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A recent advance in colloidal technology �Zerrouki et al., Nature �London� 455, 380 �2008�� uses magnetic
aggregation to enable the formation of micron-scale particle clusters with helical symmetry. The basic building
blocks of these aggregates are doublets composed of two micron-scale beads of different radii bonded together
by a magnetic cement. Such self-assembled structures offer potential for controllable transport and separation
in a low Reynolds number environment using externally applied magnetic or electric fields. Establishing the
hydrodynamic properties of the aggregates, in particular the coupling between rotation and translation afforded
by the cluster geometry, is an essential initial step toward the design of microfluidic devices employing these
aggregates. To quantify this coupling, we first determine parametrized expressions that describe the positions of
the beads in an aggregate as a function of size ratio of the two beads composing the doublets. With the
geometry of the structure known, we perform hydrodynamic calculations to ascertain entries of the mobility
matrix for the aggregate and establish the relationship between the applied torque about the helical axis and
translations parallel to this direction. We find that for larger values of the particle radius ratio the coupling
between rotations and translations changes sign as the number of doublets in the aggregate increases. This
feature indicates that the clusters possess a more complex superhelical structure.
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I. INTRODUCTION

In recent years, spherical micron-sized paramagnetic
beads have been key components in a variety of microfluidic
applications. Traditionally, high volume fraction suspensions
of such particles have been employed in advanced damping
and shock absorbing devices where applied magnetic fields
are used to adjust the macroscopic rheological properties of
the suspension �1�. Microfluidic devices employing paramag-
netic particles rely on the manipulation of the linear self-
assembled structures that form in the presence of a uniform
applied field �2,3�. In static fields, these linear chains can be
used to span a microchannel and filter DNA �4�, or when
subject to time dependent, rotating fields, pump �5�, or mix
fluid �6�. Further, the surfaces of the beads can be chemically
active allowing them to be flexibly joined together to form
magnetically active microfilaments �7,8�. Such filaments
have been used previously in a microfluidic mixing device
�9�, as well as the propulsive tail of an artificial microswim-
mer �10�.

This artificial microswimmer can execute both flagellum-
beating �10–12� and corkscrew-type �13� swimming strate-
gies and represents the first step toward controllable biomi-
metic devices for low Reynolds number transport. More
recently, advances in colloidal technology demonstrated that
nonspherical magnetic particles can aggregate into functional
structures that possess a chiral symmetry �14�. The building
block of these clusters is a pair of micron-scale spherical
silica beads of different radii that are bonded together with a
magnetic cement, which forms a ring around the point where
the two beads contact. When subject to an applied magnetic
field, the doublets orient their axes perpendicular to the ap-
plied field. This is due to the torque the magnetic field exerts
on the ringlike distribution of magnetic material binding the
beads together. In addition to orienting the particles, the

magnetic field induces a magnetic dipole moment in each
bond that leads to doublet-doublet attraction. As the doublets
come into contact, asymmetric steric interactions resulting
from different bead sizes force the aggregate to take on a
helical structure. Like the helical flagellar bundles that E.
Coli bacteria use to propel themselves �15,16�, this geometry
affords the coupling of rotation and translation and like the
artificial microswimmer, these rotations may be provided by
torques generated by externally applied fields. Such clusters
may therefore offer unprecedented controllable transport and
separation capabilities in a low Reynolds number environ-
ment.

The primary focus of this study is to quantify the hydro-
dynamic properties of these clusters with specific attention
paid to the strength and sign of the rotational-translational
coupling. To do this, we first determine a geometric relation
that relates the positions of the beads in one doublet to its
neighbors by finding helical paths that pass through the par-
ticle centers. The parameters governing these curves depend
exclusively on the size ratio, R, of the two beads comprising
a single doublet. This geometric analysis is presented in Sec.
II. Having determined the positions of the beads, we employ
the force-coupling method �FCM� �17,18� to construct the
low Reynolds number mobility matrix for the bead ensemble
and calculate entries of the mobility matrix for the aggregate
as a whole. These entries are determined as a function of the
number of doublets in the aggregate, Nd, as well as the size
ratio R. From this analysis, we report that the aggregates
have hydrodynamic properties similar to those of superheli-
ces �19� as we find that for large R, the aggregate handedness
changes as Nd increases, which in turn affects the direction
of transport.

