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A second-kind integral equation for the tractions on a rigid body moving in a Stokesian
fluid is established using the Lorentz reciprocal theorem and an integral equation for a dou-
ble-layer density. A second-order collocation method based on the trapezoidal rule is
applied to the integral equation after appropriate singularity reduction. For translating pro-
late spheroids with various aspect ratios, the scheme is used to explore the effects of the
choice of completion flow on the error in the numerical solution, as well as the condition
number of the discretized integral operator. The approach is applied to obtain the velocity
and viscous dissipation of rotating helices of circular cross-section. These results are com-
pared with both local and non-local slender-body theories. Motivated by the design of arti-
ficial micro-swimmers, similar computations are performed on previously unstudied
helices of non-circular cross-section to determine the dependence of the velocity and pro-
pulsive efficiency on the cross-section aspect ratio and orientation. Overall, we find that
this formulation provides a stable numerical approach with which to solve the flow prob-
lem while simultaneously obtaining the surface tractions and that the appropriate choice
of completion flow provides both increased accuracy and efficiency. Additionally, this
approach naturally avails itself to known fast summation techniques and higher-order
quadrature schemes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Boundary integral representations and the numerical methods used to solve them have been indispensable tools for the
study of bodies moving in and interacting through a Newtonian Stokesian fluid. A boundary integral formulation reduces the
full three-dimensional problem of solving for the fluid flow to the two-dimensional problem of determining source distribu-
tions on the bounding surfaces [1]. While numerical discretization of these equations does require the use of quadrature
schemes that carefully handle singular kernels, and does produce matrices that are not sparse, complex object geometries
and multiply connected domains are handled naturally [1,2], as are objects that deform or change shape in response to fluid
stresses (e.g. drops, vesicles, and cells [3–10]). Additionally, techniques such as the fast multipole method [11,12] and iter-
ative solvers such as GMRES [13] can be applied to significantly reduce the computational costs, especially for large systems.

In the case of rigid body motion, the classical boundary integral representation expresses the surface velocity as the sur-
face convolution of the Stokeslet tensor with the surface tractions [1,14]. This first-kind integral equation for the tractions
leads to poorly conditioned linear systems. Power and Miranda [15] reformulated the problem as a second-kind equation for
an unknown double-layer density in a completed double-layer boundary integral equation (CDLBIE). In their formulation, the
. All rights reserved.
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solution is represented by a surface distribution of stresslets as well as the flows generated a point force (Stokeslet) and point
torque (rotlet) located within the interior of the body. The magnitude of the two point sources are related to the surface inte-
gral of the double-layer density and the surface integral of the antisymmetric moment of the double-layer density. The inclu-
sion of Stokeslet and rotlet completes the deficient rank of the double-layer integral operator and are together referred to as
the completion flow. The choice of the completion flow is not unique and other choices have been considered such as a sin-
gle-layer distribution on a parallel surface in the interior of the object [16]. While use of the CDLBIE to determine the total
force and torque on an object overcomes the problems of numerical stability associated with the first-kind equation, infor-
mation regarding the pointwise surface tractions is not directly accessible. Knowledge of the total force and torque on the
rigid body is sufficient in many applications, but there are situations, such as shape optimization [17,18], where the deter-
mination of the surface tractions is necessary. One approach to address this was pursued by Ingber and Mondy [19] who
derived a second-kind integral equation involving hypersingular integrals for the tractions. Using an alternative, indirect ap-
proach, Karilla and Kim [20,2] found that it is possible to use the CDLBIE to formulate a second-kind equation for the surface
tractions on a rigid body via a Lorentz reciprocal theorem argument. We refer to this equation as the completed traction
boundary integral equation (CTBIE). An equation equivalent to the CTBIE was later derived [21,22] through differentiation
of the single-layer first-kind equation [14] for rigid body tractions.

In this study, a second-order method based on the trapezoidal rule and the Nyström method is applied to the CTBIE. Key
to this approach is the appropriate singularity reduction which is established here through a rewriting of the double-layer
adjoint term. The singularity subtraction can be employed to improve the accuracy of other quadrature methods applied to
the CTBIE. The scheme is employed to determine the tractions on a translating prolate spheroid, which are known exactly.
These calculations are conducted for two different choices of completion flow and the differences in numerical error as well
as the condition number of the resulting matrices are compared. It is found that an appropriate choice results in well con-
ditioned systems even for bodies of high aspect ratio with GMRES needing only a very modest number of interations to
determine the solution within a tolerance of 10�12. We then conduct computations to determine the translation speed of
simple helical bodies of circular cross-section where we specify the angular velocity about the helical axis and require that
the total force in the translation direction is zero. These results are compared with those of both local and non-local slender-
body theory of [23–25]. Finally, the method is applied to determine the coefficients of the hydrodynamic mobility for helices
with elliptic cross-sections. We examine the dependence of the mobility entries on the cross-sectional aspect ratio and ori-
entation. Such a problem has not been considered previously, but is of technological importance as emerging microfluidic
technologies, especially artificial micro-swimmers [26,27], are based on such shapes. Here, our results show that greater pro-
pulsion speed and mechanical efficiency can be achieved by having the major axis of the cross-section perpendicular to the
helical axis.

2. Second-kind equation for surface tractions

For completeness, we first present the derivation of the traction integral equation for a body undergoing rigid body mo-
tion. This integral equation is established using the Lorentz reciprocal theorem and a general solution to the Stokes equations
written as a completed double-layer boundary integral equation (CDLBIE).

