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Microorganisms navigate through complex environments such as biofilms and mucosal tissues and

tracts. To understand the effect of a complex medium upon their locomotion, we investigate numerically

the effect of fluid viscoelasticity on the dynamics of an undulating swimming sheet. First, we recover

recent small-amplitude results for infinite sheets that suggest that viscoelasticity impedes locomotion. We

find the opposite result when simulating free swimmers with large tail undulations, with both velocity and

mechanical efficiency peaking for Deborah numbers near one. We associate this with regions of highly

stressed fluid aft of the undulating tail.
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Mammalian spermatozoa encounter complex, non-
Newtonian fluid environments as they make their way
through the female reproductive tract. The successful
sperm must swim through cervical mucus, progress
through narrow, mucus-containing lumen in the oviduct,
as well as eventually penetrate the cumulus layer of the
oocyte complex [1,2]. Viscous environments that contain
suspended microstructures are also encountered by bacte-
rial cells as they migrate through biofilms or mucosal
tissues [3]. Microorganism motility has motivated research
in biological fluid dynamics for more than half a century,
beginning with Taylor’s classical analysis of swimming by
an infinite sheet [4]. While much progress has been made
in understanding the fundamental physics of bacterial and
flagellar motion in a Newtonian fluid, the fundamental
physics of microorganism motility in a non-Newtonian
fluid, even with a prescribed beat form, is only beginning
to be uncovered [5–7].

Relating complex biological fluids to viscoelastic fluid
models can be difficult. A wide range of relaxation times
(1–10 s), elastic moduli (0.1–10 Pa), and viscosities
(0:1–10 Pa s), have been reported for cervical mucus (see
Lauga [5]). In a very recent study of sperm motility in high
viscosity medium, Smith et al. [8] reexamines the data of
Wolf et al. [9] for cervical mucus and estimates a yet lower
relaxation time of 0.03 s. When combined with reported
sperm beat frequencies of 10–50 Hz this gives an Oð1Þ or
higher estimate of the Deborah number.

For the idealized cases of small-amplitude undulations
of an infinite sheet [5] and an infinite waving cylinder [7] in
fading-memory viscoelastic fluids, it has been shown that
swimming speeds are decreased by viscoelastic effects
relative to a Stokesian Newtonian fluid. These simple
swimmers, with no beginning or end, introduce restrictive

symmetry to the coupling of fluid and body. We study a
free finite sheet swimming in a Stokes Oldroyd-B fluid.
Because of decreased microtubule sliding near the base of
the axoneme, sperm swim with accentuated amplitude at
the distal (tail) end, which we model in the sheet’s pre-
ferred kinematic waveform. Our numerical approach is
based on the immersed boundary method [10], and is
validated by comparison with the small-amplitude analysis
of Lauga [5] for an infinite sheet. In fact, our calculations
show that his analytical results agree very well with the full
system even for large-amplitude waves. However, for
swimming ‘‘free’’ sheets (i.e., with free head and tail) we
find that for accentuated tail motions the swimmer moves
more quickly and efficiently atOð1ÞDeborah numbers than
does the corresponding swimmer in a Newtonian fluid.
This is the regime where the relaxation time of the fluid
matches the stroke frequency of the swimmer. This result is
opposite that for infinite sheets, and the difference lies, we
believe, in the appearance of regions of highly strained
viscoelastic fluid sitting aft of the free swimmer’s tail. This
stress concentration appears to restrict backwards slippage
of the free swimmer during parts of its stroke, thus increas-
ing the average speed. We also study the development of
viscoelastic stresses in the approach to steady swimming.
The model.—This is a coupled fluid-body system: the

body shape dynamics induce fluid stresses. These create
the fluid velocity that moves the body and may also interact
with the shape dynamics. Consider a flexible sheet of
length L, immersed in a 2D fluid, along which moves a
wave of shape deformation with temporal period �f. For an

incompressible Stokesian flow, the fluid stress tensor S and
velocity u satisfyr � S ¼ 0 andr � u ¼ 0. To describe the
fluid, we employ the Oldroyd-B (OB) viscoelastic model
[11] for which S ¼ SN þ Sp, with SN the usual Newtonian
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stress tensor and Sp the extra stress generated by the

transport and distension of an immersed polymer field. In
adimensional form after scaling lengths by L and time by
�f, the fluid is described by the Stokes-OB equations:

