d∇2
pψ̃k − 3ppT : (I − k̂k̂T) · σ̃k · k̂k̂. (3.44)

The explicit dependence of eqn (3.44) on the direction of k̂ can be removed by a
rotation, k̂ = Rz, which defines q through p = Rq. Let θ ∈ [0, 2π] be the azimuthal
angle and let φ ∈ [0, π] be the polar angle on the unit q-sphere. Equation (3.44) then
becomes

∂tψ̃k = − ik cos φ ψ̃k − Dk2ψ̃k + d∇2
qψ̃k − 3 cos φq · (I − ẑẑT) · RT · σ̃k · R · z.

A further decoupling in θ is achieved by introducing a Fourier series in θ, ψ̃k =∑

n

An,k(φ, t)einθ. After some algebra, we find

∂tAn,k + An,k

(
ik cos φ + Dk2

)
+ d

(
n2

sin2 φ
An,k − 1

sin φ
∂φ(sin φ ∂φAn,k)

)

= −3α

4
cos φ sin φ F [An,k]δn,1,

(3.45)

where the scalar operator F is

F [h] =
∫ π

0

dφ′ h(φ′) sin2 φ′ cos φ′

and δn,1 is the Kronecker delta symbol.
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The main feature of eqn (3.45) is that the entire stability is controlled by the first
azimuthal mode on the sphere.

We now look for exponential solutions to eqn (3.45) in the special case when
D = d = 0 and α < 0 (Pushers). Hence we assume that A1,k(φ, t) = γk(φ)eσt and note
that there is no a priori expectation that A1,k can be represented in this fashion, as
eqn (3.45) depends explicitly on φ. Nonetheless, inserting the exponential ansatz into
eqn (3.45) and applying F to both sides yields the eigenvalue relation

−3
4
α

∫ π

0

dφ′ sin3 φ′ cos2 φ′

σ + ik cos φ′ = 1. (3.46)

This complex-valued integral can be evaluated by substitution and separation into
real and imaginary parts. Some algebra produces the complex equation

−α

[

4iσk3 + 6iσ3k − 3σ2(σ2 + k2) ln
iσ − k

iσ + k

]

= 4ik5, (3.47)

where the complex logarithm is defined as ln(a + ib) = ln
√

a2 + b2 + i arctan(b/a).
Note that eqn (3.47) is valid only if Re(σ) �= 0. Figure 3.10 shows a numerical solution
of eqn (3.47), plotting the real and imaginary parts of σ for α = −1. For small k, there
are two branches of unstable eigenvalues with zero imaginary part, and the decrease
in growth rate suggests a crossing of the k-axis to become negative at medium k.
Saintillan and Shelley (2008b) gave an asymptotic solution for k � 1 for the upper
branch in Fig. 3.10,

σ(k) = −α

5
+

[
15
7α

− D

]

k2 + O(k3). (3.48)

For a suspension of Pushers (α < 0), eqn (3.48) implies the existence of a long-wave
instability with limk→0 σ(k) = −α/5 > 0, corresponding to the upper branch in Fig.
3.10. In contrast, for Pullers, there is no long-wave instability.
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0 0.2 0.4 0.6
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k

Im
(s

)
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Fig. 3.10 Real and imaginary parts of the growth rate σ(k) for α = −1 (Pushers) with D =
d = 0. Reproduced with permission from Hohenegger and Shelley (2010).
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One of the striking features of the analysis of the eigenvalue problem (Hohenegger
and Shelley 2010) is that there is no crossing to negative k, contrary to the intuition
gathered from Fig. 3.10. As a matter of fact, a singular behavior develops in the
corresponding eigenvector as k approaches k1, the zero-growth-rate value. The singular
behavior results from a discontinuous pole singularity in the integral in eqn (3.46) as
Re(σ) approaches 0.

Finally, we remark that if k = k1 is indeed a point of stability transition, then
there exists a critical system size L or volume concentration ν above which the system
becomes unstable. This follows from having scaled by the intrinsic length lc, so that
k′
1 = (k1/2π)(νL/l). As the first allowable mode in the periodic box has k′ = 1, the

system is unstable if k′
1 ≈ 0.089(νL/l) > 1, and is stable otherwise.

As just highlighted, the eigenvalue analysis does not provide solutions for k > k1.
The dynamics in these cases was found numerically and was confirmed by a large
k analysis (Hohenegger and Shelley 2010). Figure 3.11 illustrates these numerically
determined solutions in the absence of diffusion. In each case, the initial condition is
A1,k(φ, 0) = sin(φ). In Fig. 3.11, the real and imaginary parts of A1,k for k = 0.4,
k = 0.8, and k = 10 are plotted at t = 50 and t = 100 for Pushers (α = −1). For
k = 0.4, the real and imaginary parts (Fig. 3.11(a)) grow as predicted by the eigenvalue
analysis. The values k = 0.8 and k = 10 are out of the range of exponential growth
and both the real and the imaginary parts of the solution show oscillations. The
number of oscillations increases with time, as illustrated with Figs. 3.11(b) and (c), and
Fig. 3.11(d) shows that for large k, the envelope of the oscillations is determined by the
initial condition (and is as determined analytically by Hohenegger and Shelley 2010).

