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Synthetic microswimmers may someday perform medical and technological tasks, but predicting their
motion and dispersion is challenging. Here we show that chemically propelled rods tend to move on a
surface along large circles but curiously show stochastic changes in the sign of the orbit curvature. By
accounting for fluctuation-driven flipping of slightly curved rods, we obtain analytical predictions for the
ensemble behavior in good agreement with our experiments. This shows that minor defects in swimmer

shape can yield major long-term effects on macroscopic dispersion.
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Micro- and nanoscale motors are envisioned to be used
in numerous applications [1-4], including biosensing and
drug delivery in medicine [5], flow control and mixing in
microfluidics [6], and cargo transport and assembly in
nanotechnology [7]. A prototype motor consists of a bimet-
allic rod that can be propelled in a fluid of chemical fuel
[8]. Recent studies have focused on the synthesis of rods
with different material compositions to propel them in
various fuels [9-13]. Trajectories with linear, circular,
and undulatory patterns have been observed near surfaces
[10,14,15], and the particle shape has been recognized as a
factor [16—18], but a general understanding of how micro-
scopic features of swimmers affect macroscopic behavior
is not yet complete.

Here we show that, while even a slight curvature in
chemically propelled rods gives them curved orbits when
moving on a surface, it also gives them two stable states
between which they can stochastically switch due to
thermal fluctuations. This greatly affects their dynamics,
specifically their directional changes, displacement, and
diffusion over time. We develop, without fitting parame-
ters, a two-state Fokker-Planck description from which we
make analytical predictions of ensemble quantities such as
the persistence time and particle diffusivity. These quanti-
ties are measured in our experiments and validate our
theory, which is also used to make predictions of aggrega-
tion in low-fuel regions.

We fabricated rods of length L =2.0 = 0.2 um and
diameter 2R = 0.39 = 0.04 um [Figs. 1(a) and 1(b)],
consisting of platinum (Pt) and gold (Au) segments, by
electrochemical deposition in anodic aluminum oxide tem-
plates using a previously reported method [19,20]. These
rods move autonomously in hydrogen peroxide (H,O,)
solutions through a local flux of ions which arises from
two paired redox reactions on the metal surfaces [21]. The
positions of ~100 rods, moving independently along the
surface of a microscope slide, were tracked at 9 frames per
second for up to 150 seconds (10X objective lens of a Nikon
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Eclipse 801 microscope and Lumenera Infinity 1-3 camera)
to analyze trajectories. Varying the ratio of Pt to Au between
1/3 and 3 did not affect any of the results reported here, but
increase of the H,O, concentration C (up to 25%) gave an
approximately linear increase in swimming speed.

By altering C and thereby the speed, the trajectory
patterns become strikingly different. Unlike slow rods,
which change direction stochastically through thermal
fluctuations [Fig. 1(c)], fast rods tend to change direction
coherently in circular orbits [Fig. 1(d)]. Both clockwise
(CW) and counterclockwise (CCW) orbits are observed
with various radii depending on each rod, as shown by
summing the path curvature along trajectories [Fig. 2(a)].
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FIG. 1 (color online). Structure and trajectory patterns of
Au-Pt rods. (a) Scanning electron microscopy image of
rods (Zeiss Merlin scanning electron microscope). The inset
shows the presence of Au and Pt segments confirmed by
energy-dispersive x-ray spectroscopy. (b) The rods are not per-
fectly axisymmetric in shape. Representative trajectories of
(c) slow rods (average speed U ~ 8 ums™') and (d) fast rods
(U ~ 39 ums™!) tracked over 15 seconds.
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FIG. 2 (color online). Turning and flipping rods. (a) Turning
number, defined as the cumulative sum of the path curvature
divided by 2, plotted for 20 fast rods (average speed
~38 ums~!). Open circles represent flips, defined to have
occurred when the sign of the path curvature switches and
then stays the same for at least three frames. (b) Frequency of
flips plotted against | k|, estimated for each rod by averaging the
absolute change in total curvature divided by the distance
traveled between flips. The solid lines are given by Eq. (1)
with hy =15, 10, 15 nm from left to right, respectively.
(c) Sketch of curved rods flipping between CW and CCW orbits.
(d) A straight rod moves along a series of straight paths. (e) A
slightly curved rod turns and flips. (f) A highly curved rod turns
without flipping.