�rpþ�u ¼ ��r � Sp � f and r � u ¼ 0; (1)

DeSr
p ¼ �ðSp � IÞ; (2)

with Sr � @Sp=@tþ u � rSp � ðruSp þ SpruTÞ the

upper convected time derivative. Here De ¼ �p=�f is the

Deborah number, with �p the polymer relaxation time. The

parameter � measures the relative contribution of the
polymeric stress to momentum balance. The product
�De is the ratio of polymer to solvent viscosity so that
given a particular working fluid, its value is fixed indepen-
dent of experimental conditions. For either � fixed or �De
fixed, the limitDe ! 0 yields a Newtonian fluid, in the first
case with unit dimensionless viscosity, and in the second,
with viscosity 1þ �De.

The immersed sheet � is taken to be a (nearly) inexten-
sible surface along which a bending wave is traveling. The
sheet position is given byXðs; tÞ, with s both the arclength
and material coordinate. To produce a shape change, the
sheet is taken to be a generalized Euler elastica whose
elastic energy is given by E ¼ Ebend þ Etens where

E bend ¼ E

2

Z 1

0
ð�ðsÞ � ��ðs; tÞÞ2ds: (3)

Here �� is a specified target curvature, the pursuit of which
drives the dynamics, and E is an adimensional rigidity,
which helps set the time scale for that pursuit. A tensile
energy Etens is also included and its multiplier is set suffi-
ciently high that stretching and compression between ma-
terial points is severely limited, making the sheet
effectively inextensible. The sheet couples to the fluid
through two conditions. The first is that the elastic and
tensile energies generate a stress jump within the fluid
across �. That is, ½Sj� � n̂� ¼ g where n̂ is the normal to
�, and g is a stress generated variationally from the energy
as g ¼ ��E=�X. The second requirement is the no-slip
and kinematic boundary conditions that specify that the
velocity u� of the sheet is equal to the fluid velocity on
either side of the sheet, that is, u�ðs; tÞ ¼ uþðXðs; tÞ; tÞ ¼
u�ðXðs; tÞ; tÞ.

To solve this system numerically we follow the approach
of Fauci et al. [12], who first used the immersed boundary
method to study sheets swimming in a Newtonian fluid. We
simulate both sheets that are spatially periodic, so as to
compare with previous analytical results, and ‘‘free
swimmers.’’

Results.—We first check our numerical results against
the small-amplitude analysis of Lauga ([5]; see also Fu
et al. [7] for a related analysis) who considered a periodic
sheet immersed in a Stokes-OB fluid. Lauga showed, as
Taylor did for a Newtonian fluid [4], that swimmer speed

scales with the square of wave amplitude. Further, Lauga
showed that the ratioRðDeÞ of the ‘‘OB swimmer’’ speed to
that in the Newtonian fluid is always less than one; i.e., the
OB swimmer is always slower. To compare, we simulated a
spatially periodic sheet with target curvature ��ðs; tÞ ¼
�Ak2 sinðks�!tÞ, where kwas chosen so that periodicity
was satisfied. The initial polymeric stress was taken as
isotropic (Sp � I). The dynamics was then simulated to

long times when the dynamics became steady.
We recover Lauga’s asymptotic results in detail. For a

small-amplitude swimmer at various De, Fig. 1(a) shows
the computed speed ratio RðDeÞ in comparison with
Lauga’s formula (for this test we set �De ¼ 1=2). We
also recover the approach of swimmer speed to its time-
asymptotic value. This is shown in the inset of Fig. 1(a) for
De ¼ 1 for various wave amplitudes. This shows the re-
laxational dynamics is oscillatory, and that the deviation of
time-asymptotic speed from the limiting ratio is linear in
amplitude. Figure 1(b) shows the late-time distribution of
stress—here contours of trðSpÞ—around the swimmer