II. CLUSTER GEOMETRY

To determine the hydrodynamic mobility of an aggregate,
its geometry must first be established. We derive an expres-

PHYSICAL REVIEW E 79, 051405 �2009�

1539-3755/2009/79�5�/051405�7� ©2009 The American Physical Society051405-1

http://dx.doi.org/10.1103/PhysRevE.79.051405


sion that describes the positions of the beads in an aggregate
based on two conditions the doublets must satisfy. The first
condition is that neighboring doublets hard pack—each bead
of one doublet is in contact with both beads of the neighbor-
ing doublet. This condition is sufficient to relate the positions
of the beads in one doublet to those of a neighboring doublet.
The second condition is that all doublet axes lie in the same
plane. This in combination with the first condition estab-
lishes the overall geometry of the aggregate.

Consider a doublet, with bead centers Y1
1 and Y2

1, aligned
with the x axis such that

Y1
1 = �0,0,0� , �1�

Y2
1 = �a + A,0,0� , �2�

where the radius of bead 1 is A and the radius of bead 2 is a
with a�A. In the notation adopted here, the superscript re-
fers to the doublet while the subscript 1 or 2 refers to the
large or small particle, respectively. Set the position of the
bead of radius A of the neighboring doublet, Y1

2, to lie in the
xy plane. Since this sphere is in contact with both particles 1
and 2 of doublet 1, �Y1

2−Y1
1�=2A and �Y1

2−Y2
1�=a+A. This

establishes an isosceles triangle that allows us to determine
Y1

2 as

Y1
2 = 2A�sin �,cos �,0� , �3�

where 2� is the magnitude of the angle between the two
sides of the triangle of length a+A �see Fig. 1�a��. A similar
geometric argument can be made to determine the position of
Y2

2 �Fig. 1�b�� as

Y2
2 = A�sin �,cos �,0�

+ C�cos � cos �,− cos � sin �,− sin �� , �4�

where C2= �a+A�2−A2 and sin�� /2�=a /C. To ensure right-
handed symmetry of the emerging helix, the z component of
Y2

2 is chosen to be negative.
While the first condition allowed us to relate the position

and orientation of one doublet to its neighbor, a second con-
dition is needed to establish an axis of symmetry and provide
the geometry of the entire aggregate. If we introduce a third
doublet to be in contact with doublet 2, we find that there is
a range of positions for Y1

3 and Y2
3 that satisfy the first con-

dition. The two extremes in this range occur when �Y1
3

−Y2
1�=a+A and �Y2

3−Y1
1�=a+A. A second condition, there-

fore, is needed to eliminate this degree of freedom and pro-
vide unique values of Y1

3 and Y2
3. Here, we require that each

doublet axis, pnd
, for nd=1, . . . ,Nd, be perpendicular to the

applied field H0 that induces the formation of the cluster.
This condition is based on the approximation that the dipole
moment of each magnetic ring is induced by and responds to
the field H0 alone. Thus the magnetic dipole moment �20� for
each doublet nd=1, . . . ,Nd, is

mnd
= �K�pnd

pnd
+ K��I − pnd

pnd
��H0, �5�

where K� and K� are constants that depend on the geometry
and magnetic susceptibility of the magnetic ring. As the
magnetic torque is then given by �21�

�nd

mag = �0mnd
	 H0, �6�

where �0 is the permeability of free space, each doublet will
align such that pnd

·H0=0 for all nd. As a result, the aggre-
gate’s helical axis will coincide with the direction of the
applied field as well as the vector pnd

	pnd+1.
With the aggregate’s axis thus determined, we may de-

scribe the positions of the beads in the aggregate by two
simple helical curves. One curve passes through the centers
of the larger beads, while the other curve marks the positions
of the smaller beads. If we now consider a coordinate system
where the helical axis is the z axis and the positions of the
beads forming doublet nd are centered at Y1

nd =a�B ,0 ,0� and
Y2

nd =a�−b ,0 ,0�, where Ba and ba are the distances from the
axis for the large and small beads, respectively, the positions
of the beads in the neighboring doublet nd+1 may be written
as Y1

nd+1=a�B cos � ,B sin � ,Z� and Y2
nd+1=a�−b cos � ,

−b sin � ,Z� �see Figs. 1�c� and 1�d��. Similarly, we may
write the positions of the beads in doublet nd+2 as Y1

nd+2

=a�B cos 2� ,B sin 2� ,2Z�, Y2
nd+2=a�−b cos 2� ,

−b sin 2� ,2Z�, and so on. Using the four bead positions de-
scribed earlier, �1�–�4�, and also that �Y2

1−Y1
1�	 �Y2

2−Y1
2�

coincides with the helical axis of the aggregate, the dimen-
sionless parameters Z, B, b, and � can be expressed in terms
of the particle size ratio R=A /a
1. Specifically, these rela-
tions are