Sign changes in the path curvature indicate that rods switch
spontaneously between moving in CW and CCW orbits.
The switches occur less frequently for rods moving in
tighter orbits [Fig. 2(b)].

To explore whether the orbits are caused by minor
imperfections in the rods, which include slight curvatures,
irregular interfaces between Au and Pt, and asperities at the
ends, we propose a simple theory assuming that the rods
are slightly curved. We consider a rod with constant cur-
vature k and a prescribed slip velocity along its elongated
body in the bulk fluid. By using the slender body theory for
a particle in Stokes flow [22] and imposing force-free and
torque-free conditions, a linear system can be obtained for
the position and orientation of the rod. Their solution
shows that the rod follows a curved path with curvature
k comparable to k. The slightly curved rods [Fig. 1(b)] and
their orbits [Fig. 2(a)] are consistent with & = 0.12 =
0.04 wm™! in this simplified theory.

Why do rods switch spontaneously between moving in
CW and CCW orbits? This curious phenomenon can be
explained by assuming that the metallic rods are moving
close to a horizontal surface. Unlike in the bulk fluid,
where the rods are free to rotate continuously about their
direction of motion, the presence of the surface restricts the
rods to lie on one side or the other [Fig. 2(c)] so as to

minimize the gravitational potential energy. Curved rods
can flip and switch sides only by rotating and lifting their
center of mass by a height Ak ~ kL?/24, which is about
20 nm for rods with typical curvature & ~0.12 um™!.
For synthetic microswimmers, thermal fluctuations are
sufficient to cause spontaneous flips by raising the
height from a base level hy. The flipping frequency has

the form

f = foe A, (1)

where f, ~ 6 s~! is the rotation rate around the axis of a
straight rod, estimated from the time scale of rotational
diffusion of a prolate spheroid of comparable size [23].
Equation (1) with iy ~ 10 nm shows that a slight curvature
in the rods significantly suppresses the flipping frequency
in agreement with our experimental data [Fig. 2(b)]. The
strong dependence of flipping on apparent rod curvature
is consistent with self-propelled rods moving at a height
ho ~ 10 nm above the substrate. This height has the same
order of magnitude as the expected sedimentation height of
passive rods in thermal equilibrium kzT/2mg ~ 40 nm,
where kjp is the Boltzmann constant, 7 is the room tem-
perature, m is the mass of the rod, and g is the gravitational
acceleration. However, such small distances cannot be
resolved by using optical microscopy. Perhaps, chemical
reactions and self-propulsion could change the effective
temperature of this out-of-equilibrium system and so
change the sedimentation height of self-propelled rods.
It would seem likely, though, that our curved rods are
no more than 20 nm above the surface for them to
show a flipping dynamics between two states as in our
observations [24].

What are the long-term implications of flipping? Minor
variations in rod curvature lead to major changes in trajec-
tory patterns [Figs. 2(d)-2(f)] and affect dispersion. To
gain quantitative insight into the long-term effects of flip-
ping, we formulate a two-dimensional model of flipping
rods with translational and rotational diffusion coefficients
D and D,, respectively. The difference in translational
diffusions along and across the rod axis is neglected for
simplicity. In the absence of thermal fluctuations, each rod
is assumed to translate with speed U in the axial direction
n = (cos#, sinf) and turn with angular speed U k. The rods
tend to follow paths with curvature « taking either of the
two values * k,, where the sign switches at a characteristic
rate f. The center of mass x = (x, y), the orientation angle
0, and the curvature k are evolved over time step At
according to the stochastic equations of motion

x(r + Ar) — x(1) = Un[0()]Ar + V2DArX, (2)
0(t + At) — 6(t) = Ux(t)At + 42D, A10, 3)

k(t + Ar) — k(r) = —2«k(1)B, 4
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where the components of X and O are random variables
with a standard normal distribution and B is a Bernoulli
random variable with success probability fAz. Up to 500
particles are simulated with various prescribed speeds U
and fixed parameter values D = 0.3 um?s™!, D, =
1.0s7!, and k) = 0.12 wm™!, which are all estimated
from our experiments, and f = 0.9 s~! estimated by using
Eq. (1). The results are incorporated into Figs. 3(b) and 4(b)
described below. To study the ensemble behavior, we
represent the configuration of rods by the probability dis-
tribution functions [25] V. (x, 6, * ko, ), which evolve
according to the Fokker-Planck equation associated with
the Langevin equations (2)—(4). The evolution is described
by the conservation equation

