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SINGULARITY FORMATION IN THIN JETS WITH SURFACE TENSION

M. C. PUGH AND M. J. SHELLEY

Abstract. We derive and study asymptotic models for the dynamics of a thin jet of fluid that is separated

from an outer immiscible fluid by fluid interfaces with surface tension. Both fluids are assumed to be in-
compressible, inviscid, irrotational, and density matched. One such thin jet model is a coupled system of

PDEs with nonlocal terms – Hilbert transforms – that result from expansion of a Biot-Savart integral. In
order to make the asymptotic model well-posed, the Hilbert transforms act upon time derivatives of the jet

thickness, making the system implicit. Within this thin jet model, we demonstrate numerically the formation
of finite-time pinching singularities, where the width of the jet collapses to zero at a point. These singularities

are driven by the surface tension, and are very similar to those observed previously by Hou, Lowengrub,
and Shelley in large-scale simulations of the Kelvin-Helmholtz instability with surface tension, and in other

related studies. Dropping the nonlocal terms of the model, we also study a much simpler local model. For
this local model we can preclude analytically the formation of certain types of singularities, though not those

of pinching type. Surprisingly, we find that this local model forms pinching singularities of a very similar type
to those of the nonlocal thin jet model.

1. Introduction

A class of fluid phenomena for which hydrodynamic singularities play a demonstrably central role is the
reconfiguration of fluid masses that are bounded or separated by an interface under surface tension. The
pinching-off of a droplet from a stream is the most common of examples. In continuum models such as the
Navier-Stokes or Euler equations, the collapse of the distance between the bounding interfaces implies (at
the very least) a pointwise divergence of fluid velocity gradients. This is worth understanding since both
the collapse and the divergence of velocity gradients point to possible limitations of continuum modeling,
since arbitrarily small length-scales become important and neglected molecular processes must come into
play. Furthermore, such collisions and ensuing reconnections are the mediating events through which a flow
reorganizes its global structure. The phenomena of vortex reconnection in nearly inviscid fluids, and its
possible relation to vorticity blow-up in Euler fluids, has a similarly intriguing aspect.

Singularities occurring through the collision of bounding interfaces under surface tension are especially
intriguing since surface tension is often viewed as a regularizing force — the force that takes nearly flat
interfaces and makes them flatter. However, it is often the case that surface tension itself drives (or at least
mediates) the collision – the Rayleigh instability of an axisymmetric stream is a classical example. Also,
depending on the assumed physics of the flow, surface tension can enter the dynamics in varied ways, e.g.
dissipatively or dispersively. Here, we consider a situation where surface tension enters dispersively as a
linearly regularizing effect, but nonetheless strongly drives the collision process.

Our motivating example comes from numerical studies by Hou, Lowengrub, & Shelley ([20, 21], referred
to as HLS1 and HLS2, respectively) of the effect of surface tension on the Kelvin-Helmholtz instability of
an interface between two immiscible, two-dimensional, irrotational, inviscid, density-matched fluids. In this
context, the interface is a vortex sheet [36]. In the absence of surface tension, the interface is linearly unstable
at all length scales, and the problem is ill-posed in the sense of Hadamard. Analytical and numerical studies
[31, 30, 25, 37] have shown that at times well before the development of any large-scale structure, a rapid
concentration of circulation along the interface leads generically to the formation of an isolated curvature
singularity in finite time. (Nonetheless, Delort has shown that a vortex sheet that is single signed in its
circulation will exist globally in time as a weak solution to the Euler equations [13].) Various regularizations
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– smoothing the vorticity [3, 42], blob smoothing of the Biot-Savart integral [24], the inclusion of viscosity
[42] – remove the catastrophic instability and the singularity. The “interface” is then observed to roll-up and
form the Kelvin-Helmholtz spirals associated typically with a shear layer.

Surface tension regularizes the Kelvin-Helmholtz instability by introducing dispersion at small length scales
[2, 4, 20]. In HLS2 [21] the authors give numerical evidence for the removal of the Kelvin-Helmholtz singularity,
and observe the ensuing roll-up of the interface. However, they also find that at sufficiently large Weber
numbers, the presence of surface tension will produce oppositely signed circulation from initially single signed
circulation. This then couples together adjacent turns of the spiral and generates strong localized fluid jets.
These jets amplify and collapse in width until the interface self-intersects, forming trapped bubbles of fluid at
the core of the spiral. The HLS2 results suggest that at the time of the collision, the interface forms corners
with the fluid velocity diverging simultaneously. We call such singularities, which signal a possible change of
topology, “pinching singularities”. Figure 1 shows such a simulation from HLS2. If the collapse were of a
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Figure 1. The long-time evolution of an initially nearly flat vortex sheet for We = 200.
The bottom-right box (f) shows a close-up of the thinning neck at t = 1.4 [21].

self-similar form, then one would expect that

dmin ∼ (tp − t)2/3 , γmax ∼ (tp − t)−1/3 and κmax ∼ (tp − t)−2/3(1)

where dmin is the width of the fluid neck, γ is the vortex sheet strength, and κ the interfacial curvature.
(See Keller & Miksis [23] for an analysis of the related problem of the fissioning of two fluid masses touching
initially at corners.) HLS2 find that dmin shows close conformance to this prediction of self-similarity, but also
that γ and κ show persistent discrepancies. These differences could result from the presence of higher-order
contributions not accounted for in their fitting procedures, or from not being able to compute sufficiently close
to the singularity time with good numerical resolution. Figure 2 shows two simulations of a periodic symmetric
jet with surface tension and also shows self-intersection [21, 27]. Numerical studies of the Rayleigh-Taylor
instability [20, 19] in the presence of surface tension also show the formation of pinching singularities very
similar to those seen in HLS2.
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Figure 2. Top: The formation of a pinching singularity in a symmetric jet bounded by
two vortex sheets with surface tension. The Weber number is chosen so there are many
unstable modes, causing the “slop-over” near the pinching region [27]. Bottom: Here, the
Weber number has been chosen so there are few unstable modes [21].

In this paper, we abstract what seems to be the crucial ingredient of the pinching singularity observed by
HLS2, and study the role of surface tension on the dynamics of an isolated jet between two vortex sheets with
surface tension. In this setting, the vortex sheets separate an inner fluid from an outer immiscible fluid. As
in HLS2, we consider the two fluids to be density matched since density stratification does not apparently
modify the form of the singularity [19], and also to make the physical situation as reduced as possible. As a
further simplification, we study the dynamics of thin symmetric jets, using a large aspect ratio expansion to
derive reduced PDE descriptions for the jet width h(x, t) and sheet strength γ(x, t). We derive one reduced
system that captures the competition between the Kelvin-Helmholtz instability of a jet, and the dispersive
effect of surface tension. Moreover, our numerical simulations show that this system also forms corner pinching
singularities in finite time, as in HLS1. But in contrast to HLS2, we find that γ and hxx (the “long-wave”
curvature) now behave roughly in accordance with self-similarity in their temporal behavior, while hmin shows
a persistent discrepancy. Perhaps these differences arise from the assumption of symmetry, not found in the
well-analyzed full simulations of HLS1, though we note that if the singularities of the reduced system are of a
self-similar type, then the asymptotic assumptions made to derive the reduced system are violated. Of course,
a violation of the asymptotic assumptions does not imply a priori that such models fail to capture the basic
form of the singularity of the original system; We will address this point in a future study comparing our
model equations with simulations of a symmetric, pinching jet in the unapproximated system [22].

In Section 2 we give a new formulation of the Euler equations for the dynamics of a symmetric jet bounded
by fluid interfaces that separate two immiscible, density-matched, irrotational fluids. In Section 3 we show
that this formulation admits a shallow-water expansion in a strikingly direct manner, but that the expansion
yields a system which is ill-posed while the full system is not. The cause of this ill-posedness is clear and can
be removed in several ways. One is by making the system implicit, yielding the thin jet model:

ht + (hH[ht])x = −(hγ)x(2)

γt + (γH[ht])x = −γγx +We−1hxxx.(3)

Here 2h is the jet width, assumed to be initially positive, and γ is the sheet strength, which is proportional
to the velocity jump across the interface. The Weber number, We ∝ 1/τ , is a dimensionless quantity that
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measures the strength of inertial to surface tension forces. The Hilbert transform, H, arises from the asymp-
totic expansion of the Biot-Savart integral [35]. This system fully determines exponents of self-similarity (1).
These exponents are consistent with having a pinching singularity and agree with those for the unapproximated
problem [21].

Equation (2) is a statement of mass conservation, and is in “shallow water form” ht + (hU)x = 0. This
form encodes the statement that the finite-time collapse of the jet width, h ↓ 0, implies a flow singularity: a
simple argument (see [12]) shows that if h is smooth and h(x, t) ↓ 0 at a point in finite time then, at the very
least, Ux ↑ ∞ at that point.

The thin jet model (2–3) captures the competition between the Kelvin-Helmholtz instability and the dis-
persive effect of surface tension. Numerical simulations show that the thin jet model produces corner pinching
singularities, as observed in simulations of the full system (and, analogously to the full system, these pinch-
ing singularities disappear when surface tension is absent and a different non-pinching singularity occurs).
However, careful data analysis of the spatial and temporal structure of the nascent singularity shows some
discrepancies with the observations of HLS2, and with assumptions of self-similarity. Some of this may be
associated with the flow straying from the shallow water regime. These results are presented in Section 5.

We also study whether the nonlocal terms of (2–3) are needed for a pinching singularity to occur. Retaining
only the surface tension term from the higher-order asymptotic contributions, we have the local model, which
we consider in Section 4:

ht + γhx = −hγx
γt + γγx = We−1hxxx.

Here the surface tension contribution appears as a dispersive perturbation to a system that can be solved
exactly in its absence. Specifically, for zero surface tension (We = ∞) exact solutions have finite-time singu-
larities where h ↑ ∞. We analytically preclude such finite-time blow-up for the local model in the presence of
surface tension. We do prove that the above local model can have finite-time singularities in the presence of
surface tension, but for a different class of initial data where both h and γ are compactly supported.

Simulations of this simpler system also show finite-time pinching singularities. Surprisingly, their structure
is very similar to those of the thin jet model, even though this system apparently does not fully determine ex-
ponents of self-similarity. A possible mechanism for the singularity formation for this local model is discussed,
though we have as yet no rigorous proof for its development. The numerical results for the local model are
given in Subsection 5.4.

In Appendix A we derive a Fourier series reformulation of the boundary integral formulation for the
motion of a symmetric jet and present its shallow water expansion. In Appendix B, we discuss a new
data-fitting technique with which we fit the temporal behavior of extrema such as the minimum value of h:
hmin(t) ∼ a(tc − t)b. This technique gives us greater accuracy in determining exponents associated with the
jet collapse. In Appendix C we discuss a similar fitting method for examining the spatial Fourier spectrum,
which contains information about the spatial structure of the singularity.

1.1. Surface Tension and Finite-time Pinching Singularities. Our approach is related to several recent
studies on the formation of topological singularities in interfacial flows. These have concerned singularity
formation in Stokes flows, in Hele-Shaw flows, and in axisymmetric jets. We discuss two of these situations
to illustrate how surface tension can enter the problem in different ways, depending on the assumptions made
on the physics.

In the first situation, consider the flow within a Hele-Shaw cell of a long, symmetric neck of fluid surrounded
by a gas at constant pressure. The gap-averaged velocity is given by a two-dimensional Darcy’s law. A long-
wave or “lubrication” approximation then gives that the long neck of fluid is governed by

ht = − b
2τ

12µ
(hhxxx)x ,
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where 2h is the neck width, x is the coordinate along the length of the neck, τ is the surface tension parameter,
µ is the fluid viscosity, and b is the gap width of the cell. In this approximation, surface tension introduces a
fourth-order degenerate diffusion. Simulations and asymptotics have shown that in a variety of circumstances
(choice of initial data, boundary conditions, including large-scale instability) a thin neck can pinch in finite
time [1, 12, 7, 16, 17]. That is, h(xc, tc) = 0 at some point xc and time tc.

In the second situation, consider an axisymmetric stream of viscous fluid falling under the force of gravity
surrounded by a gas of constant pressure. Experiments show that the stream pinches. Dupont & Eggers
[15] have derived a shallow-water approximation that governs the thin neck of fluid that would form before
pinching:

(h2)t = −(vh2)z(4)

vt = −vvz −
pz
ρ

+ 3ν
(h2vz)z
h2

− g.(5)

Here z is the distance down the neck, h is now the radius of the neck, v is the axial velocity, g is the
gravitational constant, ν is the kinematic viscosity, ρ is the density, and τ is the surface tension parameter.
The pressure jump is proportional to the curvature, which has two components, azimuthal and axial:

p(z) − pgas = τ

(
1

h
√

1 + h2
z

− hzz

(1 + h2
z)

3
2

)
.

Simulations of this system show finite-time singularities — the stream pinches. This system and related
systems have been studied by a number of authors [8, 11, 15, 14, 5, 32, 41]. As the stream pinches, simulations
show that the azimuthal contribution to the surface tension dominates the axial:

1
h
√

1 + h2
z

� hzz

(1 + h2
z)

3
2
.

In the shallow water expansion, one assumes hz � 1, hence as the stream begins to pinch, the pressure behaves
as 1/h. For this reason, Equations (4–5) are effectively a first-order system as the singular time approaches.

