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We use kinetic theory and nonlinear continuum simulations to study the collective dynamics in
suspensions of self-propelled particles. The stability of aligned suspensions is first analyzed, and we
demonstrate that such suspensions are always unstable to fluctuations, a result that generalizes previous
predictions by Simha and Ramaswamy. Isotropic suspensions are also considered, and it is shown that an
instability for the particle stress occurs in that case. Using simulations, nonlinear effects are investigated,
and the long-time behavior of the suspensions is observed to be characterized by the formation of strong
density fluctuations, resulting in efficient fluid mixing.
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A suspension of self-propelled particles, an example of
an active suspension, can exhibit complex dynamics as a
result of long-ranged hydrodynamic interactions. Such
suspensions occur commonly in nature, where microorgan-
isms develop in large-scale colonies [1], as well as in
technological applications where artificial [2– 4] or bio-
logical swimmers may be used to achieve various tasks,
such as enhancing fluid mixing [5]. Previous studies on
dilute suspensions in thin films have indeed shown strong
hydrodynamic diffusion [6]. In concentrated bulk suspen-
sions, large-scale spatially and temporally correlated mo-
tions as well as concentration patterns have been observed
and characterized experimentally by Dombrowski et al. [7]
and Tuval et al. [8] (see also [9–12]). On the basis of an
analogy with sedimentation, they conjectured that the
large-scale dynamics resulted from hydrodynamic cou-
pling. These studies suggest that a homogeneous distribu-
tion is not a stable configuration, and that an active
suspension will spontaneously evolve towards a nontrivial
dynamical state. Identifying mechanisms leading to this
pattern formation is the goal of this Letter.

Hydrodynamic interactions among self-propelled parti-
cles have also been studied in numerical models, with
various levels of approximation [13–15]. These simula-
tions have captured salient features of experiments, includ-
ing hydrodynamic diffusion, large-scale collective motions
and strong density fluctuations. Particle simulations are
however limited in size owing to their high computational
cost. As an alternative, kinetic theories have long been used
to study suspensions of long-chain and rodlike molecules
[16]. These can, in principle, be adapted to suspensions of
self-propelled particles by appropriate modifications of
particle fluxes and induced extra stress. A linear, long-
wave version of such a model was proposed by Simha
and Ramaswamy [17]. Here, a more general kinetic model
is derived to study dynamics in active suspensions. It is first
shown that aligned suspensions of self-propelled particles
are always unstable to fluctuations, a result that generalizes

the prediction of Ref. [17]. We also consider initially
isotropic suspensions and find that an instability for the
particle stress also takes place in that case for pushers—-
tail-actuated swimmers—but not for pullers. Finally, we
use nonlinear simulations to study the long-time behavior
in these systems.

While different types of swimmers use different propul-
sion mechanisms, universal features exist in the induced
hydrodynamics. In particular, a particle exerts a propulsive
force Fp on the surrounding fluid (which may be the
resultant of the beating of cilia or flagella), which is bal-
anced by the resistive drag Fd � �Fp due to the surround-
ing fluid. To leading order, the forcing exerted by the
particle on the fluid is therefore a force dipole, the strength
of which we denote by �0. This dipole forcing creates a
disturbance flow, the characteristics of which are universal
in the far-field for many types of self-propelled particles.
This general feature is the basis of the present model.

The evolution of a suspension of rodlike particles is
described by a continuity equation for the distribution
function ��x;p; t� of the particle center-of-mass position
x and director p [16]:

 @t� � �rx � � _x�� � rp � � _p��: (1)

The distribution function is normalized as follows: 1
V �R

V dx
R
dp��x;p; t� � n, where V is volume of the re-

gion of interest, and n is the mean number density in the
suspension.

The continuity Eq. (1) involves flux velocities in x and
p, which for rodlike particles swimming in the direction of
p can be modeled as

 

_x � U0p� u�Drx�ln��; (2)

 

_p � �I� pp� � ���E�W� � p� drrp�ln��	: (3)

In Eq. (2), the center-of-mass velocity of a particle is
represented as the sum of its swimming velocity U0p and
of the local fluid velocity u�x; t� induced by the particles in
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the suspension. Similarly, the orientational velocity in
Eq. (3) arises from the fluid velocity and is modeled using
Jeffery’s equation [18] in terms of the fluid rate-of-strain
and vorticity tensors: E � �ru�ruT�=2, W � �ru�
ruT�=2, and a shape parameter �1 
 � 
 1, with � � 1
for rods. Both center-of-mass and rotary diffusion can be
accounted for through the diffusivities D and dr, which
may model the effects of hydrodynamic dispersion or
particle tumbling, and are assumed constants in this work.

