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Motivated by the locomotion of flagellated micro-organisms and by recent experiments of
chemically driven nanomachines, we study the dynamics of bodies of simple geometric
shape that are propelled by specified tangential surface stresses. We develop a mathemat-
ical description of the body dynamics based on a mixed-type boundary integral formula-
tion. We also derive analytic axisymmetric solutions for the case of a single locomoting
sphere and ellipsoid based on spherical and ellipsoidal harmonics, and compare our
numerical results to these. The hydrodynamic interactions between two spherical and
ellipsoidal swimmers in an infinite fluid are then simulated using second-order accurate
spatial and temporal discretizations. We find that the near-field interactions result in com-
plex and interesting changes in the locomotors’ orientations and trajectories. Stable as well
as unstable pairwise swimming motions are observed, similar to the recent findings of Poo-
ley et al. [C.M. Pooley, G.P. Alexander, J.M. Yeomans, Hydrodynamic interaction between
two swimmers at low Reynolds number, Phys. Rev. Lett. 99 (2007) 228103].

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

A fascinating, important, and counter-intuitive fluid dynamic world exists and thrives at length scales that are difficult for
the human eye to see. In this micro and nano-scale empire, the Reynolds number Re ¼ qUL=l� 1 (q is the density of the
fluid, U is a characteristic velocity, L is a characteristic length, and l is the fluid viscosity) is very small, viscous forces are
dominant, inertial forces are negligible, time is irrelevant, and geometric configuration trumps all. For a beautiful introduc-
tion, see the article by Purcell [20]. A zero Reynolds number assumption is a good approximation to the low-Re dynamics,
leading to the simplification of the nonlinear, time-dependent Navier–Stokes partial differential equations that govern gen-
eral continuous fluid flows, to the linear incompressible Stokes equations [19,7,1]
�rpþ lr2u ¼ 0; r � u ¼ 0; ð1Þ
where u is the flow velocity field, p is the pressure, and r � u ¼ 0 is the equation of continuity for incompressible flows.
Examples of motion in a Stokes flow – described by Eq. (1) – are ubiquitous in Nature and numerous examples may be

found in the biological world. The coordinated activity of motile spermatozoa, which propel themselves by beating a flagel-
lum in a nonreciprocal three-dimensional pattern, is an essential ingredient for mammalian fertilization and reproduction
[5]. The motile bacteria Escherichia coli (E. coli) is frequently used as a model organism in microbiology studies [2], and is
commonly found in the lower intestine of warm-blooded animals, and may lead to various infections and diseases in the
host. Aquatic micro-organisms such as phytoplankton play an important role in oceanic ecosystems as well as the global cli-
mate. Phytoplankton provide a critical food source for larger animals ranging from zooplankton to whales, and also absorb
CO2 from the water which originates in the atmosphere.
. All rights reserved.
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Nanotechnology is yet another field where Stokes flows are important. One of the current challenges in nanotechnology is
to create miniature engines that can convert stored chemical energy to motion. Experiments carried out in [17] are a step in
this direction, in which Paxton et al. synthesized and demonstrated autonomously moving nanoparticle locomotors. These
‘‘chemical” locomotors are cylindrical nanorods 2 lm long and 370 nm in diameter, half of which is coated with gold, while
the other half is coated with platinum. The asymmetry is essential, since Pt (platinum) is an active hydrogen peroxide
decomposition catalyst. The rods move mainly along their axis at average speeds of 8 lm=s autonomously in aqueous hydro-
gen peroxide solutions by catalyzing formation of oxygen at the Pt end, and exhibit dynamics very similar to those of motile
organisms.

The literature is rich on the mathematical analysis, modeling and numerical simulation of bodies in Stokes flows sedi-
menting passively in gravitational fields. For example, Stimson and Jeffrey [29] solved the problem of two spheres falling
parallel to their line-of-centers in a viscous fluid, while Goldman et al. [6] solved the more general problem of two spheres
falling that are oriented at an arbitrary angle with respect to their line-of- centers. Recently, Tornberg and Shelley [32,24,30],
Tornberg and Gustavsson [31], and Saintillan et al. [22] developed state-of-the-art boundary integral methods for simulating
the dynamics of multiple interacting slender flexible and rigid fibers suspended in fluids. There are also many examples for
non-slender bodies (see [4] for a review).

There have been far fewer experimental or numerical investigations of active swimmers in Stokes flow. Part of the reason
for this is the level of difficulty and the degree of sophistication associated in performing experiments with active swimmers.
However, there have recently been several very interesting experimental/theoretical studies of motile bodies. Solari et al.
[28] studied the motility and molecular transport of flagellated colonial organisms, such as the volvocalean green algae Vol-
vox carteri. Using particle image velocimetry (PIV), they measured the velocity field surrounding V. carteri colonies that were
held fixed in place, and observed that the velocity field in very close proximity to the body of the Volvox is not zero due to the
action of the flagella, which are used to propel the organism.

In subsequent work, Short et al. [25] showed that the beating of flagella by an organism such as V. carteri not only confers
it motility, but also plays a crucial role in its viability. They introduced a model that assumes that a swimmer exerts a con-
stant tangential stress along its surface, which has strongly influenced our work here. According to their model, flow velocity
grows linearly with colony radius, which results in colony swimming speeds close to experimentally observed values. For
spherical organisms, the required nutrient transport rate grows quadratically with radius, and thus cannot be satisfied by
purely diffusive transport processes (which grow linearly with the radius). The model in [25] predicts that the flow-field gen-
erated by flagella-driven stirring results in an advective transport process which is quadratic in the radius, thus enhancing
the nutrient uptake rate (metabolite exchange rate per unit area) of a colony and overcoming the size barrier (bottleneck
radius) that would result from purely diffusive transport. Furthermore, they measured actual flow-fields for V. carteri to con-
firm their analysis experimentally. They demonstrated that at least one advantage of increased size is a greater nutrient
acquisition rate.

Related low-Reynolds number fluid dynamical models have been developed over past decades for various actively swim-
ming micro-organisms. The ‘‘squirmer” model was introduced by Lighthill [14], and extended by Blake [3], Magar et al. [15],
and Magar and Pedley [16]. The squirmer is a spherical locomotor with a prescribed tangential surface velocity. Ishikawa
et al. [13] calculated and investigated the fluid-dynamical interaction of two model squirmers, and Ishikawa and Hota [8]
applied the squirmer model to compute the hydrodynamic interaction of two paramecia. Furthermore, the rheology, diffu-
sion, and orientational relaxation time of semi-dilute suspensions of squirmers were studied by Ishikawa et al. in [9–11].
Saintillan and Shelley [23] developed a model based on slender-body theory for slender rodlike swimmers that exert a tan-
gential shear stress on the fluid over part of their bodies, and found theoretically predicted instabilities [27] in their simu-
lations of suspensions of self-locomoting particles that had an initial long-range orientational order, as well as large-scale
flows and mixing and persistence of short-range orientational order.

Motivated by the locomotion of flagellated micro-organisms and by recent experiments of chemically driven nanoma-
chines, we develop a particular model to study the dynamics of bodies of simple geometric shape that are propelled by sur-
face stresses. As in previous models [15,25], the body and the flagella are treated as a smooth envelope, and all points on the
surface are assumed to impart a motive tangential stress on the surrounding fluid in the motive direction, thus continuously
displacing fluid along the surface in that same direction. This generalizes the model of Short et al. [25] by allowing for inhom-
ogenous motive tangential stress, nonspherical bodies, and body-body interactions. In this model, after specifying the motive
stress, a surface slip velocity is determined, relative to an overall body translation and rotation, as is the surface normal
stress, and the tangential stress component normal to the motive part. Body-body interactions do influence the magnitude
of the relative slip velocity, as well as contribute to the overall translation and rotation, but they do not change its direction.
Furthermore, by restricting the relative slip velocity to lie in the same direction as the motive stress, a nondegenerate
description under shape perturbation is achieved.