In our two dimensional flow, surface tension introduces a behavior much different than in either of these
examples. Unlike the second example, there is no azimuthal component of surface tension making the boundary
condition on the pressure jump

[p(x)] = −τ hxx

(1 + h2
x)

3
2
.

This is the term that became negligible in the axi-symmetric flow above. And so, through the pressure gradient
px the surface tension induces a higher-order effect in two dimensions than in the axi-symmetric flow. That
this effect is linearly dispersive makes its contribution much different than that in the Hele-Shaw flow.

2. Full Equations of Motion

Consider two irrotational, inviscid, incompressible, density-matched fluids separated by time-dependent
interfaces Γ21(t) and Γ12(t). As shown in Figure 3, the fluids are in a horizontal jet configuration — we
denote the fluid in the jet by 1 and the fluid above and below this fluid by 2. n̂ and ŝ are the unit normal
and unit tangent vectors to Γij(t), and Kij is the curvature. Away from the interface, the fluid velocities, ~u1

and ~u2, satisfy the incompressible Euler’s equation

~ujt + (~uj · ∇)~uj = − 1
ρj
∇(pj + gy), ∇ · ~uj = 0.(6)
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Fluid 1

Fluid 2
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Γ12

Γ21

Figure 3. A schematic of the fluid interface problem.

The boundary conditions are

[~u]Γij · n̂ = 0 kinematic boundary condition(7)

[p]Γij = τ Kij Young-Laplace boundary condition(8)

~uj → (0, 0) as |y| → ∞ far-field boundary condition(9)

There is an additional condition on the velocity of the fluid inside the jet – the velocity has some characteristic
speed vc. Furthermore, the interface moves with the fluid in the normal direction. In the above, [·] represents
the jump from fluid 2 to fluid 1. The Weber number, We, is a dimensionless quantity that relates the strength
of the destabilizing shear (equal to vc since there is no flow at infinity) and the regularizing surface tension:

We =
ρλv2

c

τ
.(10)

τ is the surface tension parameter and λ is the periodicity length. We have assumed the fluids are density
matched: ρ = ρi.

In the following, we consider symmetric jets and further assume the interfaces bounding the symmetric jet
are the graphs of a function h: (x,±h(x, t)). Using the kinematic boundary condition and the incompressibility
of the fluids, we write the evolution equation for h as a mass conservation law in shallow water form:

ht(x, t) = − ∂
∂x

(
h(x, t)

1
h(x, t)

∫ h(x,t)

0

u(x, y, t) dy

)
= − ∂

∂x

(
h(x, t)U(x, t)

)
(11)

where ~u1 = (u, v) and U(x, t) is the vertical average of the horizontal velocity across the jet.
This choice of an Eulerian parametrization limits what Weber numbers we consider. Figure 2 shows

simulations of a symmetric jet with surface tension for two values of the Weber number. These simulations
used a different parametrization of the vortex sheets, one that does not assume them to be the graph of a
function. The bottom plot in Figure 2 shows a simulation in which the Weber number is small and there is
only one unstable length-scale. In this case, the symmetric jet pinches very cleanly [21]. The top plot in Figure
2 shows a simulation with a larger Weber number, one for which there are a number of unstable length-scales.
The jet folds over on itself near the pinch [27]. These simulations of the full problem suggest that if the
physical parameters are chosen so that the problem has too many unstable length-scales, the interface will try
to fold over, causing a finite-time shock. This would be an unphysical singularity, an artifact of our choice of
parametrization.
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In Appendix A, we give a reformulation of the boundary integral formulation for the motion of a 2π-periodic
symmetric jet:

ht = − ∂
∂x

(
h(x, t)

1
2π

∫ 2π

0

γ(x′, t) dx′(12)

+
∞∑

k=−∞ k 6=0

[
1
k

sinh(kh(x, t))
1

2π

∫ 2π

0

γ(x′, t)e−|k|h(x′,t)e−ikx
′
dx′
]
eikx


γt = −(γũ)x +We−1Kx(13)

where

ũ(x, t) =
1
2

∞∑
k=−∞

cosh(kh(x, t))
(

1
2π

∫ 2π

0

γ(x′, t)e−|k|h(x′,t)e−ikx
′
dx′
)
eikx(14)

−1
2

∞∑
k=−∞

sgn(k)e−|k|h(x,t)

(
1

2π

∫ 2π

0

γ(x′, t) sinh(kh(x′, t))e−ikx
′
dx′
)
eikx.

This reformulation is of interest as it is a Fourier series representation, rather than a boundary integral
representation. We have not found this reformulation in the literature. In Section 3 we use the reformulation
to find an asymptotic model for thin jets. The advantage of the reformulation over the boundary integral
formulation is that the necessary asymptotic expansions are much more direct.

In the above, γ is the unnormalized sheet strength which is related to the velocity jump in the tangential
direction across the upper vortex sheet:

γ(x, t)√
1 + h2

x

= − [~u]Γ21(p,t) · ŝ = (~u1(Γ21(x, t), t)− ~u2(Γ21(x, t), t)) · ŝ.(15)

If the surface tension is non-zero (We < ∞), a smooth solution of the system (57,58–59) conserves the
mass, circulation, and its y-moment:∫ 2π

0

h(x, t) dx,
∫ 2π

0

γ(x, t) dx, and
∫ 2π

0

h(x, t)γ(x, t) dx.(16)

Using the boundary integral formulation (see Appendix A), we note that by introducing a new variable, η
with ηx = γ, the system (57,58–59) can be re-written in a Hamiltonian form:

ht =
δE
δη

ηt = −δE
δh
,(17)

where the conserved energy is:

E(h, γ) = We−1

(∫ 2π

0

√
1 + h2

x dx− 2π
)

(18)

+
1

8π

∫ 2π

0

dx γ(x, t)
∫ ∞
−∞

dx′ γ(x′, t) ln
(

(x− x′)2 + (h(x, t) + h(x′, t))2

(x− x′)2 + (h(x, t)− h(x′, t))2

)
,

This is similar to Zakharov’s Hamiltonian formulation based on Luke’s variational formulation for water
waves, where the Hamiltonian is a function of the surface height and the velocity potential [28, 43]. The local
problem presented in Section 4 has a similar Hamiltonian formulation. We do not take much advantage of
the Hamiltonian formulation in either case.

The energy is a sum of two positive terms, the line energy and kinetic energy. Energy conservation gives a
uniform bound on the interface length

∫ √
1 + h2

x dx in the positive surface tension (We <∞) case. Since the
vortex sheets are 1-dimensional, this yields a further bound on ||h||∞, excluding the possibility of the solution
becoming singular by the jet becoming infinitely wide at some point. This is to be contrasted with the case
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of a single vortex sheet with nonzero mean circulation, which has infinite kinetic energy but for which a finite
unsigned part is conserved. In this case, there would be no control of the length (see [21]).

We linearize the boundary integral formulation of a periodic jet in the Lagrangian frame, (57,58–59), about
the flat steady state solution x(p, t) = p + γt + εξ(p, t), y(p, t) = h + εη(p, t), and γ(p, t) = γ + εµ(p, t) with
ε� 1. The linear system has eigenvalues

σk = −iγ
2
ke−2h|k| ± 1

2

√
k2(1− e−2h|k|)

(
γ2(1 + e−2h|k|)− 2|k|We−1

)
.(19)

(The linearization of the reformulated system (12–14) has the same eigenvalues.) There is a band of unstable
modes 0 < |k| < k0, where γ2(1 +e−2hk0)−2We−1k0 = 0 and dispersive modes for |k| ≥ k0. For fixed k and h
sufficiently large, e−2h|k| ∼ 0. This corresponds to a very wide jet. In this case, the growth rate (19) becomes

σk = ±1
2

√
k2γ2 − 2|k|3We−1

which is the growth rate for a small perturbation of a flat vortex sheet with surface tension. In the zero
surface tension case, We =∞, the growth rate is ±γ2 |k|, reflecting the catastrophic linear ill-posedness due to
the Kelvin-Helmholtz instability. Surface tension dominates this instability for high wave numbers. Such a
dispersive regularization has been shown more generally for perturbations of a time-dependent vortex sheet
with surface tension [4].

3. Model Equations for a Thin Jet

Consider a thin jet, with average height h much smaller than the horizontal length-scale L: ε = h/L� 1.
We assume h is O(ε) and the sheet strength γ is O(1). γ is O(1) through the choice of vc in the definition
of the Weber number (10). Writing h(x, t) = εH(x, t), we expand the equations governing the symmetric jet
(12–14) in ε. To do this, we need to approximate e−ε|k|H . Two options are: a Taylor series approximation

e−ε|k|H ∼ 1− ε|k|H +O(ε2),

or a rational approximation

e−ε|k|H ∼ 1
1 + ε|k|H +O(ε2).

The Taylor series approximation yields:

εHt = −ε(γH)x + ε2 (HH[(γH)x])x +O(ε3)(20)

γt = −(γ2/2)x + ε (γH[(γH)x ])x + εWe−1Hxxx +O(ε2).(21)

Neglecting the higher-order terms yields the asymptotic model

ht = −(γh)x + (hH[(γh)x])x(22)

γt = −(γ2/2)x + (γH[(γh)x])x +We−1hxxx,(23)

where H is the periodic Hilbert transform

H[f ](x) =
1

2π
P.V.

∫ 2π

0

cot
(
x− x′

2

)
f(x′) dx′.

This system (22–23) conserves mass, circulation, and the y-moment (16), as well as the energy,

2E(h, γ) = We−1

∫ 2π

0

hx(x, t)2 dx +
∫ 2π

0

h
(
γ2 − γH[(hγ)x]

)
dx.(24)

This energy arises by expansion in ε of the full energy (18) and provides a Hamiltonian formulation (17).
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Unfortunately, this approximate system is linearly ill-posed. Linearizing the asymptotic model (22–23)
about the steady solution h ≡ h, γ ≡ γ, we find the growth-rates

λ±(k) = ik

(
−γ + γh|k| ±

√
h|k|(h|k| − 1)(γ2 − |k|We−1)

)
.

The discriminant above tends to negative infinity like −|k|3, hence for large k, λ− has a positive real part,
growing like k5/2. The Taylor series approximation yields an asymptotic model which is even more linearly
ill-posed than the jet without surface tension. This occurs because e−ε|k|H ∼ 1−ε|k|H is a poor approximation
for ε|k|H � 1. The ill-posedness is unphysical, and is also likely related to the fact that, unlike the full energy,
the expanded energy (24) is not strictly signed. We will return to this later in this section.

The asymptotic expansion was made under the assumption that ε � 1, i.e., the jet is much thinner than
the length-scale of the variations of its surface: h|k| � 1. Hence one could argue that the above linear ill-
posedness is not “catastrophic”, since we should only consider 1/h modes. In this sense, we do not have the
unbounded growth rate that causes the difficulties in simulating a single vortex sheet without surface tension.
However, as we do not want the numerical simulations to be constrained to consider only 1/h modes, we
modify the asymptotic model (22–23).

Recalling equation (20),
ht = −(γh)x + O(ε2),

suggests the following system, the thin jet model:

ht + (hH[ht])x = −(γh)x(25)

γt + (γH[ht])x = −(γ2/2)x +We−1hxxx.(26)

The two systems (22–23) and (25–26) are equivalent to the full system (12–14) up to terms of O(ε2). The
reader may be familiar with the BBM and KdV equations, which are related in a similar way [6]. For this
reason, it is not surprising that there is loss of conserved quantities. The thin jet model conserves total mass
and circulation, but not its y-moment. Nor could we find a conserved energy.

Linearizing (25–26) yields the growth rates

λ±(k) =
ik

1 + h|k|

(
−γ ±

√
h|k|

(
We−1|k|(1 + h|k|)− γ2

))
.(27)

The discriminant above can be negative for an interval of low wave numbers, yielding a band of unstable
modes, but is positive for large k, yielding a dispersive regularization. Specifically,

|k| ∈
(

0,
1

2h

(
−1 +

√
4γ2hWe+ 1

))
⇐⇒ λ−(k) is unstable.(28)

If the system (25–26) has solutions that become singular in finite time, a natural question is whether the
solutions are self-similar. Making the ansatz

h(x, t) = (tc − t)aH
(
x− xc

(tc − t)b

)
γ(x, t) = (tc − t)cΓ

(
x− xc

(tc − t)d

)
and assuming that all the terms in the system (25–26) are of equal order as the singular time is approached,
we find that the scaling exponents are completely determined:

h(x, t) = (tc − t)
2
3H

(
x− xc

(tc − t)
2
3

)
γ(x, t) = (tc − t)−

1
3 Γ
(

x− xc
(tc − t)

2
3

)
.(29)

These are the same scaling exponents as for the original symmetric jet problem. These scaling exponents were
also suggested by Keller & Miksis in their study of a thin thread of inviscid fluid surrounded by a trivial flow
[23]. They consider the flow with the thread pinching at t = 0 and study the separation of the regions on
either sides of the pinch. We note that the self-similar behavior (29) violates the shallow water formulation
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hx � 1 since as t ↑ tc, hx becomes O(1). And while we have determined exponents of self-similarity we leave
unaddressed the question of the nature of solutions to the resulting ODEs for H and Γ.

