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Abstract. We consider flow in a Hele–Shaw cell for which the upper plate is being lifted
uniformly at a specified rate. This lifting puts the fluid under a lateral straining flow, sucking in
the interface and causing it to buckle. The resulting short-lived patterns can resemble a network
of connections with triple junctions. The basic instability—a variant of the Saffman–Taylor
instability—is found in a version of the two-dimensional Darcy’s law, where the divergence
condition is modified to account for the lifting of the plate. For analytic data, we establish
the existence, uniqueness and regularity of solutions when the surface tension is zero. We also
construct some exact analytic solutions, both with and without surface tension. These solutions
illustrate some of the possible behaviours of the system, such as cusp formation and bubble
fission. Further, we present the results of numerical simulations of the bubble motion, examining
in particular the distinctive pattern formation resulting from the Saffman–Taylor instability, and
the effect of surface tension on a bubble evolution that in the absence of surface tension would
fission into two bubbles.

PACS numbers: 4720D, 4720M, 4755D, 8385P
AMS classification scheme numbers: 76E30, 76D45

1. Introduction

Informal observations of interfacial motion in a Hele–Shaw cell show that very intricate
and atypical patterns can form in a liquid/gas interface as the upper plate is lifted [35]. This
lifting puts the fluid under a lateral straining flow, sucking in the interface and causing it
to buckle. This basic mechanism, though coupled to a much different material rheology,
is likely to be responsible for producing the permanent patterns left behind after pulling
up some adhesive tapes. The resulting short-lived patterns can resemble a network of
connections with triple junctions. Similar patterns are observed in Hele–Shaw experiments
where one of the glass plates was lifted by one edge. This makes the gap time and space
dependent (see [6, 36, 30, 21]).

Here we assume that the upper plate is lifted uniformly—that is, the gap width is a
function of time, but not of space. This gives a relatively simpler situation wherein the basic
instability can be studied, some mathematical analysis can be made, and detailed numerical
simulations performed. Recently McCloud and Maher [22] have recently reviewed similar
and many other experimental variants of Hele–Shaw flow.

In a typical experiment (or simulation) of pattern formation in a radial Hele–Shaw cell, a
less viscous fluid (say a gas) is pumped into a more viscous fluid. The usual scenario for the
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Figure 1. A schematic diagram of the bubble in the Hele–Shaw cell.

nonlinear development of the Saffman–Taylor instability is the appearance of growing petals.
A petal’s radius of curvature increases in time until it is comparable with the wavelength
of an unstable mode. The petal tip then splits, engendering new petals (and fingers), which
themselves grow and split, with the process eventually giving rise to a dense branching
morphology [5]. A much different pattern formation scenario is observed for a plate lifting
over a patch of fluid surrounded by gas. The liquid/gas interface rushes inwards, forming
structures similar to Saffman–Taylor fingers. When the length of the fingers are comparable
with the width of the bubble, they interact strongly with each other, and compete within
an ever decreasing bubble area (see figure 1). This competition can create a network-like
structure of branches tipped with attached droplets. While the driving physics is apparently
much different, these patterns are visually similar to those seen in ferro-fluid labyrinths [20].

The basic instability—a variant of the Saffman–Taylor instability—is found in a version
of the two-dimensional Darcy’s law, where the divergence condition is modified to account
for the lifting of the plate. The use of Darcy’s law implies that we are assuming that the
plate is not being lifted fast enough to provoke any inertial effects, nor lifted high enough
to alter the system being of large aspect ratio.

As our model, we consider a modified Hele–Shaw flow within a bubble in thexy-plane
(see figure 1), its area is denoted by�(t) with boundary∂�(t). Our model system is given
by:

u(x, y, t) = −b(t)
2

12µ
∇p(x, y, t) in �(t) (1.1)

∇ · u = − ḃ(t)
b(t)

in �(t) (1.2)

p = τκ on ∂�(t) (1.3)

Vn = −b(t)
2

12µ

∂p

∂n
on ∂�(t). (1.4)

Equation (1.1) is Darcy’s Law, whereu = (u, v) is the two-dimensional gap-averaged
velocity, p is the pressure,b(t) is a (prescribed) time-dependent gap width, andµ is the
fluid viscosity. Equation (1.2) expresses conservation of volume for the fluid mass, and
is a modification of the usual two-dimensional divergence-free condition. We take the
traditional Laplace–Young boundary condition for the pressure (1.3), whereτ is a surface
tension coefficient, andκ is the curvature of∂�(t). Vn is the normal component of the
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boundary velocity andn is the outward unit normal vector to∂�(t). Hence, condition
(1.4) requires that the boundary∂� moves with the fluid. The Darcy’s law is derived
from Navier–Stokes equations in the usual way for Hele–Shaw flow; we remark only on
divergence condition (1.2). Letz be the coordinate across the gap, with velocityw in that
direction. Holding the bottom plate fixed atz = 0, we average the full three-dimensional
divergence-free condition,

0= 1

b(t)

∫ b(t)

0
(ux + vy + wz) dz = ūx + v̄y + (w|z=b(t) − w|z=0)/b(t)

= ūx + v̄y + ḃ(t)/b(t)
dropping the bars and moving the velocity terms to the right-hand side gives result (1.2).
It is straightforward to verify that Area(�(t)) · b(t) = Area(�(0)) · b(0) where� is any
material area—this is conservation of fluid volume.

We nondimensionalize equations (1.1)–(1.4) as follows.x andy are scaled on the initial
bubble diameterL0. Time is scaled by the characteristic timeT = bc/|ḃc|, wherebc and
ḃc are characteristic values ofb and ḃ, respectively; here we will just take their initial
values. Likewise,b(t) is scaled on its initial value. Finally, the pressurep is scaled on
12µL2

0/(T b
2
c ). Retaining the same variable names, the nondimensional equations are

u = −b(t)2∇p and ∇ · u = − ḃ(t)
b(t)

in �(t) (1.5)

p = τ̃ κ on ∂�(t) (1.6)

Vn = −b(t)2 ∂p
∂n

on ∂�(t) (1.7)

whereτ̃ = τb3
c/12µ|ḃc|L3

0 is a nondimensional surface tension.
As for the classical Darcy’s law, the velocityu is irrotational. However, the pressure

is no longer harmonic and satisfies a Poisson equation:

1p = ḃ

b3
in � with p = τ̃ κ on ∂� (1.8)

where its right-hand side depends only on time. The solution to this elliptic boundary value
problem differs from being harmonic by only the simple particular solution,

p̄ = 1

4

ḃ

b3
(x2+ y2) (1.9)

to equation (1.8). Its contribution can be interpreted as a straining velocity field that
decreases the area of Lagrangian area elements.

A related problem is that of a bubble, in a fixed gap Hele–Shaw cell, where a mass
sink, located at a point in the bubble, sucks fluid out. This problem has been studied, both
numerically and analytically, most recently by Tian [31, 32] and by Nie and Tian [23]. This
work shows that the interface will generically collide with the mass sink at some finite time,
leading to a singularity. For the lifting plate, there is no such possibility, as the ‘mass sink’
is now uniformly distributed throughout the bubble area.

