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Abstract. This paper reports on the consequences of large, activity dependent, synaptic conductances for neurons
in a large-scale neuronal network model of the input layer 4Cα of the Macaque primary visual cortex (Area V1).
This high conductance state accounts for experimental observations about orientation selectivity, dynamics, and
response magnitude (D. McLaughlin et al. (2000) Proc. Natl. Acad. Sci. USA 97: 8087–8092), and the linear
dependence of Simple cells on visual stimuli (J. Wielaard et al. (2001) J. Neuroscience 21: 5203–5211). The
source of large conductances in the model can be traced to inhibitory corticocortical synapses, and the model’s
predictions of large conductance changes are consistent with recent intracellular measurements (L. Borg-Graham
et al. (1998) Nature 393: 369–373; J. Hirsch et al. (1998) J. Neuroscience 15: 9517–9528; J.S. Anderson et al.
(2000) J. Neurophysiol. 84: 909–926). During visual stimulation, these conductances are large enough that their
associated time-scales become the shortest in the model cortex, even below that of synaptic interactions. One
consequence of this activity driven separation of time-scales is that a neuron responds very quickly to temporal
changes in its synaptic drive, with its intracellular membrane potential tracking closely an effective reversal poten-
tial composed of the instantaneous synaptic inputs. From the effective potential and large synaptic conductance,
the spiking activity of a cell can be expressed in an interesting and simplified manner, with the result suggest-
ing how accurate and smoothly graded responses are achieved in the model network. Further, since neurons in
this high-conductance state respond quickly, they are also good candidates as coincidence detectors and burst
transmitters.

Keywords: primary visual cortex, neuronal network model, time-scales, orientation hypercolumn, synaptic con-
ductances, inhibitory conductances

In recent work we have developed a large-scale compu-
tational model of an input layer of the Macaque Primary
Visual Cortex (V1), for the purpose of studying cortical
response. The model describes a small patch (1 mm2)
of the cortical layer 4Cα, and contains four orientation
hypercolumns with pinwheel centers. This model cap-
tures qualitatively the observed selectivity, diversity,
and dynamics of orientation tuning of neurons in 4Cα

when under visual stimulation by either drifting or ran-
domly flashed gratings (McLaughlin et al., 2000). And
remarkably for a nonlinear network, it captures also the

linear dependence of Simple cells upon visual stimuli
(Wielaard et al., 2001).

Our many numerical experiments indicate that, as the
model cortex acts like the biological cortex, it operates
in restricted regions of its parameter and phase space—
regions of very large membrane conductances which
result from network activity (and not from the proper-
ties of individual cells). These large conductances have
cortico-cortical components which are dominated by
inhibition, which seems necessary if the model is to
produce background firing statistics that are consistent
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with experimental measurement (Mechler, 1997) while
also accounting for the observed properties of orienta-
tion selectivity and linearity of Simple cells.

In what way do large conductances influence cor-
tical response? Together, the total membrane conduc-
tance gT and the capacitance C set the membrane time-
scale τg = C/gT . Among other time-scales of a cortical
cell—a leakage time, the period of a visual stimulus,
the time-scale of a single EPSP or IPSP (“synaptic
time-scales”)—τg has the unique property that it re-
flects the level of network activity. That is, increases
in a network’s synaptic activity give increases in cellu-
lar membrane conductances, which shortens the time-
scale of response, τg , of individual neurons. But by
how much? We find that under high contrast visual
stimulation these large membrane conductances cause
τg to emerge as the shortest time-scale, shorter than the
other time-scales in the model cortex, and in particu-
lar shorter than those governing temporal fluctuations
in the synaptic conductances. This is what we mean
by “large conductance”. A neuron in this network acts
not as a leaky integrator of its inputs, but instead as
a near-instantaneous function of its cortical and tha-
lamic input conductances. The existence of this high
conductance state allows us to analyze the intracellu-
lar membrane potential and spiking activity of cortical
neurons in a new way, using the asymptotic analysis
offered in Results. We find too that the close tracking
of synaptic fluctuations afforded by the presence of
high conductance yields an average firing rate that is a
smoothly graded computation of the ratio of excitatory
to inhibitory inputs to a cell.

While we found these short, activity-dependent
membrane time-scales in our investigations of the vi-
sual cortex, this scale separation is likely to be charac-
teristic of neurons throughout the cerebral cortex. Thus,
the analysis offered here should be of general utility for
understanding cortical behavior.

Methods

The Computational Model

The model (described in detail in McLaughlin et al.
(2000) and Wielaard et al. (2001)) is of a small local
patch (1 mm2) of layer 4Cα—consisting of a two
dimensional lattice of 1282 coupled, integrate-and-fire
(I&F) neurons, of which 75% are excitatory and 25%
are inhibitory. The membrane potentials of excitatory
(inhibitory) neurons are denoted by v

j
E (v j

I ), which

satisfy

dv
j
P

dt
= −gLv

j
P − g j

PE(t)
[
v

j
P − VE

] − g j
PI(t)

[
v

j
P − VI

]
,

(1)

where P = E, I and the superscript j = ( j1, j2)
indexes the spatial location of the neuron within the
cortical layer. We specified the cellular biophysical
parameters, using commonly accepted values (Koch,
1999): the capacitance C = 10−6 Fcm−2, the leakage
conductance gL = 50×10−6 �−1 cm−2, the leakage re-
versal potential VR = −70 mV, the excitatory reversal
potential VE = 0 mV, the inhibitory reversal potential
VI = −80 mV, the spiking threshold v̄ = −55 mV,
and the reset potential set at the leakage reversal
potential, −70 mV.

We have normalized the potentials by the transfor-
mation v → (v − VR)/(v̄ − VR), making them dimen-
sionless quantities. This normalization sets the spik-
ing threshold v̄ to unity, the reset potential to zero,
VE = 14/3, and VI = −2/3. Within this normaliza-
tion, the potentials range over −2/3 ≤ v

j
E , v

j
I ≤ 1.

To convert back to dimensional quantities, insert the
dimensionless v into the formula

vmV = (v̄ − VR)v + VR .

The capacitance C does not appear in Eq. (1) as all
conductances have been defined as rates, with units of
s−1, by dividing through by C . This convention empha-
sizes the time-scales which the conductances represent.
For example, the leakage conductance gL = 50 s−1

produces a leakage time-scale τL = g−1
L = 50−1 s =

20 ms. True conductances are obtained by multiply-
ing by the capacitance C = 10−6 F/cm−2; for example,
gL = 50 s−1 × 10−6 Fcm−2 = 50 nS.

Conductances

The time-dependent conductances arise from the input
forcing (through the LGN) and from noise to the layer,
as well as from the cortical network activity of the
excitatory and inhibitory populations. They have the
form:

g j
EE(t) = FEE(t) + SEE

∑
k

a j−k

∑
l

G E
(
t − t k

l

)
,

g j
EI(t) = f 0

EI(t) + SEI

∑
k

b j−k

∑
l

G I
(
t − T k

l

)
,
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with similar expressions for g j
IE and g j

II , and where
FPE(t) = g j

lgn(t) + f 0
PE(t), P = E, I . Here t k

l (T k
l ) de-

notes the time of the lth spike of the kth excitatory
(inhibitory) neuron. Note that gEE(gEI) is the conduc-
tance driven by excitatory (inhibitory) network activity,
and that the first “E” labels the postsynaptic target as
an excitatory cell.