Consider a single closed body with surface D that is immersed in a three dimensional Stokesian fluid. If the surface veloc-
ity of the body is v(x), x 2 D, the fluid flow in the exterior is described by a solution to the Stokes equations
$p� gr2u ¼ 0; ð1Þ
$ � u ¼ 0 ð2Þ
with pressure field p and boundary conditions
uðxÞ ¼ vðxÞ; x 2 D: ð3Þ
as well as uðxÞ ¼ Oðr�1Þ and pðxÞ ¼ Oðr�2Þ as r ?1.
The Power and Miranda formulation [15], allows for u(x) to be written in terms of a double-layer density w(x) as
uiðxÞ ¼
Z

D
Tijkðx� yÞnkðyÞwjðyÞdSy þ V i½w�ðxÞ; ð4Þ
where x 2 R3 n intðDÞ,
Tijkðx� yÞ ¼ 3
4pg

ðxi � yiÞðxj � yjÞðxk � ykÞ
jx� yj5

ð5Þ
and n is the normal to the surface. Taking the limit as x approaches the surface in Eq. (4) yields the relationship between the
known surface velocities and the double-layer density
v iðxÞ ¼
1

2g
wiðxÞ þ

Z
D

Tijkðx� yÞnkðyÞwjðyÞdSy þ V i½w�ðxÞ ð6Þ
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with x 2 D. The term V in Eqs. (4) and (6) is the so-called completion flow and provides the eigenvectors necessary to have a
full rank integral operator for the determination of w. As mentioned in the introduction, there is not a unique choice for V.
While the specific choices considered in this work are presented in detail in the subsequent section, for the moment we need
only to mention that the class of V considered in this work yields the following relationships between the double-layer den-
sity and the total force and torque on the object
F ¼
Z

D
wðyÞdSy; ð7Þ

s ¼
Z

D
ðy � YÞ � wdSy: ð8Þ
with Y 2 int(D).
With Eq. (6) and the Lorentz reciprocal theorem, a second-kind equation for the tractions can be determined [2]. The Lor-

entz reciprocal theorem states that if two sets of flow fields and tractions on D, (u1, f1) and (u2, f2), satisfy the homogeneous
Stokes equations then they also satisfy
u1; f2
D E

¼ u2; f1
D E

; ð9Þ
where
hg;hi ¼
Z

D
gihidS: ð10Þ
Keeping solution set 1 (v, f), arbitrary and taking solution set 2 to be the flow field and tractions associated with a rigid body
motion (uRBM, fRBM), where
uRBMðxÞ ¼ UþX� ðx� YÞ ð11Þ
for x 2 D, Eq. (9) becomes
v; fRBM
D E

¼ uRBM; f
� �

: ð12Þ
With the value of uRBM on the boundary given by Eq. (11), the right hand side of Eq. (12) becomes
uRBM; f
� �

¼ UþX� ðx� YÞ; fh i ¼ U � FþX � s; ð13Þ
where F and s are the total force and torque on the body associated with the arbitrary solution. Using Eqs. (7) and (8), this
may also be written in terms of the double-layer density, w(x) corresponding to the arbitrary solution as follows:
uRBM; f
� �

¼ U � FþX � s ¼ UþX� ðx� YÞ;wh i ¼ uRBM;w
� �

: ð14Þ
We emphasize that w may be introduced in this way only because the prescribed solution is a rigid body motion, and Eqs. (7)
and (8) provide the relationship between w and F and s. The arbitrary fluid flow v(x) is also related to w(x) through Eq. (6).
With the notation
Ai w½ �ðxÞ ¼ 1
2g

wiðxÞ þ
Z

D
Kijðx� yÞwjðyÞdSy þ V i w½ �ðxÞ; ð15Þ
the left hand side of Eq. (12) may be rewritten as
hv; fRBMi ¼ hA½w�ðxÞ; fRBMi ¼ hw;AT fRBM
h i

ðxÞi; ð16Þ
where AT ½��ðxÞ is the adjoint of the linear integral operator A½��ðxÞ and is given by
AT
i ½f�ðxÞ ¼

1
2g

fiðxÞ þ nkðxÞ
Z

D
Tijkðy � xÞfjðyÞdSy þ VT

i ½f�ðxÞ: ð17Þ
Combining Eqs. (14) and (16) we find
w;AT ½fRBM�ðxÞ � U�X� ðx� YÞ
D E

¼ 0: ð18Þ
Since w is an arbitrary double-layer density, Eq. (18) is satisfied when
AT fRBM
h i

ðxÞ ¼ UþX� ðx� YÞ; ð19Þ
yielding the second-kind completed traction boundary integral equation (CTBIE)
Ui þ ðX� xÞi ¼
1

2g
fiðxÞ þ nkðxÞ

Z
D

Tijkðy � xÞfjðyÞdSy þ VT
i ½f�ðxÞ: ð20Þ
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Note that Eq. (20) was established for a single rigid body. This result, however, may be readily extended to interacting bodies
by initially considering a CDLBIE formulated for multiply connected domains. Following the analysis described above using
instead this CDLBIE in the reciprocal theorem provides the traction integral equation for the case where there are multiple
bodies.

3. Choices of completion flow

While the double-layer integral operator combined with any appropriate choice for V provides a complete solution to the
Stokes equations, the accuracy and conditioning of the discretized equation will depend on the specific V. To explore these
dependencies, we consider two distinct choices for V in our calculations of the tractions on a translating prolate spheroid
presented in Section 6.1. Both choices, however, may be written in the general form
V i½w�ðxÞ ¼
Z

D
Gijðx� XðyÞÞwjðyÞdSy þ

Z
D

Rijðx� XðyÞÞððy � XðyÞÞ � wÞjdSy; ð21Þ
where the points X(y) lie in the interior of the body for all y 2 D and
GijðxÞ ¼
1

8pg
dij

jxj þ
xixj

jxj3

 !
ð22Þ

RijðxÞ ¼
1

8pg
�ijkxk

jxj3
ð23Þ
are the Stokeslet and rotlet kernels, respectively. The adjoint of the completion flow is then given by
VT
i ½f�ðxÞ ¼

Z
D

Gjiðy � XðxÞÞfjðyÞdSy þ �ijk xk � XkðxÞð Þ
Z

D
flðyÞRlj y � XðxÞð ÞdSy: ð24Þ
The total force and total torque on the body for completion flow of this form are related to the double layer density through
Eqs. (7) and (8), respectively.