To explore the stability of our model system, consider the flow perturbed about the
exact solution of an expanding or contracting circular bubble of radiusR(t). This is done
conveniently in a complex variable form, wherez(α, t) = x(α, t)+iy(α, t) gives the location
of ∂� and is a periodic function ofα, a Lagrangian parametrization of∂� with 06 α 6 2π .
Then, forε � 1, let

z(α, t) = R(t)eiα(1+ εν) whereR(t) = R(0)
√
b(0)/b(t) (1.10)
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andν = ξ + iη. Expanding the equations and retaining O(ε) terms yields the linear system:

ξt = − 1

2R2
H[γ̄ ] (1.11)

ηt = − 1

2R2
γ̄ (1.12)

γ̄ = −2

[
b2

R
τ̃(ξα + ξααα)+ ḃ

2b
R2ξα

]
(1.13)

whereH is the Hilbert transform (see [9]). This system is diagonalized by a Fourier
transform inα. At linear order,ξ is the radial perturbation from the circle. The instantaneous
linear growth rate at wavenumberk is then

σ(k, t) = k

2

ḃ

b
+ b2

R3
τ̃ (k − k3) k > 0. (1.14)

Thus, the circular bubble is linearly stable at all scales ifḃ < 0, i.e. the bubble is expanding.
If the bubble is contracting, it is linearly unstable fork <

√
1+ (ḃR3)/(2τ̃ b3), with the

maximum growth rate atkmax =
√

1+ ḃR3/2τ̃ b3/
√

3. A similar expression was also
obtained by Zhaoet al [36] for the ‘gap gradient’ case.

For τ̃ = 0, we have the ill-posedness associated with an unregularized Saffman–Taylor
instability. If τ̃ > 0, then the instability is regularized at small length-scales, but with the
additional, interesting aspect that the instability cannot be sustained as the plate is lifted
and the bubble shrinks. This is quite unlike the more usual pattern formation problem of
an expanding gas bubble in a Hele–Shaw cell. The important quantity isḃR3/b3, whose
time-dependent part iṡb/b9/2 (using equation (1.10)). If we require thatḃ/b9/2 > K2 > 0,
so that there will always be a band of unstable modes, it follows thatb(t) becomes infinite
at some finite time—an event clearly outside of the validity of our model. And so, for
any monotonically increasing, smoothb(t), the range of unstable modes will eventually
collapse. For simplicity, we have made the choice for the gap widthb(t) = et . As implied
above, examination of equation (1.14) shows thatkmax decreases ast increases, and thatσ is
eventually negative for allk > 2 (k = 0 and 1 are only areal and translational perturbations,
resp.). Even though this is only the result of a linear analysis, it is consistent with our
simulations, given in section 3. They suggest that following a period of intense instability,
the eventual behaviour of the bubble is to relax and circularize.

We make two further comments about the properties and structure of equations (1.5)–
(1.7).

(i) When τ̃ = 0, any explicit dependence of the dynamics uponb(t) can be absorbed
into a redefinition of time and pressure. To see this most simply, assume thatḃ 6= 0, and
let p = ḃ(t)

b(t)3
q. Then defining the new times = ln b(t)

b(0) gives the system as

u = −∇q and ∇ · u = −1 in �(t)

q = 0 on ∂�(t)

Vn = − ∂q
∂n

on ∂�(t)

which has no explicit dependence uponb. The time rescaling only appears when expressing
Vn as the time derivative of interfacial position. As a consequence, two flows with the same
initial bubble shape, but two different gap functions (both either increasing or decreasing)
will evolve through the same set of shapes.

(ii) System (1.5) has a structure somewhat complementary to that of the ‘contour
dynamics’ problem of two-dimensional Euler flow (see [37] for an early explication).
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Contour dynamics concerns the evolution of a patch of constant vorticity fluid surrounded
by irrotational fluid. There, the velocity field satisfies

u = (−ψy,ψx) with 1ψ = χ(�)
whereψ is the stream function, andχ is the characteristic function for the domain� (we
have assumed unit vorticity). The Poisson equation is solved in the plane with continuity
of u across∂�, and appropriate far-field boundary conditions onψ . Again using the same
redefinition of pressure as above, system (1.5) can be rewritten in the form

u = −(qx, qy) with 1q = 1 in �.

In other words, for contour dynamics the velocity has zero divergence, and constant curl, at
least in�. For our problem, the velocity has zero curl, but constant divergence. Of course,
the large differences lie in the domain of solution, and the boundary conditions; the contour
dynamics problem is posed in the plane, while ours is interior to the bubble (the exterior gas
pressure enters only as a removable constant) with the Laplace–Young boundary condition.
While it has been proved for contour dynamics that the time-dependent boundary∂�(t)

remains always smooth [10, 8], in the next section we show that it is easy to find exact
solutions (whenτ̃ = 0) to our Hele–Shaw problem where∂�(t) becomes singular in a
finite time.

In section 2, we use a Cauchy integral approach [32] to study the initial value problem for
Hele–Shaw flows. For analytic data, we establish the existence, uniqueness and regularity of
solutions when the surface tension is zero. We also construct some exact analytic solutions,
both with and without surface tension. These solutions illustrate some of the possible
behaviours of the system, such as cusp formation and bubble fission. In section 3, we
present the results of numerical simulations of the bubble motion. In particular, we examine
the pattern formation that results from the Saffman–Taylor instability, and also consider the
effect of surface tension on a bubble evolution that in the absence of surface tension would
fission into two bubbles.

2. Analytical results

2.1. Cauchy integral approach

Our analytic approach is similar to the one used to study a related problem, in a fixed gap
Hele–Shaw cell, where a mass sink or source is located at a certain point in the bubble
[24, 25, 32, 34]. Entovet al [15] made some preliminary analytical observations on the
special case of ‘squeeze flow’, whereḃ < 0, and note a relation to a rotating Hele–Shaw
flow.

We call a family of simply connected domain{�(t)} smooth (analytic) if∂�(t) is a
smooth (analytic) curve for each timet , and the velocity of∂�(t) continuously depends on
time t and the arc length of the interface.

We first use (infinitely many) global quantities to capture the motion of the interface.
Following Richardson [24, 25, 32, 34], we consider the complex moments of the domain

�(t): ∫ ∫
�(t)

zm dx dy

wherez = x + iy for m = 0, 1, 2, . . ..
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Calculating the time derivative of the moments, we obtain

d

dt

[ ∫ ∫
�(t)

zm dx dy

]
=
∫
∂�(t)

zmVn ds

= −b2(t)

∫
∂�(t)

zm
∂p

∂n
ds

= −b2(t)

[ ∫ ∫
�(t)

zm4p dx dy +
∫
∂�(t)

p
∂zm

∂n
ds

]
= − ḃ(t)

b(t)

∫ ∫
�(t)

zm dx dy − b2(t)τ̃

∫
∂�(t)

κ
∂zm

∂n
ds

where we have used (1.7) in the second equality, Green’s theorem in the third one, and
(1.8) in the last one. We have therefore come to the following theorem.