Z = 2R� �1 + R�2 − R2

�1 + R2��2R + 1��
1/2

, �7�

1Y
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Y
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FIG. 1. Images of two doublets in contact. �a� �Top view� and
�b� �oblique view� indicate the positions of the beads provided by
the hard pack condition, while �c� �oblique view� and �d� �top view�
show the parameters that describe the geometry of a cluster.
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b =
1

1 + R2 �1 + R� , �8�

B =
R2

1 + R2 �1 + R� , �9�

� = 2 sin−1��1 + R2

1 + R
� . �10�

The dependence of these expressions on the particle size ra-
tio R is shown in Fig. 2. With these parameters, the equations
for the simple helices passing through the centers of the large
and small beads of the aggregates as a function of the dimen-
sionless distance along the helical axis, z, are

r�z� = a�b cos��z/Z�,b sin��z/Z�,z� , �11�

R�z� = a�B cos��z/Z�,B sin��z/Z�,z� . �12�

These equations describe right-handed helices with a pitch
P /a=2�Z /�. Left-handedness can be achieved by substitut-
ing �→−�. Note that these equations hold for the case
where R=1.0 even though the aggregate does not exhibit
chiral symmetry. Figure 3 shows images of the resulting
structure over the range of particle size ratios 1.0�R�3.0.
In the case where R=1.0 we see the doublets are oriented
perpendicular to each other as observed in the experiments.
As the ratio is increased, the emerging helix can be readily
observed. The value R=3.0 is near an upper limit for particle
ratios that allow aggregates to have this geometry. Above this
upper limit, the pitch of the helix is not large enough to
accommodate the increasingly larger particles. At this maxi-
mum value of R, the large bead of doublet nd+3 is in contact
with that of doublet nd and, accordingly, �Ynd+3−Ynd

�=2A.
Therefore, the solution to

4R2 − 9Z2 − 2B2�1 − cos 3�� = 0 �13�

provides the maximum value of R. After substituting the ex-
pressions for Z, B, and � and rearranging terms, we obtain a
seventh-order equation for R,

2R7 − 5R6 − 11R4 − 6R3 − 7R2 − 4R − 1 = 0. �14�

Solving this equation numerically, we determine the maxi-
mum value as R	3.1787 which is the only noncomplex root
to Eq. �14�. Zerrouki et al. �14� also reported a lower limit of
R	2.0 based on magnetic energy considerations. Since 1.0
�R�3.18 are geometrically admissible, we will consider
particle ratios in this range in our hydrodynamic calculations.

III. CLUSTER MOBILITY

With the geometry now established, we perform calcula-
tions to determine the low Reynolds number hydrodynamic
mobility of the aggregate. In the context of low Re, transla-
tions parallel to and rotations about the helical axis are lin-
early related to external forces and torques in these respec-
tive directions through
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FIG. 2. Geometric parameters �a� b, �b� B, �c� Z, and �d� � as a
function of R.
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FIG. 3. Images of the aggregates where the positions of the
beads have been determined from Eqs. �11� and �12� wherein �a�
R=1.0, �b� R=1.25, �c� R=1.5, �d� R=1.75, �e� R=2.0, �f� R
=2.25, �g� R=2.5, �h� R=2.75, and �i� R=3.0.

HYDRODYNAMIC MOBILITY OF CHIRAL COLLOIDAL… PHYSICAL REVIEW E 79, 051405 �2009�

051405-3




U�


�
� = 
MA MB

MB MD
�
F�

��
� . �15�

The values of the scalar mobility matrix entries MA, MB, and
MD will depend linearly on the viscosity of the fluid, �, but
nonlinearly on the geometry of the cluster. Recall that the
parameters governing cluster geometry are the size ratio of
the beads within each doublet, R, and the number of doublets
comprising the cluster, Nd. The value of MB is of particular
importance as this entry provides the strength of the coupling
between the torque and translational velocity. Additionally,
the sign of MB indicates the direction the aggregate rotates
�clockwise or counterclockwise� if subject to external force
parallel to the cluster’s axis.