The conductances f 0
PP′ (t) are stochastic, and repre-

sent activity from other areas of the brain, say inputs
to layer 4Cα from layer 6. These conductances have
means and standard deviations given by f 0

EE = f 0
IE =

6 ± 6 s−1, f 0
EI = f 0

II = 85 ± 35 s−1, and they have an
exponentially decaying autocorrelation function with
time constant 4 ms. The constant background g0 of
the LGN drive glgn is taken as 35 s−1. The kernels
(a, b, . . .) represent the spatial coupling between neu-
rons, and reflect our understanding of cortical anatomy
(Lund, 1987; Lund and Yoshioka, 1991; Callaway and
Wiser, 1996; Wiser and Callaway, 1996; Lund and Wu,
1997; Callaway, 1998). Only local cortical interactions
(i.e. within a hypercolumn) are included in the model,
and these are assumed to be isotropic, with Gaussian
profiles for the kernels (a, b, . . .) (McLaughlin et al.,
2000). The spatial length-scale of excitation exceeds
that of inhibition, and we estimate excitatory radii of
order 200 µm and inhibitory radii of order 100 µm.

The cortical temporal kernels Gσ (t) model the time-
course of synaptic conductance changes in response to
arriving spikes from the other neurons. They are of the
form

Gσ = cc
σ

t5

τ 6
σ

exp(−t/τσ )H (t), σ = E, I,

where H (t) is the unit step function. The time constants
are chosen to give a time-to-peak of 3 ms for excita-
tion (with that time-course ending by approximately
8 ms) and time-to-peak of 5 ms for inhibition, which
are consistent with experimental observations (Koch,
1999; Azouz et al., 1997; and A. Reyes, private com-
munication). In addition, based on recent experimental
findings, we add a second, longer time-course of inhi-
bition (Gibson et al., 1999) (∼30 ms in duration).

As should be clear from the above, it is difficult to
assign a single time-scale to represent synaptic fluctua-
tions. The excitatory time-course suggests some value
between 3 and 8 ms, while the time-scales for inhibition
are longer. As a reference scale we choose τsyn = 4 ms,
and capture the faster time-scales of excitatory synaptic
fluctuations (and hence, also those of inhibition). We

have also chosen the noise to fluctuate on that time-
scale, as the noise represents synaptic events.

The computational model’s behavior depends on the
choice of the cortico-cortical synaptic coupling coeffi-
cients: SEE, SEI, SIE, SII . All cortical kernels have been
normalized to unit area. Hence, the coupling coeffi-
cients represent the strength of interaction, and are
treated as adjustable parameters in the model. In the nu-
merical experiments reported here, the strength matrix
(SEE, SEI, SIE, SII) was set to be (0.8, 9.4, 1.5, 9.4). This
matrix means that excitatory neurons excite inhibitory
neurons almost twice as much as they excite other exci-
tatory neurons, but that inhibitory neurons inhibit exci-
tatory neurons and other inhibitory neurons with equal
strength. Also, inhibitory neurons have much stronger
coupling to all other cortical neurons than do exci-
tatory neurons. We explored many strength matrices
in many numerical experiments. If the cortico-cortical
excitation was too strong, oscillations resulted. If the
cortico-cortical inhibition was too weak, the cells’ re-
sponses were nonlinear and not selective enough. If in-
hibition was too strong, the network’s response became
too small. The matrix given here generated Simple cells
that had the orientation selectivity, and the magnitude
and dynamics of response, seen in physiological exper-
iments (McLaughlin et al., 2000).

Visual Stimuli

For drifting gratings, the visual stimulus on the
“screen” has intensity pattern I = I (x, t ; θ, φ, k, ω,

I0, ε) given by

I = I0[1 + ε cos[�k · �x − ωt + φ]]. (2)

where �k = k(cos θ, sin θ ). Here θ ∈ [−π, π ) denotes
the orientation of the sinusoidal pattern on the screen,
φ ∈ [0, 2π ) denotes its phase, ω ≥ 0 its frequency,
I0 its intensity, and ε its “contrast”. Drifting gratings
have been used in many neurophysiological experi-
ments to characterize spatial properties of visual neu-
rons in macaque V1 (De Valois et al., 1982).

For randomly flashed patterns, Eq. (2) is still used,
but as a random sequence of standing gratings with
ω = 0 and θ ∈ [0, π ). After switching on the grat-
ing at t = 0, the screen is refreshed each τR (17
msecs), and a new pattern is chosen randomly (and
independently) from a collection of patterns which
consists of N + 1 values of the orientation {θ =
kπ/N , k = 0, 2, . . . , N } and M values of the phase
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{φ = k2π/M, k = 1, 2, . . . , M}. Each orientation is
equally likely, as is each choice of phase. For the ran-
dom pattern θ = π, ε is set at 0; hence, this pattern
represents a “blank” screen. Randomly flashed gratings
have been used to study the dynamics of orientation se-
lectivity in the cortex (Ringach et al., 1997).

LGN Response to Visual Stimuli

The total input into the j th cortical neuron arrives from
N (=17) LGN cells:

g j
lgn(t) =

N∑
i=1

{
g j

0 +
∫ t

0
ds

∫
d2xGlgn(t − s)

× A
(�x j

i − �x)I (�x, s)

}+
. (3)

Here {R}+ = R if R > 0; {R}+ = 0 if R ≤ 0; g j
0

represents the maintained (background) activity of the
LGN neurons feeding into the j th cortical neuron, in
the absence of visual stimulation. The temporal ker-
nel Glgn(t) and spatial kernel A(�x) of an LGN cell
are chosen to agree with experimental measurements
(Benardete and Kaplan, 1999; Shapley and Reid, un-
published observations). (See McLaughlin et al., 2000;
Wielaard et al., 2001).)

Results

Again, throughout this article we will use conductances
normalized as rates (sec−1) in order to emphasize the
time-scales which they represent. For our analysis, we
turn to Eq. (1) which governs a model cell’s response
to conductance changes, written in the form:

dv

dt
= −gT (t)v(t) + ID(t) = −gT (t)[v(t) − Vs(t)].

(4)

Here, gT is the total conductance of the model neuron,
given by

gT (t) ≡ gL + gE (t) + gI (t), (5)

where gE and gI are the excitatory and inhibitory
conductances at time t . The conductance gT reflects
several time-scales inherent in the operation of the
computational cortex under visual stimulation: (i) the

time-scale of the visual stimulus, τlgn = O(10–
102 ms); (ii) the base cellular time-scale of leakage,
τL = 20 ms; (iii) the synaptically mediated cortico-
cortical interactions which govern the fluctuations in
gE and gI , τsyn = 4 ms; and (iv) the conductance time-
scale, τg = [g−1

T ] (where [·] denotes some characteris-
tic size). One important distinction being made here is
between the temporal scales of fluctuation in gT (i.e.
points (i) and (iii)), and the time-scale implicit in the
magnitude of gT (point (iv)).