Theorem 2.1.Suppose that{�(t)} is a smooth family of simply connected domains.{�(t)}
is a solution of the initial value problem for the Hele–Shaw flow if and only if its complex
moments satisfy

d

dt

[ ∫ ∫
�(t)

zm dx dy

]
= − ḃ(t)

b(t)

∫ ∫
�(t)

zm dx dy − b2(t)τ̃

∫
∂�(t)

κ
∂zm

∂n
ds. (2.1)

Proof. We need only to show that if the moments satisfy equations (2.1), the corresponding
{�(t)} is a solution.

If p(x, y, t) denotes the solution to the Dirichlet problem for the Poisson equation (1.8),
the previous argument shows that

−b2(t)

∫
∂�(t)

zm
∂p

∂n
ds = − ḃ(t)

b(t)

∫ ∫
�(t)

zm dx dy − b2(t)τ̃

∫
∂�(t)

κ
∂zm

∂n
ds.

This, combined with the assumption that∫
∂�(t)

zmVn ds = d

dt

[ ∫ ∫
�(t)

zm dx dy

]
= − ḃ(t)

b(t)

∫ ∫
�(t)

zm dx dy − b2(t)τ̃

∫
∂�(t)

κ
∂zm

∂n
ds

gives ∫
∂�(t)

zm
[
−b2(t)

∂p

∂n
− Vn

]
ds = 0 m = 0, 1, 2, . . . .

Since a continuous function [−b2 ∂p
∂n
− Vn] can be uniformly approximated by harmonic

polynomials on∂�(t) this impliesVn = −b2 ∂p
∂n

on ∂�(t). Therefore,{�(t)} solves the
initial value problem, and the proof of theorem 2.1 is complete. �

Corollary 2.2. The quantity

b(t)

∫ ∫
�(t)

zm dx dy

is a constant of motion of the Hele–Shaw flows whenτ̃ = 0 for all nonnegative integerm’s,
and whenτ̃ 6= 0 for m = 0 andm = 1. In both cases, in particular, the centre of mass of
the fluid domain is preserved by the motion.
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Proof. It is obvious from equation (2.1) that we only need to show that the above quantity
is a constant of motion form = 1 whenτ̃ 6= 0. To do this, it suffices to prove that the last
integral of equation (2.1) is zero whenm = 1. In fact, introducing the tangent angleθ and
arclengths, we obtain [31],∫

∂�(t)

κ
∂z

∂n
ds = −i

∫
∂�(t)

κ[x ′(s)+ iy ′(s)] ds = −i
∫
∂�(t)

θse
iθ ds = 0.

This completes the proof of corollary 2.2.
Conservation of volume and centre of mass of the fluid serve as useful checks on

numerical accuracy.
To simplify the moment problem (2.1), we divide it byZm+1 for large |Z|. Summing

the resulting equations, we obtain

d

dt

[ ∫ ∫
�(t)

dx dy

Z − z
]
= − ḃ(t)

b(t)

∫ ∫
�(t)

dx dy

Z − z − b
2(t)τ̃

∫
∂�(t)

κ
∂

∂n

(
1

Z − z
)

ds.

Rewriting the double and line integrals as complex integrals over∂�(t) yields

d

dt

[
1

2π i

∮
∂�(t)

z∗

Z − z dz

]
= − ḃ(t)

b(t)

1

2π i

∮
∂�(t)

z∗

Z − z dz− b
2(t)

π i
τ̃

∮
∂�(t)

κ(z)

(Z − z)2 dz (2.2)

for large |Z|, where the superscript∗ denotes complex conjugate. �

Theorem 2.3.Suppose that{�(t)} is a smooth family of simply connected domains.{�(t)}
is a solution of the initial value problem for the Hele–Shaw flow if and only if it satisfies
equation (2.2) for large|Z|.

2.2. Existence, uniqueness and regularity of solutions whenτ̃ = 0

We now consider the zero surface tension case. We will establish the short time and global
time existence, uniqueness, and regularity of solutions when the initial interface is analytic.
We will also show that the initial value problem is ill-posed whenb(t) is an increasing
function.

We first summarize the basic properties of the Cauchy integral

1

2π i

∮
∂�

z∗

Z − z dz (2.3)

for a smooth closed Jordan curve∂�. This Cauchy integral defines two functions ofZ;
one, denoted byUe(Z), is analytic outside�, and the other, denoted byUi(Z), is analytic
inside�. These two functions are continuous up to the boundary∂�. On the boundary,
their difference is given by the density in the Cauchy integral. More precisely, we have
Plemelj’s formula:

Ue(Z) = Z∗ + Ui(Z) Z ∈ ∂�. (2.4)

Plemelj’s formula can be used to show thatUe(Z) can be analytically continued across∂�
from outside if and only if∂� is an analytic curve [32].

We next use these properties to understand the regularity of the Hele–Shaw solutions.
We first use the maximum principle for the Poisson equation to make the following
observation.

Lemma 2.4. If the initial value problem has a smooth solution{�(t)} whenτ̃ = 0, �(t) is
contracting wheṅb(t) > 0, and expanding wheṅb(t) < 0.
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Proof. We only consider the casėb(t) > 0, and the other situation can be handled in the
same way.

When ḃ(t) > 0, p is subharmonic in view of (1.8). Moreover, it vanishes on∂�.
It follows from the maximum principle thatp reaches its maximum on∂�(t), and that
therefore, ∂p

∂n
> 0 on ∂�(t) wheren is the outward normal vector to∂�(t). This means

that the domain�(t) is contracting due to (1.7). The proof of lemma 2.4 is complete.�
Lemma 2.4 is not surprising in view of the fact that the top plate is lifted whenḃ(t) > 0

and lowered wheṅb(t) < 0.
The integration of equation (2.2) wheñτ = 0 gives

1

2π i

∮
∂�(t)

z∗

Z − z dz = b(0)

b(t)

1

2π i

∮
∂�(0)

z∗

Z − z dz (2.5)

for large |Z|. When ḃ(t) > 0, �(t) is contracting;�(t) ⊂ �(0) strictly for t > 0. Since
the left-hand side of equation (2.5) is analytic outside�(t), it is analytic in a domain
containing∂�(0). The second integral of the same equation is therefore analytic across
∂�(0). It follows from the analytic property mentioned previous to lemma 2.4 that∂�(0)
is an analytic curve. In other words, the initial value problem has no smooth solution if the
initial curve ∂�(0) is not an analytic one.

When ḃ(t) < 0, �(t) is expanding. Repeating the same analysis, we can show that
∂�(t) is always an analytic curve fort > 0. Therefore, we have established the following
theorem.

Theorem 2.5. In the case of zero surface tension, we have the following.
(1) Whenḃ(t) > 0, the initial value problem for the Hele–Shaw flow has no smooth

solution if∂�(0) is not an analytic curve.
(2) Whenḃ(t) < 0, ∂�(t) must be an analytic curve fort > 0 if {�(t)}t>0 is a smooth

solution to the initial value problem.

