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Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability
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We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid
in a radial Hele-Shaw cell. Using Darcy’s law generalized for non-Newtonian fluids, we perform
simulations of the full dynamical problem. The simulations show that shear thinning significantly
influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce
fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable
agreement with a general linear stability analysis. [S0031-9007(97)05226-5]
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Complex fluids, such as liquid crystals [1], polymer so-
lutions and melts [2], clays [3], and foams [4], display rich
non-Newtonian behavior—viscoelasticity, shear thinning
and thickening, boundary or flow induced anisotropy—
whose nonlinear effect on flow is understood at best phe-
nomenologically. Hele-Shaw (H-S) flow between two
closely spaced plates has been used to study such fluids;
inertia is negligible, and the resulting description is sim-
plified by the high aspect ratio geometry. Such “thin-gap”
flows of non-Newtonian liquids are also relevant to indus-
trial processes such as injection molding [5] and display
device design [6]. Interest stems also from the close anal-
ogy between Newtonian H-S flow and quasistatic solidifi-
cation; the Saffman-Taylor (S-T) instability of the driven
fluid-fluid interface plays the same role as the Mullins-
Sekerka instability of the solidification front [7]. Features
usually associated with solidification, such as the growth
of dendritic fingers and side branching, have also been
observed in Newtonian fluids with imposed anisotropy,
say by scoring lines on the cell plates [8]. However, ex-
periments using non-Newtonian or anisotropic fluids have
shown that solidification structures, such as snowflake pat-
terns in liquid crystal flows [1], or needle crystals in poly-
meric solutions [2], can be induced by the bulk properties
of the fluid itself, without any imposed anisotropy.

In [9], we conjectured that shear thinning—a prop-
erty of polymeric liquids and effectively of nematic liquid
crystals in certain geometries—was a crucial ingredient
in suppressing tip splitting, and might lead to the appear-
ance of dendritelike structures in complex fluids. In this
scenario, the tip of a finger lies in a region of high shear,
and thus lower viscosity, which causes it to advance with
higher relative velocity than surrounding portions of the
interface, suppressing the spreading of the tip. To study
this, we derived from first principles a natural generaliza-
tion of Darcy’s law which takes into account shear thin-
ning (or thickening) in an isotropic fluid. In support of
our conjecture, we showed that for a gas bubble expand-
ing into aweaklyshear thinning fluid, the S-T instability
is modified to give increased length-scale selection. In

this Letter, we use the generalized Darcy’s law to perform
fully nonlinear simulations of a bubble expanding into a
strongly shear thinning liquid. The simulations demon-
strate that shear thinning significantly modifies the evolu-
tion of the interface, and can produce fingers whose tip
splitting is suppressed, and which have dendritic appear-
ance. The resulting patterns are often similar to those ob-
served in experiments [1–4,10,11]. Length scales from
our linear stability analysis are consistent with simula-
tional results. Finally, we give a morphological phase dia-
gram in terms of flow and fluid parameters.

Formulation.—Consider a gas bubble expanding under
applied pressure into a non-Newtonian fluid in a radial H-S
cell. The fluid domain is an annular regionV with inner
boundaryGi and external boundaryGe. Neglecting inertia,
we use the Stokes equations with shear-rate dependent
viscosity,

=p ­ = ? sssmsjSj2dSddd, = ? v ­ 0 . (1)

Here p is pressure,S is the rate-of-strain tensor for the
fluid velocity vsx, y, zd ­ su, y, wd, with z the “short,”
cross-gap direction, andjSj2 ­ trsS2d. We follow [12]
and use the viscosity modelmsjSj2d ­ m0fast2jSj2d, with
fasj2d ­ s1 1 aj2dys1 1 j2d. Here t is the longest
(Zimm) relaxation time of the fluid,m0 is its zero shear-
rate viscosity, anda measures shear dependence:a ­ 1
is Newtonian,a . 1 gives shear thickening, anda , 1
gives shear thinning. In practice, most non-Newtonian
fluids are shear thinning.

The flow is simplified by the small aspect ratioe ­
byL ø 1, whereL is a typical lateral length scale, andb is
the plate separation. To nondimensionalize, the lateral and
vertical distances are scaled byL andb, respectively. The
scale for pressure is taken asp̄ye, wherep̄ye is the driving
(gauge) pressure. The natural velocity and time scales are
thenUc ­ eLp̄ym0 andTc ­ m0yep̄. This is the scaling
required for shear thinning of the fluid to be apparent [13].
At leading order ine, in [9] we derived from Eq. (1)
a generalized Darcy’s law for the gap averaged, lateral
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velocity u,

u ­
21

12m̄asWe2j=pj2d
=p, and = ? u ­ 0 , (2)

where now= ­ s≠x , ≠yd. We ­ tytflow is a Weissenberg
number, with tflow a typical inverse shear rate in the
short direction. The viscositȳma is constructed fromfa,
and shares its monotonicity properties; i.e., for a shear
thinning fluid m̄a decreases with increasing argument.
In other work on polymeric flows, Bonn and co-workers
[12] have proposed a model where the viscosity depends
upon squared velocity; their model follows from ours [9].
Finding m̄a uniquely requires thata . 1y9 [9].