EA e a . . _
a1 +V (X‘I’i)+a—9(0\l’t)—f(\l’; Vo), (5

where x=Un(0) — DVlogV¥., 6 =*Uky—D,Z;log¥ .
Important ensemble quantities, such as the expected
change in orientation and mean-square displacement
(MSD) over time, can be derived analytically from
Eq. (5) and compared directly with our experiments.

This model is different from earlier models of synthetic
microswimmers, which are commonly assumed to undergo
a succession of straight directed runs followed by random
changes in direction [15,26]. Our model is similar to that
for “circle swimmers” [27] experiencing an effective
Lorentz force, except that in ours the angular velocity
switches between two discrete values. This same switching
process was formulated independently [28] in a model of
the zooplankton Daphnia [29], and a particular general-
ization of this model was developed recently to calculate
effective diffusivity [30].

To test our model against experiments, first consider the
time-dependent expected change in orientation of three
sets of rods moving at different speeds [Fig. 3(a)]. The
experimental data decay over time in good agreement with
our prediction
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FIG. 3 (color online). Measured and predicted changes in the
direction of self-propelled rods. (a) Correlation in the direction
of three sets of rods moving at different speeds U. Experimental
data (symbols) have error bars representing lower and upper
quartiles. Corresponding predictions (lines) are given by Eq. (6).
(b) The persistence time and its error bars decrease with speed in
our experiments (circles), simulations (crosses), and theory
(solid line).

(cosAB)(t) = Re{c e 7+t + c_e 711}, (6)

where ()= [, dA, [37dO(V, +W¥_), 0. =1+D,/
FEVA ce=0FA712)/2, and A =1— (Uky/f)*
Equation (6) is obtained by solving a linear system
of ordinary differential equations for (cosA@)(r) and
(K sinAB)(r), which follow from multiplying Eq. (5) by
cosAf and separately by ksinAf and then integrating
over 6 and x. For fast rods with A <0, the real part of
Eq. (6) is taken and exhibits oscillatory behavior. The time
when (cosA@) decays to e~ ! gives a measure of the typical
time needed for rods to change orientations (persistence
time), which is shown in Fig. 3(b) for rods moving at
various speeds in our experiments, simulations, and theory.
The persistence time decreases systematically with smaller
error bars at higher speeds, which can be explained only by
assuming that the rods are curved. Contrary to slow rods,
which change direction stochastically through thermal
fluctuations, sufficiently fast rods change direction deter-
ministically and more rapidly because of their intrinsic
curvature.

The model is tested further by measuring the time-
dependent MSD of rods with different speeds, controlled
by varying C in six different experiments [Fig. 4(a)]. Self-
propelled rods exhibit nearly ballistic behavior over short
times and diffusive behavior over times longer than about a
second, all in excellent agreement with our prediction

(AX2)(r) = 4Dt + Reld. (e /' — 1) + d_(e=" /' — 1)},
7
where d+ = (1 = )(1 ¥ A71/2) /(0% k3) and

_ XD, +2
D=b+— LD+
2U*kg + 2D, (D, + 2f)

8)

is the effective diffusion coefficient or diffusivity.
Equation (7) is obtained by solving a linear system of
ordinary differential equations for (x?)(¢), (x - n)(¢), and
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FIG. 4 (color online). Measured and predicted diffusion of
rods. (a) MSD of rods moving at various speeds in six different
experiments (symbols). Predictions (lines) are given by Eq. (7).
(b) The diffusivity saturates with increasing speed in our experi-
ments (circles), simulations (crosses), and theory (solid line).
Theoretical curves are given by Eq. (8) with xy = 0 for no
curvature and f = 0 for no flipping.
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FIG. 5 (color online). Long-time swimmer concentrations C
(symbols and solid lines) in chemical fuel gradients. Swimming
speeds U(x) (blue dashed lines) are prescribed and range from
(a) 0 to 40 or (b) 40 to 80 wms™~'. Symbols show simulations of
straight and curved rods 30 minutes after initiating with uniform
distribution Cy. Solid lines are corresponding numerical solu-
tions to the steady form of Eq. (5).