Remark. When τ̃ = 0, we may view the initial value problem foṙb(t) < 0 as the time-
reversed process of that forḃ(t) > 0. This is clear from equation (2.5). As a consequence,
the first and second parts of theorem 2.5 are exactly two different statements of the same
truth.

In the second part of this section, we will establish the existence and uniqueness of
solutions to the initial value problem when the initial interface is analytic.

We first try to understand the physical meaning of the Cauchy integral. Rewriting (2.3)
yields:

U(Z) = 1

2π i

∮
∂�

z∗

Z − z dz

= 1

π

∫ ∫
�

1

Z − z dx dy

=
(
∂

∂X
− i

∂

∂Y

)
1

π

∫ ∫
�

log |Z − z| dx dy.

The last double integral is the two-dimensional gravitational potential of the domain� with
a uniform density, and accordingly, the Cauchy integral is virtually the gravitational force
at the pointZ. It is natural to ask whether the gravitational information near infinity is
enough to determine the shape of the domain�. The answer is negative as different simply
connected domains may give the same Cauchy integral [27]. We therefore seek a weaker
form of the question as to what happens if we perturb a fixed gravitational force a little bit.
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Can the resulting quantity be a gravitational force of another domain? Cherednichenko’s
theorem says yes [11]. More precisely, given a function which is close to a Cauchy integral
for a fixed analytic closed curve, then this function is a Cauchy integral of another closed
curve which is near the fixed closed curve [11].

We next use Cherednichenko’s theorem to handle the existence and uniqueness of
solutions. Suppose that the initial curve∂�(0) is an analytic curve with the Cauchy integral
U0(Z). In view of equation (2.5), we consider

U(Z, t) = b(0)

b(t)
U(Z, 0).

By Cherednichenko’s theorem, there exists a positive numberε(∂�0) which depends on the
initial interface∂�0 such thatU(Z, t) given by the above formula is a Cauchy integral of
a unique closed analytic curve, say,∂�(t) if | b(0)

b(t)
− 1| < ε(∂�0). SinceU(Z, t) smoothly

depends ont , it can be checked that the velocity of∂�(t) continuously depends on timet
and the arclength of∂�(t). The proof can be found in [32]. By theorem 2.3,{�(t)} solves
the Hele–Shaw problem.

Theorem 2.6.Given an initial simply connected domain�0 with analytic boundary∂�0,
the initial value problem for the Hele–Shaw flow has one and only one analytic solution
{�(t)}t>0 for small timet .

Interestingly, we obtain a global time result if we restrict the behaviour ofb(t).

Theorem 2.7.Given an initial simply connected domain�0 with analytic boundary∂�0,
the initial value problem for the Hele–Shaw flow has one and only one analytic solution
{�(t)}t>0 for all times if | b(0)

b(t)
− 1| < ε(∂�0) for all times.

2.3. Exact solutions with and without surface tension

In this section, we shall present some exact solutions. The purpose is to use them to illustrate
how interfaces could behave. All solutions except the last one are without surface tension.
We are interested in the case whenb(t) is an increasing function withb(+∞) = +∞.
Later, we shall present the computational results to show how a small surface tension might
affect these exact solutions.

2.3.1. Cusp formation. We begin with an example to show that an interface can
develop cusps when surface tension is zero. We consider a family of domains{�(t)}
which are the images of the unit disk|w| < 1 under the conformal maps of the form
f (w) = a1(t)w+ a2(t)w

n. We may insist thata1(t) be positive for eacht . We want to see
under what constraints ona1(t) anda2(t), {�(t)} constitutes a Hele–Shaw solution.

For this goal, we calculate the Cauchy integral of∂�(t) for large |Z|.
1

2π i

∮
∂�(t)

z∗

Z − z dz = 1

2π i

∮
|w|=1

[a1(t)]∗ 1
w
+ [a2(t)]∗ 1

wn

Z − (a1(t)w + a2wn)
[a1(t)+ na2(t)w

n−1] dw

= |a1(t)|2+ n|a2(t)|2
Z

+ a
n
1(t)[a2(t)]∗

Zn
.

By equation (2.5),{�(t)} is a Hele–Shaw solution if and only if

|a1(t)|2+ n|a2(t)|2 = b(0)

b(t)
[|a1(0)|2+ n|a2(0)|2]

an1(t)[a2(t)]
∗ = b(0)

b(t)
an1(0)[a2(0)]

∗
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and f (w, t) = a1(t)w + a2(t)w
n remains a conformal mapping on the unit disk|w| < 1

for each timet . Sincea1(t) can be assumed to be always positive, it follows from the
second equation that the argument ofa2(t) is preserved as timet varies. For convenience,
we assume thata2(t) is real. This simplifies the equations a bit, and we obtain

a2
1(t)+ na2

2(t) =
b(0)

b(t)
[a2

1(0)+ na2
2(0)]

an1(t)a2(t) = b(0)

b(t)
an1(0)a2(0).

The implicit function theorem can be used to show that these two equations can be solved
for a1 anda2 as functions oft as long asa1(t) 6= ±na2(t), which is exactly the necessary
and sufficient condition for the conformality off (w, t) = a1(t)w + a2(t)w

n.
At the time whena1(t) = +na2(t), fw has(n − 1) zeros on the unit circle. In other

words, the interface will form(n−1) symmetric cusps at the breaking. This breaking time,
denoted byTb, can easily be calculated by substitutinga1(t) = ±na2(t) into the above two
equations. In this way, we find

b(0)

b(Tb)
= (n2+ n) n+1

n−1

n
2n
n−1

|an1(0)a2(0)| 2
n−1

[a2
1(0)+ na2

2(0)]
n+1
n−1

.

2.3.2. Topological changes.In the second example, we show how a bubble can split into
two different bubbles, within the conformal mapping approach. More precisely, we find
an initial interface that will pinch and then fission into two circular interfaces of radius
R centred atZ = ±R. These two circular bubbles then separate, and shrink into their
respective centres.

As the Hele–Shaw problem for̃τ = 0 is time reversible, it is more convenient to
consider the backward problem. Starting with two circular interfaces with the same radius
R centred atZ = −R andZ = R, we want to see what the interface will be at a later time
in the case whenb(t) is a decreasing function. The initial Cauchy integral can be easily
calculated.

U(Z, 0) = 1

2π i

∮
|z+R|=R

z∗

Z − z dz+ 1

2π i

∮
|z−R|=R

z∗

Z − z dz = R2

Z + R +
R2

Z − R .

The equation of motion (2.5) gives the Cauchy integral at a later time.