What distinguishes the two V considered in this work are the details regarding X(y). For the first choice, we take X(y) to
be equal to a constant position vector XPM(y) = Y for some Y 2 int (D). In this case, Eq. (21) becomes
VPM;i½w�ðxÞ ¼ Gijðx� YÞ
Z

D
wjðyÞdSy þ Rijðx� YÞ

Z
D
ððy � YÞ � wÞjdSy: ð25Þ
This choice of completion flow, which we call VPM , is that proposed by Power and Miranda [15] and corresponds to the flow
generated by a point force and point torque located at the point Y in the interior of the body. The second choice we refer to as
VSB and is applicable to slender bodies whose surfaces can be parametrized by arclength s and angle h such that y = y(s,h),
y 2 D. For this choice we take XSB(y) = r(s) where r(s) is a segment of the centerline of the body. Here, the completion flow is
therefore given by
VSB;i½w�ðxÞ ¼
Z Z

Gijðx� rðsÞÞwjðs; hÞJðs; hÞdsdhþ
Z Z

Rijðx� rðsÞÞððyðs; hÞ � rðsÞÞ � wðs; hÞÞjJðs; hÞdsdh; ð26Þ
where J is the surface Jacobian.

4. Singularity subtraction

In the integrand of Eq. (20) appears the term Tijk(y � x)nk(x) which diverges like 1/jy � xj as y ? x and must therefore be
treated judiciously when employing numerical quadrature. Reducing the order of the singularity prior discretization is an
effective approach and results in improved accuracy regardless of the choice of quadrature scheme. Such a singularity reduc-
tion is possible here using the identities
Z

D
Tijkðx� yÞnkðyÞdSy ¼ �

1
2g

dij ð27Þ
and
Tijkðy � xÞ ¼ �Tijkðx� yÞ; ð28Þ
which allow us to rewrite the first two terms in the right hand side of Eq. (20)
I iðxÞ ¼
1

2g
fiðxÞ þ nkðxÞ

Z
D

Tijkðy � xÞfjðyÞdSy ð29Þ
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as
I iðxÞ ¼
Z

D
Tijkðy � xÞðfjðyÞnkðxÞ þ fjðxÞnkðyÞÞdSy: ð30Þ
As shown in Appendix A, this reformulation of the adjoint double-layer removes the 1/jy � xj divergence of the kernel. While
this reduction technique is similar to that for the double-layer integral [1,15] and relies on the same identity Eq. (27), the
resulting form of the integrand is quite different. The most striking difference is the plus sign in the integrand in Eq. (30)
as opposed to the minus sign in the regularized double-layer integral [1].
5. Numerical discretization

While the integrand in Eq. (30) does not diverge as y ? x, its value will depend on the direction from which the limit is
taken. This type of ‘‘phase’’ singularity is similar to that encountered in the Biot-Savart integral in 2D vortex dynamics and an
effective technique to handle this integral numerically is the point vortex method [28,29]. In the point vortex method, the
integral is approximated using the trapezoidal rule where the contribution from the source whose location coincides with
the field point is removed from the trapezoidal sum. This modification has been shown to preserve the second-order accu-
racy [28,29] of the trapezoidal rule, and is widely used in discretizations of the CDLBIE. We employ the approach here for the
CTBIE with our numerical results presented in Section 6.1 indicating second-order accuracy.

Before applying the trapezoidal rule to I and VT , a surface parametrization (u,v) is introduced so that Eq. (30) becomes
I iðyðu; vÞÞ ¼
Z Z

Tijkðyðu0;v 0Þ � yðu; vÞÞðfjðu0;v 0Þnkðu;vÞ þ fjðu;vÞnkðu0;v 0ÞÞJðu0;v 0Þdu0dv 0; ð31Þ
while Eq. (24) now reads
VT
i ½f�ðyðu;vÞÞ ¼

Z Z
Gjiðyðu0; v 0Þ � Xðu;vÞÞfjðu0; v 0ÞJðu0;v 0Þdu0dv 0 þ �ijkðykðu;vÞ

� Xkðu;vÞÞ
Z Z

flðu;vÞRljðyðu0; v 0Þ � Xðu;vÞÞJðu0; v 0Þdu0dv 0: ð32Þ
where x = y(u,v) and J is the surface Jacobian. We then introduce the rectangular surface mesh up = ph1 and vq = qh2 where h1

is the grid spacing in the u � direction, h2 is the grid spacing in the v � direction and p = 1, . . . ,Nu while q = 1, . . . ,Nv. Taking
the field point to coincide with the grid point (un,vm), we then apply the trapezoidal rule to Eqs. (31) and (32) to obtain,
Ih
i ðun; vmÞ ¼ h1h2

X
p–n

0
X
q–m

0 Tijkðyðup;vqÞ � yðum;vnÞÞ � ðfjðup; vqÞnkðun;vmÞ þ fjðun;vmÞnkðup;vqÞÞJðup;vqÞ
� �

ð33Þ
and
VT;h
i ½f�ðun;vmÞ ¼ h1h2

X
p

0
X

q

0 Gjiðyðup; vqÞ � Xðun;vmÞÞfjðup;vqÞ þ �ijkðykðun;vmÞ
�

� Xkðun;vmÞÞflðup; vqÞRljðyðup; vqÞ � Xðun;vmÞÞ
�
Jðup;vqÞ; ð34Þ
where
P0 indicates the trapezoidal sum where the endpoints are weighted by a factor of 1/2. Eq. (20) evaluated at the field

point y(un,vm) is then replaced by
Ui þ �ijkXjykðun;vmÞ ¼ Ih
i ðun;vmÞ þ VT;h

i ðun;vmÞ: ð35Þ
For prescribed motion of the boundary, Eq. (35) may be expressed as the linear system of equations
U ¼ AT;hF ; ð36Þ
where U is the vector containing the three components of the velocity at each of the Npts collocation points, F is the unknown
traction data at the collocation points, and the 3Npts � 3Npts matrix AT;h is the discretized integral operator.
6. Numerical simulations

In this section, the numerical scheme described above is used to determine the tractions on a prolate spheroid translating
parallel and perpendicular to its axis of symmetry and to calculate the motion of helices with both circular and ellipsoidal
cross-sections. In the case of the prolate spheroid, exact expressions for the tractions and the total force are known [30,31],
allowing for the study of the convergence of the numerical solution for different choices of completion flow. For helices with
circular cross-section, we can compare our numerical results with those determined from local [24,25] and non-local [23]
slender-body theories.
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6.1. Settling prolate spheroid