The rational approximation of e−ε|k|H yields also a linearly well-posed asymptotic model

ht = − ∂
∂x

(
h(x, t)

∞∑
k=−∞

1
2π

∫ 2π

0

γ(x′, t)
1 + |k|h(x′, t)

e−ikx
′
dx′ eikx

)
(30)

γt = −(γũ)x +We−1hxxx(31)

where

ũ =
1
2

( ∞∑
k=−∞

1
2π

∫ 2π

0

γ(x′, t)
1 + |k|h(x′, t)

e−ikx
′
dx′ eikx

−
∞∑

k=−∞

|k|
1 + |k|h(x, t)

1
2π

∫ 2π

0

γ(x′, t)h(x′, t)e−ikx
′
dx′ eikx

)
.(32)

The expansions yielding (20–21) and (30–32) are discussed in Appendix A.1.
Finally, the Hamiltonian formulation (17) suggests a third asymptotic model. The ill-posed asymptotic

model (22–23) conserves the energy (24). This energy is not strictly signed since

−1
2

∫ 2π

0

f(x)H[fx](x) dx = − 1
π

∞∑
l=−∞

|l| |f̂l|2.

A small ε expansion of (1− ε)2 ∼ 1− 2ε has a similar loss of signedness, if one makes the expansion and then
do not continue to constrain ε = h|k| to be small. For this reason, we make the energy (24) signed by adding
an O(ε3) term1:

2E(h, γ) = We−1

∫ 2π

0

hx(x, t)2 dx +
∫ 2π

0

h

(
γ − 1

2
H[(hγ)x]

)2

dx.(33)

The Hamiltonian system (17) based on this energy yields a linearly well-posed asymptotic model.
The three asymptotic models for a thin jet (25–26), (30–31), and that based on (33), are all equivalent up

to order O(ε2). However, the “thin jet model” (25–26) is the only model which is both linearly ill-posed in
the absence of surface tension and has growth rates λk ∼ ik3/2 for k � 1 in the presence of surface tension.
Because of this similarity to the full system, we study the thin jet model extensively in Section 5. However,
we do note that numerical simulations show that all three models readily form pinching singularities.

4. A Local Model

Retaining only the lowest-order terms of equations (20–21) gives the purely local system

ht + γhx = −hγx(34)
γt + γγx = 0.(35)

Surface tension and nonlocality enter at the next order. This system is solved exactly by the method of
characteristics:

γx(x(ξ, t), t) =
γ0x(ξ)

1 + γ0x(ξ)t
h(x(ξ, t), t) =

h0(ξ)
1 + γ0x(ξ)t

where x(ξ, t) = ξ + tγ0(ξ). As a function of x, these solutions have a finite-time singularity where γ shocks
and h goes to infinity on the characteristic through ξ0, the point at which γ0x is the most negative. These

1The energy (24) is the truncation εE1 + ε2E2 of the full energy (18): E = εE1 + ε2E2 + ε3E3 . . . . The term we add to make

the energy signed is not one of the higher-order terms.
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solutions provide a simple example of the difficulties of fitting power-law behavior numerically. We discuss
this in the Appendix B.

A very interesting system is found by retaining only the surface tension contribution from the next order
contributions; that is, the nonlocal terms are neglected. We call this system the local model:

ht + γhx = −hγx(36)
γt + γγx = We−1hxxx.(37)

While this system is asymptotically inconsistent, we find that nonetheless it produces pinching singularities
that are very similar to those we observe in the thin jet model – the interface again forms a corner, and has
nearly identical temporal and spatial singularity structure (see Sect. 5.4). Unlike the thin jet model, it retains
the Hamiltonian formulation and all the conserved quantities of the full system, and is simple enough that we
can make some analytical observations.

In Section 5.3, simulations of the thin jet model (25–26) in the presence of surface tension show a finite-time
pinching singularity. As we discuss in Subsection 5.3, the nonlocal terms are not sub-dominant to the surface
tension term as the singular time approaches. However, our simulations of the local model (in Section 5.4)
show that while its large-scale evolution can be quite different from that of the thin jet model, the fine-scale
structure of its pinching singularities are strikingly close to those of the thin jet model. For this reason, we
conjecture that a fine analysis of the singularity formation would reveal that the nonlocal terms are slaved to
the surface tension term, making the local model of physical interest.

Smooth solutions of the local model, either periodic or on the line with decay at infinity, conserve mass,
circulation, and the y-moment (16). Solutions also conserve the energy

2E(h, γ) = We−1

∫
h2
x(x, t) dx+

∫
h(x, t) γ2(x, t) dx.(38)

The energy (38) corresponds to the sum of line tension and kinetic energy, and the energy gives the local
model a Hamiltonian formulation (17).

The system (36–37) is reminiscent of the KdV equation with small dispersion

γ + γγx + εγxxx = 0

and it is natural to expect that introducing surface tension adds a dispersive smoothing, preventing the
singularities that occur in the We = ∞ case. In fact, this follows immediately from the energy conservation
(38). As we are assuming h0 > 0, both terms in the energy are positive as long as the solution remains
positive, hence

We−1

∫
hx(x, t)2 dx ≤M(h0, γ0) and

∫
h(x, t)γ(x, t)2 ≤M(h0, γ0) ∀t ∈ [0, T ].

On the line, boundedness of the H1 norm of h implies that h is uniformly bounded. Hence h cannot go
to infinity in finite time, as it must in the We = ∞ case. In short, if there is a finite-time singularity for
the We < ∞ case it is of a different type than the We = ∞ singularity. In the case where h0 > 0 and γ0

are smooth, we conjecture that solutions are smooth on any time interval [0, T ] on which h remains strictly
positive, and that singularities arise only when h becomes zero at a point.

While we are concerned with the problem of a thin jet pinching in two, for which the initial h0 is positive,
a finite-time singularity must happen in the case of different initial data:

Theorem. If We < ∞, and h0 and γ0 are both smooth on R and compactly supported in the interval [a, b]
then the solution to (36–37) must lose smoothness in finite time.

This theorem could apply to the post-pinch situation if after the change of topology there are thin bubbles
with small slopes. The theorem is proved by showing that smooth solutions satisfy a variance identity:

d2

dt2

∫ b

a

x2h(x, t) dx = 2
∫ b

a

hγ2 + 3We−1

∫ b

a

h2
x ≥ 4E(h, γ) = 4E(h0, γ0).
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The energy provides an upper bound on the variance, hence

c1 + c2t + 2E(h0, γ0) t2 ≤
∫ b

a

x2h(x, t) dx ≤ C(h0, γ0)

determines an upper bound on the time of existence for smooth solutions.
For such initial data, Sideris has a blow-up argument based on

∫
xγ(x, t) dx. The proof is a generalization

of a convexity argument for the inviscid Burgers equation that shows that if solutions remain smooth and if∫
xγ0(x) dx > 0, then this first moment must blow up in finite time [38]. There are analogous blow-up results

for periodic solutions to (36–37) if both h0 and γ0 vanish in some sub-interval of the periodic domain.
As the simulations of the local model in Section 5.4 show finite-time pinching singularities, we look for

self-similar solutions of the form:

h(x, t) = (tc − t)aH
(
x− xc

(tc − t)b

)
γ(x, t) = (tc − t)cΓ

(
x− xc

(tc − t)d

)
.

Assuming that all the terms in (36–37) are of equal order as t ↑ tc, we find that the scaling exponents are not
completely determined:

h(x, t) = (tc − t)aH
(

x− xc
(tc − t)1/2+a/4

)
γ(x, t) = (tc − t)a/4−1/2Γ

(
x− xc

(tc − t)1/2+a/4

)
.(39)

This is an expected difference between the local model and the thin jet model. The thin jet model (25–26)
has additional terms which completely determine the scaling exponents (29).

For self-similar solutions, the coupled system of PDE’s becomes a coupled system of ODEs:

4aH − (2 + a)ηH ′ − 4HΓ′ − 4ΓH ′ = 0(40)
(2− a)Γ + (2 + a)ηΓ′ + 4ΓΓ′ − 4We−1H ′′′ = 0,(41)

where the derivatives are with respect to η = (x− xc)/(tc − t)1/2+a/4.
We have been unable to determine the scaling exponent a from other considerations. We tried matching a

self-similar inner solution to a slowly-varying far-field solution. Specifically, we assume H(η) ∼ ηα, Γ(η) ∼ ηβ
for |η| � 1. The far-field spatial exponents α = 4a/(a+ 2) and β = (a − 2)/(a+ 2) are then determined by
(39). We found that the ODEs (40–41) did not have the lower-order terms in the equations select an exponent
a. There is a similar free exponent in similarity solutions to an axisymmetric Stokes flow [32]. Brenner, Lister,
& Stone [8] have a method that selects a countable number of exponents. We tried to apply their methods
but found that since the surface tension term enters with three derivatives, rather than two, we were unable
to close the needed recurrence relations.

We can use the energy (38) to find a constraint on a, the rate at which h might pinch. If we assume that
the self-similar solution matches onto an outer solution at some large, but finite, η0, then for t close to tc∫

|x|≤η0(tc−t)1/2+a/4
h(x, t)γ(x, t)2 dx ≤

∫ π

−π
h(x, t)γ(x, t)2 dx ≤M.

Since the solution is self-similar for |x| ≤ (tc − t)1/2+a/4,

(tc − t)7a/4−1/2

∫
|η|≤1

H(η)Γ(η)2 dη =
∫
|x|≤(tc−t)1/2+a/4

h(x, t)γ(x, t)2 dx

≤ M.

This implies 7a/4− 1/2 ≥ 0 hence a ≥ 2/7.
Finally, as pointed out by D. McLaughlin, the local model does have traveling wave solutions where h > 0,

but none where h is zero at points [29]. Assuming h(x, t) = H(x+ ct) = H(y) and γ(x, t) = Γ(x+ ct) = Γ(y),
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we find a coupled system of ODEs:

cH ′(y) + (H(y)Γ(y))′ = 0

cΓ′(y) +
1
2

(Γ(y)2)′ = We−1H ′′′(y).

Integrating with respect to y,

cH(y) +H(y)Γ(y) = A1(42)

cΓ(y) +
1
2

Γ(y)2 = We−1H ′′(y) +A2.(43)

Solving (42) for Γ(y), equation (43) can be viewed as a particle in a potential:

H ′′(y) = We

(
A2

1

2H(y)2
−A2 −

c2

2

)
= −We d

dH
φ(H)

where φ(H) = (A2 + c2/2)H + A2
1/(2H). This potential clearly requires profiles H be strictly positive, and

has a minimum if A1 6= 0 and A2 + c2/2 > 0. Traveling wave solutions correspond to orbits whose period
divides 2π.

5. Numerical Results

5.1. Numerical methods.
To compute 2π-periodic solutions of the thin jet model,

ht + (hH[ht])x = −(γh)x(44)

γt + (γH[ht])x = −(γ2/2)x +We−1hxxx,(45)

we uniformly discretize the interval with n grid points. Derivatives and Hilbert transforms are calculated by
discrete Fourier transforms, and nonlinearities are evaluated by pseudo-spectral collocation.

We first solve equation (44) for ht. Since ht has zero mean, its anti-derivative, Z, is a periodic function
and equation (44) is equivalent to

N (Z) =
1
h
Z + ∂xH[Z] = −γ,

where N is symmetric positive definite operator. Z is solved for by conjugate gradient iteration using spectral
preconditioning. Extrapolation from previous solutions provides a good first guess for the iteration. We use
a stopping tolerance of 10−18 — this tolerance was always met within 20− 40 iterations. Differentiation of Z
yields ht, which then determines γt from equation (45).

Once ht and γt are known, a fourth-order Adams-Bashforth scheme is used for the time-stepping. We find
that for n mesh-points in [0, 2π], there is a stability constraint on the size of the time-step in that the high
k modes of the spatial Fourier transform will grow if time-steps are too large. We find that satisfying this
stability constraint is sufficient for very high accuracy in the time-stepping. Larger time-steps can be taken
stably using a Runge-Kutta scheme, however the increase in step-size was not found to be large enough to
compensate for its relative inefficiency.

As the active part of the spectrum – those modes whose amplitudes are above the level of round-off error
– approaches the Nyquist frequency (the n/2 mode), we avoid loss of resolution by stopping the simulation
and doubling the number of mesh-points2.

The numerical method conserves
∫
h and

∫
γ automatically. As the thin jet model does not have any other

conserved quantities, we cannot use them to monitor accuracy. We do, however, check that we have O(∆t4)
pointwise convergence at late times in the simulation. As an additional check of the correctness of the code,

2The point-doubling is done by taking the solution at n points, computing its Fourier transform, and extending the Fourier
transform from n/2 modes to n modes by defining the new modes to have zero Fourier amplitude. The reverse Fourier transform

then yields a solution at 2n points.
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we take initial data which is an ε-perturbation of the constant solution and verify that the computed solution
agrees to O(ε2) with the exact solution of the linearized problem.

The uniform mesh allows us to compute the Hilbert transform quickly and with spectral accuracy. Moreover,
the spectrum of the solution can be examined for the spatial structure of the singularity. However, the temporal
behavior (e.g., the rate at which hmin goes to zero) might be better studied with an adaptive mesh code,
where the grid could be refined near the singular point, allowing the solution to be computed to times closer
to the singular time.