The hydrodynamics of a system of such swimmers requires solving the incompressible Stokes equations with mixed-
type boundary conditions. We develop a numerical approach based upon the classical boundary integral formulation for
the Stokes equations which consists of a combination of single-layer and double-layer potentials. We apply this model
to spherical and ellipsoidal bodies. We discretize the integral equations using a Nystrom method, which leads to a linear
system of equations for surface stresses and slip-velocities. The GMRES Krylov subspace method is used to solve the con-
sequent linear system, and the second-order Adams–Bashforth method is used to integrate the bodies’ positions and
orientations.



Fig. 1. Surface Dk corresponding to body Bk .
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In Section 2, we discuss boundary conditions and constraints. In Section 3, we describe the boundary integral formulation
which we use to compute the dynamics of the locomotors. The numerical scheme used to discretize the boundary integral
method and thus approximate the dynamics of the bodies is discussed in Section 4, followed by numerical tests in Section 5
and concluding remarks in Section 6.

2. Fluid dynamical model

We first introduce basic nomenclature. Let D ¼
SK

p¼1Dk be a closed, multiply-connected surface which is composed of K
simply-connected surfaces Dk (see Fig. 1). We refer to Bk as the kth body with surface Dk. The following variables are defined
for the kth body: uk is the surface fluid velocity, pk is the surface pressure, fk is the surface stress exerted on the fluid by
surface Dk;U

k
0 is the velocity of the body’s centroid xk

0;x
k is an angular velocity of the body, Fk is the total body force, Tk

is the total body torque, dk is the body’s orientation vector and is fixed in the body frame, ek
n is the outward normal unit vec-

tor, ek
k is the specified motive stress direction unit vector, and ek

? ¼ ek
n � ek

k . Fig. 1 shows the coordinate system formed by the
vectors ek

k; ek
?, and ek

n at a point on surface Dk.
The velocity u and pressure p satisfy Eq. (1) in the exterior of Dk. Our model assumes that in order to propel itself a loco-

motor exerts a specified surface shear stress (motive stress) on the surrounding fluid given by fk
k ¼ f k

k ek
k . The prescribed shear

stress boundary condition above, which generalizes the constant stress assumption used in [25], in principle takes into ac-
count the beating pattern and frequency of the swimmers’ flagella (or the detailed chemical kinetics in the case of [17]).

We project the stress fk onto ek
k; ek

?, and ek
n as
fk ¼ ek
nek

nfk þ I� ek
nek

n

� �
I� ek

?ek
?

� �
fk þ I� ek

nek
n

� �
I� ek

ke
k
k

� �
fk ¼ fk

n þ fk
k þ fk

?

� �
;

where fk
n ¼ f k

n ek
n and fk

? ¼ f k
?ek
?. Thus, the unknowns are the normal surface stress amplitude f k

n , which is strongly dependent
on the body’s geometry, and the tangential surface stress amplitude f k

?, which is generated by the body’s rotations.
On the kth body, the surface fluid velocity is of the form
ukðxÞ ¼ Uk
0 þ ðxk � ðx� xk

0ÞÞ
h i

þ uk
sl; x 2 Dk:
The first term (in brackets) is that associated with solid body translation and rotation. The second, uk
sl, is a slip velocity which

we shall assume lies only in the direction of ek
k , and is also an unknown. The form of uk implies a non-penetration condition

at the surface Dk. In addition to solving for fluid surface stresses and slip velocities, we must also solve for the centroid veloc-
ity Uk

0 and the angular velocity xk for each body. Also, the flow at infinity is assumed to be quiescent. In summary, the bound-
ary conditions are
I� ek
nek

n

� �
ðI� ek

?ek
?Þf

k ¼ f k
k ek
k ¼ fk

k; ð2Þ
uk

sl � ek
n ¼ 0; uk

sl � ek
? ¼ 0; uj1 ¼ 0: ð3Þ
We close the system by requiring the net force and net torque for the kth body to be equivalent to zero:
Fk ¼ 0; Tk ¼ 0: ð4Þ
Without going into specific details, we did investigate other models for simulating interactions of active locomotors.
However, these models, which only solved for one of the three surface traction components while specifying the other
two, had degeneracies in the limit of aspect ratio (ratio of semi-major axis length to semi-minor axis length) approaching
one and thus led to systems that were singular. We subsequently found that solving for two of the three surface traction
components results in nonsingular systems in this limit, and also results in spherical bodies that do rotate due to hydrody-
namic interactions.

3. Boundary integral formulation

We represent solutions to the Stokes equations in terms of a boundary integral formulation. Our formulation for Eqs. (1)–
(4) is based on a combination of fundamental solutions (free-space Green’s functions of Stokes flow) to the Stokes equations,
the Stokeslet (G) and the stresslet (T)
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gijðx; yÞ ¼
dij

R
þ RiRj

R3 ; ð5Þ

tijkðx; yÞ ¼ �6
RiRjRk

R5 ; ð6Þ

R ¼ x� y; R ¼ jRj; ð7Þ
and involves boundary values of velocity and stress. It is a mixed formulation since it is based on the combination of the
single and double layer potentials. The nondimensionalized formulation for y 2 Dk is
uk
l ðyÞ ¼ �

1
4pl

Z
[Dk

fk
i ðxÞgilðx; yÞdSx ð8Þ

þ 1
4p

Z PV

[Dk

uk
i ðxÞtijlðx; yÞek

nj
ðxÞdSx; ð9Þ

uk
slðyÞ � ek

nðyÞ ¼ 0; uk
slðyÞ � ek

?ðyÞ ¼ 0; ð10Þ

Fk ¼
Z

Dk

fkdSx ¼ 0; ð11Þ

Tk ¼
Z

Dk

ðrk � fkÞdSx ¼ 0: ð12Þ
Eqs. (8)–(12) are nondimensionalized using the semi-major axis length c of the ellipsoidal swimmer (radius a for a spherical
swimmer), the characteristic magnitude of the flow velocity U � �f c=l, where �f is the average value of fk, and the fluid vis-
cosity l. The boundary conditions are that the shear stress component fk

k is specified, and that the only nonzero slip velocity
component is uk

sl � ek
k at each interface Dk. We complete the formulation by requiring the net body force and torque to be

equal to zero for each surface Dk.
4. Numerical method

Throughout this paper we focus on the dynamics of spherical and ellipsoidal bodies. The spheres have fixed radius
a ¼ 1:0, while the prolate ellipsoids have fixed semi-major axis length c ¼ 1:0 (major axis length is 2c ¼ 2:0) and semi-minor
axis length b. The aspect ratio is AR ¼ c=b.