As a first test of the numerical scheme, the tractions on prolate spheroids of different aspect ratios translating with veloc-
ity U in directions parallel and perpendicular to its axis of symmetry are calculated and compared with analytic expressions
obtained from Oberbeck’s solution [30,31]. The surface of a spheroid whose axis of symmetry is aligned with the z-direction
may be expressed as
xð/; hÞ ¼ a sin / cos hx̂þ a sin / sin hŷ � c cos /ẑ; ð37Þ
where / 2 [0,p] and h 2 [0,2p]. For translation velocity U ¼ Uẑ parallel to the axis of symmetry, the surface tractions are of
the form fk ¼ fkð/Þẑ where
fkð/Þ ¼
4Ug

v0 þ a0c2

cos2 /
c2 �2 þ 1

a2

� ��1=2

ð38Þ
and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2
p

=c2. For translation U ¼ Ux̂ perpendicular to the axis of symmetry, the surface tractions are given by
f? ¼ f?ð/Þx̂ with
f?ð/Þ ¼
4Ug

v0 þ a1a2

cos2 /
c2 �2 þ 1

a2

� ��1=2

: ð39Þ
The constants in Eqs. (38) and (39) are
v0 ¼
ca2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � a2
p L; ð40Þ

a0 ¼
ca2

ðc2 � a2Þ3=2 L �
2a2

c2 � a2 ; ð41Þ

a1 ¼
c2

c2 � a2 �
ca2

2ðc2 � a2Þ3=2 L: ð42Þ
where L ¼ log½ð1þ �Þ=ð1� �Þ�. The tractions given by Eqs. (38) and (39) for c/a 2 [2,32] are plotted as the solid lines in Fig. 1.
For motion both parallel and perpendicular to the axis, the variation in magnitude of the tractions between the poles and
equator increases with increasing aspect ratio. The total force on the prolate spheroid,
F ¼
Z

fðyÞdSy ð43Þ
for parallel motion is then given by
F ¼ Fkẑ ¼
16pc�3U

ð1þ �2ÞL � 2�
ẑ ð44Þ
and for the perpendicular case by
F ¼ F?x̂ ¼ 32pc�3U
ð3�2 � 1ÞL þ 2�

x̂: ð45Þ
With the surface described by Eq. (37), u = / and v = h are taken in Eqs. (31) and (32). The tractions are then determined
numerically from the discretized system Eq. (35) with N/ + 1 points in the /-direction and Nh points in the h-direction.
Accounting for the redundancy of the poles, the total number of points is Npts = (N/ � 1)Nh + 2. To explore the dependence
of the numerical solution on the specific choice of completion flow, the two choices for V from Section 3 are considered
in our calculations. For VPM , we take XPM = (0,0,0). As the centerline of the spheroid is described by the z-coordinate, for
the slender-body choice, VSB we take XSBð/Þ ¼ ��c cos /ẑ for the surface point x. Scaling by the eccentricity � ensures
XSB(/) lies in the interior of the spheroid "/ 2 [0,p].

For all the calculations presented here, the linear system Eq. (36) is solved directly and Nh = 4 while N/ is varied from
N/ = 4 � 512 yielding grid sizes h1 = p/N/ and h2 = 2p/Nh. Over this range of N/, a negligible decrease in the error was ob-
served when Nh was increased to Nh = 8. This suggests a weak dependence of the error on Nh.

The values of the tractions determined numerically for N/ = 256 and with VSB are shown as circular markers in Fig. 1 and
are in excellent agreement with the analytic solutions Eqs. (38) and (39). To analyze the convergence of the numerical solu-
tion, ~f , the L2-error in the tractions
E2ðh1Þ ¼ kf � ~fk2;N/
¼ h1

X
n

0jf � ~f j2
 !1=2

ð46Þ
is computed.



Fig. 1. The tractions on a prolate spheroid translating (a) parallel and (b) perpendicular to its axis of symmetry. The solid lines are provided by the analytic
solution and the circular symbols correspond to simulation results where N/ = 256 and VSB . The aspect ratio of the spheroid, c/a, for each case is indicated.
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The values of the relative L2-error, E2=kfk2;N/
, for both parallel and perpendicular motions for VPM and VSB are shown in

Fig. 2. For both choices of completion flow and for both parallel and perpendicular motions, second-order accuracy is ob-
served and confirmed by calculating
pðh1Þ ¼
1

log 2
log E2ð2h1Þ=E2ðh1Þ½ �: ð47Þ
For a given discretization, however, the choice of VPM is found to provide a more accurate solution especially for the higher
aspect ratio cases. For the choice VPM , we also observe rapid decrease in the error before the asymptotic convergence rate is
achieved. For finer discretizations, the error in the numerical solution using VPM appears to depend less on the aspect ratio
than it does for VSB. The error in the total force



Fig. 2. E2=kfk2;N/
as a function of N/ for (a) and (b) parallel and (c) and (d) perpendicular translations. (a) and (c) were provided with VPM and (b) and (d)

correspond to the choice VSB . In the plots: open circles indicate c/a = 2, open squares c/a = 4 and open triangles c/a = 8 while closed circles correspond to c/
a = 16 and closed squares to c/a = 32. The dashed lines in each figure indicate second-order convergence.
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DFk;? ¼ Fk;? � h1h2

X0
n

X0
m

~f k;?ð/n; hmÞJð/n; hmÞ
					

					 ð48Þ
is also determined for the two choices of completion flow. These data are shown in Fig. 3, and here the calculations with the
slender body completion flow, VSB, provide the more accurate value of the total force. We again observe second-order accu-
racy and a more rapid convergence before the asymptotic rate is realized. For the case where the spheroid is settling parallel
to its axis, we see small dips in the curves before asymptotic convergence is reached. This is due to the difference between
the analytical and numerical force values changing sign from positive to negative and ultimately converging to zero from
below. In looking at the normalized pointwise error in Fig. 4, one finds a constant value for VPM and a variation over approx-
imately five orders of magnitude for VSB with the maximum error realized near the poles. The error is much greater than that
of the VPM case near the poles, but is less near the equator. The large increase in the error near the poles for VSB is a result of
an evaluation point for the completion flow being close to the surface of the spheroid. This hypothesis was confirmed by
taking VPM with XPM = (0,0,c�) and observing similar values in the error. In the calculation of the force, the Jacobian appears
in the integral and it decreases to zero near the poles. Therefore, the main contribution to the error in the force, DF, comes
from the equatorial values where the VSB choice provides a better estimate.