U(Z, t) = b(0)

b(t)

[
R2

Z + R +
R2

Z − R
]
. (2.6)

To determine the interface∂�(t) at timet , we introduce a Riemann conformal mapping
Z = f (w, t) to map the unit disk|w| < 1 onto the fluid domain�(t). We may insist that
f (0, t) = 0. By the symmetry of the problem, there exists a positivew0 within the unit
circle such thatf (−w0, t) = −R and f (w0, t) = R. On the boundary, the Plemelj’s
formula gives

U(f (w), t) = [f (w)]∗ + Ui(f (w)) = f̂
(

1

w

)
+ Ui(f (w)) (2.7)

on |w| = 1 whereUi(Z) is a function analytic in�(t) andf̂ is the complex conjugate off .
The functionf̂ is defined byf̂ (w) = [f (w∗)]∗, where the superscript∗ denotes complex
conjugate. It is easy to check that the domains of analyticity forf and f̂ are symmetric
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about the real axis. Since the left-hand side has two simple poles atw = −w0 andw = w0

with the same residue in view of (2.6), so iŝf ( 1
w
) and therefore,

f̂

(
1

w

)
= α

w + w0
+ α

w − w0
+ g(w) (2.8)

where α is a constant which can be shown to be real andg(w) is analytic in the unit
disk. As f̂ ( 1

w
) is analytic outside the unit disk and vanishes at infinity, it follows from

equation (2.8) that so isg(w). Therefore,g(w) is identically zero. Recoveringf (w) from
equation (2.8), we obtain

f (w) = 2αw

1− w2
0w

2
. (2.9)

The coefficientsα andw0 are determined by the conditions thatf (w0) = R and that the
residues of both sides of equation (2.7) must be the same. In this way, we obtain,

α = 1− w4
0

2w0
R w0 =

√√√√b(0)

b(t)
−
√[

b(0)

b(t)

]2

− 1. (2.10)

In theX, Y coordinates, the interface given by (2.9) has the following algebraic expression

(X2+ Y 2)2 = 4α2X2

(1− w2
0)

2
+ 4α2Y 2

(1+ w2
0)

2
.

The same interface was also found by Richardson [25, 34] when he tried to understand
how an expanding bubble interacts with a straight wall. The technique used here is also due
to Richardson. Note, however, that velocities diverge to infinity at the time of pinching,
hence making it difficult to compute even at times earlier than the time of the interface
break-up.

2.3.3. Annular fluid domains.Finally, we will present a Hele–Shaw solution with a doubly
connected fluid domain. This domain�(t) will be an annulus withr(t) andR(t) as the
interior and exterior radii respectively. We assume that we have gas inside and outside
the annulus, and that both regions have the same constant pressure. In practice, this could
be achieved by connecting each gas region to the atmosphere. For convenience, we also
suppose the annulus to be centred at the origin.

Accordingly, the Dirichlet problem for the Poisson equation (1.8) becomes

1p = ḃ(t)

b3(t)
in �(t)

p = τ̃

R
on x2+ y2 = R2 (2.11)

p = − τ̃
r

on x2+ y2 = r2. (2.12)

The unique solutionp can be solved explicitly, and we find

p = 1

4

ḃ(t)

b3(t)
[x2+ y2] + α log

√
x2+ y2+ β.

The coefficientsα and β are determined by the boundary conditions (2.11) and (2.12).
These together with the kinematic condition (1.7) give the evolution ofR(t) andr(t)

dR

dt
= − ḃ(t)

b(t)

[
R

2
+ R2− r2

4R log r
R

]
+ b2(t)τ̃

1
R
+ 1

r

R log r
R

(2.13)
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dr

dt
= − ḃ(t)

b(t)

[
r

2
+ R2− r2

4r log r
R

]
+ b2(t)τ̃

1
R
+ 1

r

r log r
R

. (2.14)

Both terms on the right-hand side of the first equation are negative for 0< r < R. As a
result,R(t) is always decreasing with timet .

It is not difficult to check that equations (2.13) and (2.14) are equivalent to the two
equations:

d

dt
[R2 logR2− r2 logr2] = − ḃ(t)

b(t)
[R2 logR2− r2 logr2] − 4b2(t)τ̃

(
1

R
+ 1

r

)
(2.15)

d

dt
[R2− r2] = − ḃ(t)

b(t)
[R2− r2]. (2.16)

It is interesting that equations (2.15) and (2.16) are also easily obtained by following the
evolution of the global quantities:∫ ∫

�(t)

log
√
x2+ y2 dx dy

∫ ∫
�(t)

1 dx dy

as in the derivation of equations of motion for simply connected fluid domains. The first
integral gives the gravitational information at the origin, and it is needed to detect the
interior circle.

By basic results of ordinary differential equations, equations (2.13) and (2.14) have a
unique solutionR(t) and r(t) so long as 0< r < R. In the relevant time interval, we
integrate equations (2.15) and (2.16) to obtain

R2(t) logR2(t)− r2(t) logr2(t) = b(0)

b(t)
[R2(0) logR2(0)− r2(0) logr2(0)]

− 4τ̃

b(t)

∫ t

0

[
1

R(λ)
+ 1

r(λ)

]
b3(λ) dλ (2.17)

R2(t)− r2(t) = b(0)

b(t)
[R2(0)− r2(0)]. (2.18)

We next consider the cases whenτ̃ = 0 andτ̃ 6= 0 separately.
When τ̃ = 0, we will show thatR(t) and r(t) exist for all positive times, and that the

annulus will shrink to a circle ast → +∞. It follows from (2.13) and (2.14) thatR(t) is
decreasing andr(t) increasing with timet . In view of (2.18),R(t) and r(t) can coalesce
only at t = +∞. This shows thatR(t) andr(t) exist for all nonnegativet . Eventually, the
annular fluid domain will shrink into a circle. The radiusR∞ of this terminal circle can be
found by dividing (2.17) by (2.18) and letting bothR(t) and r(t) go toR∞. In this way,
we obtain

1+ 2 logR∞ = R2(0) logR2(0)− r2(0) logr2(0)

R2(0)− r2(0)
.

Applying the mean value theorem to the right-hand side, we see thatR∞ is betweenR(0)
andr(0) as expected.

Whenτ̃ 6= 0, we will see thatr(t) will vanish in a finite time. We will justify our claim
by contradiction. Suppose thatr(t) does not vanish in a finite time. By equation (2.18),
R(t) and r(t) will not coalesce in a finite time. As a consequence, the solutionsR(t) and
r(t) always satisfy 0< r(t) < R(t) and thus, they exist for all timet > 0. When time is
large,R(t) and r(t) are nearly equal and therefore the first term of (2.17) is small. The
second term of the same equation is also small. Therefore, we obtain a contradiction to
equation (2.17) since the last term is bounded away from zero when time is large. We have
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thus shown thatr(t) will vanish in a finite time. Right at this moment, it can be checked
that the fluid velocity blows up at the centre.

3. Numerical simulations

3.1. Formulation and numerical methods

To simulate the motion of a patch of fluid we reformulate the equations of motion in terms
of boundary integrals—a standard approach to computing Hele–Shaw flows [33, 17]. This
formulation expresses the velocity inside the bubble, and of the interface itself, solely in
terms of the interface positionz(α, t). While a boundary integral representations would
usually only apply for a harmonic pressure, the pressure in system (1.5) differs from being
harmonic by the simple particular solution̄p, which is explicitly removed. This approach
is identical to the representation technique used by Baker and Shelley [4] in their study of
the contour dynamics problem.