We discretize the integral equation system above using the Nystrom collocation method. The surface of the sphere or
ellipsoid is discretized using a uniformly-spaced h� / mesh(h 2 ½0;p� is polar angle, / 2 ½0;2p� is azimuthal angle in spher-
ical coordinates): hj ¼ pj=ðN1 � 1Þ; j ¼ 0;1; . . . ;N1 � 1, and /j ¼ 2pj=ðN2 � 1Þ; j ¼ 0;1; . . . ;N2 � 1, where N1 and N2 are inte-
gers. The Cartesian coordinates of a point on a sphere (centered at origin) corresponding to a h� / pair are
ðx; y; zÞ ¼ ðsin h cos /; sin h sin /; cos hÞ, while the Cartesian coordinates of a point on an ellipsoid (centered at origin) corre-
sponding to a h—/ pair are ðx; y; zÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 1

p
sin h cos /;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 1

p
sin h sin /;C cos hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2
p

, where the ratio of major axis
length to distance between the foci is C ¼ c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2
p

.
The trapezoidal rule on the surface is carried out as the tensor product of one-dimensional trapezoidal rules
Z 2p

0

Z p

0
f ðh;/Þdhd/ � hhh/

XN2�1

k¼0

XN1�1

j¼0

wjwkf ðhj;/kÞ; ð13Þ
where wj ¼ 1; j ¼ 1;2; . . . ;N1 � 2; wk ¼ 1; k ¼ 1;2; . . . ;N2 � 2; wj ¼ 1=2; j ¼ 0;N1 � 1; wk ¼ 1=2; k ¼ 0;N2 � 1; hh ¼ p=N1

and h/ ¼ 2p=N2. This is slightly modified in our implementation since we use only one point to discretize each pole, giving
the total number of points N ¼ ðN1 � 2ÞðN2 � 1Þ þ 2.

It is important to note that the single-layer and the double-layer integrals have singularities whenever x = y that if left
untreated will affect the order of accuracy in the trapezoidal quadrature. For the single-layer term, we apply a subtraction
technique,
Z

D
f iðxÞGikðx; yÞdSx ¼

Z
D
½f iðxÞ � f iðyÞ�Gikðx; yÞdSx þ f iðyÞ

Z
D

Gikðx; yÞdSx; ð14Þ
thus reducing the order of the singularity in the first term on the right hand side of Eq. (14), which may now be evaluated
with the trapezoidal rule to second-order accuracy. We evaluate

R
D Gikðx; yÞdSx (second term in Eq. (14)) using a quadrature

method based on a transformation technique due to Sidi [26]. Similarly, for the double-layer term, we apply a similar
technique:
Z

D
uiðxÞTijkðx; yÞnjðxÞdSx ¼

Z
D
½uiðxÞ � uiðyÞ�Tijkðx; yÞnjðxÞdSx � 4pukðyÞ; ð15Þ
which uses a well-known identity [19], and again reduces the order of the singularity in the first term on the right hand side
of Eq. (15). The trapezoidal rule will now yield second-order accuracy. For each body Dk, there are five equations per point for
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N points, as well as six additional equations generated by the requirement that the net force must be zero and the net torque
must also be zero. Thus, the size of the linear system is ðð5N þ 6ÞpÞ2. The resulting linear system
Table 1
Sphere,

N1

(a)
4
8

16
32
64

128

(b)
4
8

16
32
64

128

(c)
4
8

16
32
64

128
Aq ¼ b ð16Þ
is solved for q using GMRES [21]. The success of an iterative linear solver largely depends on an effective preconditioner,
which may result in significant speed-ups. We apply right preconditioning, which leaves the right-hand side of Eq. (16)
unchanged
ðAP�1ÞðPqÞ ¼ b; ð17Þ
where P represents the preconditioning matrix (an approximation to A). Solving the preconditioned system above involves
two main steps. First, we define z ¼ Pq and solve AP�1z ¼ b for z using GMRES. Note that P�1 is never actually computed, but
the action of P�1 on z is computed. Second, we solve Pq ¼ z for q using a fast sparse direct solver. The preconditioning matrix
P, a very sparse approximation to A, is the main block diagonal of A (nonoverlapping blocks are 5 � 5 matrices) and the last
6p rows and columns of A, where p is the number of bodies. We apply extrapolation in conjunction with preconditioning in
order to reduce the number of iterations even further by improving the initial guess vectors that are needed to start each
GMRES cycle (i.e., use solutions from the two previous time levels to extrapolate initial guess). Table 3 lists the average num-
ber of GMRES iterations for some of the two-body interaction tests discussed in Section 5.

Each body’s position and orientation are updated by integrating the ordinary differential equations
d
dt

xk
0 ¼ Uk

0;
d
dt

dk ¼ xk � dk
; ð18Þ
for xk
0 and dk using the second-order Adams–Bashforth multistep scheme.

5. Numerical tests

For all the numerical tests that follow we take fk ¼ fkĥ, where ĥ is the polar unit vector directed along the lines of longi-
tude (see Appendix A). Note too that the orientation vector dk of each swimmer is along the polar axis and for the stress dis-
tributions used here is also the direction of swimming for single bodies.

5.1. One sphere

We test the numerical method presented in Section 4 for the case of a single spherical swimmer by comparing the numer-
ical results for the normal stress, normal velocity, and tangential velocity distributions to the analytical solution derived in
Appendix A. For fk ¼ � sin h, the normal and tangential (ĥ-direction) velocities are u ¼ ðcos h=3Þr�3 and v ¼ ðsin h=6Þr�3. Note
that for this particular case, the velocity field decays rapidly as r�3 and results in weak interactions among two or more
swimmers.
(a) normal stress errors, (b) normal velocity errors, and (c) tangential velocity errors. fk ¼ � sin h.

N2 Error ðL1Þ Error ðL2Þ Convergence rate ðL1Þ Convergence rate ðL2Þ

128 1.197e+00 9.173e�01
128 1.470e�01 9.596e�02 3.03 3.26
128 3.173e�02 1.821e�02 2.21 2.40
128 7.717e�03 4.003e�03 2.04 2.19
128 1.938e�03 9.359e�04 1.99 2.10
128 4.478e�04 2.238e�04 2.11 2.06

128 5.750e�01 4.546e�01
128 6.979e�02 5.234e�02 3.04 3.12
128 1.416e�02 1.032e�02 2.30 2.34
128 3.241e�03 2.327e�03 2.13 2.15
128 7.776e�04 5.543e�04 2.06 2.07
128 1.902e�04 1.351e�04 2.03 2.04

128 1.179e�01 8.335e�02
128 2.484e�02 1.912e�02 2.25 2.12
128 6.125e�03 4.679e�03 2.02 2.03
128 1.577e�03 1.171e�03 1.96 2.00
128 4.060e�04 2.951e�04 1.96 1.99
128 1.044e�04 7.450e�05 1.96 1.99



Table 2
Ellipsoid, (a) normal stress errors, (b) normal velocity errors, and (c) tangential velocity errors. fk ¼ � sin h.

N1 N2 Error ðL1Þ ErrorðL2Þ Convergence rate ðL1Þ Convergence rate ðL2Þ

(a)
4 128 2.988e+00 2.216e+00
8 128 3.024e�01 1.910e�01 3.30 3.54

16 128 6.372e�02 3.539e�02 2.25 2.43
32 128 1.476e�02 7.657e�03 2.11 2.21
64 128 3.406e�03 1.768e�03 2.12 2.12

128 128 7.341e�04 4.151e�04 2.21 2.09

(b)
4 128 1.494e+00 1.136e+00
8 128 1.576e�01 1.113e�01 3.24 3.35

16 128 3.187e�02 2.168e�02 2.31 2.36
32 128 7.287e�03 4.861e�03 2.13 2.16
64 128 1.748e�03 1.154e�03 2.06 2.07

128 128 4.287e�04 2.818e�04 2.03 2.03

(c)
4 128 1.565e�01 1.107e�01
8 128 4.435e�02 3.067e�02 1.82 1.85

16 128 1.197e�02 7.835e�03 1.89 1.97
32 128 3.105e�03 2.001e�03 1.95 1.97
64 128 8.234e�04 5.096e�04 1.92 1.97

128 128 2.134e�04 1.293e�04 1.95 1.98
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Fig. 2. Centroid velocity and maximum normal stress versus aspect ratio for a single ellipsoidal locomotor. fk ¼ � sin h.
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We compute the errors in the L1 and the L2 norms, which are summarized in Table 1. The grid used is uniform in the polar
ðhÞ and azimuthal directions ð/Þ. We set N2 ¼ 128 constant (number of points in the / direction), and increase N1 (number of
points in the h direction) from 4 to 128. For all results shown, the GMRES tolerance is 10�8.