In Figs. 2 and 3, a rapid convergence to second-order accuracy is observed, especially for low values of the aspect ratio. We
expect that the order of the next term in the error expansion is of higher order than h3. Assuming the error expansion may be
written as
E2ðh1Þ ¼ C2h2
1 þ Cqhq

1 þOðh
r
1Þ; ð49Þ
where r > q > 2, we also have
E2ð2h1Þ ¼ 4C2h2
1 þ 2qCqhq

1 þOðh
r
1Þ: ð50Þ



Fig. 3. DF/F as a function of N/ for (a) and (b) parallel and (c) and (d) perpendicular translations. (a) and (c) were provided with VPM and (b) and (d)
correspond to the choice VSB . In the plots: open circles indicate c/a = 2, open squares c/a = 4 and open triangles c/a = 8 while closed circles correspond to c/
a = 16 and closed squares to c/a = 32. The dashed lines in each figure indicate second-order convergence.

Fig. 4. Pointwise error in the tractions as a function of / for c/a = 32 and N/ = 256. The solid line corresponds to VSBðxÞ and the dashed line to VPMðxÞ.
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Table 1
Exponent of the next order correction, q, for VSB for the case of translation parallel to the axis of
symmetry, as N/ and aspect ratio c/a are varied.

N/ c/a

2 4 8

128 4.0353 4.1941 4.3235
256 4.0086 4.0388 4.1977
512 4.0021 4.0094 4.0390

Table 2
Exponent of the next order correction, q, for VSB for the case of translation perpendicular to the axis of
symmetry, as N/ and aspect ratio c/a are varied.

N/ c/a

2 4 8

128 4.0113 4.0404 3.3854
256 4.0017 4.0050 3.9889
512 4.00016 3.999958 3.9943

Table 3
Condition number when the completion flow is VPM , as N/ and aspect ratio c/a are varied.

N/ c/a

2 4 8 16 32

8 2.0765e1 3.6687e2 1.9657e4 1.9223e6 2.3391e8
16 2.1662e1 3.9955e2 1.5352e4 9.4858e5 9.5275e7
32 2.2216e1 4.2412e2 1.6429e4 7.5191e5 4.9691e7
64 2.2519e1 4.3647e2 1.7262e4 7.9205e5 3.9386e7
128 2.2679e1 4.4275e2 1.7666e4 8.2663e5 4.1089e7
256 2.2760e1 4.4592e2 1.7868e4 8.4320e5 4.2730e7
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Using Eqs. (49) and (50), we may determine the order of the correction term in the error expansion from
qðh1Þ ¼
1

log 2
log ðE2ð4h1Þ � 4E2ð2h1ÞÞ=ðE2ð2h1Þ � 4E2ðh1ÞÞ½ �: ð51Þ
Values of q are shown in Tables 1 and 2 for VSBðxÞ, c/a = 2 � 8 and N/ = 128 � 512 and indicate that the next term in the error
expansion is fourth-order. Although not reported, the same result was found for VPM . This does suggest that higher-order
schemes could easily be found through Richardson extrapolation or through direct calculation and removal of the second-
order error term [29].

Like the values of the error, the condition numbers of the matrices resulting from the discretization of the integral oper-
ators will depend on the choice of completion flow. The condition number for the case of VPM are given in Table 3, while
those corresponding to VSB are given in Table 4. For both choices of completion flow, we find the method to be well-condi-
tioned in that the condition number is not found to greatly increase with mesh refinement. We do find, however, that for
larger aspect ratios, the condition number when V ¼ VSB is significantly less than that when we take V ¼ VPM . For the most
extreme case of c/a = 32 and N/ = 256, the condition number for the VPM case is about 5 � 105 times greater than the value
80.363 for VSB. While the condition number of the matrix illustrates how sensitive the solution of a linear system is to per-
turbations in the right hand side data, it may not be directly associated with the number of iterations needed by a Kyrlov
subspace method to determine the solution to the system within a given tolerance [32,33]. We therefore directly explore
the number of GMRES [13] iterations required for convergence. Tables 5 and 6 show the number of GMRES iterations needed
to determine the tractions on a prolate spheroid translating perpendicular to its axis for when the completion flow choices
are VPM and VSB, respectively. In these calculations, the relative tolerance was 10�12 and the aspect ratio varied from c/a = 2
to c/a = 32. Additionally, these GMRES computations were performed without restarting or preconditioning. As was the case
when examing the condition number, we see that for both choices of completion flow, the number of interations does not
grow significantly as the mesh is refined, but the number of interations does increase with increasing aspect ratio. The
growth with aspect ratio is much slower for the case where VSB. In the most extreme case where c/a = 32, it requires nearly
four times fewer iterations for when we have VSB than for VPM .

Fig. 5 shows the spectrum of AT;h for the two choices of completion flow for the case where N/ = 256 and c/a = 32. While
the values of the spectral radii for the two choices are comparable, we find that the modulus of the minimum eigenvalue of
AT;h with VPM is several orders of magnitude less than that when we take VSB. As the aspect ratio of the body increases, so



Table 4
Condition number when the completion flow is VSB , as N/ and aspect ratio c/a are varied.

N/ c/a

2 4 8 16 32

8 4.3208e0 8.2001e0 3.8178e1 4.8251e2 1.2495e4
16 4.5461e0 7.4470e0 1.6442e1 5.6977e1 5.5242e2
32 4.5744e0 7.4716e0 1.6581e1 3.4579e1 8.8530e1
64 4.5829e0 7.5318e0 1.6867e1 3.6452e1 7.2310e1
128 4.5864e0 7.5778e0 1.7087e1 3.7415e1 7.7866e1
256 4.7171e0 7.6053e0 1.7224e1 3.8013e1 8.0363e1

Table 5
Number of GMRES iterations needed (without preconditioning or restarting) to determine the tractions to within a tolerance of
10�12 on a prolate spheroid of aspect ratio c/a translating perpendicular to its axis of symmetry when the completion flow is VPM .