We expect rotational diffusion (i.e. d > 0) to remove the singular behavior in the
eigenvalue problem, and to yield exponentially decaying solutions past a crossing value.
To investigate this, we assume again that A1,k(φ, t) = γk(φ)eσt in eqn (3.45) and
renormalize the problem so that F [γk] = 1. Upon substitution into eqn (3.45), this
leads to the system

γk(σ + ik cos φ + Dk2) + d

(
1

sin2 φ
γk − 1

sin φ
∂φ (sin φ ∂φγk)

)

= −3α

4
cos φ sin φ,

(3.49)
∫ π

0

dφ′γk(φ′, t) sin2 φ cos φ = 1. (3.50)

Equations (3.49) and (3.50) were solved by discretizing the φ-derivatives and solving
the resulting nonlinear system via Newton iteration starting from the known solution
for d = 0.

In Fig. 3.12, the real part of σ(k) obtained from eqns (3.49) and (3.50) with d = 0
and d = 0.01 is plotted. For this moderate degree of rotational diffusion, a downward
shift of the branches is seen, leaving the long-wave instability intact but suppressing
the lower branch. Not only does rotational diffusion reduce growth rates, but it also
suppresses the eigenfunction singularity. For a suspension of Pullers, there are no
positive growth rates for d ≥ 0, as would be expected from the generic decay of the
entropy.
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Fig. 3.11 Real and imaginary parts of the first Fourier modes A1,k(φ, t) for α = −1 (Pushers)
and D = d = 0, from a single-mode sinusoidal initial condition. The increasing wavenumbers
k show growth (top left), saturation in amplitude with an increasing number of oscillations in
time (top right and bottom left), and convergence of the wave envelope to that of the initial
condition. Reproduced with permission from Hohenegger and Shelley (2010).

The theoretical considerations above allow a comparison with the rod simulations
of Saintillan and Shelley (2007). First, we remark that for saintillan and shelley’s
rod model, we estimate α ≈ −0.9, close to the value of −1 that we have used in
the theoretical study described above. Using values for d̄p and D̄p gleaned from
Saintillan and Shelley (2007), we have solved the eigenvalue problem of eqns (3.49)
and (3.50). This yields the crossing value k1 ≈ 0.086, and hence instability is found
if k′

1 = (k1/2π)(νLp/l) > 1. Taking l = 1 and Lp = 10, this analysis predicts the
existence of a critical volume concentration ν̃ = 0.9 (ν̃ = ν/8) for the emergence of a
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Fig. 3.12 Continuation of the real part of the growth rate σ(k) for positive rotational diffusion
d = 0.01, α = −1 (Pushers), and D = 0. Reproduced with permission from Hohenegger and
Shelley (2010).
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Fig. 3.13 Fluid mixing by an active suspension of Pushers (α = −1). The gray levels show
the configuration of a passive scalar field in the suspension at different times. Reproduced with
permission from Saintillan and Shelley (2008b).
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long-wave instability. This is consistent with the result of Saintillan and Shelley (2007)
that organized dynamics emerges at volume concentrations in the neighborhood of
ν̃ = 0.5.

Using kinetic theory, Saintillan and Shelley (2008a,b) simulated this instability
starting from uniform isotropy in the special case of two-dimensional flows. Fig-
ure 3.13 shows the evolution away from uniform isotropy through the dynamics of
a scalar field being advected by the background velocity field. The fully developed
nonlinear dynamics is quasi-periodic, has persistent concentration fluctuations (not
predicted by linear theory), and yields efficient mixing of the scalar field through
repeated folding and stretching of fluid elements. It was also found that the sys-
tem reached a state of statistical equilibrium where the growth of configurational
entropy saturates and where fluctuation growth is balanced, on average, by diffusional
processes.

3.5 Conclusions

In our lectures and in these notes, we have reviewed the basics of non-Newtonian fluid
mechanics and established formulae for the extra-stress contribution to the macro-
scopic stress tensor, in the particular cases of dumbbell- and- rod shaped particles.
We discussed the derivation and properties of the Oldroyd-B model. We then focused
on pumping and swimming in viscoelastic fluids as important biological examples.
Both of these problems concern complex fluid–body interactions and required the
development and use of sophisticated numerical methods (which we did not discuss in
any detail). We then developed and analyzed the continuum theory of active particle
suspensions put forward by Saintillan and Shelley (2008a,b), focusing on its structure
near a state of uniform isotropy.

There are of course many other fascinating problems which could have been
discussed if time had allowed. Among many such examples are the study of synthetic
swimmers (e.g. Zerrouki et al. 2008; Keaveny and Shelley 2009), and microfluidic
pumps produced by carpets of bacteria bound to channel walls (Kim and Breuer
2008).

Similarly, there are many directions in which the problems discussed here can
evolve. We conclude by briefly mentioning some of these. Peristaltic pumping was
shown to be hindered by viscoelasticity. Therefore a natural question to ask pertains
to the optimal wave shape that minimizes the input power. Walker and Shelley (2010)
developed a shape optimization algorithm for the Newtonian case, but the extension
to a viscoelastic fluid is open. The continuum model of swimming rods gave rise
to complex large-scale behavior, but the linearized analysis around uniformity and
isotropy did not show growth in concentration fluctuations (on the contrary, these
decayed). Furthermore, it is believed that in bacterial baths, other effects such as
chemotaxis or oxygen-taxis (Sokolov et al. 2007), which were not included here, can
play a significant role. Finally, motile microorganisms such as bacteria also thrive and
move in other yet more complicated media, such as gel-like soft tissues and mucus.
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