We can clearly see that the convergence rate in N1 is of design order accuracy for the trapezoidal rule, i.e. the numerical
spatial discretization is second-order accurate with respect to N1. We do not show the more rapid convergence rates with
respect to N2, since the functions in this test problem are periodic in /. Note that applying the trapezoidal rule to smooth
periodic functions results in superalgebraic convergence.
5.2. One ellipsoid

Next, we test the numerical method presented in Section 4 for the case of a single prolate ellipsoidal swimmer by com-
paring the numerical results for the normal stress, normal velocity, and tangential velocity distributions to the analytical
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solution derived in Appendix B. We compute the errors in the L1 and L2 norms, which are summarized in Table 2 for an ellip-
soid with aspect ratio AR ¼ 1:34 and C ¼ 1:5.

The grid used is uniform in the polar and azimuthal directions. We set N2 ¼ 128 (number of points in the / direction), and
increase N1 (number of points in the h direction) from 4 to 128. For all results shown, the tangential stress distribution func-
tion is fk ¼ � sin h, and the GMRES tolerance is 10�8.

Again, we can clearly see that the convergence rate in N1 is second-order accurate with respect to N1. We do not show the
convergence rates with respect to increasing N2, but note that they are typically higher than the case shown due to the peri-
odicity in the / direction.

In Fig. 2(a) and (b), we plot the centroid velocity U0 and the maximum normal stress versus aspect ratio AR for a single
ellipsoidal locomotor. Here, c ¼ 2 and a ¼ b ¼ 2=AR. The tangential stress distribution is fk ¼ � sin h. We find that both U0

and the maximum normal stress grow linearly with the aspect ratio (at least over this range). Finally, we plot the tangential
velocity and normal stress profiles for ellipsoids with AR ranging from 1.0 to 8.0 in Fig. 3(a) and (b), respectively.
5.3. Two interacting bodies

In this section, we discuss several simulations for two interacting spheres and ellipsoids.



Fig. 5. Flow velocity field (in reference frame of locomotor) for a puller ðb ¼ 10Þ. The normal and tangential (ĥ-direction) velocities are
u ¼ cos hðr�3 � 1Þ þ ð3b=4Þð3 cos2 h� 1Þðr�4 � r�2Þ and v ¼ sin hðr�3=2þ 1Þ þ ð3b=2Þ sin h cos hr�4.

Fig. 6. Flow velocity field (in reference frame of locomotor) for a pusher ðb ¼ �10Þ. The normal and tangential (ĥ-direction) velocities are
u ¼ cos hðr�3 � 1Þ þ ð3b=4Þð3 cos2 h� 1Þðr�4 � r�2Þ and v ¼ sin hðr�3=2þ 1Þ þ ð3b=2Þ sin h cos hr�4.
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All of the two-sphere tests were run with Dt ¼ 2:5� 10�2, GMRES tolerance equal to 10�6; N1 ¼ 48 and N2 ¼ 24. The two-
ellipsoid tests had the same parameters except that the time step Dt ¼ 1:5� 10�2 for AR ¼ 2:0 and Dt ¼ 5:0� 10�3 for
AR ¼ 8:0.

The first two-sphere interaction test has the following initial conditions: the orientation vectors of the two swimmers are
initially anti-aligned (this defines a0 ¼ p, for which d1 � d2 ¼ cosa0 initially), and they are swimming towards one another
with an offset (see Fig. 7(a)). The initial center-to-center dy separation distances vary from 2.5 to 10.0, while initial cen-
ter-to-center dz separation distances are 10.0. The invariant tangential stress distribution we apply for all interaction tests
yields the slip velocity distribution used in [13] for a single swimmer, and is given by fk ¼ �3 sin h� 15

2 b sin h cos h, which
is plotted for various positive and negative values of b in Fig. 4. Note that the b-term in the stress distribution above does
not contribute to the mean stress, whereas the first term does. Locomotors with this stress distribution are referred to as
pullers for b > 0, since most of the shear stress actuation occurs in the anterior region, and as pushers for b < 0. The velocity
field generated by a single puller with b ¼ 10 is shown in Fig. 5 (in reference frame of locomotor), while the velocity field
generated by a single pusher with b ¼ �10 is shown in Fig. 6 (in reference frame of locomotor). Note that the centroid veloc-
ity U0 ¼ 1:0 for a single spherical puller or pusher.

For all interaction tests we find that b ¼ 0, which is a symmetric shear stress distribution, results in velocity fields that
decay as r�3 and therefore yields very weak interactions between two swimmers, while distributions with b – 0 break
the symmetry, resulting in velocity fields that decay as r�2 and thus stronger and more interesting interactions. For this rea-
son the value of b is typically chosen to be 10 (higher values of b result in stronger interactions).



Fig. 7. Interaction history of two spherical swimmers ((a) pullers, (b) pushers) with initial condition a0 ¼ p, and Dt ¼ 2:5� 10�2. The horizontal and vertical
axes in each subplot depict the y and z directions.
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Fig. 8. Trajectories of two spherical swimmers ((a) pullers, (b) pushers) with initial condition a0 ¼ p.
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Fig. 9. Trajectories of two spherical swimmers ((a) pullers, (b) pushers, (c) puller and pusher) with initial condition a0 ¼ 0.
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First, we will describe the interaction of the two spherical pullers for b ¼ 10; dy ¼ 3:0 and dz ¼ 10:0. We will then sum-
marize results from a very similar two-sphere test found in Ishikawa et al. [13] (refer to pp. 148–149 and Figs. 18(a)–(h) and
19) with initial conditions: a0 ¼ p; b ¼ 5; dy ¼ 1, and dz ¼ 10. Although the initial conditions for both tests are not exactly
the same, it is still possible to compare the qualitative behavior of the locomotor interactions for the case of two pullers
swimming towards one another ða0 ¼ pÞ.

Fig. 7 shows the interaction of these two spherical pullers. Their direction vectors, d1 and d2, are also shown to reveal
changes in orientation. The spheres initially move towards one another, while rotating counter-clockwise (Fig. 7(a.1)–
(a.3)). Upon close interaction, they reverse the rotation direction, rotate clockwise and push apart (Fig. 7(a.4)–(a.7)). Finally,



Fig. 10. Interaction history of two ellipsoidal swimmers (pullers, AR = 2.0) with b ¼ 10, and initial conditions a0 ¼ p, dy ¼ 2:0 and dz ¼ 10:0. Dt ¼ 1:5� 10�2.
The horizontal and vertical axes in each subplot depict the y and z directions. N1 ¼ 48 and N2 ¼ 24.
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Fig. 11. Trajectories of two ellipsoidal swimmers ((a) pullers, (b) pushers) (AR = 2.0) with initial conditions a0 ¼ p, and dy ¼ 2:0 (solid line), 5.0 (dash-dotted
line), 10.0 (dashed line).
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as the locomotors swim apart, they change the direction of their rotation once more to counter-clockwise (Fig. 7(a.8)–(a.9)).
The centroid trajectories of two spherical locomotors for various values of dy are plotted in Fig. 8(a) for b ¼ 10.