The quantities ID and VS are defined by

ID(t) = ID[gE (t), gI (t)] ≡ gE (t)VE − gI (t)|VI |, (6)

VS(t) = VS[gE (t), gI (t)] ≡ ID(t)/gT (t). (7)

We call ID the difference current, as it is a difference of
currents arising from excitation and inhibition, and VS

is called the effective reversal potential (see Wielaard
et al. (2001) for a discussion of the role of these quan-
tities in understanding the appearance of Simple cells
in our cortical model). Note that (i) gT (t) and VS(t) are
explicit functions of the instantaneous synaptic input
conductances gE (t) & gI (t), and (ii) a necessary con-
dition for v(t) to cross the spiking threshold is that
VS > 1, i.e., VS itself is above threshold. (This follows
directly from Eq. (4), and the requirement thatv(ts) = 1
while dv(t)/dt |t=ts > 1 at a spike time ts .)

First, we show that our detailed and large-scale cor-
tical network model (consisting of many I&F point-
neurons) develops large conductances when under vi-
sual stimulation, and that these conductance changes
have magnitudes that are consistent with recent ex-
perimental and theoretical observations. In our model
network, such large conductances mean that the mem-
brane time-scale τg emerges as the shortest time-scale
of the system. To make theoretical progress, we will
assume that τg is well-separated from any other time-
scale, and show through an asymptotic analysis that the
dynamics of such a model neuron is greatly simplified
in its response to synaptic inputs. This simplification is
in the form of I/O relations that express a cell’s intra-
cellular potential and firing rate directly in terms of its
instantaneous synaptic conductances. Next, we show
from our large-scale network simulations that neu-
ronal responses are predicted with surprising accuracy
by these I/O relations. In previous work (McLaugh-
lin et al., 2000) we emphasized within our cortical
model the differences in orientation selectivity of neu-
rons which are near and far from orientation pinwheel
centers. At the end of Results, we describe also near/far
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differences for the total conductance, in both its mean
and fluctuations, and show “conductance maps on the
cortex”.

The Emergence of Different Time-Scales
in the Model Cortex

Figure 1a and b shows the time-dependent total con-
ductances of a typical, orientation selective excitatory
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Figure 1. Total conductance gT (t) vs t for a typical orientation
selective excitatory neuron, located far from pinwheel centers. The
stimuli are switched on at t = 0.5 sec. Figures a and b are for a drift-
ing grating stimulus at (a) preferred and (b) orthogonal-to-preferred
orientation (drifting at 8 Hz, with optimal spatial and temporal fre-
quency and 100% contrast). The response to randomly flashed grat-
ings is shown in (c). The dashed line marks the level of the base
leakage conductance (50 s−1).

neuron within our large-scale cortical model. This neu-
ron is located far from an orientation pinwheel cen-
ter, and is stimulated at its preferred, and orthogonal-
to-preferred, orientations by an 8 Hz drifting grating
(also set at optimal spatial and temporal frequency and
high contrast). The visual stimulation is switched on at
t = 0.5 sec.

First note that even when unstimulated (t < 0.5 s),
the total conductance is always much higher than
the leakage conductance of individual cells: In un-
stimulated background, gT = 230 ± 40 s−1 (mean ±
standard deviation) versus gL = 50 s−1, or a time-
scale of τg � 4 ms versus τL = 20 ms. In this
case, τg and τsyn are roughly in balance, and are the
shortest time-scales. However, with the onset of vi-
sual stimulation at the preferred orientation, Fig. 1a
shows that the total conductance of the model neu-
ron undergoes a two-fold increase, producing gT =
550 ± 100 s−1, with the associated conductance time-
scale decreasing to τg � 2 ms. When stimulated at
the orthogonal-to-preferred orientation, gT = 400 ±
80 s−1 (Fig. 1b), which while considerably less than
at preferred, is still nearly twice its unstimulated
value.

Figure 1c also shows the total conductance, but now
for randomly flashed grating stimuli (switched on at
t = 0.5 sec). As described in Methods, these stim-
uli are chosen randomly from a collection of high
contrast standing gratings, with the screen refreshed
every 17 msec. Again, there is a large conductance
increase with the onset of visual stimulation: gT =
480 ± 175 s−1.

In all cases—drifting grating stimuli at either
preferred or orthogonal-to-preferred orientation, or
randomly flashed gratings—the large conductances
induced by visual stimulation cause the membrane
time-scale τg to drop below τsyn, the synaptic time-
scale, and hence become the shortest time-scale in the
system.

Comparisons with Experiment

Our model requires strong inhibition to operate realisti-
cally when compared with experimental observations.
The network’s consequent cortical activity produces
conductance values that are very large: Background
activity provides a factor of 4–5 over cellular leakage
values (as suggested by Bernander et al. (1991)), and
high contrast visual stimulation provides an additional
factor of 2.
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Accurate values of in vivo conductances are ex-
tremely difficult to measure. Hence, recent experiments
have focused on the demonstration of the presence of
large conductance changes under visual stimulation. In
the cat visual cortex, Borg-Graham et al. (1998) have
studied the intracellular responses of Simple cells to
flashed bars. Using in vivo whole-cell voltage clamp-
ing, they measured the dynamics of conductance during
visual stimulation and found two- to three-fold conduc-
tance increases over unstimulated background. They
associate these large conductances with the activation
of strong cortico-cortical inhibition. Hirsch et al. (1998)
have also performed in vivo whole-cell patch record-
ings of Simple cells in cat cortex. Their results like-
wise suggest strong cortico-cortical inhibition arising
in response to visually-driven, excitatory geniculate in-
put, with this inhibition driving large increases in total
membrane conductance. Most recently, Anderson et al.
(2000) confirmed the presence of these large conduc-
tance changes induced by high contrast visual stimula-
tion for cat. Our numerical observations (Tables 1 and
2, and Figs. 1, 2, 4, 7, and 8, of conductance changes
of more than 200%, caused by visual stimulation, are
qualitatively consistent with these intracellular mea-
surements.

Time-Scales, Asymptotic Representations, and
Neuronal Response within a High Conductance State

In our model cortex, large conductances induced by vi-
sual stimulation cause τg to be the shortest time-scale
present. If gT is sufficiently high that τg is well sepa-
rated from all other time-scales in the cortex, we now
show that one can use asymptotic analysis to derive use-
ful (I/O) relations that express the membrane potential
and the interspike times of a cell directly in terms of its
synaptic conductances. We will return later to answer
the question whether the conductances observed in the
model are actually high enough to achieve the conse-
quences of time-scale separation used in our analysis.

It is clear intuitively from the structure of Eq. (4) that
if gT is sufficiently large, a neuron in this high con-
ductance state will possess two characteristic response
properties:

1. When subthreshold, the membrane potential is well
approximated by the effective reversal potential
VS(t). As this reversal potential is also an explicit
function of the instantaneous input conductances to
the cell, we write

v(t) � VS(t) = VS[gE (t), gI (t)].