To obtain estimates of MA, MB, and MD for different R
and Nd, we employ the FCM �17,18� to construct an approxi-
mate mobility matrix for the ensemble of N=2Nd spherical
particles. In FCM, each particle n is represented as a finite-
force multipole expansion in the Stokes equations truncated
at the force dipole,

�p − ��2u = 

n=1

N

Fn�n�x − Yn� + Gn · ��n�x − Yn� , �16�

� · u = 0, �17�

where

�n�x� = �2��n,�
2 �−3/2e−r2/2�n,�

2
, �18�

�n�x� = �2��n,�
2 �−3/2e−r2/2�n,�

2
. �19�

The length scales �n,� and �n,� are related to the radius of
bead n, an through an=���n,�= �6���1/3�n,�. In Eq. �16�, Fn

is the total external force on bead n; the antisymmetric part
of the tensor Gn is related to the torque on the bead �n

through �Gij
n −Gji

n � /2= 1
2�ijk�k

n and the symmetric part is cho-
sen so that

� 1

2
��u + ��u�T��n�x − Yn�d3x = 0. �20�

The resulting flow field can be determined exactly and is
given in indicial notation by

ui = 

n=1

N

ui
n�x� = 


n=1

N

Pij
n �x − Yn�Fj

n + Rijk
n �x − Yn�Gjk

n ,

�21�

where

Pij
n �x� = f�r;�n,���ij + g�r;�n,��xixj , �22�

Rijk
n �x� =

df�r;�n,��
dr

xk�ij/r + g�r;�n,����ikxj + � jkxi�

+
dg�r;�n,��

dr
xixjxk/r , �23�

with

f�r;�� =
1

8��r

�1 +

�2

r2 �erf� r

��2
� −

2�

r�2�
e−r2/�2�2�� ,

�24�

g�r;�� =
1

8��r3
�1 −
3�2

r2 �erf� r

��2
� +

6�

r�2�
e−r2/�2�2�� ,

�25�

and r= �x�. FCM solutions �22� and �23� are asymptotic to the
Stokeslet, rotlet, and stresslet fundamental solutions and pro-
vide the corresponding degenerate multipoles associated
with these terms. The velocity and angular velocity of each
bead n are then determined from the resulting flow field as

Vn =� u�x��n�x − Yn�d3x , �26�


n =
1

2
� ��x��n�x − Yn�d3x , �27�

where � is the vorticity of the fluid. This volume averaged
integration captures the Faxén corrections for particle motion
in a spatially varying flow field. The primary limitation of
this approach is that FCM does not resolve near-contact lu-
brication forces. In an aggregate, however, the relative mo-
tion of neighboring doublets is limited as a result of the
interdoublet magnetic forces. We, therefore, expect lubrica-
tion forces to have a minimal effect on the overall dynamics
of the cluster.

Using Eqs. �22� and �23� in conjunction with Eqs. �26�
and �27�, we may perform pairwise calculations to construct
the mobility matrices for the collection of spheres compris-
ing the aggregate. These matrices relate moments of the
forces on the beads to moments of the fluid velocity at the
bead centers and take the form of an 11N	11N linear sys-
tem of equations,

� V
W
0
� = �MVF MV� MVG

M
F M
� M
G

MEF ME� MEG ��
F
T
G � . �28�

Here, V and W are 3N	1 vectors containing the velocity
and angular velocity information of all N beads, respectively,
and the vector of zeros, 0, has dimension 5N	1. On the
right-hand side of Eq. �28�, F and T are 3N	1 vectors that
hold all components of the total force and torque on the
beads, while G has dimension 5N	1 and holds the indepen-
dent components of the beads’ stresslets.

By considering two rigid body motions for a given en-
semble of beads, we can determine the values of MA, MB,
and MD for the aggregate as a whole. We first examine the
case where the aggregate is translating in the positive z di-
rection without rotating. Therefore, the motion of each bead
n is Vx

n=Vy
n=0, Vz

n=1.0, and 
x
n=
y

n=
z
n=0. With these val-

ues of the velocities and angular velocities, we solve linear
system �28� to obtain the forces and torques on each bead
from which we calculate the total force in the z direction
F�

1=
nFz
n and total torque about the axis ��

1=
n�z
n+ �Yx

nFy
n
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−Yy
nFx

n�. We perform the same calculation for the second
rigid body motion where the aggregate rotates without trans-
lating. In this case, the beads’ motions are given by
Vx

n=−Yy
n, Vy

n=Yx
n, and Vz

n=0 and 
x
n=
y

n=0 and 
z
n=1 and

we again solve Eq. �28� to determine the total force and
torque, F�

2 and ��
2, respectively. With the total forces and

torques for these two cases known, we may determine the
entries MA, MB, and MD for the aggregate from Eq. �15�
rewritten as

�
1

0

1

0
� = �

F�
1 ��

1 0 0

F�
2 ��

2 0 0

0 0 F�
2 ��

2

0 0 F�
1 ��

1
��

MA

MB

MB

MD

� . �29�

Figure 4 shows the values of MA, MBNd, and MD as a
function of Nd for various values of R. We multiplied MB by
Nd since the magnetic torques used to manipulate an aggre-
gate in an experimental setting will increase linearly with Nd.
The value plotted, therefore, indicates how the velocity of an
actuated aggregate will change as Nd increases. As expected,
MA and MD are found to decrease uniformly with both Nd
and R as these parameters indicate an overall increase in the
size of the object. The dependence of MB on these param-
eters demonstrates the interesting hydrodynamic properties
of these aggregates. We find that for larger R, the sign of MB
will depend on Nd. Specifically, an aggregate whose geom-
etry can be described by Eqs. �11� and �12� with ��0 will
translate in the positive z direction when Nd is low and ��

�0. However, at higher values of Nd, this aggregate will
move in the negative z direction.