To compute solutions of the local model

ht = −(hγ)x(46)

γt = −1
2

(γ2)x +We−1hxxx,(47)

we use a Crank-Nicolson/Leapfrog pseudo-spectral scheme because of its stability. This is necessary since the
linear analysis of the local model shows that the dispersion is of 2nd-order – higher than that of the thin jet
model. We leap over (γ2)x in equation (47), and Crank-Nicolson the remaining terms:

hi+1 − hi−1

2∆t
= −1

2
(hi+1γi−1)x −

1
2

(hi−1γi+1)x

γi+1 − γi−1

2∆t
= −1

2
(γi

2
)x +

We−1

2
hi+1
xxx +

We−1

2
hi−1
xxx.

We do not leap over (hγ)x in (46) since the linear stability analysis of such a scheme does not suggest a gain
in time-step size. We use a GMRES iteration [34] to solve for the solution at the time i + 1 in terms of the
solutions at times i− 1 and i.

5.2. Simulations of the thin jet and local models with zero total circulation.
As we discuss in Section 4, the local model (36–37) is similar to the KdV equation with small dispersion in
that both problems have a Burgers’ shock in the absence of dispersion. We also recall that in a water wave
model, Zakharov et al. study singularity formation where the singularity is driven by an inviscid Burgers
shock [26].

We study both the thin jet and local models with initial data

h0(x) = 0.1 + 0.05 cos(x) γ0(x) = 0.2 sin(x).

with Weber number We−1 = 0.005. This data is chosen so that for the local model in the absence of surface
tension, the shock in γ and the divergence of h both occur at xc = π. Both the local and thin jet models
preserve the symmetry of this initial data: h is even about π and γ is odd. Since the initial data has zero
total circulation, the thin jet model has no linearly unstable modes.

Figure 4 shows a simulation of the local model (36–37) with this initial data. The evolution of the thin
jet model is very similar. As long as hxxx is small, equation (37) is close to the inviscid Burgers equation
and γ tries to shock. At π, equation (36) shows that since γx(π, t) is decreasing, h(π, t) must increase. As h
increases, hxxx becomes large, and the surface tension term of equation (37) comes into play. At this point
in the evolution, γ behaves quite differently than it would in the KdV equation with small dispersion. In the
KdV equation, γ tries to shock and the shock is prevented by dispersive waves traveling away from the shock
region. In the local model, (36–37), peaks begin to form at the maximum and minimum points of γ. These
peaks do not disperse away; they keep growing. Since equation (36) corresponds to conservation of mass,
where |γ| is growing h must decrease. Hence h develops a minimum to each side of π – these minima decrease
to zero as |γ| increases to infinity. The fluid is flowing from both sides into a central bubble since γ ↑ ∞ on
the left and γ ↓ −∞ on the right. The divergences of γ satisfy the implication from the shallow water form
of equation (36) that γx diverges if h goes to zero.

This mechanism seems to also apply to the thin jet model. Figure 5 shows the final profiles of both the
local and thin jet model simulations. One obvious difference between the two profiles is that the nonlocal
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Figure 4. The long-time evolution of the local model. The initial sheet strength γ0 is
chosen to have zero mean so that the shock region is fixed at x = π.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5. Final states of the local model and the thin jet model where the both solutions
have the same initial data. Dashed line: local model, singular time t = 6.11. Solid line: thin
jet model, singular time t = 7.68.

terms appear to introduce some smoothing: the thin-jet model solution does not have the noticeable ripple
near the singularity that the local model solution does.

We will not examine these particular simulations in any further detail. In the next section, to gain infor-
mation on the spatial form of oncoming singularities, we will carefully examine the behavior of the spatial
Fourier spectrum. However, this is done far more easily when a single singularity forms in the period.

In the thin jet model we induce the formation of a single pinching singularity by considering initial data γ0

with nonzero mean γ. Unlike the local model, the effect of γ cannot be removed through a change of frame.
We further choose h0 so that the local model also pinches at only one point. In all of our simulations where
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the jet pinches at a single point, γ diverges. We have not found any initial data which lead to γx diverging
but γ remaining bounded.

5.3. Simulations of the thin jet model with nonzero total circulation.
In this section, we analyze the spatial and temporal structure of finite-time pinching singularities in the thin
jet model, choosing initial data such that h pinches at a single point in [0, 2π].

For γ 6= 0, the thin jet model can have linearly unstable modes. Figure 2 shows simulations of a full
symmetric jet which suggest that if the physical problem has too many unstable length-scales, the jet may
fold over on itself [27]. This would cause our model to shock. To avoid this unphysical singularity, we use the
linear stability analysis in Section 3 to choose We, so that the unstable band (28) contains only the k = 1
mode, and take initial data

(h0(x), γ0(x)) = (h+ εh1(x), γ + εγ1(x)) ε� 1

where (h1, γ1) is the corresponding unstable eigenfunction of the linearized system.
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Figure 6. The long-time evolution of the thin jet model from unstable eigenfunction initial data.

Figure 6 shows the simulation of the thin jet model (25–26), with We−1 = 0.435 = γ2/(2 + 3h) and initial
data

h0(x) = 0.1(1 + 0.05 cos(x)) γ0(x) = 1− 0.01142 sin(x).(48)

Since γ > 0, the maxima and minima of h and γ move to the right, passing through a number of periods,
before γ starts to form a noticeable localized peak. Near γ’s peak, h has a minimum which begins to decrease
to zero. The two extrema, where γ achieves its maximum and h achieves its minimum, occur at different
points, with these points moving toward each other as the solution evolves. This behavior continues, γ’s
maximum becoming larger and more pointed as h’s minimum decreases to zero.
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And so, the jet pinches with the velocity in the collapsing neck diverging to infinity. Figure 7 shows the
evolution of hx. It grows, but does not appear to increase to infinity. The graph of hx gives visual evidence
for a corner singularity for h since its slope appears to jump. Details of the spatial structure will be studied
through the Fourier spectrum of the solution.
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Figure 7. The evolution of hx and hxx for the evolution shown in Figure 6.

We also considered whether any of the terms of the thin jet model became sub-dominant as the singular
time was approached. To do this we plotted the L∞ norm of each term of the γt equation against log(tc − t),
at times late in the simulation. All terms appeared to have the same temporal behavior as t→ tc, suggesting
that the thin jet model cannot be simplified by dropping any sub-dominant terms.

We want to quantify the temporal behavior of these collapsing and diverging quantities. In Section 3, we
consider self-similar solutions of (25–26). Periodic solutions will be at best locally self-similar, with higher-
order corrections, and so one might expect the extrema to have the leading-order behavior

hmin(t) ∼ (tc − t)
2
3 , γmax(t) ∼ (tc − t)−

1
3 , hxxmax(t) ∼ (tc − t)−

2
3 .(49)

As a first attempt to address this expectation, we fit the extrema to a single power law. To do this for the
minimum value of h, hmin(ti) is first found by fitting h to a Fourier polynomial and finding its minimum by
Newton’s method. We then take three minima, (ti−1, hmin(ti−1)), (ti, hmin(ti)), and (ti+1, hmin(ti+1)), and
fit them to a(tc − t)p by minimizing

i+1∑
j=i−1

(
hmin(tj)− a(tc − tj)p

)2
to determine the amplitude a, singular time tc, and temporal exponent p. The 3-point fit is found for all
successive data triples, and one then plots (ti, tc(ti)) and (ti, p(ti)). If hmin(t) is exactly a power law, then
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these plots will be flat lines since tc(ti) and p(ti) are constant. If the power-law behavior is only apparent as ti
approaches the singular time tc, then the plotted curves should level off as ti ↑ tc. In Appendix B we present
an example where the leading-order behavior is known exactly from theoretical considerations. However, in
the example, higher-order contributions make it difficult to determine the leading-order behavior from the
data using the above method.
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Figure 8. Top: The evolution of the position of extrema for the thin jet model with nonzero
surface tension. The x-axis is time, the y-axis is the position of the extrema. Bottom: The
evolution of the fitted singular time from three-point fittings for the thin jet model with
nonzero surface tension. The x-axis is time, the y-axis is the fitted singular time. For both
figures, the dashed line is for max{hxx}, the solid line for max{γ}, and the dot-dashed line
for min{h}.

We do use three-point fits to argue that a pinching singularity occurs at a finite time. The bottom plot in
Figure 8 shows the singular times found from fitting hmin(t), γmax(t), and hxxmax(t) to power laws, plotted
as functions of the fitting time, e.g. (t, tc(t)) for hmin. Since there is a single well-defined tc to which the
fitted singular times are converging, this figure verifies that h touches down at the same time that γ diverges.
The top plot in Figure 8 shows the spatial position of each extremum. It shows that although the extrema
occur at different points, the points are moving towards each other as t ↑ tc. Taken together, the figures
provide strong evidence for the finite-time singularity being of the type:

h(xc, tc) = 0 γ(xc, tc) =∞ hxx(xc, tc) =∞.
While the temporal exponents from the three-point fitting have the correct signs, they do not tend to any

clear value as the singular time is approached. In Appendix B, we present an approach to data-fitting in
which we systematically include the effects of higher-order algebraic corrections to a simple power law. In
the top plot of Figure 9, we present the results of both this new method and the 3-point method in fitting
γmax(ti). The dot-dash curve is the estimate of the temporal exponent p from the 3-point fitting method,
while the solid curve and those around it are estimates found by the new method. The improved fit is quite
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close to p = −1/3, the value suggested by self-similarity, shown as a dashed line. The fitted singular time
tc(ti) shows a similar marked improvement. The middle and bottom plots in Figure 9 are analogous figures
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Figure 9. Top: The evolution of the fitted temporal exponent for max{γ}(t) for the thin
jet model. The dashed line is p = −1/3. The dot-dash line is the exponent found by three-
point fittings. The remaining lines are from the fitting method described in Appendix B
with weights α = .5, .75, 1.0. Middle: The evolution of the fitted temporal exponent for
max{hxx}(t) for the thin jet model. The dashed line is p = −2/3. The dot-dash line is
the exponent found by three-point fittings. The remaining lines are from the fitting method
described in Appendix B with weights α = .5, .75, 1.0. Bottom: The evolution of the fitted
temporal exponent for min{h}(t) for the thin jet model. The dashed line is p = 2/3. The
dot-dash line is the exponent found by three-point fittings. The remaining lines are from the
fitting method described in Appendix B with weights α = .5, .75, 1.0.

for the temporal exponents for hmin and hxxmax. These figures suggest

hmin(t) ∼ (tc − t)0.8 γmax(t) ∼ (tc − t)−0.32 hxxmax(t) ∼ (tc − t)−0.66,

with tc = 13.6994. These are to be compared with the temporal exponents from the self-similarity ansatz
2/3, −1/3, and −2/3 respectively. The exponent for hmin that disagrees most strongly with the prediction
of self-similarity. This discrepancy is intriguing and we cannot yet account for it.

We now study the spatial structure of the nascent singularity. As the simulations are periodic and on a
uniform mesh, the discrete Fourier transform of the solutions can be analyzed for spatial information. The
key tool is Laplace’s formula, which describes the asymptotic behavior of the Fourier transform of an analytic
function f that has algebraic point singularities off of the real axis. Namely, for k� 1

f(x) ∼ (x− (ξ + iρ))β =⇒ |f̂(k)| ∼ Ce−ρ|k| 1
|k|β+1

g (1/k) for β > −1(50)
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where ξ + iρ is the closest such singularity to the real axis, and g is an analytic function with g(0) = 1. If
f is real-valued, such complex point singularities come in conjugate pairs. The “radius of convergence”, ρ, is
found by fitting the power spectrum for exponential decay. If ρ decreases to zero in finite time, then f has lost
analyticity and has formed a singularity on the real axis. The algebraic degree of the singularity,β, is found by
fitting the power spectrum for algebraic decay. Using the computed Fourier spectra to determine ρ and β has
been used to investigate singularity formation in many other systems (see, for example, [40, 33, 25, 37, 10, 9]).

If there is more than one complex conjugate pair of singularities, this would be immediately evident in the
Fourier spectrum since its decay would be modulated, due to phase interference effects. Figure 10 shows the
spectra of the solutions h and γ. They have no modulation, showing monotonic decay for large k until the
round-off level is reached. This suggests that the developing spatial structure might be understood in terms
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Figure 10. Spectra from three different times in the n = 512 computation of the thin-jet
model. The initial spectrum is at the time immediately after point-doubling.

of a single conjugate pair of complex singularities reaching the real axis in finite time. We do find modulated
spectra in the solutions with zero total circulation shown in Section 5.2, for which there are two pinching
singularities. Fitting spectra with modulation is delicate — it is for this reason we considered solutions that
pinch at only one point.

An unmodulated spectrum is fit as follows: given a sequence,
{
|f̂(k)|, . . . , |f̂(k + L)|

}
, of L + 1 Fourier

amplitudes, we minimize

1
L+ 1

k+L∑
i=k

log(|f̂(i)|)− log(C) + ρ|i|+ (β + 1) log(i) −
m∑
j=0

aji
−j

2

,(51)

to determine log(C), ρ, β, a0 . . . am. Here, we approximate log(g(1/i)) from (50) with a polynomial of degree
m. Each stencil of L+ 1 Fourier modes determines one radius of convergence ρL(k) and one exponent βL(k).
We then plot (k, ρL(k)) and (k, βL(k)). Again, we hope to see that ρL(k) and βL(k) are relatively independent
of k for k � 1.