N/ c/a

2 4 8 16 32

8 12 14 17 26 36
16 17 21 28 40 73
32 21 23 33 55 99
64 22 25 34 60 108
128 23 27 37 61 120
256 24 28 40 63 117
512 24 29 40 66 120

Table 6
Number of GMRES iterations needed (without preconditioning or restarting) to determine the tractions to within a tolerance of
10�12 on a prolate spheroid of aspect ratio c/a translating perpendicular to its axis of symmetry when the completion flow is VSB .

N/ c/a

2 4 8 16 32

8 12 12 12 11 12
16 16 17 20 23 22
32 19 17 22 26 32
64 21 19 22 27 34
128 21 20 22 27 34
256 22 20 23 27 34
512 24 20 23 27 35

Fig. 5. Spectrum of AT;h for (a) VPM and (b) VSB where in each case N/ = 256 and c/a = 32.
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does the ratio of the largest to smallest eigenvalues of the adjoint double-layer operator. The growth of this ratio may be
regulated by choosing VSB whose spectrum intersects that of the double-layer. The spectrum of VPM does not intersect that
of the double-layer operator and therefore does not have this property.
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6.2. Helix with a circular cross-section

A more complex shape to be considered here is a rigid simple helix with a circular cross-section. Given their importance
in low Reynolds number swimming and the locomotion of microorganisms such as E. coli [34–36], simple helices have been
studied experimentally [35,37,38], computationally [39] and theoretically [24,25,23] with the latter two using a variety of
resistive force and slender-body theories.

A helical curve parametrized by its arclength s 2 [�l, l] and whose axis is aligned with the z-direction may be written as
RðsÞ ¼ bðcos ksx̂þ sin ksŷÞ þ asẑ ð52Þ

with jdR/dsj2 = a2 + b2k2. The parameter b describes the radius of the helix, while k and a provide the wavelength K = 2p/k
and helical pitch k = aK. These parameters are related through the condition jdR/dsj2 = 1 so the unit tangent vector to the
curve is given by t̂ ¼ dR=ds.

In [24], a continuous distribution of Stokeslets along R is considered and the resulting integrals are evaluated in the limit
where the centerline curvature is zero and the force density is constant over a lengthscale q. The lengthscale q is assumed to
be small relative to the total length of the helix, L = 2l, but large relative to the radius of the cross-section, a. The resulting
formula are used to explore the motion of the helix in the zero-thrust limit where the motion of the centerline is given by
VðsÞ ¼ �Xb sin ks; Xb cos ks; Uð Þ ð53Þ

and the total force in the z-direction is zero, F � ẑ ¼ 0. For a prescribed angular velocity X, the resulting velocity U and the
torque per unit length T ¼ T ẑ and viscous dissipation per unit length E/L = TX are determined over a range of b2k2 for the
values of the slenderness parameter K/a = 50, 100 and 200.

To compare with the results from [24,25], we consider a helix with four turns, k = 4p and a prolate spheroidal longitudinal
cross-section. The surface of such a helix may be described as
xð/; hÞ ¼ Rðsð/ÞÞ þ rðsð/ÞÞðcos hbN þ sin hbBÞ ð54Þ

with
 bN ¼ cos cn̂þ sin cb̂; ð55ÞbB ¼ � sin cn̂þ cos cb̂; ð56Þ

cðsÞ ¼ �aks; ð57Þ
s ¼ �l cos /: ð58Þ
where n̂ ¼ ð1=jÞðdtðsÞ=dsÞ is the normal to the curve in the Frenet–Serret frame, b̂ ¼ t̂� n̂ is the binormal unit vector, j = jdt/

dsj is the curvature of the centerline, and rðsÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2=l2

q
is radius of the cross section. This parametrization leads to an

orthogonal coordinate system as @x/@/�@ x/@h = 0 and the use of the variable / rather than s clusters collocation points near
the poles where higher resolution is needed. The CTBIE is solved to determine the tractions and the unknown velocity U for

the mixed boundary conditions U = (0,0,U), X = (0,0,1) and F � ẑ ¼ 0 using VSB with XSB = �R where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � a2Þ=l

q
. For each

case K/a = 50, 100 and 200, Nh = 4 however for K/a = 50, N/ = 512 is considered, for K/a = 100 we have N/ = 1024 and finally
for K/a = 200, N/ = 2048. After discretizing, we solve the linear system using preconditioned GMRES [13]. We found that an
effective preconditioner P consists of the 2Nd + 1 diagonals of the matrix AT;h in Eq. (36). Specifically, we take
Pij ¼
AT;h

ij ; ji� jj 6 Nd;

0; ji� jj > Nd:

(
ð59Þ
Here, we use a value of Nd = 300 for which GMRES needed only 13 interations to converge to within a tolerance of 10�8 for
the case where K/a = 100 and N/ = 1024.

Fig. 6 shows the values of the speed normalized by the wave speed, Uk/aX, the dimensionless torque per unit length, T/
4pgb2X and the normalized viscous dissipation per unit length E/gL U2 taken from [24,25] and calculated using the discret-
ized CTBIE. Despite the various assumptions [24,25] introduced in the formulation of the local slender-body theory, the
determined values of Uk/aX, T/4pgb2X and E/gLU2 agree quite well with those calculated here for helices of finite length
with variable longitudinal cross section. The simulations and local slender body theory predict the same trends in the data
including maximum efficiency occurring at b2k2 � 0.45. The main discrepancy occurs in the value of T/4pgb2X at lower val-
ues of b2k2 for K/a = 50. For this case, the helix is nearly straight and the torque about the finite cross-section of the body
plays a role in determining the overall value of the force moment. The importance of these torques decreases as K/a in-
creases, and one again sees correspondence between the two calculations.

The simulation results may also be compared with those of non-local slender-body theory [23]. This theory is based on
the asymptotic expansion of the integral
uðxÞ ¼
Z �l

��l
Gijðx� XðsÞÞ�f jðsÞ þ r2Gijðx� XðsÞÞ�gjðsÞds ð60Þ



Fig. 6. A comparison of the (a) nomalized velocity, (b) normalized torque per unit length, and (c) normalized viscous dissipation per unit length between
local slender-body theory [25] (lines) and the numerical simulation (symbols). In the plots, the solid line and circular markers correspond to the case where
K/a = 50, the dashed line and square symbols to K/a = 100, and the dash-dotted line and triangular markers indicate the case where K/a = 200.