This kind of behavior has previously been observed be-
fore with superhelices �19�—helices whose axes are them-
selves helical curves. Here, the two superimposed helices
may have different handedness and, depending on the geom-
etry of the helices, will rotate either clockwise or counter-
clockwise when pulled through a fluid. In Fig. 3, it is clear
that for larger R, the aggregates, like superhelices, possess a
secondary twist of opposite handedness as compared to the
geometric expression that describes the position and orienta-
tion of one doublet relative to its neighbor. This twist, here
left-handed, may be described by the curve

Rtwist�z� = a�B cos��2� − 3��z/�3Z�� ,
�30�

− B sin��2� − 3��z/�3Z�,z� .

with ��0. This expression is derived by relating the posi-
tion of the large bead of doublet nd with the position of the
large bead in doublet nd+3. Similar expressions that relate
the large beads of doublets nd+1 and nd+2 with those of
nd+4 and nd+5 can be obtained by rotating Eq. �30� about
the z axis by � and 2�, as well as shifting the z coordinate by
the amount Z and 2Z, respectively. The pitch and wavelength
of this helix is much larger than that associated with Eq. �12�
�Fig. 5� and therefore, we see that at low Nd the helix de-
scribed by Eq. �12� dominates. At large values of Nd, how-
ever, the clockwise twist is well established and determines
the overall handedness of the cluster.

IV. CONCLUSION AND DISCUSSION

In this study, we explored the geometric and hydrody-
namic properties of chiral clusters formed by rigid doublets
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FIG. 4. Entries of the mobility matrix: �a� MA, �b� MBNd, and �c�
MD as a function of Nd. In the plots, the solid line corresponds to
R=1.5, the dashed line corresponds to R=1.75, the dotted line cor-
responds to R=2.0, the dashed-dotted line corresponds to R=2.25,
the solid line with circular markers corresponds to R=2.5, the solid
line with triangular markers corresponds R=2.75, and the solid line
with square markers corresponds to R=3.0.
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composed of two spheres of different radii. We established
parametrized helical curves that describe the positions of the
beads within each cluster. The parameters governing the
pitch and distance from the axis of symmetry depend exclu-
sively on the particle size ratio, R, of the doublet. With the
cluster geometry established, we employed FCM to solve
two hydrodynamic resistance problems for the collection of
spherical particles allowing us to determine entries of the

mobility matrix for the entire cluster. In doing this analysis,
we established that clusters composed of doublets with larger
R and with higher values of Nd will have a hydrodynamic
handedness that is opposite to that of the right-handed pa-
rametrized curve providing the geometry. We related this be-
havior to the left-handed curves of longer wavelength that
may also be used to determine the positions of the beads in
the aggregates. These curves dominate the hydrodynamic re-
sponse at large R once established �Nd large�.

This study is the first step toward understanding how
these aggregates might be used for transport and separation
in microfluidic devices. While we have established the direc-
tion the aggregates will translate if subject to an applied
torque about the helical axis, we have not specified how such
a torque might be generated. We are currently investigating
the possibility of using time-dependent magnetic or electric
fields to generate this torque on cluster. Developing such
strategies relies on an appropriate description of the distribu-
tion of the magnetic material joining the beads as well as the
dielectric properties of the beads themselves. Along with de-
termining effective actuation strategies, classifying the be-
havior of a suspension of clusters is also of interest. Recent
experiments �22� and theoretical �23–26� studies have dem-
onstrated the presence of long wavelength instabilities in
suspensions of self-propelled particles which lead to the for-
mation of jets and vortices of length scales much greater than
the individual particles. Understanding if such hydrodynamic
instabilities will be present in cluster suspensions and quan-
tifying the stabilizing effects of the applied field are essential
to the creation of microfluidic transport and separation de-
vices based on these aggregates. As with interacting artificial
microswimmers �27�, the intercluster magnetic interactions
will also affect the performance of such a device and need to
be understood as well.
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