We have also derived Eq. (2), again with viscosityfa,
from the Johnson-Segalman-Oldroyd (JSO) viscoelastic
fluid model for polymeric flows [14]. We find that the
model includes normal stress differences, but no elastic
response, so long as We, Os1d. The details of this
derivation will be presented elsewhere [13].

An additional dimensionless parameter is the capillary
number, Ca­ 12m0

ÙR0R2
0ysgb2d, measuring the relative

strength of capillary and viscous forces. Hereg is surface
tension, with length and velocity scales now specified for
the case of an expanding circular bubble of initial radiusR0

and velocityÙR0 (i.e., We­ t ÙR0yb). While Ca and We are
defined by their values att ­ 0, they are easily understood
in terms of measurable experimental quantities.

From Eq. (2), the pressure satisfies the nonlinear
boundary value problem inV,

= ?

√
=p

m̄asWe2j=pj2d

!
­ 0, pjGi ­ 1 2

ki

Ca
,

pjGe ­
ke

Ca
,

(3)

where the standard Young-Laplace boundary condition (k

is lateral curvature) is assumed atGi andGe. Using this
simple boundary condition, we have ignored complicated
flows in the neighborhood of the meniscus [15,16], and in
the case of polymeric flows, the possibility of a stretch-
coil transition [11]. Finally, the motion of the interfaces
Gi,e is given by the condition that they move with the fluid
velocity.

Note that We can be removed from our dynamical sys-
tem by the rescalingsx, yd ! Wesx, yd, t ! We2t, and
Ca! CayWe. However, to retain a fixed physical length
scale for our initial data, we retain a We dependence in
what follows.

Linear stability analysis.—In Newtonian flow, the lin-
ear stability of an expanding circular bubble is determined
by the capillary number Ca. The competition of capil-
lary and driving forces gives an azimuthal wave number of
maximum growth,mNewt

max , with surface tension stabilizing
short wavelengths. In [9], we derived an analytical expres-
sion for the growth rate in the limit of weak shear thinning:
d ­ 1 2 a ø 1. This showed that above a moderate Ca,

shear thinning tightens the band of unstable modes, and
can yield higher growth rates nearm ­ 0. The mode of
maximum growth is also shifted to lower wave numbers,
mmax ø mNewt

max s1 2 Kd We2d (K a constant), and shorter
wavelengths are further stabilized. This suggests enhanced
length-scale selection, and supports the postulate that shear
thinning can lead to suppression of tip splitting. These ob-
servations are consistent with Fig. 1(a), which shows nu-
merically calculated growth rates. Figure 1(b) shows the
length scale of the most unstable linear mode, as a function
of Ca, in good agreement with the scalingL , 1yCa1y2,
which holds well for Newtonian fluids [17].

Simulation.—Equation (3) is much more difficult to
solve than the analogous Newtonian problem, where the
pressure is harmonic, and efficient boundary integral meth-
ods are available [18]. Here the pressurep satisfies a non-
linear elliptic equation which must be solved everywhere
in V. Computations are done on a Lagrangian grid which
conforms to and evolves with the interfaces. We use New-
ton’s method to solve for the pressure. The requirements
of high spatial resolution of the interface, coupled with
time-stepping stability and accuracy constraints, produce a
computationally intensive problem. To decrease this cost,
a fourfold symmetric initial bubble shape is chosen, and
this symmetry is enforced in the code.

Figure 2 shows the change in pattern formation asa de-
creases for fixed Ca and We (a ­ 1 gives Newtonian flow
for any We). The typical scenario for a Newtonian fluid is
seen in Fig. 2(a). The initial shape is a circle perturbed by
a m ­ 4 sine wave of amplitudea (ayR0 ­ 0.1). Snap-
shots of the bubble at equal time intervals show growth

FIG. 1. (a) The growth ratesm for We ­ 0.15, Ca ­ 240.
(b) Fora ­ 0.15, and We­ 0.15, the length scale of the most
unstable linear mode (dashed), and emergent length scale from
simulations (dots). The solid curve isAyCa1y2, where A is
taken from the first data point.
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FIG. 2. The dynamics of bubble interfaces for a Newtonian
fluid (a) and shear thinning fluids (b)–(d).

of the unstable fourth mode (in agreement with linear sta-
bility analysis) into a petal. The petal widens, then splits
as its radius of curvature becomes larger than the wave-
length of the unstable modes [17,18]. (This Newtonian
simulation uses our general code; much longer simula-
tions can be done using boundary integral methods [18].)
In Fig. 2(b), with some shear thinning, there is delayed
splitting of the tip, and the resulting fingers have reduced
spreading. With greater thinning, Fig. 2(c) shows that
even the initial splitting is suppressed, and the emergence
of single fingers is seen. The inset plot shows tip cur-
vature, which oscillates in time. While more apparent in
Fig. 2(d), each oscillation is associated with the suppres-
sion of a nascent splitting, and produces side branches be-
hind the propagating tip. Figure 2(d) shows the evolution
for larger Ca and smaller We. Higher Ca enhances the
growth of shorter wavelengths, and leads to more pro-
nounced side branching. In this case, larger We gives an
initial splitting.