2. When forced away from VS(t) (as when v(t) spikes),
the membrane potential returns quickly to being
very close to VS(t).

We now define precisely the notion of time-scale sep-
aration, and use it to develop I/O relationships through
asymptotic arguments. Let τg be an average value of
g−1

T , and let τsyn be a time-scale governing the fluctu-
ations of synaptic conductances. We then express VS

and gT as VS(t/τsyn) and gT (t/τsyn), both are defined in
terms of these conductances. Then rescaling time and
total conductances as t̃ ≡ t/τsyn and g̃T ≡ gT τg , and
defining the ratio of time-scales, ε ≡ τg/τsyn, Eq. (4)
becomes:

ε
dv

dt̃
= −g̃T (t̃)(v − VS(t̃)). (8)

If ε = O(1) or larger, then the cell smoothes the synap-
tic input over an O(1) (synaptic) time-scale. That is, the
cell acts as an integrator. If instead ε � 1, the cell will
respond almost instantaneously to its synaptic input.

(For clarity in discussing the asymptotic analysis, we
will continue use of the notation t̃, g̃, . . . to emphasize
when time is being scaled by τsyn.)

By introducing an “intrinsic” and dimensionless
time u ≡ ∫ t̃

0 g(t̃ ′) dt̃ ′, and expressing v and VS in terms
of it, Eq. (8) takes the form

ε
dv

du
= −(v − VS(u)).

Let v(uin) = vin by the voltage at the initial time uin.
The equation can be immediately integrated to yield

v(u) = vin exp

{
−u − uin

ε

}

+ 1

ε

∫ u

uin

exp

{
−u − u′

ε

}
VS(u′) du′.

This expression can then be successively integrated by
parts to develop the following asymptotic expansion in
small ε:

v(u) =
[

VS(u) − ε
dVS

du
(u) + ε2 d2VS

du2
(u) − · · ·

]

+ exp

{
−u − uin

ε

}[
vin − VS(uin)

+ ε
dVS

du
(uin) − ε2 d2VS

du2
(uin) + · · ·

]
. (9)
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Note that the first term (in brackets) is independent
of initial data, and is VS to leading order, while the
second term shows the rapid loss of dependence of
the solution upon its initial data. Indeed, Formula (9)
shows two characteristic features of neurons within a
high conductance state:

(i) When subthreshold and u − uin � ε, Formula (9)
shows that the membrane potential is indeed slaved
to the effective reversal potential VS:

v(t̃) = VS(t̃) − ε

g̃T (t̃)

dVS

dt̃
+ O(ε2), (10)

where VS is, again, defined in terms of the instanta-
neous synaptic conductances by Eq. (7). Moreover,
this analysis also shows that membrane potential
lags in time behind VS , as the expansion in Eq. (10)
can be reordered and expressed as

v(t̃) = VS

(
t̃ − ε

g̃T (t̃)

)
+ O(ε2), (11)

That is, the first order correction can be reinter-
preted as a backwards time shift of VS , with the
time shift given by the scaled total conductance
itself, and with amplitude corrections to v only ap-
pearing only at next order, O(ε2).

(ii) The second feature described by Eq. (7) is the very
rapid response of neurons in the high conductance
regime: After v(t̃) is forced away from VS(t̃) (as
when the neuron spikes at t̃k), the membrane po-
tential very rapidly attempts to return to the neigh-
borhood of VS(t̃):

v(t̃) − VS(t̃) = O(ε) + O(e−u/ε), where

u ≡
∫ t̃

t̃k

g̃(t̃ ′) dt̃ ′, t̃ > t̃k . (12)

That is, within a basically O(ε) time from v be-
ing displaced from VS , say at a spike time t̃k, v
returns to its neighborhood. If VS happens to be
above threshold, this rapid return will likely lead
to another spike.

Slaving in the Model Cortex

We showed that when under high contrast visual stim-
ulation, the membrane time-scale τg emerged in our
computational cortex as the shortest time-scale. We

show now that neurons in this computational cortex are
also described with surprising fidelity by our asymp-
totic analysis, even though τg lies below the synaptic
time-scale τsyn by only a factor of two. This claim is well
illustrated by Fig. 2a: It shows the membrane potential
v(t) (green curve) for the excitatory neuron of Fig. 1c,
where the model cortex is being driven by the randomly
flashed grating stimulus, and its effective reversal po-
tential VS(t) (red curve), calculated from Eq. (7) as the
ratio ID/gT (time is again dimensional). The total con-
ductance gT is also shown (dashed blue, in units of
sec−1).

While VS is subthreshold, v(t) tracks VS(t) closely
and the two are nearly identical. First, recall that
Eq. (11) predicts that v(t) is nearly a leftward shifted
copy of VS , with the size of the shift inversely propor-
tional to gT . Figure 2a and c confirms this feature of the
potential. Note too that the rises in VS above threshold,
and thus the onset of spiking activity, are associated
with dips in the total conductance. These decreases in
gT are tied to decreases in the inhibitory conductance,
and thus the spiking activity shown here arises from a
release from inhibition.

There is some experimental indication that neurons
in the cortex in vivo actually respond in the slaved fash-
ion of the neurons in the model. Specifically, Fig. 1 of
Borg-Graham et al. (1998) can be interpreted as show-
ing that, immediately after the stimulus is switched on,
the voltage is “slaved” to an effective reversal potential,
during which time the conductance is very large.

For comparison, Fig. 2b shows v(t) and VS(t) for an
unstimulated neuron (i.e., t < 0.5 s). Again the scale
of gT is set by leakage, the stochastic conductances,
and a now weaker network activity. The membrane
time-scale τg is now larger than that under stimula-
tion, and comparable to that of synaptically mediated
fluctuations in VS . Nonetheless, Fig. 2b shows that v(t)
still tracks VS(t), though more loosely since ε is larger
than under stimulation. Figure 2c–f shows the dynam-
ics over a smaller (50 ms) time interval. In Fig. 2c and
d, the neuron is subthreshold, with and without stim-
ulation; while in Fig. 2e and f, the neuron is spiking,
with and without stimulation. A significant difference
between the stimulated and unstimulated cases, as seen
in Fig. 2, is the recovery time after spike reset—which
sets a (local in time) frequency for spiking. During
stimulation by randomly flashed gratings, this recov-
ery time is one-half of its background value, which is
in register with the changes in the conductance time-
scales: τ back

g � 4 ms versus τ stim
g � 2 ms.
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Figure 2. The membrane potential v(t) (green), calculated from the large-scale simulation of the full network, Eq. (1); and the effective reversal
potential VS(t) (red), calculated from the ratio of intracellular current and conductance as in Eq. (7), for an orientation selective excitatory
neuron. The neuron (a) is being stimulated by randomly flashed gratings (at optimal spatial and temporal frequency and 100% contrast); and (b)
without stimulation. The temporal scale is enlarged in (c)–(f), with the neuron subthreshold in (c) and (d), with (c) and without (d) stimulation;
while in (e) and (f) the neuron is suprathreshold (and spiking), with (e) and without (f) stimulation. In (c)–(f) the total conductance is shown as
dashed blue, with scale in inverse seconds indicated on the right axis. Intracellular potentials have been normalized to set the threshold to firing
at unity (the dashed horizontal line) and reset potential to zero.
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Figure 3. The membrane potential v(t) (green) of a single model neuron impinged upon presynaptically by inhibitory and excitatory spike trains
(with Poisson distributed spike-times), and the effective reversal potential VS(t) (red). Here the Poisson rates are chosen so that 〈gT 〉 = 125 s−1