To close the equations, the velocity u�x; t� of the fluid is
determined through the Stokes equations:

 � �r2
xu�rxq � rx ��p; rx � u � 0; (4)

where � denotes the fluid viscosity and q is the pressure.
Neglecting higher-order terms from particle interactions,
the fluid motion arises from the active particle stress
�p�x; t� defined as

 � p�x; t� � �0

Z
��x;p; t�

�
pp�

I
3

�
dp: (5)

�p can be viewed as a configuration average over all
orientations p of the force dipoles �0�pp� I=3� exerted
by the particles on the fluid [19]; it may also be interpreted
as a nematic order parameter weighted by the local con-
centration. The stress magnitude �0 can be shown to be
related to the swimming velocity U0 by �0=�U0l

2 � �
[14,17], where l is the characteristic dimension of the
particles and � is a dimensionless O�1� constant that
depends on the swimming mechanism. A particle that
propels itself by exerting a force near its tail (pusher)
will result in �0 < 0 (and �< 0), whereas a particle that
propels itself using its head (puller) will result in �0 > 0
(�> 0) [17]. In the following, we consider both cases but
focus specifically on the case of pushers (�0 < 0), which
presents more interesting dynamical features.

All the equations can be made dimensionless using the
following velocity, length, and time scales: uc � U0, lc �
�nl2��1, tc � lc=uc; in addition, the distribution function is
scaled by n. After nondimensionalization, the only pa-
rameters remaining in the equations are the dimensionless
stress magnitude �, the shape parameter �, and the dimen-
sionless diffusivitiesD and dr. The only dependence on the
number density n then occurs through the system size,
which is made dimensionless by �nl2��1.

Linear instabilities.—We first analyze the linear stabil-
ity of a nearly aligned suspension in the case where diffu-
sion can be neglected (D � 0, dr � 0). If a single particle
director exists at a given location x, i.e., for ��x;p; t� �
c�x; t���p� n�x; t�	, and if diffusion is negligible, the
continuity Eq. (1) can be replaced by two evolution equa-
tions for the local concentration field c�x; t� and director
field n�x; t� [20]:

 @tc�rx � ��n� u�c	 � 0; (6)

 @tn� �n� u� � rxn � �I� nn� � ��E�W� � n: (7)

In that case, the velocity field u�x; t� still satisfies the
Stokes Eqs. (4), with the simplified active stress tensor:
�p�x; t� � �c�x; t��nn� I=3�.

We consider a nearly uniform suspension in which the
particles are all nearly aligned along the ẑ direction:
c�x; t� � 1� �c0�x; t�, n�x; t� � ẑ� �n0�x; t�, where n0 �
ẑ � 0 and j�j  1. Specifically, we seek plane-wave so-
lutions with wave vector k: c0�x; t� � ~c�k� expi�k � x�
!t� with a similar expression for n0. Substitution into
Eqs. (6) and (7) and linearization to O��� gives an eigen-
value problem for !��k� � k cos�� i���k�, and yields

 �� �
1

2
f��� cos2�

�
1�

�
1� 4ik

sin2� cos�

f���cos22�

�
1=2
�
: (8)

We have defined k � jkj, k̂ � ẑ � cos�, and f��� �
������ 1�cos2�� ��� 1�sin2�	=2.

The growth-rate !i � Re���� is plotted vs k and � in
Fig. 1 for � � �1, � � 1 (the case � � 1 is obtained by
changing the sign of!i). It can be shown that for k > 0 the
two growth rates have opposite signs. In particular, there is
always a positive growth rate; i.e., suspensions of aligned
particles are always unstable to density and orientation
perturbations. In the long-wave limit (k! 0), the two
eigenvalues become !� � f��� cos2� and !� � 0. The
nonzero eigenvalue is that previously obtained in Ref. [17],
where it was concluded that only certain ranges of wave
angles were subject to an instability. Because it includes
finite wave number contributions, our theory picks up the
additional eigenvalue !� in addition to that found by
Simha and Ramaswamy [21]. This is consistent with our
previous particle simulations [14], which showed an insta-
bility for all wave angles. At high wave numbers, the
present theory predicts an increase in growth-rate with k:
in a real system, however, one should expect diffusion to
stabilize high-wave-number fluctuations.

The stability of isotropic suspensions, which may be
more relevant to biological systems, can also be considered
based on the general continuity Eq. (1), by decomposing
the distribution function as

FIG. 1. Growth rates !i � Re���� in a suspension of nearly
aligned swimming particles as function of (a) the wave vector k
for various wave angles, and (b) the wave angle � for k � 0:1
and k � 1:0, obtained from Eq. (8).
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 ��x;p; t� � �1� ��0�x;p; t�	=4	; (9)

with j�j  1. For ease of analysis, we neglect angular
diffusion (dr � 0), but do account for center-of-mass
diffusion. Again, we consider a plane-wave perturbation
for the distribution function: �0�x;p; t� � ~��p;k��
expi�k � x�!t� (note that this system is non-normal).
Substituting (9) into the Stokes Eqs. (4) and into the
continuity Eq. (1) and linearizing the equations to O���,
it can be shown that the stability problem reduces to
an eigenvalue problem for the perturbation active
particle stress tensor ~�p, written formally as [20] ~�p �

����k; !�: ~�p, where the operator ��k; !� is a fourth-
order tensor. In particular, it can be shown that the eigen-
modes leading to an instability are active shear stresses of
the form ~�p � k̂k̂? � k̂?k̂, where k̂? is any unit vector
perpendicular to k̂. The dispersion relation for these modes
is given by [20]

 

3i��
2k

�
2a3 �

4

3
a� �a4 � a2� log

�
a� 1

a� 1

��
� 1; (10)

where a � ��!� iDk2�=k.
Equation (10) was solved numerically for !�k�. The

solution for � � �1, � � 1 and D � 0 is shown in
Fig. 2 where the real and imaginary parts of ! are plotted
vs k. We observe that at low values of k, !r � 0 and !i >
0; i.e., low-wave-number shear stress fluctuations will
amplify exponentially in suspensions of pushers. At higher
wave numbers (k * 0:34), !r becomes positive; i.e., stress
oscillations will occur and amplify. At yet higher wave
numbers, !i becomes zero and stress fluctuations are
stable: in the absence of diffusion we therefore can expect
the instability to occur at all length scales * �nl2��1.
Including center-of-mass diffusion (D> 0) simply shifts
the solution for !i by�Dk2, which results in a more rapid
damping of the instability at high wave numbers; low wave
numbers, however, always remain unstable. In the case of
pullers (�> 0), the sign of !i changes in Fig. 2(b), which

suggests that long-wave density fluctuations do not grow in
that case.

Nonlinear dynamics.—To study the long-time dynamics
and pattern formation of the instabilities, nonlinear nu-
merical simulations were performed by integrating
Eq. (1) in two dimensions, with both center-of-mass and
rotary diffusion. The results shown here are for pushers
(� � �1, � � 1); simulations for pullers (�> 0) were
also performed but did not show any instability (in agree-
ment with the linear stability result) and are therefore not
shown here. An initial condition of the form (9) was used,
in which the initial perturbation �0 is a band-limited sum
of random Fourier modes. Figure 3 shows maps of the
concentration field c and mean director field n at various
times, where c and n are defined as c�x; t� �

R
�dp and

n�x; t� � �
R

p�dp�=c�x; t�. Note that c and n satisfy
@tc� u � rc � �r � �cn�. At t � 0, the imposed distri-
bution contains fluctuations at many length scales, and the
mean director field n only exhibits correlation over very
short scales. As the instability develops (t � 60), short-
scale fluctuations disappear, leading to a smooth director
field with correlated orientations over the size of the box:
this is a consequence of the active stress instability, since
the active stress tensor can be viewed as a nematic order

FIG. 2. (a) Real part !r and (b) imaginary part !i of the
complex frequency ! as a function of k in a nearly isotropic
suspension, in the case � � �1, � � 1 and D � 0, obtained by
numerically solving the dispersion relation (10).

FIG. 3 (color online). Snapshots of the local concentration c
and mean director field n at various times: (a) t � 0:0,
(b) t � 60:0, and (c) t � 85:0. The simulation shown was
performed in a box of dimensions 50� 50 using 15 random
initial modes.
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parameter. The concentration field also develops strong
fluctuations at long wavelengths. The formation of these
density fluctuations, which is not predicted by the linear
stability analysis, may be shown to be driven by the
concentration-weighted director field, which is not
divergence-free and results in the aggregation of particles
by their swimming velocity in regions of rx � �cn�< 0
[20]. The dense regions are typically in the form of bands
[Fig. 3(b)], which become unstable and fold onto them-
selves under the fluid disturbance flow [Fig. 3(c)]. After
folding, the bands break up and reorganize in the transverse
direction. These dynamics repeat quasiperiodically, and
may be analogous to the ‘‘jetting’’ previously reported in
experiments; cf. Fig. 4 of Ref. [7]. The magnitude of the
density fluctuations in the simulations is found to be con-
trolled by diffusion, which stabilizes the density gradients
at long times.

We conclude by discussing the effect of these dynamics
on fluid mixing. Figure 4 shows the evolution of fluid
particle configurations over the course of a simulation. At
short times, little mixing occurs as the fluid disturbance
flow is quite weak. However, strong mixing starts to take
place as the instability appears and the disturbance flow
becomes stronger. The formation and break-up of the
concentration bands results in stretching and folding of
fluid elements, and at t � 90 (corresponding to approxi-
mately four stretch-fold cycles), efficient mixing has been

achieved. Fluid mixing from fluid-body interaction has
been reported in simulations [13,14] and experiments
[5,22]: our simulations cast light on one origin for mixing,
which is related to the constant break-up and merging of
concentrated regions as a consequence of the active stress
instability. It is worth noting that the experiments showing
large-scale mixing were done using B. Subtilis, which is a
pusher [7,8]. An apparent prediction of our theory is that
such mixing flows would not be observed for suspensions
of pullers, such as the microorganism Chlamydomonas.
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FIG. 4 (color online). Fluid mixing in the simulation of Fig. 3.
The figure shows the distribution of fluid particles in the sus-
pension at (a) t � 0, (b) t � 30, (c) t � 60, and (d) t � 90.
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