In this way, we fit for ρ and β at a fixed time t, and then study their behavior as functions of time. If the
singularity corresponds to a complex singularity reaching the real axis in finite time, this would be apparent
in ρ(t): ρ(t) ↓ 0 as t ↑ tc. If the algebraic structure of the complex singularity does not change type as
the solution becomes singular, then β(t) = β(tc) as t ↑ tc. The inviscid Burgers equation provides a simple
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example where the singularity does change type: β(t) = 1/2 for t < tc, and β(tc) = 1/3. In Appendix C we
discuss the spectral behavior associated with this change in type, as uncovered by the above fitting method.

First the Fourier spectra of γ(x, t) is fit at a sequence of times using stencils of different lengths. The top plot
of Figure 11 shows (k, β200(k)) for a sequence of times near the singular time. This simulation used n = 16384
mesh-points; at the first time shown in this figure the solution has about 2000 modes active. In principle, with
2000 active modes and a stencil of length 200, we should be able to fit 1800 sequences, {|f̂(k)| . . . |f̂(k+200)|}.
In practice, for a fixed stencil length, the minimization problem becomes ill-conditioned at large wave numbers
and we can only fit up to β200(130).
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Figure 11. The thin jet model. In both figures, the dotted line marks β =
−2/3. The solid lines correspond to times before the active part of the spectrum
reached the n/2 mode, the dashed lines for the later times. Top: Using a sten-
cil of length 200 to fit the spectrum of γ for spatial structure. Shown at times
t = 13.681955, 13.693955, 13.695955, 13.697155, 13.697955, 13.698355, 13.698755, 13.699155.
Bottom: Using a stencil of length 700 to fit γ at the same times.

In this graph, the solid lines are for times before t8192, the time when the n/2 = 8192 mode becomes active.
The dashed lines are for times after t8192. In Appendix C we demonstrate that aliasing error does not appear
to affect the fitting; the time t8192 is presented as a lower bound for the time at which the simulation loses
accuracy. The horizontal dotted line is β = −2/3. At the earliest time shown, there is a sharp dip downward
in β200(k) for k = 1 . . .40 and β200(k) is nearly constant, approximately −2/3, for k = 40 . . .100. At the
next time shown, the dip has extended to k = 1 . . .60 and β200(k) is nearly constant for a smaller number of
modes, k = 60 . . .100. This continues, and by the fourth time shown, β200(k) does not have any near-constant
behavior. For a fixed wave-number k0, β200(k0) initially decreases and then increases.

The bottom plot of Figure 11 is the analogue of the top plot of Figure 11 described above. The longer the
stencil, the less ill-conditioned the problem: we can now fit up to β700(400). There are two stray curves which
are from fitting the first two times — not enough modes were active at these relatively early times. As in the
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top plot of Figure 11, the earliest time has a dip in the low wave-numbers and this dip expands out as time
passes. Again, there is a horizontal dotted line at β = −2/3 barely visible at k near 0 and 500 in the figure.
This is very strong evidence for β = −2/3 for k� 1. This is the exponent predicted by Siegel in his study of
a Moore’s approximation of vortex sheets with surface tension [39].

Comparing the two plots in Figure 11, we see that for a fixed wave number, k0, β200(k0) ranges over more
values as the solution evolves than β700(k0) does. This is because the longer the stencil, the smaller the effect
of the low wave numbers on the fitting. We could have introduced compensating weights into the least-square
fitting. However, while it is clear that for the temporal fittings that times nearest to tc should be emphasized,
it is not clear which low wave numbers are in the asymptotic regime described by Laplace’s formula (50).
Specifically, a natural choice of weights would be wi = eρ(k−kc), where kc is the (unknown) wave number past
which the asymptotic behavior dominates.

It is possible that the “dip” we see developing and broadening in the low wave-numbers may be the sign
of a change of type of the singularity as it approaches the real axis. However, this behavior is quite different
from that seen in the example of the inviscid Burgers equation presented in Appendix C.

The top plot of Figure 12 shows the fit (k, ρ700(k)) at a sequence of times. This plot demonstrates that
fitting ρ700 is more robust than fitting β700: β700 could only be fit up to k = 400 while ρ700 can be fit past
k = 600. This is simply that the exponential behavior dominates the algebraic behavior and thus is easier to
fit. ρ700 is nearly constant in the region k = 1−600 and decreases to zero as t increases to tc. The middle plot
of Figure 12 shows the radius of convergence as a function of time. We plot ρ700(50), ρ700(100), ρ700(150), and
ρ700(200). The four curves lie on top of one another, as suggested by Figure 12, whose curves are nearly flat.
The circle indicates t8192. The curve is concave down and strongly suggests that the radius of convergence
goes to zero in finite time. Fitting this data to a power law gives a singular time of tc = 13.699, consistent to
all given digits with the estimates from the temporal data fits.

Finally, we show the fits of the spectrum of h. The bottom plot of Figure 12 for h is the analogue of the
bottom plot of Figure 11 for γ. These fits for β700(k) are fairly flat, especially at the earlier times, and so
suggest that h does have a complex singularity structure, but with a time-dependent algebraic degree β(t).
This degree apparently increases in time. This observation is not a consequence of having chosen stencils of
the wrong length: the figure for β700 does not show significantly less variation with time than a figure for
β200. It is striking that γ has strong evidence for a particular algebraic degree β = −2/3 and that this does
not force h to also have a time-independent algebraic degree of singularity. In fitting ρ, we find that h and γ
have the same radius of convergence.

We note that β(tc) = 1 would correspond to h developing a corner at the singularity time. β = 1 is plotted
as the horizontal dotted line. The behavior seen in the bottom plot of Figure 12 is not inconsistent with a
change in type that leads to a corner forming at the singular time tc.

As the algebraic behavior should be most easily fitted where the exponential decay is least, an alternate
approach would be to fit the small wave numbers for β. We do this by fixing the stencils to start at k = 20
and fitting over stencils of varying lengths |f̂(20)| . . . |f̂(L)| for βL. In the top plot of Figure 13 we plot
(L, βL) where βL comes from fitting γ in this way with dotted lines at β = −2/3,−3/4. The bottom plot of
Figure 13 is the analogous figure from fitting h. Again, the solid lines correspond to times before tn/2 and the
dashed lines are times after tn/2. We fixed the stencil to start at k = 20, rather than at some lower mode since
Figures 11 and 12 show some scruff near k = 1. These figures suggest that as the singular time approaches,
h is developing a corner singularity and γ is changing type.
Comment: We also considered whether the dynamics of the thin jet model were modified by replacing the
shallow water curvature term, hxx, by the full curvature. We found no discernible change, except that the
singularity occurred (very) slightly earlier.

5.4. Simulations of the local model.
Computing solutions of the local model (36–37) with the initial data (48) from the thin jet simulation, we
find that the solution does not become singular. We computed up to time t = 290, which is 21 times larger
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Figure 12. In both the top and bottom figures, the solutions are fitted at the same times
shown in Figure 11. The solid lines correspond to times before the active part of the spectrum
reached the n/2 mode, the dashed lines for the later times. Top: Using a stencil of length
700 to fit the spectrum of γ for a radius of convergence. Middle: The evolution of the radius
of convergence for the thin jet model. We plot ρ700(50), ρ700(100), ρ700(150), and ρ700(200)
versus time. The circle corresponds to the time at which the active part of the spectrum
reached the n/2 mode. Bottom: Using a stencil of length 700 to fit the spectrum of h for
spatial structure.

than t = 13.7, the singular time for the thin jet simulation. Plotting (t, hmin(t)) and (t, γmax(t)) for this
simulation, we find that the solution appears to be periodic in time.

The thin jet model is different from the local model in that the linearization of the thin jet model can have
a band of unstable modes, while the linearization of the local model has solely dispersive modes. For this
reason, we cannot take an unstable eigenfunction as initial data for the local model. Taking initial data

h0(x) = 0.1 + 0.05 cos(x) γ0(x) = 1.0 + 0.5 cos(x)(52)

and We−1 = 0.5, we compute both the thin jet model (25–26) and the local model (36–37) refining up to
n = 8192 mesh-points. Both simulations have a finite-time singularity of pinching type. Figure 14 shows the
evolution of the local model and Figure 15 shows the evolution of the thin jet model. The thin jet model
becomes singular at tc ∼ 2.2131 while the local model becomes singular at tc ∼ 1.8701.

An immediate difference between the two simulations is that the thin jet model has γ ↑ ∞ while the local
model has γ ↓ −∞. Considering a range of initial data, we find that the thin jet model always pinches at
one point with γ ↑ ∞, while the local model can pinch at either one or two points and with either γ ↑ ∞ or
γ ↓ −∞.



24 M.C. PUGH AND M.J. SHELLEY

0 500 1000 1500 2000 2500 3000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

β

k

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

β

k

Figure 13. Using stencils of increasing length to fit the solutions for spatial structure. The
solutions are fitted at the same times shown in Figure 11. The solid lines correspond to times
before the active part of the spectrum reached the n/2 mode, the dashed lines for the later
times. Top: Spectrally fitting γ from the thin jet model for spatial structure. The stencils
are chosen to start at k = 20. The dotted lines are at β = −3/4,−2/3. Bottom: Spectrally
fitting h from the thin jet model for spatial structure. Again, the stencils are chosen to start
at k = 20. The dotted lines are at β = 3/4, 1.

As discussed in Section 4, given a self-similar ansatz the local model (36–37) does not select exponents for
the temporal behavior of extrema:

hmin(t) ∼ (tc − t)a γmin(t) ∼ (tc − t)
a
4−

1
2 hxxmax(t) ∼ (tc − t)

a
2−1(53)

If a = 2/3, these exponents are those predicted by the assumption of self-similarity in solutions of the thin-jet
model (29). To see if the local model selects any temporal exponents, we did a well-resolved (n = 8192) run.
Surprisingly, we find that the temporal exponents are very close to those of the thin-jet solution, as is the
spatial structure as revealed by its Fourier transform.

We first discuss the temporal behavior of the local model. Figure 16 shows fits to the leading-order power-
law behavior of γmax(t), hxxmax(t), and hmin(t), and is to be compared with Figure 9. The error bars
in the figures were computed by assuming an error of ±.01 for the fitting of hmin(t) and finding that the
exponents in (53) would suggest an error of ±.0025 for fitting γ and ±.005 for fitting hxx. The six figures
suggest temporal exponents:

extremum Thin Jet Model Local Model
hmin(t) 0.8 0.74
γmax(t) -0.32 -0.32
hxxmax(t) -0.66 -0.63

The temporal exponents for the local model are in good agreement with the self-similarity exponents:

hmin(t) ∼ (tc − t)0.74 γmin(t) ∼ (tc − t)−0.32 hxxmax(t) ∼ (tc − t)−0.63.
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Figure 14. The long-time evolution of the local model.

We certainly cannot discount the possibility that a closer approach to the singularity time, through higher
spatial and temporal resolution for both models, could lead to different exponents.

Figure 17 shows the fits of β700(k), the algebraic degree of complex singularities, from both the γ and h
spectra near the pinching singularity time, and are the analogues of the bottom plot of Figure 11 and the
bottom plot of Figure 12. In both the local model and the thin jet model, the spectra of γ strongly suggest an
algebraic degree of β = −2/3 for the complex singularity of γ. And in both models, the spectra of h suggest
a time-dependent algebraic degree for the complex singularity of h. The similarity between the figures is yet
stronger in comparing Figure 17 to figures from fitting the (lower resolution) n = 8192 simulation of the thin
jet model. Specifically, the figures from fitting the n = 8192 solutions of the thin jet simulation do not have
as wide a “dip” in the low wave numbers in γ and the values of β for h are not as close to β = 1.

5.5. Behavior of the thin jet model as the Weber number is varied.

In the above, we studied the finite-time singularity for a small Weber number. A natural question is what
happens to the singularity as the Weber number is taken to infinity. We performed a number of simulations
with various Weber numbers using the initial data (48). As the Weber number increases, more modes become
linearly unstable. All the simulations become singular in finite time: Figure 18 shows that as We increases to
infinity, tc(We) decreases to tc(∞). We did not resolve these simulations well enough to determine the exact
nature of the singularities. There are three clear options: h touches down in finite time, h shocks in finite
time, and hxx blows up in finite time. The We <∞ simulations all appear to have h touching down in finite
time, although we cannot preclude that there might be a shock shortly before a touch-down.

Figure 19 shows the infinite Weber number simulation with initial data (48). It also has a finite-time
singularity, but unlike the We < ∞ simulations, h remains well away from touching down. The evolution is
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Figure 15. The long-time evolution of the thin jet model, given the initial data shown in
Figure 14.

initially similar: the extrema move to the right with the flow with the minimum of h beginning to decrease.
However, hmin has ripples in its wake and and one of these ripples shocks.

Figure 20 is the analogue of Figure 8. The top plot of Figure 20 shows the positions of the different
extrema — hxmin(t) and γmax(t) occur at points that remain separate from one another, while hxmax(t)
and hxxmax(t) occur at points that approach each other as the solution become singular. This is consistent
with hx ↑ ∞, which would then force hxx to become infinite as well. The circle corresponds to the time
when the n/2 mode became active. In the bottom plot of Figure 20, we plot the singular times determined
by three-point fits of the various extrema. This figure shows that hx and hxx become singular before γmax,
hmin, Kmax, and hxmin do3. Although hxx is blowing up, K (the curvature) is remaining bounded.