[trðSpÞ represents the mean-square distension of the im-

mersed polymer coils]. We also find that as the wave
amplitude is increased out of the small-amplitude regime,
the ordering of Newtonian swimmer speed to OB swimmer
speed is maintained, with the Newtonian swimmer the
faster.
We find very different behavior for ‘‘free’’ swimmers

executing large-amplitude deformations. Being freed from

FIG. 1 (color online). (a) The speed ratio RðDeÞ ¼
UOB=UNewt. The curve is the theoretical prediction of Lauga
[5], and the diamonds are the ratio from our long-time numerical
simulations. The inset shows the temporal relaxation of this ratio
from our simulations for three different wave amplitudes at
De ¼ 1. (b) A periodic sheet swimming to the right in a
viscoelastic fluid with De ¼ 1 and amplitude A ¼ 0:125, simu-
lated to long times. The contours are of trðSpÞ.
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the constraint of periodicity for the sheet, there is a broader
range of possible stroke dynamics. Here we illustrate with
simulations using ��ðs; tÞ ¼ �Ak2ðs� 1Þ sinðksþ!tÞ,
which produces a left-moving traveling wave that is of
increasing amplitude towards the tail. Figure 2(a) shows,
for A ¼ 0:05, the horizontal displacement of the center of
mass for free swimmers as De is varied, and � held fixed at
1=2. While the net displacement per stroke is always right-
wards, note that the swimmer has a period of backward
displacement, unlike the infinite sheet. Since the initial
polymeric stress distribution was again isotropic, the initial
fluidic response to swimmer motion is Newtonian and the
swimmers all have the same initial velocity. However, as
the polymeric stresses develop, the OB swimmers accel-
erate, and the Newtonian swimmer emerges as the slower
at intermediate times. From there, the OB swimmers each
relax to steady swimming on an OðDeÞ time scale, and a
new ordering emerges as is apparent from the displacement
curves (we run the simulations to at least t ¼ 4De). At long
times, the De ¼ 1 swimmer emerges as the fastest, being
about 25% faster than the Newtonian swimmer.

The steady-state velocity ratio (relative to Newtonian) is
plotted in Fig. 3, for both � held fixed at 1=2, and for
�De ¼ 1=2. In either case, the velocity shows a peak
around De ¼ 1 and a monotonic decrease for larger De.
As De is a dimensionless time scale for the decay of
viscoelastic stresses, it is interesting to note that the maxi-
mum speed emerges when the Deborah number is matched
to the period of the swimming stroke. Swimmer speeds are
expected to decay at large De (at least for fixed �) since as
De ! 1 the elastic stresses have no decay time scale. In

that limit, the elastic stress depends upon material strain
relative to its initial configuration. Hence, the stretching of
material elements caused by a body progressing forward
will ultimately create sufficient strain, and hence stress, to
impede further progress. Close examination of the dis-
placement curves in Fig. 2(a) (see inset) also shows that
at higher De the fluctuating component becomes smaller.
Figure 2(b) shows the swimmer positions and shapes for

De ¼ 0 (Newtonian), 1, and 5, at the final time t ¼ 20. The
De ¼ 1 swimmer is the leader, with the De ¼ 0 and 5
swimmers lagging and nearly tied despite the latter’s sub-
stantially slower speed (see Fig. 3). However, this posi-
tional tie is only due to the greater speed of the
OB swimmer at earlier times, which decreased as the
polymeric stresses approached their steady behavior.
Figure 2(b) also shows that we are not solving a strictly
kinematic swimming problem wherein the shape dynamics
is rigidly prescribed, but are instead determined by the
interaction of fluid stresses and the forces internal to the
swimmer. By the providential near tie of the swimmers we
are able to make a visual shape comparison among them,
and we see that the stroke profile for the De ¼ 5 swimmer
is considerably flattened at the tail, in comparison with the
other two cases.
Figure 4 examines the spatial structure of the viscoelas-

tic stresses during the swimming dynamics. The polymeric
stress tensor Sp is symmetric and positive definite, and so

has two positive eigenvalues, �1 and �2, and corresponding
orthogonal unit eigenvectors p1 and p2. For De ¼ 1, in the
fluid surrounding the swimmer, we have plotted ellipses
that visually represent the geometric structure of Sp. The

axes of each ellipse are aligned with p1 and p2, and the axis
lengths are scaled by �1 and �2. This visual diagnostic
reveals how the polymer coils are being distended by the
fluid flow. For example, trðSpÞ ¼ �1 þ �2 is an invariant of