(a), 250 s−1 (b), and 500 s−1 (c), while simultaneously requiring that 〈ID〉/〈gT 〉 = 0.75. The horizontal dashed line marks the threshold to
firing.
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We see that even in background, with the two time-
scales τg and τsyn in approximate balance and not sep-
arated, v still tracks VS rather well. To investigate
whether this balance might constitute the transition to
high conductance behavior, we consider the dynamics
of a single model neuron that is impinged upon presy-
naptically by excitatory and inhibitory spike trains
(here, spike times are Poisson processes). The synap-
tic strengths are fixed, and the presynaptic spike rates
are adjusted to achieve a given mean total conductance
〈gT 〉 = τ−1

g (here 〈·〉 denotes temporal mean), while
keeping 〈ID〉/〈gT 〉 fixed at 0.75 (below threshold). As
in Figs. 2 and 3a–c shows a detail from the dynamics of
v and VS in response to these spike trains, where respec-
tively, τg = 2 · τsyn (Fig. 3a), τsyn (Fig. 3b), and τsyn/2
(Fig. 3c). The latter two correspond roughly in conduc-
tance time-scales to the model network in background
and under stimulation, respectively, while the first is
a case where τsyn is the shortest time-scale—a state
not captured by our model cortex in its normal operat-
ing regime. Figure 3a shows that with a conductance
time-scale larger (but not much larger) than that of the
synaptic fluctuations, τg = 8 ms versus τsyn = 4 ms, the
cell’s response is an integrator over VS , not a tracker of
its fluctuations, as it is for the τg = 4 ms and τg = 2 ms
cases.

Spiking in a High Conductance State

High conductance asymptotics also allow us to develop
simple analytical expressions for the spike rate of a
cell in terms of the synaptic inputs. When the effective
reversal potential VS(t) crosses the spiking threshold
(a necessary condition for spiking), the slaving of the
intracellular potential v to VS means that v(t) is usually
also dragged across threshold to spike. Upon reset to
zero, the large conductance again plays an important
role by causing v(t) to relax rapidly back towards VS(t)
on the short membrane time-scale, τg . If VS(t) lies yet
above threshold, then v will cross threshold again to
produce another spike. Using Eq. (9), we can estimate
this time to recover from reset to spike threshold, or
equivalently, estimate the interspike interval τISI . First,
let uin = us in Eq. (9), where us is the first spike time,
and set v(u = uin) = 0 (reset after a spike). We seek
the next spike time u+

s = us +�u, where �u = O(ε).
Over this short interval, VS is only slowly varying and
can be considered frozen. Evaluating Eq. (9) at u = u+

s ,
for which v(u+

s ) = 1, we find to leading order

�u = −ε log
(
1 − V −1

S

)
, VS > 1,

or, returning to dimensional time, and using that gT

also varies slowly over the interspike interval,

τISI � − log
(
1 − V −1

S

)
gT

, VS > 1. (13)

We see that when VS(t) is above the spiking threshold,
and v(t) is spiking, it is the total conductance gT that
sets the scale for the interspike interval size. When the
conductance is doubled, τISI is halved—as is demon-
strated in Fig. 2e and f.

Equation (13) can then be used to estimate the spik-
ing rate, M(T ; �), of a cell during the time interval
(T, T + �) as:

No. of Spikes in time �

�

� 1

�

∫ T +�

T

−gT (t)

log
(
1 − V −1

S (t)
) ∣∣∣∣

VS>1

dt, (14)

That is, given the synaptic inputs to a cell, the evaluation
of an integral over the suprathreshold time course of VS

estimates the spike rate of that cell.
Others have invoked a separation of time-scales,

such as “slow” synapses, to convert conductance
based models of spiking neurons to rate models (e.g.
Ermentrout, 1994; Bressloff and Coombes, 2000). Here
we have invoked a similar separation of time-scales, but
based instead on the observation of large, primarily in-
hibitory, conductances in our model cortex when under
stimulation.

To illustrate the utility and accuracy of Eq. (14) in
predicting spike rates, consider Fig. 4, which shows VS

and gT for a neuron near an orientation pinwheel center,
being stimulated by an 8 Hz, full contrast drifting grat-
ing (set at preferred orientation). VS and gT are shown
(the dashed curves) for 10 successive cycles of the stim-
ulus. Also shown are their cycle averages V̄S and ḡT

(solid curves, computed from 72 cycles). Clearly, both
VS and gT have substantial fluctuations relative to their
cycle averages, and these fluctuations will also have a
substantial effect on the average modulation and on-
set of firing. For example, the cycle average V̄S being
at spiking threshold will not predict the onset of cell
firing, as the fluctuations of VS above threshold can
persist even when V̄S is well below. It is these fluctu-
ations that are resolved in the high conductance state,
and their contributions captured by Eq. (14).

Figure 5a compares the cycle averaged spike rate, M̄ ,
over the course of the stimulus cycle, found by counting
spikes in the cortical network simulation (points), with
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Figure 4. a: The dynamics of the effective reversal potential VS

for a neuron of the cortical network model. This neuron is near an
orientation pinwheel center, and the network is being stimulated by
an 8 Hz, full contrast drifting grating, set at the preferred orientation
of the neuron. The dashed curves are VS for 10 successive cycles
of the stimulus. The solid curve is the cycle average of VS , com-
puted from 72 stimulus cycles. The horizontal dashed line marks
the threshold to firing, and the arrows mark the times of offset and
onset of firing during the stimulus cycle, as seen in Fig. 5a. b: The
corresponding dynamics of the total conductance gT . The horizon-
tal dashed line marks the mean conductance level in the absence of
visual stimulation (230 s−1).

the estimate to M̄ given by Eq. (14) (solid curve). For
the former, the spike count was binned into 50 subin-
tervals of the stimulus period (of size � = 0.125/50),
with the cycle average taken over 72 cycles of the stim-
ulus. In the same way, the integral in Eq. (14) was found
by numerical quadrature over each subinterval of the
stimulus cycle (again of size �, with � � δt , the
temporal resolution of the simulation), and also cy-
cle averaged over the 72 cycles of the stimulus. The
agreement is very good, with Eq. (14) capturing the
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Figure 5. a: Comparison of firing rates calculated from spiking in
the large-scale simulation with asymptotic estimates. Panel (a) shows
cycle-averaged firing rates for the neuron of Fig. 4. The points are
calculated by counting spikes in the large-scale simulation of the
full network, Eq. (1). The solid curve is calculated using the asymp-
totic formula Eq. (14). All cycle averages are found from 72 cycles
of the stimulus. The arrows mark the times of offset and onset of
firing during the stimulus cycle; cf. Fig. 4a. While the agreement
shown here is typical, this model neuron is among those with the
highest firing rates in our simulations. b: Panel (b) shows a further
comparison of asymptotic estimates of firing rates with results from
simulation: A “scatter plot”, over a subpopulation of 70 neurons,
of the time-averaged firing rates measured in the large-scale simu-
lations, against those predicted by Eq. (14). The inset shows these
results for the same set of neurons, but now in the absence of visual
stimulation.