There are important differences with the results of [13]. There the spheres initially move towards one another, while
rotating in the clockwise direction (Fig. 18(a)–(c) of [13]). In the near field, they continue rotating in the clockwise direction
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and push apart (Fig. 18(d)–(f) of [13]). Finally, as the locomotors move apart, they change the direction of their rotation to the
counter-clockwise direction (Fig. 18(g)–(h) of [13]). Hence, the main difference between our results and those of [13] for this
particular test is that the locomotors in our model show a more complex rotational dynamics. As a result, the final positions
and orientations vary significantly from those of [13].

In the second test, we increase the offset ðdy ¼ 4:5Þ and change the swimmer type to pushers with b ¼ �10. The interac-
tions in this case are shown in Fig. 7(b.1)–(b.9). The spheres initially push away from one another in the y-direction and
move toward one another in the z-direction while rotating clockwise (Fig. 7(b.1)). They later swim toward one another
and rotate counter-clockwise (Fig. 7(b.2)–(b.6)), and move away from each other while rotating clockwise as they swim
apart (Fig. 7(b.7)–(b.9)). The centroid trajectories are plotted in Fig. 8(b).

Next, we discuss three tests for two interacting spheres which swim side by side and are initially oriented in the same
direction ða0 ¼ 0Þ. For these three cases, (a) both are pullers with b ¼ 10, (b) both are pushers with b ¼ �10, and (c) one is
a puller ðb ¼ 10Þ and the other a pusher ðb ¼ �10Þ. In the first case (a), the spheres push each other away in the y-direction
and rotate away from each other (sphere on the right rotates clockwise, while sphere to the left rotates counter-clockwise),
while in the second case (b) they pull each other towards one another and rotate towards one another. For case (c), the
spheres’ swimming motions are oscillatory, whereby they swim away from and then toward one another. Long-time simu-
lations were necessary to see these motions, which are similar in nature to those recently observed by Pooley et al. in [18],
whose work investigated the effect of swimming stroke phase on interactions between two model swimmers. The centroid
trajectories for all three cases are plotted in Fig. 9(a)–(c).

We now discuss simulations for two interacting ellipsoids with AR ¼ 2:0 and AR ¼ 8:0. The first set of simulations have
the following initial conditions for both aspect ratios: a0 ¼ p, initial separation distances dy vary from 2.0 to 10.0, while ini-
tial separation distances dz ¼ 10:0, and b ¼ 10 and �10, respectively.

Fig. 10 shows the interaction history of two ellipsoidal swimmers with AR ¼ 2:0 for b ¼ 10; dy ¼ 2:0 and dz ¼ 10:0. As for
the first two-sphere test, the ellipsoids initially move toward one another and rotate counter-clockwise toward one another
(Fig. 10(a)–(b)), then push away and rotate (clockwise) away from each other (Fig. 10(c)–(e)), and finally change the direc-
tion of their rotation once more (to counter-clockwise) as they swim apart (Fig. 10(f)–(i)). The centroid trajectories for the
ellipsoidal tests for various values of dy are plotted in Fig. 11(a)–(b) ðAR ¼ 2:0Þ for b ¼ 10.

Centroid trajectories for two interacting ellipsoids with higher aspect ratio ðAR ¼ 8:0Þ are plotted in Fig. 12(a)–(b) for
b ¼ 10; dz ¼ 10:0, and various values of dy. The translational and rotational dynamics are qualitatively similar to the
AR ¼ 2:0 ellipsoid tests described above, but the interactions are notably weaker.

We repeat and discuss only these particular two-sphere tests for two ellipsoids (similar initial parameters and stress dis-
tributions), since we find that tests performed for two spheres or ellipsoids with similar parameters, initial conditions, and
surface stress distributions fk result in qualitatively similar behavior.

The final two-ellipsoid interaction test has the following initial conditions: a0 ¼ p=2, initial separation distance dy ¼ 2:75,
while initial separation distance dz ¼ 8:0, and b ¼ 10. Fig. 13(a)–(f) show the interactions for this simulation, which result in
significant changes in the initial orientations of both swimmers. The swimmer which initially swims in the positive z-direc-
tion rotates clockwise, while the second swimmer rotates counter-clockwise.
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Fig. 12. Trajectories of two ellipsoidal swimmers ((a) pullers, (b) pushers) (AR = 8.0) with initial conditions a0 ¼ p, and dy ¼ 2:0 (solid line), 5.0 (dash-dotted
line), 10.0 (dashed line).



Table 3
Average number of GMRES iterations in one time step. b ¼ 10.

AR a0 dy dz GMRES iter.a GMRES iter.b

1.0 p 3.00 10.0 64.6 17.4
2.0 p 2.00 10.0 77.5 13.6
2.0 p=2 2.75 8.0 67.9 9.6

a Without preconditioning and extrapolation.
b With preconditioning and extrapolation.

Fig. 13. Interaction history of two ellipsoidal pullers (AR = 2.0) with b ¼ 10, and initial conditions a0 ¼ p=2; dy ¼ 2:75 and dz ¼ 8:0. Dt ¼ 1:5� 10�2. The
horizontal and vertical axes in each subplot depict the y and z directions. N1 ¼ 48 and N2 ¼ 24.
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In order to give a sense of the computational cost involved in the above simulations, Table 3 lists the average number of
iterations per time step for the GMRES solver with and without preconditioning and extrapolation for several of the test
cases described above. Results are shown for three of the two sphere and two ellipsoid interaction tests, which resulted
in the closest and strongest interactions and thus the largest number of GMRES iterations out of all the tests. Note that pre-
conditioning and extrapolation significantly increases the computational efficiency of the method.

6. Conclusions and discussion

In this paper, we develop and test a mathematical model for simulating the hydrodynamic interactions of multiple spher-
ical or ellipsoidal active swimmers in Stokes flow. The model consists of a mixed boundary-integral formulation with a spec-
ified tangential stress boundary condition.

Analytic solutions are derived for a single locomoting sphere and ellipsoid (with prescribed tangential stress distribution)
based on spherical and ellipsoidal harmonics, respectively, and are used to demonstrate that the Nystrom spatial discretiza-
tion is of design order accuracy (second-order). The effects of varying aspect ratio are also investigated for a single prolate
ellipsoid, where we find that the magnitudes of the centroid velocity and maximum normal stress are linearly dependent on
the aspect ratio, within the range that we investigate.

We simulate the hydrodynamic interactions of two spherical and ellipsoidal swimmers with various stress distributions
and initial conditions in an infinite fluid otherwise at rest. Different invariant tangential stress distributions are applied,
which are based on the single swimmer surface velocity distributions used in [13], and correspond to pushers, for which most
of the shear stress actuation occurs in the posterior region, and pullers, for which most of the stress actuation occurs in the
anterior region. For studies using slender body pushers and pullers see [23].