The velocity of the fluid is thus decomposed into an explicit term from the particular
solutionp̄, and that arising from the harmonic remainder, represented as a dipole distribution
along ∂�. In this formulation, the evolution equations for the complex interface position
z(α, t), whereα is the Lagrangian variable and 06 α 6 2π , are given by

z∗t (α, t) = −
ḃ

2b
z∗(α, t)− γ (α, t)

2zα(α, t)
+ 1

2π i
P

∫ 2π

0

γ (α′, t)
z(α, t)− z(α′, t) dα′. (3.1)

The superscript∗ denotes complex conjugation, and theP denotes a principal value integral.
The sheet strengthγ is determined as the solution of the Fredholm integral equation of the
second kind,

γ (α, t)

2
− Re

{
zα(α, t)

2π i
P

∫ 2π

0

γ (α′, t)
z(α, t)− z(α′, t) dα′

}
= b2τ̃ κα − ḃ

2b
Re{z∗zα} (3.2)

solved under the constraint that∫ 2π

0
dα γ (α, t) = 0.

A short derivation of these equations of motion is given in the appendix.
The choice of numerical method is dictated by the absence or presence of surface

tension. If τ̃ = 0, we solve the above system directly, using Krasny filtering [18] to
control the spurious growth of rounding-off errors, spectrally accurate spatial discretizations
[29], and a preconditioned GMRES iteration [26] to solve the integral equation. Time
stepping is accomplished by a third-order Adams–Bashforth method. Whenτ̃ > 0, we
use the small-scale decomposition (SSD) approach developed by Houet al [17], coupled
to a second-order Adams–Bashforth scheme, to avoid the third-order time-step constraints
accompanying surface tension. Applying the SSD involves reformulating the equations of
motion in terms of the interface’s lengthL and its tangent angleθ , and evolving these
new variables. This new formulation leaves a first-order CFL constraint, satisfied by an
automatic time-step control in our time-stepping implementation. These numerical methods
were thoroughly discussed by Houet al [17].

The correctness of these implementations was checked in a number of ways. This
included comparing the computed results with cases where the solution to the integral
equation and resulting velocity could be found analytically, and also comparing with exact
dynamical solutions (as found in the previous section). Agreement of the simulated evolution
was also verified with solutions of the linearized equations for small amplitude perturbations
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of a shrinking circle. Finally, conformance with the convergence estimates of our numerical
method was also checked, i.e. infinite order in space, and O(1t2) in time for τ̃ > 0, and
O(1t3) in time for τ̃ = 0.

3.2. Results

We have computed a number of different cases which illustrate and expand upon the
results of sections 1 and 2. First, we examine pattern formation through the full nonlinear
development of the Saffman–Taylor instability, and examine the effect of varying surface
tension. Secondly, we examine the inclusion of surface tension on initial data that in the
absence of surface tension would split from a single domain into two circles.

3.2.1. Pattern formation. The distinctive pattern formation found in our system is
illustrated by considering evolution from a multimode perturbation of the unit circle, for
various surface tensions, includingτ̃ = 0. Here we takeb(t) = et . The initial data is

x(α, 0) = r(α) cosα

y(α, 0) = r(α) sinα

with r(α) = 1+ 0.02(cos 3α + sin 7α + cos 15α + sin 25α).
This initial data is seen in the upper left box of figures 2–4, which show the evolution

for the three surface tensionsτ̃ = 2× 10−4, 10−4, and 1
2 × 10−4. All three simulations use

an initial time-step of1t = 10−4 with a spatial resolution of 4096 points. This was found
to be sufficient in all cases to maintain temporal resolution, and to keep the active part of
the Fourier spectrum (inα) beneath the Nyquist frequency.

We describe the behaviour in detail for theτ̃ = 10−4 simulation, shown in figure 3.
The linear stability analysis gives that there are initially 70 unstable modes, with the most
rapidly growing initial mode atkmax= 41. The evolution goes through three distinct stages.
First, the initial valleys deepen, exposing their structure. Indeed, the number of intrusions
seen att = 0.65 is on the order of the number of initial indentations. It is soon apparent
that each of these deepening valleys is a Saffman–Taylor finger penetrating into the liquid,
with the deeper initial valleys tending to produce the larger fingers. The tips of the ‘fjords’
separating the fingers are relatively pinned, moving inwards much more slowly. The larger
fingers also become thicker at the centre and so acquire rounder shapes, similar to those
seen in gap gradient Hele–Shaw experiments (see [36, 6, 30]). As is typical in Hele–Shaw
systems, there is a competition amongst these fingers, and the smaller fingers eventually
flatten out and disappear completely. Att = 1.15, there are only nine long ‘fjords’ of liquid
remaining, each associated with the deeper initial valleys. This is the first stage—the rapid
ramification of the interface, via a Saffman–Taylor instability, through the penetration of
multiple fingers of gas into the fluid.

In the next stage, the larger fingers continue their inward flight, but the previously pinned
ends of the fjords begin to draw in very rapidly, and the interface begins to deramify. This
is clearly seen in the last three boxes of the figure. This is itself not a gentle process.
Droplets are attached to the ends of the fjords, and as the fjord shortens, these droplets tend
to circularize. This creates thin necks of fluid where the droplets attach to the bulk, and it
appears as though they might ‘pinch off’, and separate the droplet of fluid from the body.
This would constitute a flow singularity in our model equations. It does not appear that
such a singularity occurs in these simulations, although we do believe that it is likely to
occur with harder driving, or with different initial conditions. We will return to this point
at the end of the section.
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Figure 2. Simulation of the bubble with̃τ = 2× 10−4.

 t=0 

–1

–0.5

0

0.5

1  t=0.65

 t=1.15 

–1

–0.5

0

0.5

1  t=1.85 

 t=2.39

–1 0 1

–1

–0.5

0

0.5

1  t=2.6 

–1 0 1

Figure 3. Simulation of the bubble with̃τ = 10−4.
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Figure 4. Simulation of the bubble with̃τ = 1
2 × 10−4.

In the final stage, the interface completely deramifies, and relaxes to a shrinking circle.
This is consistent with the linear analysis, and with experimental observation in the gap
gradient case. It has been confirmed in gap gradient experiments that finger growth is only
observed for interfacial velocities above a certain threshold (see [36]). Here, the gap width
is growing exponentially (b(t) = et ), and the average speed of interface is proportional to

1√
b(t)
= e−t/2—a decreasing speed.

For the larger surface tensioñτ = 2× 10−4 (figure 2), the number of initially unstable
modes decreases to 50, withkmax = 29. This has a yet stronger smoothing effect on the
shape of the interface. The smaller fingers die out more quickly, and by the timet = 0.65
they are practically absent. The large fingers become shorter and thicker leaving more fluid
closer to the centre rather than spread in ‘fjords’. Again, there is no time at which any
of the fingers would become so thin that we could believe a pinching might occur. The
interface evolves much faster towards a simpler form and byt = 1.85 there are only four
fingers left. Whent = 2.6 the interface acquires a nearly circular shape.