magnitude, onset, and time-course of firing over the
stimulus cycle. Further, for a group of 70 neurons from
the simulation, Fig. 5b shows a “scatter plot” compar-
ing firing rates over the stimulus period as predicted
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by Eq. (14), against those measured by counting spikes
in the full network simulations. Again, the agreement
between the full simulations and the asymptotic esti-
mates is very good. In the inset is shown this same
comparison, but in the absence of visual stimulation.
In this case, the total conductance is lowered, leav-
ing τg and τsyn in near balance, and ε thus larger than
when under visual stimulation. While Eq. (14) still does
a reasonable job in predicting firing rates, we expect,
and observe, a general deterioration in its accuracy. (As
yet another point of comparison, for the sample simu-
lations shown in Fig. 3, the error in calculating spike
rates using the asymptotic formula, Eq. (14), is 24%,
10%, and 3% for τg = 8, 4, and 2 ms, respectively.)

Hence, as with the slaving of the intracellular poten-
tial v to subthreshold VS , we find that the firing of cells
in our model cortical network is well described by our
high conductance asymptotic analysis.

It is clear from Figs. 4a and 5a that there is a strong
correlation between the long temporal scale modula-
tion of the effective reversal potential VS (on the τlgn

time-scale) and the modulation in the firing rate. We
consider this relation in Fig. 6 by plotting the cycle
averaged firing rate M̄ (and its estimate) from Fig. 5a,
against the cycle averaged potential V̄S . (During the
the stimulus cycle, the firing rate both rises and falls,
transiting through nearly equal values of V̄S . This gives

Figure 6. The cycle averaged firing rates (points and solid curves,
as in Fig. 5) plotted against the cycle averaged effective reversal
potential V̄S . During the stimulus cycle, the firing rate rises and falls,
and in so doing transits through nearly equal values of V̄S . This gives
the two, nearly overlying curves, and sets of data points, seen in the
figure. The dashed curve shows the simplified estimate of firing rate
versus V̄S given in Eq. (15). Note that this estimate obtains only for
V̄S > 1.

the two, nearly overlying curves—one for rising, one
for falling—seen in the figure.) This relation shows a
monotonic increase in firing rate with increase in poten-
tial V̄S , with the onset of firing occurring well below
the threshold to firing (the long-dashed vertical line)
set at the level of the intracellular potential v in the
I&F dynamics. This spanning of the firing threshold
illustrates how fluctuations in the synaptic inputs con-
tribute to creating a network response, even when the
mean potential lies below threshold.

While the total conductance gT is also modulated,
and in register with VS , it is much less so. This is be-
cause gT is dominated by its inhibitory component,
which, as predicted by our cortical model, is unmod-
ulated for a drifting grating stimulus (Wielaard et al.,
2001). Still, the overall scale of the firing rate is set by
the total conductance. This is illustrated by the dashed
curve in Fig. 6, which shows the simple firing rate
estimate

Firing Rate ∼ − 〈ḡT 〉
log

(
1 − V̄ −1

S

) , for V̄S > 1, (15)

where 〈ḡT 〉 is simply the mean of the relatively unmod-
ulated gT . This estimate does capture the magnitude
and rise of firing at high rates, though not the over-
all curvature of the data, or its spanning the threshold
to firing, both arising from the substantial fluctuations
relative to average behavior (Fig. 4a and b).

In the Absence of Visual Stimulation

While the total conductance in the absence of visual
stimulation (�230 s−1; see Table 2) is significantly
higher than the leakage conductance of a single cell
(50 s−1), it is not high enough to produce a clear separa-
tion from the time-scale of synaptic interactions. In fact,
the membrane time-scale g−1

T � 4 ms is comparable
to the synaptic time-scale τsyn. Yet comparisons with
numerical experiments show that predictions of the I/O
relationships remain surprisingly accurate, even in the
absence of visual stimulation: Fig. 2b shows that the
subthreshold membrane potential v(t) remains close
to VS(t), while Fig. 2f (when compared with Fig. 2e)
shows that the time for relaxation after firing a spike
continues to scale by g−1

T . The inset in the scatter plot
of Fig. 5b shows that I/O formula (14) retains good or-
der of magnitude accuracy. This suggests that the I/O
relations can be used for rough estimates, even in the
absence of visual stimulation where there is no clear
separation of time-scales.
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The distribution of interspike intervals (the ISI dis-
tribution) has been measured for Simple cells in layer
4Cα in the absence of stimulation (Mechler, 1997),
and found to peak around 10 ms. Thus, the numerical
model’s predicted 8 ms peak in its ISI distribution is
in quite good agreement with biological observation.
Moreover, we note that the large background conduc-
tances we observe lie within the range postulated by
Bernander et al. (1991).

Components of the Conductances

In addition to high conductance, the parameter regime
at which the computational cortex operates is one of
near balance of excitatory and inhibitory currents,

gE VE � gI |VI |.

This balance, together with the relative sizes of the
two reversal potentials (VE � |VI |), implies large in-
hibitory conductances (gI � [VE/VI gE ] > gE ). The
dominance of inhibitory conductances in our large-
scale model is seen in Figs. 7 and 8, and in the summary
of Table 1.

The total conductance gT arises from several
sources: the LGN, excitatory and inhibitory cortico-
cortical activity, and from noise. Figure 7a shows the
individual excitatory components—from LGN (blue),
other excitatory cortical cells (red), and noise (green)—
that make up gT for the neuron of Fig. 1a and b (under
drifting grating stimulation), while Fig. 7b shows
the two constituent inhibitory conductances—from
inhibitory cortical cells (red), and noise (green). Note
that cortico-cortical inhibition dominates all of the
component conductances.

Figure 8 shows the component conductances for
the neuron of Fig. 1c, experiencing randomly flashed

Table 1. The five components of the total conductance, without
visual stimulation, and with drifting grating and randomly flashed
grating stimuli. The numbers listed are the approximate minimum
and maximum values.

Conductances Drifting Randomly
(sec−1) Background grating flashed

LGN 35–35 0–160 0–170

4Cα, Ex. 0–15 0–65 0–225

Noise, Ex. 0–25 0–25 0–25

4Cα, In. 20–130 180–600 65–1700

Noise, In. 5–180 5–180 10–200

Table 2. The temporal mean of the total conductance, and the
standard deviation of its temporal fluctuations, for one typical neu-
ron near a pinwheel center, and a second typical neuron far from
any pinwheel center.