Three orientational configurations are tested, namely (a) two swimmers initially facing each other, (b) two swimmers ini-
tially oriented at a right angle with respect to one another, and (c) two swimmers initially placed parallel to one another (pair-
wise swimming). For cases (a) and (b), we find that the body-body interactions are complex and rich, where the orientations
and trajectories of each body undergo large, nontrivial changes. For the third case (c), we find three different types of motions,
depending on the specified stress distributions. The first two types of interactions for pairwise swimming are (i) repulsive
swimming (Fig. 9(a)) and (ii) attractive swimming (Fig. 9(b)), where the two locomotors repel and attract one another, respec-
tively. These motions are unstable, since the two bodies will eventually stop swimming in the same net direction. However,
the third type of swimming motion is very interesting and beautiful (see Fig. 9(c)), and occurs when one swimmer is a pusher
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while the other is a puller. These stable oscillatory swimming patterns are highly sensitive to the distance between the
centroids of the locomotors. In fact, we find that changes of roughly .5 in the distance between the centroids from centroid
distance lead to a doubling (or halving) of the period depending on whether or not this distance increases (or decreases).

Furthermore, we find that the qualitative nature of the interactions is similar for both spheres and ellipsoids, and that
varying the aspect ratio does not change the general tendencies of the locomotors, as was found by Ishikawa in [12] for mod-
els of interacting bacteria.

In future work, we plan to study more general stress distributions which consist of both polar and azimuthal components
so that each swimmer rotates about its axis of motion while swimming in a particular direction, which is the case for micro-
organisms such as V. carteri. We also plan to investigate time-dependent stress distributions, as well as the collective swim-
ming behavior of many locomotors.

An important question that is left open by both our work and by that of others, is what constitutes an appropriate biophys-
ically-based model for the motive stress or slip velocity used to propel the model organism. For a true organism such as V. car-
teri, it is most likely an inter-leaved combination of applied stress imparted by the ‘‘rowing flagellae”, and a no-slip condition
along their supporting surface. An important modeling task is to develop appropriately coarse-grained boundary conditions
that capture such combinations, the constituents of which possibly being strongly dynamical and responsive to external flows.
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Appendix A

A.1. One sphere: analytic solution

In this section, we derive the exact axisymmetric solution for a single locomoting (unit) sphere with a prescribed tangen-
tial surface stress distribution. The derived solution is in the reference frame of the body (sphere) and is based on spherical
coordinates and spherical harmonics. Note that m is the fluid viscosity.

Consider a sphere centered at the origin and of radius one. The coordinates are ðr; h;/Þ corresponding to the radius, the
polar angle and the azimuthal angle in the spherical coordinate reference frame. We seek an axisymmetric solution to the
Stokes equations for the flow which has specified tangential stress on the sphere along lines of constant angle /:
r � r ¼ 0; r � u ¼ 0; ð19Þ
r ¼ �pIþ 2mE; ð20Þ
I� eneT

n

� �
ren ¼ f ĥ: ð21Þ
We seek the solution through the Stokes stream function wðr; hÞ. First, let us define u as the magnitude of the normal com-
ponent of velocity, and v as the magnitude of the tangential component of velocity: ðu;vÞ ¼ ðu � r̂;u � ĥÞ
u ¼ 1
r2 sin h

@w
@h
¼ �1

r2

@w
@l

; ð22Þ

v ¼ �1
r sin h

@w
@r
¼ �1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p @w
@r
; ð23Þ
where l ¼ cos h. Note that
r̂ ¼ ðcos / sin h; sin / sin h; cos hÞ;
ĥ ¼ ðcos / cos h; sin / cos h;� sin hÞ:
Taking the curl of the momentum equation (Eq. (19)) gives
Dx ¼ 0; ð24Þ
where the vorticity x ¼ r� u. It can be shown that a consequence of this is that
L2w ¼ 0; L ¼ @rr þ
sin h

r2 @h
1

sin h
@h

� �
¼ @rr þ

1� l2

r2 @ll: ð25Þ
We require that u be bounded at infinity and outside of the unit ball, for r 	 1, that the velocity field be bounded at the poles
l ¼ 
1, and also require zero mass flux at infinity. Given these assumptions, the relevant stream function w may be ex-
pressed through an expansion of spherical harmonics Rn and Qn themselves expressed in terms of Legendre polynomials Pn
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w ¼ a1Q 1 þ
X
nP1

bn þ r2~bn

� �
Rn; ð26Þ
where
Rnðr;lÞ ¼
�1
n

r�nð1� l2ÞP0nðlÞ; Q 1 ¼
r2

2
ð1� l2Þ:
Note that P0 ¼ 1; P1 ¼ l; P2 ¼ 1
2 ð3l2 � 1Þ.

In order to derive the coefficients a1; bn and ~bnðn P 1Þ, we will apply a set of three boundary conditions and a zero net
force condition.

(1) We assume uniform flow at infinity with speed U in the negative-z direction (uj1 ¼ �Uk̂ in Cartesian coordinates).
Therefore, a1 ¼ �U, and the stream function becomes
w ¼ �1
2

Ur2ð1� l2Þ þ
X
nP1

ðbn þ r2~bnÞRn: ð27Þ
(2) We apply the no penetration condition ujr¼1 ¼ 0 (normal component of velocity is zero)
ujr¼1 ¼ �Ul�
X
nP1

ðbn þ ~bnÞðnþ 1ÞPnðlÞ ¼ 0; ð28Þ

requiring that

b1 þ ~b1 ¼ �
U
2
; ð29Þ

bn þ ~bn ¼ 0;n P 2: ð30Þ
(3) Next, we apply the stress condition 2mErhjr¼1 ¼ fh. For an axisymmetric flow we will have
fh
2m
¼erhjr¼1 ¼

r
2
@

@r
v
r

� �
jr¼1 ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p @

@r
�1
r2

@w
@r

� �				
r¼1

ð31Þ

¼ �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p ðwrr � 2wrÞjr¼1 ð32Þ

where

wrjr¼1 ¼ �
1
2

Uð1� l2Þ þ 2
X
nP1

bn

n
ð1� l2ÞP0nðlÞ; ð33Þ

wrrjr¼1 ¼ �Uð1� l2Þ �
X
nP1

bn

n
½4n� 2�ð1� l2ÞP0nðlÞ: ð34Þ

We assume that the tangential stress distribution is a smooth function given by

rrh ¼ fh ¼ �f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

q X
mP0

amPmðlÞ; ð35Þ

where f0 is a constant. Note that the solution constructed by Short et al. [25] is for the case when fh is a constant. Eq.
(32) becomes

f0

m
ð1� l2Þ

X
mP0

amPmðlÞ ¼ �4
X
nP1

bn

n
½nþ 1=2�ð1� l2ÞP0nðlÞ: ð36Þ

Now we integrate this equation against P0k, and use the identities

ð1� l2ÞP0nðlÞ ¼
nðnþ 1Þ
2nþ 1

ðPn�1ðlÞ � Pnþ1ðlÞÞ; ð37ÞZ 1

�1
PkðlÞPnðlÞdl ¼

2
2kþ 1

dn;k; ð38Þ

andZ 1

�1
P0kðlÞð1� l2ÞP0nðlÞdl ¼ �

Z 1

�1
PkðlÞ ð1� l2ÞP0nðlÞ

� �0
dl ¼ kðkþ 1Þ

kþ 1=2
dn;k: ð39Þ
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Therefore,

bn ¼
f0n

2mð2nþ 1Þ
anþ1

2nþ 3
� an�1

2n� 1

� �
; n P 1: ð40Þ

We proceed by working out the trivial case for which a0 ¼ 1 and am ¼ 0; m > 0, resulting in

b1 ¼ �
f0

6m
; ð41Þ

bn ¼ 0;n P 2: ð42Þ
(4) Finally, we require the net force to be zero. In order to enforce this condition, we must first compute the pressure, p,
and also the rate-of-strain component err . We dot the Stokes equation (Eq. (19)) with r̂ and come up with an equation
for the r-derivative of the pressure:
1
m
@p
@r
¼ r̂ � ðr2uÞ ¼ 2l