Figure 4 shows the simulation for the smallest surface tensionτ̃ = 1
2 × 10−4, for which

there are approximately 100 initially unstable modes, withkmax = 58. Now the small
fingers do not smooth out, but rather become longer and live for a more extended duration,
and the fjords which endure for most of the simulation are generally much thinner. Also,
the main body of fluid occupies a significantly smaller area yielding an impression that
from time t ≈ 0.9 the blob is actually a network of fjords. Despite going through several
‘near-pinching’ situations the network finally reduces to a circular shape byt = 3.2.

As usual, the ramification of the interface depends on the surface tension—the smaller
the surface tension, the more structured the interface. To explore this in more detail, we
consider the indexI (t) = L(t)/

√
4πArea(�(t))—that is, the ratio of the length of the
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Figure 5. The indexI (t) as a function oft .

interface to the circumference of a circle having the same area as the cross section of the
bubble. Figure 5 showsI (t) for each of the three runs described above. Linear theory
suggests that we should rescale time ass = −t/ ln τ̃ (the scaling of time to reach maximum
amplitude, before the linear instability saturates), andI is plotted to good effect on this
rescaled time. This index reflects well the departure from a perfect circle, which has index
I ≡ 1, and also the increase in complexity of the interface asτ̃ is decreased (greater
maximum I accompanies decreasedτ̃ ). The eventual recircularization of the bubble is
also evident. While linear theory suggested a time rescaling, it did not give a rescaling
in the amplitude ofI that collapsed these curves onto one another. It appears from direct
examination of the data that halving the surface tension led to an arithmetic increase inI .
That is, a logarithmic dependence onτ̃ . Of course, this putative behaviour is ‘observed’ on
only three data points.

Finally, we include a simulation for evolution with̃τ = 0. UsingN = 4096 points,
figure 6 shows the initial data (the outer graph) and the interface, as it propagates inwards,
at several times up tot = 0.04. Over this short time, the interface begins to sharpen, and
the spatial Fourier spectrum broadens rapidly, quickly exhausting the available resolution.
In comparison with the above simulations, this experiment illustrates the strong smoothing
effect of surface tension. Wheṅb > 0 andτ̃ = 0, so that all length-scales are unstable, we
expect the formation of interfacial cusps in finite time to be ageneric feature of the bubble
evolution, as it is for more standard Hele–Shaw problems without surface tension [28]. If
the appearance of such a cusp is an imminent event for this flow, this would explain the
rapid broadening of the Fourier spectrum.

3.2.2. The effect of surface tension on a fissioning interface.In section 2 we showed that
in the absence of surface tension an interface, described by equations (2.9), (2.10) with
ω0 = 1

2, R = 1 andb(t) = et , could bifurcate into two shrinking circles. What is the effect
of surface tension on this ‘topological singularity’?

Figure 7 shows evolution from this data, with̃τ = 2 × 10−4. In the absence of
surface tension this interface fissions into two circles, centred at(1, 0) and (−1, 0), when
b(tf ) = 17

8 b(0), or tf ≈ 0.75. The broken curves show thẽτ = 0 solution at each time.
This simulation uses the initial time-step1t = 2× 10−4 and an initial spatial resolution
of N = 2048 points, which was increased later to 4096 and then to 8192. We remark that
N = 2048 points were sufficient to maintain spatial resolution throughout the simulation.
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Figure 6. Simulation of the bubble with̃τ = 0.

However, at late times (sayt = 3.0 in figure 7) disparate sections of the interface approach
one another, which leads to loss of accuracy in the quadrature of the velocity integral (see
Baker and Shelley [3] for an analysis). While adaptive quadrature methods can be used to
ameliorate this error, we did not do so; instead, we took the easier, but computationally
more expensive approach of simply increasing the global resolution.

The presence of surface tension completely changes the ultimate motion of the interface.
Initially, the interface (see figure 7) behaves similarly to theτ̃ = 0 evolution. But byt = tf
the smoothing effect of surface tension is clear. Theτ̃ = 0 interfacial cusp is altered to a
flattened, more slowly advancing front. (This is very similar to behaviour seen in Daiet al
[13] in their study of the effect of surface tension on cusp formation (but with no fissioning)
on an expanding bubble in the Hele–Shaw cell.) Away from the fission region, fidelity
is maintained surprisingly well to the zero surface tension solution. Consequently, as the
fissioned circles (again, broken curves) recede away from each other (remaining centred at
(±1, 0)), the flattened front is drawn out into a dumbbell shape, with two masses of fluid
connected by a thinning neck of fluid having a central bulge. Byt = 3.0, this central
bulge has disappeared, and the bubble shape begins to differ strongly everywhere from the
fissioned circles.

Figure 8 shows the effect of reducingτ̃ , by a factor of 2, to 10−4. Aside from their time
of appearance, the basic features of this simulation remain the same as for the larger surface
tension simulation, i.e. removal of the fissioning singularity, the evolution to a dumbbell
shape, with a thin connecting neck between two larger fluid masses. At the fission time
tf , the flat front that has replaced the cusp is of about the same width as that for the
τ̃ = 2× 10−4 simulation; the most noticeable difference is the small dimple that becomes
the pinned end of a very short fjord at the side of what is apparently a finger propagating
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Figure 7. Simulation of the bubble with̃τ = 2× 10−4.

into the circle. In contrast to thẽτ = 2× 10−4 simulation, att = 3.0 there is still a region
of strong agreement between the bubble shape and the fissioned circles. Indeed, the bubble
resembles very much that for the larger surface tension at the earlier timet = 2.4. At
t = 3.47, the bulge of fluid in the neck is again lost, and the similarity is strong with the
τ̃ = 2× 10−4 simulation att = 3.0.

Unfortunately, we were unable to reduce the surface tension any further, due to the
growth of rounding-off errors in the most unstable wavelengths. Figure 9 shows the early
time evolution (up tot = 0.59< tf ) for τ̃ = 1

2 × 10−4. The simulation breaks down soon
thereafter. Small ripples develop in the interface aroundx = 0 and develop rapidly into
intruding fingers. These small ripples are characteristic of (linear) growth rates of the most
unstable length-scales being large enough to inflate initial rounding-off errors to O(1) size
on this timescale (see Dai and Shelley [14] for a study of the interaction of noise and surface
tension in a standard Hele–Shaw flow). Examination of the Fourier spectrum confirms this
interpretation. This spurious behaviour is an artefact of the finite precision of the simulation,
and its removal would require an increase in the precision (here, 64 bits—double precision).