Total cond. Drifting Drifting Randomly
(sec−1) Background pref orth flashed

Near 230 ± 40 475 ± 90 460 ± 70 480 ± 175

Far 230 ± 40 550 ± 100 400 ± 80 480 ± 175

grating stimuli. Again, the inhibitory cortico-cortical
contribution dominates.

We quantify the conductance sizes further in Tables 1
and 2, which list the maximum and minimum val-
ues of the five components of the conductance for
the different stimuli: (i) unstimulated, (ii) drifting grat-
ing at preferred orientation, and (iii) randomly flashed
gratings—as well as the means and standard deviations
of the total conductances. The predominance of inhibi-
tion allows us to simplify Eq. (7), which defines VS , and
hence also simplify the (subthreshold) slaving relation
Eq. (10):

v(t) � VS = gE VE + gI VI

gL + gE + gI

� gE VE + gI VI

gI
= VI

(
1 + K · gE

gI

)
, (16)

with K = VE/VI . And so, the modulation of VS (and
hence v) is approximately the ratio of excitatory to
inhibitory conductances.

Spatial Distribution of Conductances

As with orientation selectivity (McLaughlin et al.,
2000), the value of total conductance for a model neu-
ron also depends on its location within the cortical
layer, relative to pinwheel centers. Figure 1a–c showed
the total conductance gT (t) for a typical orientation se-
lective neuron far from a pinwheel center. While such
plots for a neuron near a pinwheel center are simi-
lar in appearance, there can be interesting differences
in magnitude. For example, for drifting grating stim-
uli, the modulation of the total conductance (between
its large value for stimulation at preferred orientation
and its smaller response at stimulation orthogonal-to-
preferred) is greater for far neurons than near neurons.
Indeed, at preferred orientation—

gT,Near = 475 ± 90 s−1, gT,Far = 550 ± 100 s−1;
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Figure 7. The five components of the total conductance for the
neuron in Fig. 1—without visual stimulation and for a drifting grating
stimulus (at 8 Hz, switched on after one second). a: Excitatory: LGN
(blue), cortical interaction from layer 4Cα (red) and noise (green).
b: Inhibitory: cortical interaction from layer 4Cα (red) and noise
(green). Notice the difference in the vertical scales for (a) and (b).

time (s)

g(
t)

(s
-1
)

0.5 1 1.5 2
0

150

300
(a)
excitation

time (s)

g(
t)

(s
-1
)

0.5 1 1.5 2
0

900

1800
(b)
inhibition

LGN
Noise
Corticocortical

Figure 8. The five components of the total conductance for the neu-
ron in Fig. 1—without visual stimulation and for randomly flashed
stimuli (switched on after one second). a: Excitatory: LGN (blue),
cortical interaction from layer 4Cα (red) and noise (green). b: In-
hibitory: cortical interaction from layer 4Cα (red) and noise (green).
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Figure 9. The spatial distribution of the neurons’ local patch of the
input layer: Upper: temporal averages; Lower: standard deviations
of the temporal fluctuations. The black circles show the locations of
the 4 pinwheel centers in the model’s orientation map.

and at orthogonal-to-preferred—

gT,Near = 460 ± 70 s−1, gT,Far = 400 ± 80 s−1.

On the other hand, for randomly flashed gratings, there
is little difference between the conductances and their
fluctuations for near and far neurons.

One advantage of large-scale models is the ability
to examine the spatial distribution of the properties of
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model neurons across the network, and to study these
relations with respect to the model’s architecture. For
drifting grating stimuli, the spatial distribution of the
temporal average of the conductances across the local
patch of model input layer is shown in Fig. 9a, with the
spatial distribution of standard deviation of the tem-
poral fluctuations shown in Fig. 9b. The center region
of highest conductance (in violet) overlays those ori-
entation columns best stimulated by the visual stimu-
lus. Further, the average conductance varies smoothly
in regions far from the pinwheel centers (labeled by
black circles), and even those regions not optimally
stimulated (i.e., orientation columns at orthogonal-to-
preferred, overlaid by yellow) have conductances well
above background values (400 s−1, as compared with
background values of 230 s−1). Near the pinwheel cen-
ters, the average conductance changes more rapidly in
space, over distances of 100 microns, a scale set by the
axonal arbors of inhibitory neurons. The fluctuations
(Fig. 9b) are significantly larger far from pinwheels
than near.

Other stimuli, such as randomly flashed gratings,
create very different and distinct conductance maps
on the model cortex. In contrast to drifting gratings,
the temporal mean and standard deviation of the tem-
poral fluctuations of the conductance for randomly
flashed grating stimuli are distributed with relative uni-
formity across the entire layer (not shown). The pop-
ulation histograms of Fig. 10 confirm these features
quantitatively. For instance, for drifting gratings, the
conductances depend sensitively upon location within
the cortical layer relative to pinwheel centers. Figure 10
shows histograms of all neurons within a disc of radius
100 microns, centered near (Fig. 10a, b, e and f), or far
(Fig. 10c, d, g and h), from pinwheel centers. Both the
mean of the conductance, and the standard deviation of
its temporal fluctuations, are shown. All of the distri-
butions in Fig. 10 are rather tight—except for those of
stimulation by a drifting grating (Fig. 10a and b) near a
pinwheel center, where the model neurons have broad
distributions of both mean conductance and standard
deviation. Furthermore, the histograms in Fig. 10b, d,
f and h for the standard deviation show that the fluctu-
ations are significantly and uniformly higher for ran-
domly flashed stimuli (Fig. 10f and h) than for drifting
gratings (Fig. 10b and d).

Such considerations emphasize that neurons within
our computational model tend to behave very differ-
ently, whether they are near or far from pinwheel
centers. As emphasized in McLaughlin et al. (2000),

these distinctions can be traced to a transfer of the
“circle of influence upon a given neuron”—from spa-
tial interaction lengths within the cortical layer to in-
teraction lengths in terms of the angle of orientation
preference. Because of the spatial extent of the cortico-
cortical interactions, and their relationship to the tiling
of the cortex by pinwheel patterns of orientation
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Figure 10. Histograms of the temporal average of the conductance
gT (t) and the standard deviations of its temporal fluctuations, for all
neurons within a disc of radius 100 microns, centered AT (Panels
a, b, e, f), or far (Panels c, d, g, h), from pinwheel centers. Drifting
gratings were used to generate the data in 8a–d, while randomly
flashed gratings were used in Panels e–h.
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preference, neurons near (or at) a pinwheel center
experience cortico-cortical inhibition which is effec-
tively global in orientation preference—in contrast to
those far from pinwheel centers which experience only
cortico-cortical inhibition which is local in orientation
preference, where these far neurons interact monosy-
naptically only with neurons of similar orientation pref-
erence. This distinction quickly leads to theoretical pre-
dictions such as, for drifting gratings,

gT,Pref ,Near < gT,Pref ,Far

gT,Orth,Near > gT,Orth,Far,

which are consistent with the numerical results of the
computational model (Table 2).