E.E. Keaveny, M.J. Shelley / Journal of Computational Physics 230 (2011) 2141–2159 2153
in the limit where a/l� 1. Here, the flow is represented by a distribution of Stokeslets and source doublets along the cen-
terline of the body. This theory allows for the calculation of the force per unit length �fðsÞ on a slender body of finite length
and specified longitudinal cross-section. Johnson [23] provides calculations of zero-thrust values of �fðsÞ for helices of prolate
spheroidal longitudinal cross-section with b/k = 0.01 and a/k = 0.25 for k = p and k = 5p corresponding to one and five turns
respectively. Computations are performed of these same cases using the surface parametrization, completion flow and
GMRES tolerance and preconditioner as before with Nh = 4 and N/ = 512 for k = p and N/ = 2048 for k = 5p. The force per unit
length is determined from
�fðsÞ ¼
Z 2p

0
fðs; hÞJðs; hÞdh: ð61Þ
Shown in Fig. 7 are the values of �f t ¼ t̂ � �f;�f n ¼ n̂ � �f and �f b ¼ b̂ � �f as a function of s provided by Johnson [23] as well as those
determined here. Additionally depicted are the values of �fðsÞ determined using the resistive force theory for helices intro-
duced in [24]
Ct ¼
2pg

logð2q=rðsÞÞ ; ð62Þ

Cb ¼
4pg

logð2q=rðsÞÞ þ 1=2
; ð63Þ
such that �f t ¼ CtðV � t̂Þ and �f b ¼ CbðV � b̂Þwith q = 0.09K. The effect of the longitudinal variation in the cross-section are intro-
duce by having r(s) rather than a in the expressions for the drag coefficients. Excellent correspondence is found between the
values determined in [23] and the simulations. Additionally, one begins to see convergence to the values predicted by the
resistive force theory as the number of turn is increased from one to five.



Fig. 7. A comparison of the force per unit length on helices with prolate spheroidal longitudinal cross section between those given by slender-body theory
of [23] (solid line), resistive force theory (dashed line) and the numerical simulations (markers). In (a) k = p, b/k = 0.25 and a/k = 0.1 and for (b) k = 5p, b/
k = 0.25 and a/k = 0.1.

2154 E.E. Keaveny, M.J. Shelley / Journal of Computational Physics 230 (2011) 2141–2159
6.3. Helices with non-circular cross-section

While helices with circular cross-sections have been studied extensively, less is known about other shapes that couple
rotation and translation at low Reynolds number. Such shapes are important in emerging microfluidic technologies, espe-
cially the development of artificial micro-swimmers such as those constructed in [26,27]. Presented in this section are com-
putations for shapes similar to those of the micro-swimmers in [26,27] whose centerlines are simple helices, but whose
cross-sections are an ellipses. The surfaces of the objects considered are given by
xð/; hÞ ¼ Rðsð/ÞÞ þ rNðsð/ÞÞ cos hbN þ rBðsð/ÞÞ sin hbB ð64Þ
with
 bN ¼ cos cn̂þ sin cb̂; ð65Þ



Fig. 8. Images of helices with non-circular cross-sections for which a = 0.5, k = 4p, and aB/aN = 4. Each image corresponds to a different value of the cross-
section orientation parameter: (a) c = 0, (b) c = 0.3p, and (c) c = 0.5p. The inset associated with each image shows the orientation of the cross-section
relative to the normal, n̂, and binormal, b̂, vectors.
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bB ¼ � sin cn̂þ cos cb̂; ð66Þ

rNðsÞ ¼ aN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2=l2

q
; ð67Þ

rBðsÞ ¼ aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2=l2

q
: ð68Þ
Here, the parameter c controls the orientation of the cross-section. Images of helices described Eqs. (65)–(68) with aN/aB = 4,
a = 0.5 and k = 4p for three different values of c are depicted in Fig. 8. Additionally, the longitudinal aspect ratio is a/l = 50
where a2 = aNaB.

Mobility calculations are performed where F = 0 and s ¼ ẑ to explore the dependence of the velocity-torque entry of the
mobility matrix, MB where U = MB s with U ¼ U � ẑ. We also examine a measure of mechanical efficiency, gl U2/E with viscous
dissipation E = s�X, on the cross-section aspect ratio and orientation. Higher values of MB correspond to helices that yield



Fig. 9. The figures show images of helices with a circular cross-section of radius a as well as the values of MB and the efficiency glU2/E as a function of c. In
(a)–(c) a = 0.5, (d)–(f) a = 0.75, and (g)–(i) a = 0.9. In the plots, the solid line with the closed circular markers indicates values for aN/aB = 2, the solid line with
the closed square markers corresponds to aB/aN = 4 and the dashed line indicates the values for a circular cross-section.
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higher swimming speeds for a given torque, while higher values of gl U2/E correspond to more efficient propellers. These
calculations are performed for helices with three different values of a = 0.5, 0.75, and 0.9 and k = 4p, see Fig. 9(a), (d) and
(g). For each, we consider cross-sectional aspect ratios aB/aN = 1, 2 and 4 with aBaN = a2 fixed and values of orientation param-
eter c over the range c 2 [0,0.5p]. The simulations are performed using VSB with XSB = �R, Nh = 16, N/ = 256. Once again, we
employ preconditioned GMRES to solve the linear system with the same preconditioner P with Nd = 300 as described in Eq.
(59) in the previous section. Here, 19 iterations were needed for the solution to converge within a tolerance of 10�8 for the
case where a = 0.75 and c = 0.
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Fig. 9 shows the values of MB and glU2/E determined from the simulations. In general, the values of MB and the efficiency
are lower for the helices of ellipsoidal cross-section with smaller values of c than those helices with circular cross-sections.
These helices, see Fig. 8(a), closely resemble the shape achieved by wrapping a ribbon around a pencil. In the worst case
where aB/aN = 4, c = 0 and a = 0.5, one sees a 35% reduction in the value of MB and an efficiency of less than half that of
the circular case. A non-circular cross-section with a higher value of c, however, can improve both the performance and effi-
ciency of a helical drive. These helices (see Fig. 8(c)) are similar to the auger-like shapes used in Archimedes’ screws. We find
the greatest enhancement in efficiency (�60%) for the case where a = 0.9, c = p/2 and aN/aB = 4, where as the largest increase
in speed per unit torque of about 10% occurs for a = 0.9, c = p/2 and aN/aB = 2.
7. Conclusions