This behavior is at odds with simulations of a symmetric jet with no surface tension. Such a simulation is
presented in HLS2, in which they find that the curvature blows up in finite time while the interface remains
differentiable — the behavior of a single vortex sheet with no surface tension. Of course, our thin jet model
assumes that hx � 1, and hence the behavior of the infinite Weber number simulation is out of the regime of
asymptotic validity.

6. Conclusions

In this paper, we derive and study models of a thin fluid jet that is separated from an outer immiscible
fluid by interfaces under surface tension. We demonstrate numerically that both the thin jet model (25 –
26) and the local model (36–37) have finite-time singularities. In the presence of surface tension (We < ∞),

3In this case, h is not going to zero as t ↑ tc. However, hmin(t) is decreasing and fitting this decreasing function to (t∗ − t)p
determines some exponent p and t∗ significantly larger than tc.
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Figure 16. The evolution of the fitted temporal exponents for the local model. The dot-
dash line is the exponent found by three-point fittings. The remaining lines are from the
fitting method described in Appendix B with weights α = .5, .75, 1. Top: Fitting min{γ} for
the temporal exponent p. The line with error bars is p = −.3125 ± .0025. Middle: Fitting
max{hxx} for the temporal exponent p. The line with error bars is p = −.625± .005. Bottom:
Fitting min{h} for the temporal exponent p. The line with error bars is p = .75± .01.

the singularities are of a pinching type, where h(xc, t) ↓ 0 as t ↑ tc. In the absence of surface tension, the
singularities are shocks where |hx| ↑ ∞. We study these singularities to determine their structure.

A natural expectation is that as the solution becomes singular it behaves in a self-similar fashion. The
thin jet model determines all the temporal exponents of a self-similar solution (29). If the computed solution
were close to self-similar behavior, the self-similar scaling would be apparent in the temporal evolution of
extrema. To study this, we fit extrema (such as hmin(t)) to power laws and find that the singularities are
in only partial agreement with self-similarity: γ and hxx behave in close accordance with self-similarity, but
h does not. The thin jet model contains Hilbert transforms. which can be computed rapidly on a uniform
mesh using a discrete Fourier transform. Future, more detailed, studies should use adaptive spatial meshes
to better resolve the singular structure. Rapid evaluation of the Hilbert transform would then require use of
summation methods such as adaptive Fast Multipole [18]. And so, while in this study the simulations appear
to be highly resolved, we certainly cannot exclude that greater resolution is needed and that the solutions will
eventually become clearly self-similar.

To further study the structure of the singularity, we examine the Fourier spectra of the solutions. We find
that γ(x, t) has an analytic structure corresponding to a conjugate pair of complex singularities of the form
(x−z(t))−2/3. There is also some evidence for a change of type in the singularity, away from an algebraic degree
of −2/3, as the singular time is approached. For h, the singularity structure also seems to be described by a
conjugate pair of complex singularities, but their algebraic degree appears time-dependent, and is apparently
moving towards the value associated with a corner singularity.
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Figure 17. The solid lines correspond to times before the active part of the spectrum
reaches the n/2 mode, the dashed lines correspond to the times afterwards. Top: Using a
stencil of length 700 to spectrally fit γ from the local model for spatial structure. Bottom:
Using a stencil of length 700 to spectrally fit h from the local model for spatial structure.
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Figure 18. The singular time tc as a function of the number of unstable modes.

The apparent formation of a corner singularity agrees with the numerical results of HLS2 in their study
of the collapsing jet formed within the turns of the Kelvin-Helmholtz spiral. However, in their study they
find strong evidence of self-similar temporal behavior in the width of the jet (here h), but a lack of strong
evidence for such temporal scalings in γ and the curvature K. We, with Lowengrub, are currently studying
the dynamics of a single symmetric fluid-fluid jet, models of which we study here. Our preliminary results
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Figure 19. The evolution of the thin-jet model with zero surface tension (We = ∞). The
initial data used in Figure 6 is used.

show a collapse of the jet width with temporal scalings that are not consistent with a self-similar collapse [22].
In fact, the temporal exponent, a ∼ .75− .76, is quite close to that found in the simple model (a ∼ .74).

An analytic approach to studying singularity formation uses complex analytic methods. A real-valued
analytic function, h(x, t), is extended to the complex plane, as is its equation of evolution. If the complexified
function has complex poles or zeros which reach the real axis in finite time, these can correspond to a
finite-time singularity for the real-valued function. For a vortical flow, Moore’s analysis provides a way of
complexifying the flow and approximating non-local terms, such as Biot-Savart integrals, with local terms
[10]. The approximate system is then studied to see if it has complex singularities which reach the real axis
in finite time.

Siegel has performed a version of Moore’s analysis for a single vortex sheet with surface tension (as studied
in HLS2) and finds special solutions that form finite-time singularities [39]. In particular, he finds that before
the singular time, both γ and the sheet curvature have an analytic structure determined by conjugate pairs of
complex singularities of the form (x−z(t))−2/3. This agrees with our results for γ, though in Siegel’s analysis
γ does not change type at the singular time. In Siegel’s analysis, the curvature does change type, becoming a
step function at the singularity time, giving a corner in the sheet profile. Siegel’s analysis does not predict the
formation of a pinching singularity – the corner singularity is isolated from other segments of the interface.
This may be unsurprising, given that the Moore’s approximation is local. While our models can be local, and
yet give a pinching singularity, the shallow water form encodes the interaction of two opposing interfaces.

The temporal and spatial characteristics of pinching singularities found in our local model are almost
identical to those in the thin jet model: the temporal exponents of the collapse are very close, and the spatial
structure of the oncoming singularity (as revealed by the Fourier spectra) for both h and γ is very similar.
Given its relative simplicity, we consider the local model of fundamental interest.
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Figure 20. Top: The evolution of the position of extrema for the thin jet model with zero
surface tension. The x-axis is time, the y-axis is the position of the extrema. The dotted
line is the position of max{γ}. The dashed line is the position of the min{hx}. The solid
line is the position of max{hx}. The dot-dash line is the position of max{hxx}. Bottom: The
evolution of the fitted singular time from three-point fittings for the thin jet model with zero
surface tension. The x-axis is time, the y-axis is the fitted singular time. The solid line is the
singular time from fitting max{hx}. The dashed line is the singular time from fitting min{h}.
The dot-dash line is the singular time from fitting max{hxx}. The dotted line is the singular
time from fitting max{K} (the curvature of the sheet).

Some similarity between the local and thin jet models is expected since the initial evolution is driven by
the lower-order system (34–35) with the higher-order terms (the non-local terms and the dispersive term)
entering late in the evolution. However, the idea that the pinching mechanism is related to “dispersing away
the Burgers shock” is weakened since we find that further truncations of the local model continue to have
finite-time pinching singularities. Specifically both

ht = −(hγ)x, γt = We−1hxxx

and
ht = −hγx, γt = We−1hxxx

have finite-time pinching singularities but do not have a Burgers shock to disperse away. The second system
keeps only the barest bones of a shallow water form. However, fitting the singularities of these two systems
for their temporal and spatial behaviors, we find very different exponents from those seen in the thin jet and
local models. Note also that neither system will produce a singularity in the We = ∞ (zero surface tension)
case.

Our studies of the thin jet and local models have produced further problems of interest. In the thin jet
model, the local surface tension term appears to enslave the non-local terms. How it does this needs to be
explained. For the local model, it is still unproven whether a uniform lower bound on h, h ≥ α > 0, ensures
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regularity. Also, analysis may be brought to bear on proving the existence of finite-time singularities for the
local model with positive initial h.
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Appendix A. Reformulation of the Symmetric Jet Equations

We first present the equations of motion for a single vortex sheet. While the normal component of the
velocity is continuous across the interface, the tangential component of the velocity can be discontinuous,
making the interface a vortex sheet. We require the interface to move with the fluid in the normal direction.
The interface Γ(t) is parametrized with a real variable p and is denoted ~X(p, t), with unit normal vector ~n
and unit tangent vector ~s. The normal component of the velocity, U(p) is given by

U( ~X(p, t), t) = ~Q(p, t) · n̂ where

~Q(p, t) =
1

2π
P.V.

∫
Γ(t)

γ(p′, t)

(
~X(p, t)− ~X(p′, t)

)⊥
∣∣∣ ~X(p, t)− ~X(p′, t)

∣∣∣2 dp′ =
1
2

(
~u1( ~X(p, t), t) + ~u2( ~X(p, t), t)

)
(54)

The interface moves with the sum of this velocity (54) and T ŝ. The frame T represents the additional
freedom in the tangential direction arising from the freedom of parametrization of the vortex sheet:

~Xt = ~Q+ T ŝ.

The velocity jump in the tangential direction, γ̃, denoted the “true sheet strength”, determines γ(p, t),
denoted the “unnormalized sheet strength”:

γ(p, t)
σp(p, t)

= − [~u] ~X(p,t) · ŝ = γ̃(σ, t)(55)

where σ is the arclength.
Euler’s equation (6) and the Young-Laplace condition (8) yield an evolution equation for the true sheet

strength,

γ̃t + γ̃ ~Qσ · ŝ− γ̃σT = We−1Kσ
where K is the curvature of the vortex sheet. The above equation has been non-dimensionalized using the
periodicity length λ and a reference speed γc. If the immiscible fluids have different densities, these effects
would appear in the above evolution equation, see HLS2. The dimensionless quantity is the Weber number

We =
λγ2

c

τ

where τ = 2τ/(ρ1 + ρ2) is a rescaled surface tension. The Weber number reflects the balance between the
dispersive effects of surface tension and the Kelvin-Helmholtz instability.

Parametrizing the sheet with a parameter p that is advected with the flow,

~Xt(p, t) = ~Q( ~X(p, t), t) + T (p, t) ŝ( ~X(p, t), t),



32 M.C. PUGH AND M.J. SHELLEY

yields an equation for the unnormalized sheet strength

γt −
∂

∂p

(
T
γ

σp

)
= We−1 Kp.(56)

This equation becomes γt = 0 ifWe =∞ and T = 0, demonstrating the time-independence of the unnormalized
sheet strength for a vortex sheet without surface tension in Lagrangian coordinates. Of course, γ is an
unphysical quantity and the true sheet strength, γ̃, which is a physical quantity, is not conserved in this case.

We now consider the case of a jet. A jet is bounded above and below by vortex sheets. The velocity of a
point on one of these sheets is

~Xt = ~Q+ T ŝ.(57)

~Q = (ũ, ṽ) is the average of the limiting velocities from above and below the sheet and has a boundary integral
representation analogous to (54). In this article, we consider a horizontal jet with a top-bottom symmetry
and take an Eulerian parametrization for the vortex sheets bounding the jet. We view the vortex sheets as
the graphs of a function h: ~X(x, t) = (x,±h(x, t)). Since

~Xt = ~Q+ T ŝ = (ũ + Txσ, ṽ + Tyσ),

for an Eulerian parametrization, the frame T must be chosen so that

ũ+ Txσ = 0⇐⇒ T = − ũ

xσ
= −ũ

√
1 + h2

x.

This choice of frame in (56–57) yields

ht = yt = ṽ − ũ yσ
xσ

= ṽ − ũhx(58)

γt = −(ũγ)x +We−1 Kx.(59)

We now present the Fourier series reformulation of the Boundary integral formulation of the flow. The
velocity field ~Q(x, y) = (u(x, y), v(x, y)) at a point (x, y) away from the interface can be represented in the
complex notation:

u(x, y, t)− iv(x, y, t) =
1

2πi

∫ ∞
−∞

γ(x′, t)
x+ iy − (x′ + ih(x′, t))

dx′(60)

− 1
2πi

∫ ∞
−∞

γ(x′, t)
x+ iy − (x′ − ih(x′, t))

dx′.(61)

If both γ and h are 2π-periodic, the above kernel is explicitly resummed:

u(x, y, t)− iv(x, y, t) =
1

4πi

∫ 2π

0

γ(x′, t) cot
(
x+ iy − (x′ + ih(x′, t))

2

)
dx′

− 1
4πi

∫ 2π

0

γ(x′, t) cot
(
x+ iy − (x′ − ih(x′, t))

2

)
dx′

= I1(x, y, t)− I2(x, y, t)

The incompressibility and irrotationality of the fluid imply that ~Q∗(z) is a complex analytic function away
from the interface. This suggests expressing the velocity field as a sum of analytic functions:

u(x+ iy, t) − iv(x + iy, t) =
∞∑

k=−∞
αk(h, γ)eik(x+iy) =

∞∑
k=−∞

αk(h, γ)e−kyeikx
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We find the velocity u1(x, y, t)−iv1(x, y, t) for a point completely inside the jet, {0 ≤ y < h(x) | ∀x ∈ [0, 2π]}
as follows:

I1(x, y, t) =
∞∑

k=−∞
ak(y, t)eikx

where

ak(y, t) =
1

2π

∫ 2π

0

I1(x, y, t)e−ikx dx

=
1

2π

∫ 2π

0

1
4πi

∫ 2π

0

γ(x′, t) cot
(
x+ iy − (x′ + ih(x′))

2

)
dx′ e−ikx dx

=
1

2π

∫ 2π

0

γ(x′, t)
1

4πi

∫ 2π

0

cot
(
x+ iy − (x′ + ih(x′))

2

)
e−ikx dx dx′(62)

=
1− sgn(k)

2
1

2π

∫ 2π

0

γ(x′, t)ek(h(x′,t)−y)e−ikx
′
dx′

=
1− sgn(k)

2
e−ky

1
2π

∫ 2π

0

γ(x′, t)ekh(x′,t)e−ikx
′
dx′.