r4 wll �
1
r2 wlrr ¼

4l
r3

~b1: ð43Þ

Therefore,

@p
@r
¼ 4ml

r3
~b1: ð44Þ

We integrate Eq. (44) with respect to r and find that

pðr;lÞ ¼ GðlÞ � 2ml
r2

~b1 þ C1; ð45Þ

where C1 is a constant and G is only a function of l. Since the pressure is required to be harmonic, i.e.r2pðr;lÞ ¼ 0, we
set GðlÞ ¼ 0 in order for the pressure to be finite at the poles (GðlÞ is the solution to the differential equation dG

dl ¼ C
1�l2),

giving us

pðr;lÞ ¼ �2ml
r2

~b1 þ C1: ð46Þ

The rate-of-strain err is given as

err ¼
@u
@r
¼ 2

r3 wl �
1
r2 wlr ¼

6l
r4 b1 þ

2l
r2

~b1: ð47Þ

Now we have all the pieces necessary to write down the stress~t ¼ r~n. In polar coordinates, with only the rate-of-strain
components err and ehr needed to do this

~t ¼ Trr r̂ þ Thr ĥ ¼
�pþ 2merr

2mehr

� �
¼ 12mlb1 þ 6ml~b1 þ C1

�f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p !
: ð48Þ

We may now find the net force in any direction.

Fx ¼ Fy ¼
I
~t �~exdS ¼

I
½cos / sinðhÞTrr þ cos / cosðhÞThr �dS: ð49Þ

Fz ¼
I
~t �~ezdS ¼

I
½Trr cos h� Thr sin h�dS: ð50Þ

There is a cos / term sitting inside the Fx and Fy integrals, so both Fx and Fy are zero. We require Fz to also be zero:

0 ¼ Fz ¼
Z 2p

0

Z p

0
½Trr cos h� Thr sin h� sin hdhd/ ¼

Z 2p

0

Z 1

�1
½Trrl� Thr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

q
�dld/

¼ 2p½4ml3b1 þ 2ml3~b1 þ C1l2=2þ f0ðl� l3=3Þ�1�1: ð51Þ

Therefore,

0 ¼ 2b1 þ ~b1 þ
f0

3m
: ð52Þ
We now write the system of three equations and unknowns that comes out of all the above conditions, and solve for the
three unknowns, b1;

~b1 and U:
1=2 1 1
0 2 1
0 1 0

0B@
1CA U

b1
~b1

0B@
1CA ¼ 0

� f0
3m

� f0
6m

0B@
1CA ð53Þ
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giving us
U

b1

~b1

0B@
1CA ¼

f0
3m

� f0
6m

0

0B@
1CA ð54Þ
Note that bn ¼ ~bn ¼ 0 n P 2. The stream function becomes
w ¼ � f0

6m
r2 � 1

r

� �
ð1� l2Þ ð55Þ
for the stress distribution rrh ¼ fh ¼ �f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
. The tangential velocity v (normal velocity u is zero in reference frame of

body) may be computed from the stream function using Eq. (23).

Appendix B

B.1. One prolate ellipsoid: analytic solution

In this section, we derive the exact axisymmetric solution for a single locomoting ellipsoid with a prescribed tangential
surface stress distribution. The derived solution is in the reference frame of the body (ellipsoid) and is based on ellipsoidal
coordinates and ellipsoidal harmonics. Note that m is the fluid viscosity.

Consider an ellipsoid centered at the origin. The coordinates are ðC;l;/Þ corresponding to the ratio of major axis length to
distance between the foci, the cosine of the polar angle, and the azimuthal angle in the prolate spheroidal coordinate refer-
ence frame. The relation between Cartesian and prolate spheroidal systems is the following:
ðx; y; zÞ ¼ ðx cos /;x sin /; k cos h cosh g ¼ klCÞ; ð56Þ
where x ¼ k sin h sinhg. C ¼ C0 > 1 is a confocal ellipsoid with foci ð0; 0;
kÞ; 1 6 C 61; �1 6 l 6 1.
We seek an axisymmetric solution to the Stokes equations (Eq. (19)) for the flow which has specified tangential stress on

the ellipsoid along lines of constant angle / through the Stokes stream function wðC;lÞ. Just as for the case of the sphere, it
can be shown that w must satisfy
L2w ¼ 0; L ¼ 1

k2ðl2 � C2Þ
½ð1� C2Þ@CC � ð1� l2Þ@ll� ð57Þ
First, let us define u as the magnitude of the normal component of velocity, and v as the magnitude of the tangential com-
ponent of velocity: ðu;vÞ ¼ ðu � bC;u � l̂Þ
u ¼ 1

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � l2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 1

p @w
@l

; ð58Þ

v ¼ �1

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � l2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p @w
@C

: ð59Þ
Note that
bC ¼ Cð1� l2Þ1=2

ðC2 � l2Þ1=2 cos /;
Cð1� l2Þ1=2

ðC2 � l2Þ1=2 sin /;
lðC2 � 1Þ1=2

ðC2 � l2Þ1=2

 !
;

l̂ ¼ lðC2 � 1Þ1=2

ðC2 � l2Þ1=2 cos /;
lðC2 � 1Þ1=2

ðC2 � l2Þ1=2 sin /;�Cð1� l2Þ1=2

ðC2 � l2Þ1=2

 !
:

The stream function w may be expressed through an expansion of ellipsoidal harmonics Rn and Sn, themselves expressed in
terms of the Legendre polynomials of the first kind Pn and the Legendre polynomials of the second kind Qn
w ¼ a1R1ðlÞR1ðCÞ þ
X
nP1

½bn þ ~bnðl2 þ C2Þ�RnðlÞSnðCÞ; ð60Þ
where
RnðxÞ ¼ ð1� x2ÞP0nðxÞ;
SnðxÞ ¼ ð1� x2ÞQ 0nðxÞ;

Q nðxÞ ¼ PnðxÞ
Z 1

x

ds
P2

nðsÞðs2 � 1Þ
:

Note that Q nðxÞ include a log term, and that Q0ðxÞ ¼ 1
2 ln 1þx

1�x

� �
;Q1ðxÞ ¼ x

2 ln 1þx
1�x

� �
� 1, and Q2ðxÞ ¼ 3x2�1

4 ln 1þx
1�x

� �
� 3x

2 . We also
note that the form of w is analogous to the spherical case since l2 þ C2 � 1 ¼ r2.
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In order to derive the coefficients a1; bn and ~bnðn P 1Þ, we will apply a set of three boundary conditions and a zero net
force condition just as we did in the previous section for the sphere.