Sp and represents mean-square distension of the immersed

polymer coils.
Figure 4(a) is at time t ¼ 19:73, well after the swimmer

has entered steady-state motion, and very near the time of
peak forward velocity, which is nearly the same as for the
Newtonian swimmer. A strong polymer stress concentra-

FIG. 2 (color online). (a) The location of the x component of
the free swimmer center of mass, with A ¼ 0:05, as a function of
time for various values of De. Here, Sp;0 ¼ I, and the final time

is 20, or 4 � De for the largest value of De. The decreasing order
in final displacement (t ¼ 20; see inset) is De ¼ 0:5, 1, 2, 3, 0, 4,
5. (b) The shapes and displacement of three swimmers after 20
periods.

FIG. 3. As a function of De, the ratio RðDeÞ of average free
swimmer speed to that of the Newtonian free swimmer. Inset: An
estimate of swimming efficiency, Eff ¼ U2=P, versus De.
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tion sits to the aft of the swimmer, associated with the
strong straining of the fluid by the motion of the tail. At this
time, the backward moving wave is reaching the end of the
swimmer, and the tail is moving somewhat upwards.
Figure 4(b) is at t ¼ 20, about one-quarter stroke later
(also interpretable as being one-quarter stroke earlier,
with the figure flipped vertically). At this time, the rotation
of the body about the tail has created a strong, anisotropic
stress distribution there. An important fact is that while the
swimmer is slipping backwards at this time, it is not
slipping backwards as much as the Newtonian swimmer.

Efficiency is also an important aspect of swimming. For
steady-state swimming we find that time-averaged input
power, P ¼ hR� dsg � u�i, is nearly independent of De.

This suggests that the point of maximal speed with respect
to De is also the point of maximal efficiency. This is borne
out by Fig. 3 whose inset plots the mechanical efficiency
estimate Eff ¼ U2=P, whereU is time-averaged x velocity
of the center of mass.

Discussion.—The main result of our study is that visco-
elastic fluid response can actually increase the speed and
efficiency of a simple undulatory swimmer. This increase
is associated with highly strained fluid, sitting aft of the
tail, which may be releasing hooplike elastic stresses.
While our study considers free swimmers and a full visco-
elastic flow model, it remains idealized. Our swimmer is a
two-dimensional sheet, not a three-dimensional swimmer
like a spermatozoa. While nonlinear, the Oldroyd-B model

is relatively simple, and is most appropriate for modeling a
simple ‘‘Boger’’ fluid composed of a dilute suspension of
high molecular weight polymers in a high viscosity sol-
vent. While it captures elastic responses, it does not capture
shear thinning, nor the effects of finite length of distended
polymers. It is unlikely that biological fluids such as mucus
are so easily characterized. From the microscopic deriva-
tion of Oldroyd-B [11], the parameter�De is interpreted as
the ratio of polymer to solvent viscosity, which for many
synthetic Boger fluids is an order one quantity (see, e.g.,
[13]), as we take it here.
There are aspects of experimental observation that we

reproduce. Studying sperm swimming in a synthetic vis-
coelastic fluid medium Smith et al. [8] also find a greater
displacement per beat (essentially our nondimensional
velocity) than in a less viscoelastic medium. That said,
this increase is more dramatic than in our study, with real
spermatozoa displacing more per beat by a factor of 2–3.
This brings up another important point: real stroke forms
(and frequencies) differ markedly depending upon the
response properties of the medium, with wave forms being
more concentrated near the tail for viscoelastic media (as
we have tried to emulate here) [8,14]. True swimming
wave forms reflect a balance between internally generated
forces and the fluidic response and have been subject of
study in Newtonian fluids [6,15].
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FIG. 4. Snapshots of the free swimmer for De ¼ 1 at late
times. The ellipses represent the (symmetric) polymeric stress
tensor Sp. The major axis is aligned with principal eigenvector

of Sp, with length scaled on the associated eigenvalue. The

minor axis is associated with the second eigenvector-value pair
of Sp. As such, it represents the directions and degree of

distension of the polymer field. The vectors are the fluid veloc-
ities on �.
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