To evaluate the integral with respect to dx in (62), we use the fact that the pole, x′+ i(h(x′, t)− y), is in the
upper half plane for all x′ and hence the residue appears only for k < 0.

Similarly,

I2(x, y, t) =
∞∑

k=−∞
bk(y, t)eikx

where

bk(y, t) =
1

2π

∫ 2π

0

γ(x′, t)
1

4πi

∫ 2π

0

cot
(
x+ iy − (x′ − ih(x′))

2

)
e−ikx dx dx′

= −1 + sgn(k)
2

e−ky
1

2π

∫ 2π

0

γ(x′, t)e−kh(x′,t)e−ikx
′
dx′

Here, there was no constraint that x + iy be completely below the interface as the pole is in the lower half
plane as long as (x, y) is inside the jet.

Hence for all x+ iy completely inside the jet

u1(x, y, t)− iv1(x, y, t) =
∞∑

k=−∞
(ak(y, t) − bk(y, t)) eikx

=
∞∑

k=−∞
e−ky

1
2π

∫ 2π

0

γ(x′, t)e−|k|h(x′,t)e−ikx
′
dx′ eikx.

This yields

u1(x, y, t) =
∞∑

k=−∞
cosh(ky)

(
1

2π

∫ 2π

0

γ(x′, t)e−|k|h(x′,t)e−ikx
′
dx′
)
eikx,(63)

and

v1(x, y, t) = −i
∞∑

k=−∞
sinh(ky)

(
1

2π

∫ 2π

0

γ(x′, t)e−|k|h(x′,t)e−ikx
′
dx′
)
eikx.(64)
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We formally take y ↑ h(x, t) to integrate to find the flux,∫ h(x,t)

0

u1(x, y, t) dy = h(x, t)
1

2π

∫ 2π

0

γ(x′, t) dx′(65)

+
∞∑

k=−∞,k 6=0

1
k

sinh(kh(x, t))
(

1
2π

∫ 2π

0

γ(x′, t)e−|k|h(x′,t)e−ikx
′
dx′
)
eikx.(66)

The same calculation for a point x+ iy which is completely above the jet {y > h(x) | ∀x ∈ [0, 2π]} yields

u2(x, y, t)− iv2(x, y, t) = −
∞∑

k=−∞
(1 + sgn(k))e−ky

1
2π

∫ 2π

0

γ(x′, t) sinh(kh(x′, t))e−ikx
′
dx′eikx.

Taking the real and imaginary parts,

u2(x, y, t) = −
∞∑

k=−∞
sgn(k)e−|k|y

(
1

2π

∫ 2π

0

γ(x′, t) sinh(kh(x′, t))e−ikx
′
dx′
)
eikx.(67)

and

v2(x, y, t) = −i
∞∑

k=−∞
e−|k|y

(
1

2π

∫ 2π

0

γ(x′, t) sinh(kh(x′, t))e−ikx
′
dx′
)
eikx.(68)

We formally take y ↑ h(x, t) to find u1(x, h(x, t), t) and y ↓ h(x, t) to find u2(x, h(x, t), t), yielding

ũ(x, t) =
1
2

( ∞∑
k=−∞

cosh(kh(x, t))
1

2π

∫ 2π

0

γ(x′, t)e−|k|h(x′,t)e−ikx
′
dx′ eikx

−
∞∑

k=−∞
sgn(k)e−|k|h(x,t) 1

2π

∫ 2π

0

γ(x′, t) sinh(kh(x′, t))e−ikx
′
dx′ eikx

)
.

The system (58–59) with the above flux and ũ has the eigenvalues (19) when linearized about x(p, t) = p+ γ
2
t,

h = h, γ = γ. This shows that the above reformulation is linearly consistent with the boundary integral
formulation (60). We discuss higher-order consistency in Appendix A.1.

In the case of a non-periodic jet, the above reformulation is similar, as cot(z) has the same simple poles as
1/z. The only difference is that sum with respect to k is replaced with an integral with respect to ξ. Clearly,
these reformulations can also be found for a single vortex sheet.

A.1. Shallow water expansions.
The above reformulation represents the velocity as

ũ(x, t) =
∞∑

k=−∞
fk(h(x, t), γ(x, t)) eikx.

For a shallow water expansion of the velocity, we simply expand the Fourier coefficients fk(h, γ) = fk(εH, γ)
in powers of ε. The reformulation allows us to expand in all orders at once. For example, recall equation (11):
ht = −(Flux)x. A Taylor series expansion of e−ε|k|H = 1− ε|k|H + . . . in the flux (65) yields

Flux(εH) =
∞∑
l=1

ε2l
l−1∑
n=0

(−1)l

(2l− 2n− 1)!(2n+ 1)!
H(x, t)2n+1H

[
d2l−1

dx2l−1

(
γH2l−2n−1

)]

+
∞∑
l=1

ε2l−1
l−1∑
n=0

(−1)l−1

(2l − 2n− 2)!(2n+ 1)!
H(x, t)2n+1 d

2l−2

dx2l−2

(
γH2l−2n−2

)
.
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Rather than expanding the Fourier series reformulation, we could expand the boundary integral formulation.
However, it is a messier expansion and while it can also be done to all orders in ε, the source of the linear
instability is obscured. At first glance, the two expansions have different forms; we verified that they are
identical to the order needed for the thin jet model.

To study the validity of the asymptotic expansion, we assume the solutions are nearly self-similar with
identical inner scales,

h(x, t) = ε(tc − t)aH
(
x− xc(t)
(tc − t)b

)
γ(x, t) = (tc − t)cΓ

(
x− xc(t)
(tc − t)b

)
.

We rescale time σs = (tc − t) and space x− xc(t) = σby where s and y are O(1). With this rescaling, we find
that the ε expansion of the evolution equation for h, ht = O(1) +O(ε) + O(ε2), has terms

O(εn) ∼ εnσc+n(a−b)Cn(η)(69)

for n ≥ 0. The functions Cn(η) are determined by H, H ′, . . . H(n), G, G′, . . . G(n), where the derivatives
are with respect to η = y/sb.

If a < b then as t ↑ tc, |hx| ↑ ∞, strongly violating the shallow water assumption. The case of a = b also
violates the shallow water assumption since it implies hx = O(1) as t ↑ tc. Given a fixed ε and a ≥ b, then as
σ ↓ 0 the singular time approaches and (69) implies that an O(εn) term remains higher-order than an O(εm)
term for all m < n.

For a fixed ε, we are also interested in the range of times σ for which the asymptotic series converges. In
the following, we assume that

|Cn(η)| ≤ Bn ∀η ∈ N
where N is the domain of the self-similar solution. We further assume that there is some ε0 and σ0 for which

∞∑
n=0

(ε0σa−b0 )nBn <∞.

Convergence for an interval of times σ follows immediately:

σ < σ0(
ε0
ε

)
1
a−b =⇒

∞∑
n=0

(εσa−b)nCn(η) <∞ ∀η ∈ N.

If a = b then, there is no constraint on σ and the condition for uniform convergence of the asymptotic series
is ε ≤ ε0. If a > b then the smaller ε is, the larger the time period before the singular time tc on which the
series converges.

On request, we will provide the details of both expansions based on the boundary integral formulation and
Fourier reformulation.

Appendix B. Fitting Extrema to Power Laws

It is a common first guess to assume that near singularities the solution will have a self-similar behavior.
That is, if the solution is going to zero at a point xc at a time tc then

h(x, t) = (tc − t)αH
(
x− xc(t)
(tc − t)γ

)
+ higher-order corrections

where xc(t)→ xc as t→ tc. If the solution is exactly self-similar, then the minimum value of h(x, t) will occur
at x = xc(t) and hmin(t) is a pure power law:

hmin(t) = (tc − t)αH(0).

In practice, the higher-order corrections to the self-similar ansatz may be non-negligible until times very close
to the singular time. This presents two options. The first option is to compute to times as close to the
singular time as possible and fit the data to a pure power law a(tc− t)p. This is an attractive option, but some
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problems may have computational aspects that make computing sufficiently close to the singular too costly.
The second option is to fit not just the leading-order behavior, but some of the higher-order terms as well.

To fit the data to a pure power law, a(tc − t)p, one takes three sequential data points and uses Newton’s
method to solve the system of equations

yi−1 = a(tc − ti−1)p

yi = a(tc − ti)p

yi+1 = a(tc − ti+1)p.

This yields values for a, p, and tc for each data triplet. These quantities are then viewed as functions of time.
For example, {ti, tc(ti)} can be studied to see if tc(ti)→ TC as ti goes to the end of the data available.

This procedure is ill-conditioned and its convergence depends strongly on the initial guess. For this reason,
we go through the data backwards in time, taking the first data triplet to be the data closest to the singular
time. The initial guess for the iteration can be usually found graphically or by using a slower minimization
package, such as the one in matlab. The answers computed for the first triplet are then taken as the first guess
for fitting the second triplet, and so on. This method frequently fails after a number of steps. The failure is
usually due to not being able to invert the Jacobian needed for the Newton iteration.

While the above method is significantly better than making a guess at the singular time and plotting
log(yi) against log(tcguess − ti), the disadvantage of this approach is that it can yield unnecessarily gloomy
results. Specifically, if one fits any data-sequence which doesn’t have a pure power-law behavior and if the
coefficient of the next-order term is large then the times ti will have to be very close to the singular time
before the computed quantities a(ti), p(ti), and tc(ti) show any convincing “trend”. This degree of resolution
of a singularity can be difficult to obtain, especially in a code that has no local grid-refinement.

For this reason, we propose fitting the higher-order corrections, assuming that there is an analytic function
f such that

y(t) ∼ (tc − t)pf( (tc − t)q ) = (tc − t)b(a0 + a1(tc − t)q + a2(tc − t)2q + . . . ).

We then fit for tc, p, q, and ai. The three-point fitting described previously is ill-conditioned and fitting
for higher-order terms is even more ill-conditioned. We find that the minimization problem can be made
less ill-conditioned by fitting the analytic function f with Chebyshev polynomials, rather than with a Taylor
series:

y(t) ∼ (tc − t)pf( (tc − t)q ) = (tc − t)b(a0φ0( (tc − t)q ) + a1φ1( (tc − t)q ) + . . . ).(70)

We use the following method to compute the exponents, coefficients, and singular time.

• First estimate a0, p, and tc by minimizing

3∑
i=1

(
yi − a0(tc − ti)p

)2

The values of p and tc from the three-point fit are used in weights in the rest of the fitting procedure.
For this reason, we denote them by p3 and tc3 in the following.

• A stencil length, N , is chosen and the values a0, p, and tc from the previous step are used as a first
guess to estimate a0, p, tc, q, and a1 by minimizing

1
N

N∑
i=1

w(ti)2
(
yi − (tc − ti)p

(
a0 + a1φ1( (tc − t)q )

))2

.

The weights are

w(ti) =
1

(tc3 − ti)αp3
where α ∈ [0, 1].
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The effect of the weights depends on the chosen value of α. If α = 0, the weights are irrelevant. If α = 1,
the weights would make the all terms in the sum of order 1, if the values of tc3 and p3 were the correct
values. We discuss how to choose the exponent α later.

• The values a0, p, tc, q and a1 from the previous step are used as a first guess to estimate a0, p, tc, q,
a1, and a2 by minimizing

1
N

N∑
i=1

w(ti)2
(
yi − (tc − ti)p

(
a0 + a1φ1( (tc − t)q ) + a2φ2( (tc − t)q )

))2

.

• This can be continued as far as one chooses, minimizing

1
N

N∑
i=1

w(ti)2
(
yi − (tc − ti)p

(
a0 +

n∑
j=1

ajφj( (tc − ti)q )
))2

.

We usually stop at a2, fitting for six parameters in all. To choose the number of parameters to fit, we
first choose a number of parameters and then fix the second exponent q. We then fit the remaining
quantities, finding the minimum value of the objective function err(q). Doing this for a range of values
of q between .3 and 3, we plot (q, err(q)). Plot A of Figure 21 shows the result of this fitting. The
ideal figure should have a clear minimum. We find that the more parameters we try to fit, the “flatter”
the minimum becomes, corresponding to no value of q being clearly best. Also, the graph is no longer
smooth. These observations are simply a graphical demonstration of the ill-conditioning of the problem.

As for the length of the stencil, in some cases it is sufficient to take the stencil no longer than the
minimum number of points needed to solve for the unknowns (N = n + 4). In other cases, the stencil
has to be taken longer to avoid ill-conditioning. The two key aspects are how close the final data point
is to the singular time and the length of the time window, tN − t1. We discuss this later.

All of the minimizations were done using the nonlinear least-squares minimization package, E04UPF,
from the NAG library, Mark 16. We found that sometimes this routine would exit too early and were
unable to choose the program parameters to avoid this. For this reason, we multiplied the objective
function by a large number (1.e+20) and then minimized it. The NAG routine then took enough
iterations to perform well on test problems with known behavior.