Discussion

Our computational cortex operates in a high-
conductance state—a state caused by cortical activity.
We emphasize that this high conductance state is not an
individual cellular property, and that we are not free to
place the network arbitrarily into a high-conductance
regime. Rather, in our model the total conductance gT

must be large in order to obtain (i) orientation selectiv-
ity in agreement with experiment and (ii) the linearity of
Simple cells also observed in experiment. Background
activity increases the conductance by a factor of 4–5
when compared with leakage times derived from cells
in cortical slices, and high contrast visual stimulation
further increases it by another factor of 2. Together,
this combined cortical activity increases the total con-
ductance in model neurons by factor of 8–10 over base
leakage conductances. This high-conductance state is
consistent with recent intracellular measurements of
conductances (Borg-Graham et al., 1998; Hirsch et al.,
1998; Anderson et al., 2000), as well as with theoret-
ical interpretations (e.g., Bernander et al., 1991). In
summary, observational data, simulations, and theo-
retical interpretations all suggest a high-conductance
state as the cortical operating point when under visual
stimulation.

If the membrane conductance is high enough, it is
intuitively clear that the membrane potential will be
slaved to an effective reversal potential, and will relax
back rapidly if displaced away from it. This will oc-
cur if the membrane time-scale τg = [gT ]−1 � τsyn,
the synaptic time-scale, i.e. τg and τsyn are well sepa-
rated. Asymptotic methods then produce I/O relations
which establish the slaving of the membrane potential

to the effective reversal potential, and identify other
detailed properties such as the temporal phase lag by
which the membrane potential trails the effective re-
versal potential. These I/O relations further describe
the firing rate of a neuron directly in terms of the dy-
namics of its total conductance and effective reversal
potential.

However, in our model the conductance time-scale
τg � 2 ms is only a factor of two smaller than the
synaptic time-scale, τsyn = 4 ms. Nonetheless, we find
that this moderate separation of time-scales is suffi-
cient to allow the cell’s dynamics to be described very
accurately in terms of the asymptotic analysis.

Possible Functions of High Conductance

Neurons within a less active network respond by
smoothing over synaptic time-scales, rather than
closely tracking their associated fluctuations (see
Fig. 3). This difference has possible functional conse-
quences: the performance of individual neurons as co-
incidence detectors, burst generators, and pattern trans-
mitters could improve with increasing network activity.
Also, at each stage of cortical processing, whereas τsyn

limits the time-scale of the input, τg can replace τsyn

as the limiting time-scale of the output. Related ideas
have been discussed in the literature. (See the reviews
of Koch et al., 1996; Usrey and Reid, 1999, and refer-
ences therein; see also Tsodyks and Sejnowski, 1995;
van Vreeswijk and Sompolinsky, 1996 for discussions
of time-scales associated with balanced network states
and chaotic fluctuations.) Another possible function of
a high conductance state in a network dominated by
inhibition, as we have studied here, is that it allows
the network response to follow the ratio of excitatory
to inhibitory conductances in a smoothly graded and
monotonic fashion.

Coincidence Detection

Neurons responding at high conductance can act as co-
incidence detectors, with the temporal resolution deter-
mined by the cortical synaptic time-scales τsyn inherent
in the total conductance gT and the difference current
ID (recall Eq. (6)): Let G E denote the time-course of
conductance changes in response to a spike arriving
from an excitatory neuron. Consider then two incident
excitatory spikes, arriving at times t1 < t2, with sepa-
ration � = t2 − t1. In the high conductance regime, the
consequent postsynaptic response over the baseline ID
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and gT is given by

v(t) ≈ ID + VE (G E (t − t1) + G E (t − t2))

gT + G E (t − t1) + G E (t − t2)
.

Here, the peak increase in potential v(t) above base-
line increases monotonically as the spike separation �

decreases. Thus, two spikes arriving closely in time
could act together and cause v(t) to cross threshold
and produce a postsynaptic spike (or spikes). For a
larger time separation � (exceeding the synaptic time-
scale of G E (t)), the two would act independently, and if
neither individually produced voltage changes of suf-
ficient size to cross threshold, the postsynaptic neuron
would not fire. It follows that neurons in a high conduc-
tance regime, with τg � τsyn, could act as coincidence
detectors with a temporal resolution of τsyn. This con-
clusion is supported by recent measurements (Roy and
Alloway, 2000) on cat somatosensory cortex, which
find that thalamo-cortical spikes separated in time by
less than 6–8 ms enhance cortical response, while little
enhancement is found when the temporal separation of
the incoming spikes exceeds 6–8 ms.

Burst Generation

Next, consider a cortical neuron within a high-
conductance state acting as a “burst generator”: As-
sume that, because of incident spikes, its effective
reversal potential crosses the firing threshold from be-
low at time t1, and remains above threshold until time
t2 = t1 + �. If gT is sufficiently large, the neuron will
fire a sequence of spikes in time interval t2 − t1 = �,
where Eq. (14) estimates the number of spikes (N ) fired
by the neuron in the sequence as

N ∝ �

τg
= � · gT

(i.e. the interspike times within the sequence scale as
O[τg = g−1

T ]). When synaptic input from other neu-
rons comes in bursts, they could cause a postsynaptic
neuron to likewise fire a burst of spikes, and therefore
through this mechanism the cortical neuron acts as a
“burst transmitter”.

Thus, I/O analysis identifies two distinct time-scales
for an high-conductance neuron when acting as a coin-
cidence detector or as a burst transmitter. For detecting
coincidence in the arrival of two spikes, the temporal
resolution of the input is set by τsyn, the synaptic time-
scale. Within an outgoing sequence of spikes, the con-
ductance size itself sets the interspike intervals as g−1

T .

The Firing Rate Closely Follows the Conductances

Our network produces the nearly linear responses
of Simple cells, whose computations are believed to
be crucial for many tasks of visual perception (see
Wielaard et al. (2001) and the references therein). This
is accomplished through a nonlinear network whose
conductance is high, and dominated by inhibition. In
this high conductance state, Eq. (16) indicates that
VS � VI (1 + K · (gE/gI )), or that the modulation
of the effective reversal potential of a neuron will be
approximately proportional to its ratio of excitatory to
inhibitory conductances. This is important because in
our Simple cell network, the excitatory conductance gE

is dominated by, and so follows closely, its geniculate
component. Following our understanding, and instan-
tiation, of the cortical architecture (see McLaughlin
et al., 2000; Wielaard et al., 2001), the inhibitory con-
ductance, that divides gE , is only cortico-cortical, be-
ing a sum over the activity of many nearby inhibitory
neurons. Thus in VS we see the geniculate input con-
ductance being normalized by a population response.
Figure 6 shows, for this case of steady-state tuning, that
the firing rate is a smoothly increasing function of VS .
The overall scale of firing, or the gain, is set by the
total conductance, which in our model is dominated by
cortico-cortical inhibition.

This may be the most profound of the given, possible
functions of the cortex operating in high conductance:
The firing rate is the result of an accurate and smoothly
graded computation of the ratio of excitatory to in-
hibitory conductances. This may be a necessary task
that underlies the computations of Simple cells.
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