Our patterns are very similar to those found in simu-
lations of Newtonian H-S flow with anisotropic boundary
conditions [19], as well as to local solidification models
with anisotropy [20]. Recent experiments with foams [4]
(where elastic properties might be of importance) and of
polymeric liquids [2,10] can also produce patterns similar
to our simulations.

To demonstrate how these structures are produced by
shear thinning, and to substantiate our original postulate,
Fig. 3 shows viscosity contours and velocity vectors of
the flow in Fig. 2(d), at the last time shown. As expected,
low viscosities at the finger tips enhance their velocity,
while away from tips motion is suppressed. The fingers
still show a tendency towards tip broadening due to the
large driving pressure (large Ca). Likely it is the interplay
of these effects which gives the curvature oscillations and

FIG. 3(color). Contour plot of the viscosity of the driven
fluid and vector plot of its velocity (We­ 0.15, a ­ 0.15,
Ca ­ 480).

side branching. The similarity to dendrites in solidifica-
tion is striking, and while oscillating dendrites have been
observed [21], their tips are typically stable, with constant
curvature. More relevant are oscillations in propagating
fingers observed in flows of dilute polymer solutions in a
channel geometry [11], though these could be associated
with a stretch-coil transition.

We have explored further thesCa, We, ad parameter
space. Figure 4 shows typical patterns in one slice (a ­
0.15). From such diagrams, we can formulate conditions
for the suppression of tip splitting, and understand the
influence of Ca, We, anda on the dynamics of the
interface.

(i) To suppress tip splitting, the fluid has to be strongly
shear thinning; small values ofa yield narrow fingers,
as in Figs. 2(c) and 2(d). For our initial data there is a

FIG. 4. Morphological phase diagram for pattern formation in
a strongly shear thinning fluid (a ­ 0.15).
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critical value (acrit . 0.25) above which the initial petal
always splits, independently of other parameters. This
behavior is consistent with experiments with water based
muds [3], where increased colloid concentration gives
stronger shear thinning and yields narrowed fingers.

(ii) We determine which part of the viscosity curve
governs the response of the fluid. Figures 2(c) and 2(d),
where nonsplitting fingers are obtained, show a situation
where viscosity varies considerably along the interface.
This seems to be a necessary condition for suppression of
tip splitting. There is a range in We for this behavior, and
its size depends strongly ona; asa increases, this range of
We decreases. Also, an increase of Ca shifts this window
towards lower We (Fig. 4). And so, at increased pumping
pressure, the fluid should have a shorter relaxation time if
nonsplitting tips are to be observed. This effect has been
observed in experiments with liquid crystals [22] where
the driving pressure was varied: At low driving pressures,
the pattern was Newtonian (corresponding here to small
Ca and We—regionA in Fig. 4). At intermediate driving
pressures, the tips did not split (as in regionB), and finally,
even higher driving pressures (large Ca and We) resulted
again in a tip splitting phase (as in regionC). These
observations agree very well with our results.

(iii) The increase of Ca has two effects. First, as in a
Newtonian fluid, an increase of Ca excites shorter wave-
lengths, leading to shorter length scales; Fig. 1(b) shows
length scales from our simulation, together with a fit of
the formAyCa1y2. While it is not clear that this scaling is
satisfied, there is reasonable agreement in magnitude with
the linear theory. A decrease in finger width in a radial
geometry was observed in some of the first experiments
done with shear thinning fluids [23], where reducing the
plate separationb gave a larger Ca, though this increases
We as well. We find also that an increase of Ca above
ø500 narrows the range in We where fingers do not split
(viz. Fig. 4).

Detailed experimental studies combined with sophisti-
cated modeling are necessary for a detailed understanding
of the flow behavior of complex fluids. In this Letter,
we have shown that shear thinning alone can suppress
tip splitting in a radial Hele-Shaw cell, and produce den-
dritic fingers. This agrees with preliminary experimental
results with polyethylenoxide (PEO) solutions [24]. In
our approach, we have neglected several potentially im-
portant effects. For very strongly shear thinning polymeric
flows, there is the possibility of slip-layer formation, and of
strong elastic response. In principle, these are accounted
for within the JSO viscoelastic model, and have been the
subject of theoretical work [25]. A more thorough under-
standing is needed of flows in the neighborhood of the in-
terface, as has been reached for Newtonian H-S [15], and
partially for viscoelastic [16] flows.
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