• After the minimization has been done, we can calculate the least mean square error

1
N

N∑
i=1

(
yi − (tc − ti)p

(
a +

n∑
j=1

ajφj( (tc − ti)q )
))2

.

to measure a goodness of fit. It is not clear that this is the best measure since if yi → 0 as ti → 0, the
least mean square error emphasizes the data closest to the singular time the least.

We present results from a test problem in which {ti} = {.1, .2, . . ., 19.9} and y(t) = 4 (20−t)−5
2 − (20−t) 5

2 .
The three-point fit yields a0 = 3.9888, p = −2.5029, and tc = 20.0002. While the numbers from the three-
point fit already look fairly good, this is because the higher-order term is significantly higher order. We
give this example to show that our method can actually find that small higher-order contribution. Once this
higher-order correction is taken into account, the fit for the lower-order terms then becomes more accurate.

We fit twelve points from 18.8, 18.9, . . .19.9 using α = .5 in the weight. The minimum value of the objective
function is 1.5e-25, the least mean square error is 8.3e-23.
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Figure 21. Figure A: The minimized objective function as a function of the higher-order
temporal exponent q. The solid line corresponds to fitting for 5 parameters, the dashed line
for 6 parameters, the dotted line for 7 parameters, and the dot-dashed line for 8 parameters.
Figure B: The higher-order temporal exponent q as a function of weight exponents α. The
dashed line corresponds to the shortest time window: t1 = 19.85, tN = 19.95. The dot-dash
line is for t1 = 19.835, tN = 19.95. The solid line is for the longest time window: t1 = 19.82,
tN = 19.95. Figure C: The leading-order temporal exponent p as a function of time window
length. The dot-dash line corresponds to weighting with exponent α = .5. The dashed line
to weighting with exponent α = .75. The solid line to weighting with exponent α = 1.0.
Figure D: The leading-order temporal exponent p as a function of time tN . The solid line
corresponds to using Chebyshev polynomials for the fitting of higher-order terms. The dashed
line corresponds to using powers for the fitting of higher-order terms.

Notation Exact Value Computed Value
tc 20.0 20.000000000000
p -2.5 -2.4999999999998
a 4.0 4.0000000000003
q 5.0 4.9999999999979
a1 -1.0 -1.0000000000006
a2 0.0 0.0

Having more data points in the interval [18.8, 19.9] yields marginal improvement in these essentially exact
quantities.

We now examine the dependence of the fit on the exponent α in the weights. We fit y(t) = (20− t)−2.5 +
3(20 − t)1.5 where {ti} = {19, 19.005, . . .19.995}. All fits are taken on a stencil that ends at the final time
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19.995. Plot B of Figure 21 shows fittings over three time windows. For each time window, we fix the exponent
α in the weight, we minimize to fit the data, and we plot (α, q(α)). The exact answer for q is 4. The figure
shows that the longer the time window, the more robust the fit. It also shows that for all time windows α = 1
is optimal. Finally, and most importantly, by looking at the values of q for α = 0, we see that if no weights
are used, the fitting is extremely poor.

We now examine the dependence of the fit on the length of the time window. We fit y(t) = cos(t). This has
a singular time of tc = π/2, with exponent p = 1. Plot C of Figure 21 shows fittings over all time windows
for three different weights α = .5, .75, 1.0. We fix the point closest to the singular time tN = 1.4451 and fit
over longer and longer intervals, taking t1 to zero. We plot (t1, p − 1) to see how the error depends on the
length of the interval. The figure demonstrates that if t1 is too close to tN then the error oscillates due to
ill-conditioning. However, if t1 is too far from tN , the error grows because cos(t) is not a finite low-order
power series. This type of figure allows us to choose a preferred length for the time window for further fitting
studies.

A second test of the data-fitter is to apply it to data generated from numerically computing the solution
to a PDE. To do this, we consider the local model (36–37)

ht + γhx = −hγx
γt + γγx = 0.

As discussed in Section 4, this system has finite-time singularities, of the form

γxmin(t) ∼ −1
tc − t

hmax(t) ∼ 1
tc − t

.

We choose initial data
h0(x) = γ0(x) = 0.1 + 0.05 cos(x).

This initial data has been chosen so that the minimum of γ0x and the maximum of h0 occur at different points
in space. For this initial data,

γxmin(t) = γx(0, t) = − 1
20− t

The system is solved with a pseudo-spectral code, using Adams-Bashforth time-stepping. The times for
point-doubling are chosen by looking at the spectrum of the solution and stopping the run before the active
modes reach the n/2 mode, to reduce the aliasing error. The n = 8192 run is stopped when the conserved
quantities

∫
h and

∫
γ are no longer conserved. A pseudo-spectral code is not the optimal approach to resolving

singularities in the above system. A code with mesh-refinement would be better able to resolve the singularity.
Since we ultimately apply this data-fitting scheme to data from a code with uniform mesh, we test it against
data from such codes.

The data has the following time structure:
n initial time ending time

256 0.0 12.75
1024 12.75 16.95
2048 16.95 18.05
4096 18.05 18.7625
8192 18.7625 19.625

Fitting γxmin(t) yields an extremely clean fit since it is an exact power law:

γxmin(t) ∼ (20.0000000− t)−1.0000000
(
−1.0000000 + 4.4e− 11(20.0000000− t)0.5000000 + . . .

)
Since the method also fits for higher-order corrections, it finds an exponent q = 1/2 and zero for the higher-
order coefficients. The reason it found this value of q is simply that this was the first guess made for q.

Fitting hmax(t) is significantly harder. For initial data chosen so that the minimum of γ0x and the
maximum of h0 occur at the same point, the extrema travel on the same characteristic, making hmax(t) an
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exact power law, and fitting hmin(t) with sequential data-triples would work extremely well. However, we do
not study the data-fitting method on such initial data since for a general nonlinear problem we cannot expect
to choose the initial data so fortunately.

We consider two issues in the following study of fitting hmax(t).
First, we take the the data up to the time tN = 19.535 and use different lengths of stencils to see the effect

of different “time windows”. We present the exponent p and singular time tc. The time tN is past the time
where aliasing error comes into play, but is before the time when the solution becomes clearly inaccurate.

initial time time window tc p
19.235 0.300 20.001478 -1.010492
19.025 0.600 20.000331 -1.001909
18.725 0.900 20.000087 -1.000226
18.425 1.200 20.000053 -1.000159
18.000 1.625 20.000022 -1.000087
17.500 2.125 19.999981 -0.999915
17.000 2.625 19.999934 -0.999718
16.150 3.475 19.999837 -0.999312
15.150 4.475 19.999695 -0.998800
14.150 5.475 19.999488 -0.998155
13.150 6.475 19.999223 -0.997420

These computations show that the singular time and leading exponent are robust in that they are still clearly
20 and −1 over a window of length 6.5, as long as the window includes times near to the singular time.

We now consider time windows of fixed length, which end at different times, to study what would have
happened had the code run for a shorter length of time. In the following, “new exponent” means the exponent
as calculated using the procedure using the weights with α = 1. “Old exponent” means the exponent that
comes from simply fitting the same collection of data points to power law a(tc − t)p.

ending time time window new exponent old exponent
19.625 0.975 -1.0000 -0.9954
19.456 0.994 -0.9990 -0.9924
19.269 0.994 -0.9985 -0.9900
19.081 0.994 -0.9980 -0.9869
18.856 1.006 -0.9972 -0.9833
18.7625 1.013 -0.9968 -0.9814
18.275 0.975 -0.9948 -0.9741
18.05 1.0 -0.9933 -0.9683
17.85 1.1 -0.9920 -0.9652
17.35 1.0 -0.9894 -0.9543
16.95 1.0 -0.9855 -0.9472

The data-fitting shows that by the time 18.05, the exponent is fairly clearly -1. This means that this method
of data-fitting only needs the simulation up to 2048 mesh-points. This is to be contrasted to fitting the data
to a power law, yielding exponents that are suggestive but still inconclusive at the end of the 4096 mesh-point
run (18.7625), needing an 8192 mesh-point run to resolve the exponent.

We mentioned previously that we found that fitting f( (tc − t)q ) in (70) with powers of (tc − t) was
more ill-conditioned than fitting it with Chebyshev polynomials. Plot D of Figure 21 shows two fittings of
(t1, p(t1, tN)). The extremely jagged graph was computed by fitting f( (tc− t)q ) with powers of (tc− t)q, the
smoother graph was computed by fitting f with Chebyshev polynomials.

On request, we will provide Fortran programs of the data-fitting routine.
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Appendix C. Fitting Complex Singularities

As described in Section 5.3, Laplace’s formula describes the asymptotic behavior of the Fourier transform
of a function with complex poles or zeros:

f(x) ∼ (x− iρ)β −→ |f̂(k)| ∼ Ce−ρ|k| 1
|k|β+1

g (1/k) for k � 1 and β > −1

where g is an analytic function.
Given n mesh-points, the discrete Fourier transform determines n/2 amplitudes: |f̃(0)|, . . . |f̃(n/2 − 1)|.

The discrete Fourier amplitudes are related to the true Fourier amplitudes by

|f̃(k)|2 =
∞∑

j=−∞
|f̂(k + j

n

2
)|2 ∼

∞∑
j=−∞

e−2ρ(k+j n2 ) 1
(k + j n2 )2(β+1)

.

If the radius of convergence ρ is large then

e−2ρ(k+j n2 ) 1
(k + j n2 )2(β+1)

< 10−18 ∀|j| ≥ 1

and there is no aliasing error — the discrete Fourier amplitude equals the true Fourier amplitude up to machine
precision. To test the effect of aliasing error on fitting complex singularities, we choose ρ and β and generate
an sequence of discrete Fourier amplitudes

ak =
10∑

j=−10

e−2ρ(k+j n2 ) 1
(k + j n2 )2(β+1)

for k = 0 . . .n/2.

We then fit {ak} for ρ and β.
Figure 22 shows that aliasing error has negligible effect on this data fitting. Choosing n = 256 and

β = −1/2, we take six values of ρ: .4, .3, .2, .1, .05, .025. In the top plot of Figure 22 we plot (k, log(ak))
to show the power spectrum. As the Fourier amplitudes are generated a priori, rather than by applying the
Fourier transform to a function, there is no noise at the level of round-off error. Only ρ = .4 yields a spectrum
without aliasing error. The bottom plot of Figure 22 shows the results of fitting the spectra with a stencil of
length 30. The exponent β = −1/2 is determined cleanly for all values of ρ, despite the presence of aliasing
error.

We now apply the data-fitting to the inviscid Burgers equation,

γt + γγx = 0.

This is a simple example where the complex singularity changes algebraic degree when it hits the real axis.
Using the method of characteristics, one can show analytically that β(t) = 1/2 for t < tc but β(tc) = 1/3.

In the top plot of Figure 23 we present the results of fitting γ for the algebraic degree β where γ is obtained
from a pseudo-spectral computation with 512 mesh-points. The initial data was chosen to shock at time t = 20.
At a fixed time, we fit the spectrum by minimizing (51) over a stencil of length 30. We plot (k, β30(k)). The
solid lines corresponds to times before t256 = 15.75, when the n/2 mode is hit, the dashed lines correspond
to times after t256. As the previous example shows that aliasing error should not affect the data-fitting, we
present t256 as a lower bound for the time when the computation loses accuracy.

The top plot of Figure 23 shows that β30 is clearly 1/2 for a significant time and that at late times β30

drifts down to β = 1/3. The dashed curve with values nearest to β = 1/3 was computed at time t = 20, the
singular time. It is striking that that this change of type is so robust that we can fit for it at the singular
time4.

In the middle plot of Figure 23 we plot the radius of convergence (t, ρ30(i, t)) for i = 1, 6, 11, 16. The radius
of convergence is decreasing to zero although the curve is not concave down.

4This is not an option for the solutions of the thin-jet model (25–26) since the conjugate gradient iteration failed to converge

before the singular time.
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Figure 22. Top: The power spectrum for varying radii of convergence ρ. The dotted
line corresponds to the spectrum of double precision round-off error. The solid lines are for
ρ = .4, .3, whose active spectrum has not reached the n/2 mode. The dashed lines have
active spectrum past the n/2 mode. Bottom: The results of fitting the power spectra shown
in Figure 22 for the spatial exponent β. The true value is marked by a dotted line at β = −1/2.

As fitting for the algebraic degree will least ill-conditioned on stencils that include low wave-numbers, it is
natural to try fitting over stencils of varying lengths. Specifically, we choose stencils that start at k = 1 and
stop at L. In the bottom plot of Figure 23 we plot (L, βL). The low-wave numbers in the stencil make the
fitting problem less ill-conditioned — we can fit up to β(200). The evidence for β(tc) = 1/3 is stronger in this
figure.

Figure 23 is very similar to the the figure found when fitting

γ(x, t) =
sin(x)√

cos(x) + 1 + ρ(t)
ρ(t) = 1− t.

This function has square root poles (β = −1/2) before the singular time and is a step function (β = 0) at the
singular time.

In general, we found that the spectral data-fitting was quite ill-conditioned. Specifically, unless the data
was in quadruple precision, taking a stencil of the same length as the number of unknowns yielded very little
information. We refer the reader to D. Pugh’s thesis [33] as well as to Sulem, Sulem, & Frisch [40] for further
information about fitting complex singularities.
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