In this study, calculations of the tractions on rigid bodies in Stokes flow are performed using a second-kind integral equa-
tion for the tractions. This CTBIE was derived using a second-kind equation for a double-layer density and the Lorentz reci-
procal theorem, see also [20,2]. The appropriate singularity reduction for the adjoint double-layer integral operator was
presented and applied to the CTBIE. With the singularity reduced, the CTBIE was discretized using the trapezoidal rule result-
ing in a second-order collocation scheme. The tractions on translating prolate spheroids of various aspect ratios are com-
puted and compared with the analytic solutions. These calculations were performed for two choices of the completion
flow. The first choice, VPM , corresponds to that considered in [15], while the second choice VSB is provided by a distribution
of Stokeslets and rotlets along the centerline of the object. For both choices of completion flow, second-order accuracy was
observed as was a fourth-order correction term in the error expansion. While VPM gave better accuracy for the traction data,
VSB provided better accuracy for the total force on the spheroid and yielded well conditioned matrices even for spheroids
with high aspect ratios. In examining the motion of simple helices with circular cross-sections in the zero-thrust limit, gen-
eral agreement was found with the local slender body theoretic results of [24,25] while excellent agreement was observed
with force per unit length calculations based on non-local slender-body theory [23]. We then explored the dependence of the
velocity-torque coupling and propulsion efficiency of helices with non-circular cross-section on the aspect ratio and orien-
tation of the cross-section. These results have direct implications in the design and construction of artificial micro-swimmers
such as those presented in [26,27]. Our calculations indicate that when the major axis of the cross-section is perpendicular to
the helical axis, greater speed and efficiency can be achieved compared to helices with a circular cross-section. On the other
hand, reduced speed and higher energy costs are observed when the major axis is nearly aligned with the helical axis. There
is, therefore, a clear advantage for micro-swimmers that resemble Archimedes’ screws over those that are similar in shape to
a strip of paper wrapped around a circular rod.

While the numerical scheme presented here has been shown to be an effective means to calculate the tractions on a rigid
body, several improvements can be made to improve the accuracy of the solution. Higher-order discretizations such as those
based on spectral elements [40] or those employing floating partitions of unity [41] are applicable here, especially for the
regularized integral provided in this work. Another route to obtaining higher-order accuracy would entail determining
explicitly the leading order term in error expansion for the trapezoidal rule approximation and subtracting off its contribu-
tion [29]. The numerical results here suggest the subtracting off the leading order term would result in fourth-order accurate
scheme. In addition to improving the accuracy of the numerical solution, the computational work may also be reduced. Pair-
wise, OðN2

ptsÞ calculations were used here to determine the discrete integral operator. Methods such as the fast-multipole
method [11] or particle-mesh Ewald [42] can be implemented to decrease the computational work especially when the num-
ber of quadrature points exceeds 104 [12]. Here, we examined how both accuracy of the numerical solution as well as the
condition number of the linear system depend on the choice of completion flow in comparing two specific cases. Conducting
numerical experiments with the CTBIE for other choices of completion flow that have been introduced [16] that allow for
more general considerations in the shape of the surface is of interest and is perhaps an initial step toward establishing a gen-
eral protocol for how to appropriately choose the completion flow. While the CTBIE can be applied to objects of a variety of
shapes, the boundary conditions are limited to rigid body motion. Extending the Lorentz reciprocal theorem argument for
non-rigid body boundary conditions [2] and obtaining numerical solutions for these equations are also subjects for future
studies. This method is currently being applied by us to the problem of shape optimization for micro-swimmers (in
preparation).
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Appendix A. Singularity reduction

To show that the integrand in the adjoint double-layer in Eq. (20) is bounded as y ? x, surface coordinates u and v with
x = y(u0,v0) are adopted so that
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I ¼
Z Z

Tijkðyðu;vÞ � y0Þðfjðu;vÞn0;k þ f0;jnkðu;vÞÞJðu;vÞdudv ðA:1Þ
with y0 = y(u0,v0), n0 = n(u0,v0), and f0 = f(u0,v0). Expanding the integrand about the point (u0,v0) one obtains
yðu;vÞ � y0 ¼ Du
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0
þOðq2Þ ðA:4Þ
with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du2 þ Dv2
p

, Du = u � u0 and Dv = v � v0. Since the surface normal may be expressed as
niðu; vÞ ¼
1

Jðu;vÞ �ijk
@yj

@u
@yk

@v ðA:5Þ
its partial derivatives are
@ni

@u
¼ 1

J
dil � ninlð Þ�ljk
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; ðA:6Þ
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ðA:7Þ
and the following identities hold
n � @y
@u
¼ 0; ðA:8Þ

n � @y
@v ¼ 0; ðA:9Þ

@n
@u
� @y
@u
¼ �n � @

2y
@u2 ; ðA:10Þ
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@y
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2y
@u@v : ðA:13Þ
After substituting Eqs. (A.2)–(A.4) into Eq. (A.1) and combining terms using the identities Eqs. (A.10)–(A.13), one finds that
the leading order term in an expansion of the integrand of the about the field point x = y(u0,v0) can expressed as
PiðDu1;Du2Þ ¼
fabcd�

i DuaDubDucDudDu�

Dun
@y
@un
ðu0;v0Þ

			 			5 ; ðA:14Þ
where Du1 = Du and Du2 = Dv. In Eq. (A.14), the Greek indices have values 1 and 2 and their repetition implies summation.
The matrix coefficient, fabcd�

i , depends on the values of y, n, f, surface Jacobian J and derivatives of these functions at (u0,v0).
We see that both the numerator and denominator of the integrand decay to zero like Oðq5Þ as y ? x and therefore attains a
finite value in the limit y ? x. While finite, the tensorial dependence in the numerator indicates that the value will depend
on the direction from which the limit is taken.
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