(kx - dn/d)(t), which are all derived from Eq. (5) like in
the earlier derivation of Eq. (6). The diffusivity of rods
moving at various speeds is shown in Fig. 4(b), estimated
by averaging (Ax?)/4t for large times in our experiments
and simulations. The diffusivity is overestimated if the rods
are assumed to move in a series of straight paths [15,26]
and underestimated if the rods are assumed to turn without
flipping [27]. However, the data agree quantitatively with
Eq. (8) after incorporating the effects of flipping. The
diffusivity saturates with increasing speed, because faster
rods remain localized by completing more orbits, but our
model shows that the diffusivity can be enhanced with
more frequent flips.

Having been validated against experiments, our model
can be used to make predictions of how ensembles of
microswimmers migrate in spatially varying environments.
As an example, the long-term effects of a spatial gradient
in fuel concentration are demonstrated. Since the swim-
ming speed varies linearly with H,O, concentration, U is
prescribed as a function of space in our model, with U
increasing linearly in x from the origin to the boundaries at
x = =500 pwm (where periodic boundary conditions are
applied). Initially, 10000 particles are distributed uni-
formly in —500 < x, y <500 pm, and Eqs. (2)-(4) simu-
lated over long times. The particles are assumed to not
interact with each other. After a slow migration, swimmers
aggregate in the region of low fuel or diffusivity for
0=<U =40 ums~' [Fig. 5(a)]. Numerical solutions to
the steady-state form of Eq. (5), modified to account for
spatially varying swimming speed, show that the swimmer
concentration increases with lower diffusivity, in agree-
ment with an earlier model of bacterial chemotaxis [31].
The long-time distribution of swimmers is very different
for40 = U = 80 ums™!, which has the same gradient but
a higher baseline [Fig. 5(b)]. Straight rods still aggregate
but only weakly in the region of low fuel. The distribution
of curved rods remains more uniform, because their diffu-
sivity saturates at higher speeds.

Whether these predictions of migration and aggregation
are correct remains an open question. Experiments using

an H,0,-soaked agarose gel to set up a gradient have
shown aggregation of swimmers at the gel after many
hours [32]. This observation apparently disagrees with
our predictions but may well be complicated by additional
effects, such as large-scale gradient-driven flows [33] and
localized changes in fluid viscosity. Further experiments
using microfluidic techniques would shed more light on the
possible mechanisms of aggregation in chemical gradients.

Near confining boundaries, swimmers with a tendency to
turn are expected to aggregate near walls as they slide along
the walls for prolonged periods [27]. While this effect may
be useful for sorting curved rods according to their level of
curvature, their stochastic flips must have a large effect on
how they interact with walls and navigate through geo-
metrically complex environments. Understanding how
synthetic swimmers perform according to their shape,
size, and environment may offer new directions to effi-
ciently design, control, and operate microscopic devices
in medical and technological applications, as well as serve
as templates for new smart materials.

While synthetic biomimetic systems are worthy of study
in their own right, it is often argued that they can shed light
on their biological counterparts by being simpler and lack-
ing the unknowns associated with behavior. Perhaps this is
such a case. As implied already, the zooplankton Daphnia
swims with angular velocity switching between two domi-
nant values, and gliding organisms like the crescent-shaped
Toxoplasma gondii can flip the body repeatedly [34], both
of which move like the flipping rods described herein
(despite fundamental differences in the mechanism of
motility). An important aspect of our synthetic system is
that the driving stochasticity can be precisely characterized
as arising from thermal fluctuations with energy scale kgT.
Their relative contribution to the dynamics can be tuned so
as to systematically explore the ensemble dynamics from
stochastically dominated to more deterministic regimes.
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