What happens beyondt = 3.0 for τ̃ = 2× 10−4, and t = 3.47 for τ̃ = 10−4? We
do not know. At this point, with the collapse of the central bulge, we find the onset of a
strong symmetry breaking instability, that causes the two sides of the neck in the centre
to ‘slip’ in opposite directions, breaking the up/down, left/right symmetry of the interface.
Such symmetries are preserved by the equations of evolution if present in the initial data.
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Figure 8. Simulation of the bubble with̃τ = 10−4.

As we did not explicitly enforce such symmetries in our simulation, we must conclude that
our simulation has lost accuracy.

One reasonable expectation for the ensuing bubble behaviour is that the two outer
droplets merge together, and the entire shape circularizes (as in the previous section).
However, we conjecture that if the above instability was suppressed, this process would
be abbreviated by the finite time collision of the opposing interfaces in the neck region—a
topological singularity—perhaps signalling an incipient break-up of the bubble. Figure 10
shows the width of the bubble atx = 0 for the τ̃ = 10−4 simulation. It does appear that
this width is decreasing rapidly towards zero, in support of our conjecture, but we consider
our evidence far from definitive. Examination of quantities that should diverge in such an
event (i.e.κs on the interface, see [16]) do not as yet show strongly singular behaviour.

Bubble break-up for a patch of fluid in the regular Hele–Shaw problem (ḃ = 0) has
recently been considered by Almgren [1], who numerically studied the evolution of a bubble
from dumbbell-shaped initial data. Almgren found strong evidence for such finite-time
pinching of the neck. Perhaps a symmetry breaking instability such as we observe is not
operative in this case. Analytically, such behaviour in Hele–Shaw flows has been studied
extensively in the context of lubrication theory, in which the neck is considered to be
slender. A companion study to Almgren [1] using lubrication theory is given by Almgren
et al [2].

A lubrication approximation for flow in a thin neck for the present problem, with
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Figure 9. Simulation of the bubble with̃τ = 1
2 × 10−4.
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Figure 10. Bubble width atx = 0 for τ̃ = 10−4.

up/down symmetry imposed, has been found by Mary Pugh (private communication). In
this approximation, the thickness of the neck is governed by the PDE

ht = −b2τ̃ (hhxxx)x − ḃ
b
h (3.3)

whereh is one-half of the neck width. After the change of variablesh̃ = b(t)h(x, t) this
becomes

h̃t = −bτ̃ (h̃h̃xxx)x (3.4)
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where the factorbτ̃ can be absorbed into a rescaled time. This is then identical to the
lubrication approximation for a thin neck in the regular Hele–Shaw problem with constant
gap width. This PDE and its variants have been studied extensively [12, 16, 7, 2], and there
is a significant amount of numerical evidence indicating that such equations can acquire
a pinching singularity—h ↓ 0—in a finite time. However, it is also the case that the
appearance of such singularities can depend very much on initial and boundary conditions,
or on the presence of additional physics that give large-scale instability. We recognize
however that approaching a pinching singularity is beyond the asymptotic range used in
derivation of our original system, as it is for standard Hele–Shaw flow, and so may not be
physically relevant.

4. Conclusion

In this paper, we have studied the dynamics of a fluid bubble in a Hele–Shaw cell with
time-dependent gap-width. For a lifting plate, we identify a basic instability (a version
of the Saffman–Taylor instability) in a Darcy’s law that is modified to account for the
plate time dependence. Analytically, we establish conditions for the existence, uniqueness
and regularity of solutions when the surface tension is zero. We also construct some
exact analytic solutions, both with and without surface tension. These solutions illustrate
some of the possible behaviours of the system, such as cusp formation and bubble fission.
Numerically, we study the distinctive pattern formation resulting from this Saffman–Taylor
instability, and study the effect of surface tension on a bubble evolution that in the absence
of surface tension would fission. On the latter, we find some evidence of a topological
singularity when surface tension is included, but it seems to be associated with fission of a
thin neck of fluid, rather than with the collision of incipient cusps.
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Appendix. Integral formulation

The pressure can be given asp = p̄+ p̃ wherep̄ = 1
4
ḃ
b3 (x

2+ y2) is the ‘free-space’ radial
solution andp̃ satisfies the Laplace’s equation.p̃ can be represented as a dipole distribution
with strengthρ along∂�. It is convenient to work in complex variables whereη = x + iy
is a point in� andz(α, t) = x(α, t)+ iy(α, t), 06 α 6 2π denotes the boundary∂�. The
complex velocities inside� due top̄ and p̃ are

Q = Q̄+ Q̃ = u+ iv. (A.1)

Q̄ is given by

Q̄ = −b2(p̄x + ip̄y) = − ḃ
2b
(x + iy) = − ḃ

2b
η (A.2)
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andQ̃ is expressed as that induced by a vortex sheet along∂�, or

Q̃∗ = −b2(p̃x − ip̃y) = 1

2π i

∫ 2π

0

γ (α′)
η − z(α′) dα′. (A.3)

Here thevortex sheet strengthγ is related to the dipole strength for̃p by γ = b2(t)ρα.
Taking the pointη to the boundary gives

lim
η→z(α)

Q∗|η = Q̄∗|∂�− γ (α)

2zα(α)
+ 1

2π i
P

∫ 2π

0

γ (α′)
z(α)− z(α′) dα′ (A.4)

and the boundary condition can be written as

− b2τ̃ κs = −b2ps = u · s = Re

{
zα

sα
Q∗|∂�

}
. (A.5)

Definingα as the Lagrangian variable, and substitutingQ∗ andQ̄∗ into equations (A.4) and
(A.5) gives

z∗t = −
ḃ

2b
z∗ − γ (α)

2zα(α)
+ 1

2π i
P

∫ 2π

0

γ (α′)
z(α)− z(α′) dα′ (A.6)

γ (α)

2
− Re

{
zα(α)

2π i
P

∫ 2π

0

γ (α′)
z(α)− z(α′) dα′

}
= b2τ̃ κα − ḃ

2b
Re{z∗zα} ≡ Rα. (A.7)

Hence, to advance the position of the interface we first solve the equation (A.7) forγ

and then advance the interface position through equation (A.6). However, the integral
equation (A.7) has a nontrivial homogeneous solutionγ̄ , and so the general solution is not
unique. We rewrite equation (A.7) in the form

1
2γ (α)−

∫ 2π

0
K(α, α′)γ (α′) dα′ = Rα. (A.8)

While it is not obvious, the kernelK(α, α′) is continuous for any periodicz ∈ C3([0, 2π ])
and is thus square integrable. This means that the Fredholm alternative can be applied. The
homogeneous adjoint equation is

1

2
β(α′)− Re

{
1

2π i
P

∫ 2π

0

zα(α)

z(α)− z(α′)β(α) dα

}
= 0 (A.9)

and it can be shown that it has only the solutionβ ≡ constant. Solvability of equation (A.7)
is guaranteed, as the integral of its right-hand side (Rα) against the constantβ is zero. And
so, the general solution to equation (A.7) can be given asb2(t)ρα + Aγ̄ . It can be shown
that γ̄ is of nonzero mean, and so requiring that∫ 2π

0
dα γ (α) = 0

setsA to zero, and yields the desired solution.
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