(1) We assume uniform flow at infinity with speed U in the negative-z direction (uj1 ¼ �Uk̂ in Cartesian coordinates).
Therefore, a1 ¼ U=2, and the stream function becomes
w ¼ �U
2
ð1� l2ÞðC2 � 1Þ þ

X
nP1

½bn þ ~bnðl2 þ C2Þ�RnðlÞSnðCÞ: ð61Þ
(2) We apply the no penetration condition ujC¼C0
¼ 0 (normal component of velocity is zero at the wall). Setting ujC¼C0

¼ 0
and dividing through by 1� C2

0 we get
0 ¼ �Ulþ
X
nP1

bn½PnðlÞQ 0nðC0Þð�nÞðnþ 1Þ� þ ~bn½PnðlÞQ 0nðC0Þð�nÞðnþ 1Þ C2
0 þ l2

� �
þ P0nðlÞQ

0
nðC0Þð2lÞð1� l2Þ�:

ð62Þ
(3) Next, we apply the stress condition 2meCljC0
¼ fh. We note that the scale factors (Lame coefficients) for the prolate

ellipsoidal coordinate system are
h1 ¼ hC ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � l2

C2 � 1

s
;

h2 ¼ hl ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � l2

1� l2

s
;

h3 ¼ h/ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

q
:

For an axisymmetric flow we will have

fh
2m
¼ eCljC0

¼ hl

2hC

@

@C
v
hl

� �
þ hC

2hl

@

@l
u

hC

� �
¼ 1

2k3 wl½2lð1� l2Þ1=2ðC2 � 1Þ�1=2ðC2 � l2Þ�2�
�

þ wC½2Cð1� l2Þ�1=2ðC2 � 1Þ1=2ðC2 � l2Þ�2� þ wll½ð1� l2Þ1=2ðC2 � 1Þ�1=2ðC2 � l2Þ�1�

þwCC½�ð1� l2Þ�1=2ðC2 � 1Þ1=2ðC2 � l2Þ�1�
�
: ð63Þ

As in the previous section, we assume that the tangential stress distribution is given by the function fh ¼ �f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
,

where f0 is a constant. The resulting equation is

�
f0k3 C2

0 � l2
� �2

2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

0 � 1
q ¼

X
nP1

bn½P0nðlÞQ
0
nðC0ÞðnÞðnþ 1ÞðC2

0 � l2Þ� þ bn½PnðlÞQ 0nðC0ÞðnÞðnþ 1ÞðlÞ� þ bn½P0nðlÞQ nðC0Þ

� ð�nÞðnþ 1ÞðC0Þ� þ ~bn P0nðlÞQ
0
nðC0Þðn2 þ n� 1Þ C4

0 � l4
� �h i

þ ~bn P0nðlÞQ nðC0ÞðnÞðnþ 1ÞðC0Þ C2
0 � 3l2

� �h i
þ ~bn PnðlÞQ 0nðC0ÞðnÞðnþ 1ÞðlÞ 3C2

0 � l2
� �h i

: ð64Þ
(4) Finally, we require the net force to be zero. In order to enforce this condition, we must first compute the pressure, p,
and also the rate-of-strain component eCC. We recall that the Stokes equation is
�rpþ mr2u ¼ 0; ð65Þ

where

rp ¼ ê1
1
h1

@

@n1
þ ê2

1
h2

@

@n2
þ ê3

1
h3

@

@n3

� �
p ¼ bC 1

hC

@

@C
þ l̂

1
hl

@

@l
þ /̂

1
h/

@

@/

� �
p;

g1 ¼ gC ¼
1
h1
; g2 ¼ gl ¼

1
h2
; g3 ¼ g/ ¼

1
h3
;

ð66Þ

the vector Laplacian dotted with bC is (refer to [7])

r2u � bC ¼ r2u1 �
u1

g1
r2g1 þ u1

@

@n1
r2n1

� �
þ u2

g1

g2

@

@n1
ðr2n2Þ � 2g2

2
@g1

@n2

@

@n1

u2

g2

� �
þ 2g1g2

@g2

@n1

@

@n2

u2

g2

� �
¼ r2u� u

gC
r2gC þ u

@

@C
ðr2CÞ þ v gC

gl

@

@C
ðr2lÞ � 2g2

l
@gC

@l
@

@C
v
gl

 !
þ 2gCgl

@gl

@C
@

@l
v
gl

 !
; ð67Þ
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and the Laplacian operator is

r2 ¼ g1g2g3
@

@n1

g1

g2g3

@

@n1

� �
þ @

@n2

g2

g1g3

@

@n2

� �
þ @

@n3

g3

g1g2

@

@n3

� �
 �
¼ gCglg/

@

@C
gC

glg/

@

@C

 !
þ @

@l
gl

gCg/

@

@l

 !
þ @

@/

g/

gCgl

@

@/

 !" #
: ð68Þ

We dot the Stokes equation with bC to get

@p
@C
¼ mhCðr2u � bCÞ; ð69Þ

which comes out to be
@p
@C
¼ m

k3 wllf�2lðC2 � l2Þ�2g þ wCCf2lðC2 � l2Þ�2g þ wlllfð1� l2ÞðC2 � 1Þ�1ðC2 � l2Þ�1g
h

þwlCCfðC2 � 1ÞðC2 � 1Þ�1ðC2 � l2Þ�1g
i
: ð70Þ

We compute the rate-of-strain component eCC as

eCC ¼
1
h1

@u1

@n1
þ u2

h1h2

@h1

@n2
þ u3

h1h3

@h1

@n3
¼ 1

hC

@u
@C
þ v

hChl

@hC

@l

¼ 1

k3 wl½�CðC2 � l2Þ�2 � CðC2 � 1Þ�1ðC2 � l2Þ�1� þ wC½lðC2 � l2Þ�2� þ wlC½ðC2 � l2Þ�1�
n o

: ð71Þ

Now we have all the pieces necessary to write down the stress~t ¼ r~n. In polar coordinates, with only the rate-of-strain
components eCC and elC needed to do this, we see

~t ¼ TCC
bC þ TlCl̂ ¼

�pþ 2meCC

2melC

� �
: ð72Þ

We may now find the net force in any direction.

Fx ¼ Fy ¼
I
~t �~exdS ¼

I
½cos / sin h�TCC þ cos / cos h�TlC�dS: ð73Þ

Fz ¼
I
~t �~ezdS ¼

I
½TCC cos h� � TlC sin h��dS; ð74Þ

where

h� ¼ tan�1 Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � 1

p tan h

" #
:

There is a cos / term sitting inside the Fx and Fy integrals, so both Fx and Fy are zero. We require Fz to also be zero:

0 ¼ Fz ¼ k2
Z 2p

0

Z p

0
½TCC cos h� � TlC sin h��ðsin hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

0 � cos2 h
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
0 � 1

q
dhd/

¼ 2pk2
Z 1

�1
TCCðlÞ C2

0 � 1
� �

� TlCðC0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

0 � 1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
q
 �

dl: ð75Þ

We divide through by 2pk2 C2
0 � 1

� �
and rewrite this as

0 ¼
Z 1

�1
TCCðlÞ � TlC

C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

0 � 1
q

264
375dl ¼

Z 1

�1
ð�pþ 2meCCÞðlÞ � ð2melCÞ

C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

0 � 1
q

264
375dl

¼
Z 1

�1
�
Z 1

C0

@p
@C

dCþ 2meCC

� �
ðlÞ þ f0C0ð1� l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
0 � 1

q
264

375dl: ð76Þ

Thus, our final equation resulting from the net force condition is

�
Z 1

�1

Z 1

C0

@p
@C
ðlÞdCdlþ 2m

Z 1

�1
eCCðlÞdl ¼ �

4f 0C0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

0 � 1
q : ð77Þ
Unlike the case of the single sphere, where we only had three unknowns, we now have 2N þ 1 unknowns
b1; b2; . . . bN;

~b1;
~b2; . . . ~bN , and U. We collocate the two boundary condition equations (Eqs. (62) and (64)) at the N points
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on the surface of the ellipsoid, which along with the force equation (Eq. (77)) results in a system of 2N þ 1 equations. Note
that we compute the coefficients for the force equations by integrating term by term, and that we may compute p by inte-
grating @p

@C (Eq. (70)) with respect to C.
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