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Abstract

The dynamics of slender filaments or fibers suspended in Stokesian fluids are fundamental to understanding many

flows arising in physics, biology and engineering. Such filaments can have aspect ratios of length to radius ranging from

a few tens to several thousands. Full discretizations of such 3D flows are very costly. Instead, we employ a non-local

slender body theory that yields an integral equation, along the filament centerline, relating the force exerted on the body

to the filament velocity. This hydrodynamical description takes into account the effect of the filament on the fluid, and is

extended to capture the interaction of multiple filaments as mediated by the intervening fluid. We consider filaments

that are inextensible and elastic. Replacing the force in the slender body integral equation by an explicit expression that

uses Euler–Bernoulli theory to model bending and tensile forces yields an integral expression for the velocity of the

filament centerlines, coupled to auxiliary integro-differential equations for the filament tensions. Based on a regularized

version of these slender body equations that is asymptotically equivalent to the original formulation, we construct a

numerical method which uses a combination of finite differences, implicit time-stepping to avoid severe stability con-

straints, and special quadrature methods for nearly singular integrals. We present simulations of single flexible fila-

ments, as well as multiple interacting filaments, evolving in a background shear flow. These simulations show shear

induced buckling and relaxation of the filaments, leading to the storage and release of elastic energy. These dynamics

are responsible for the development of positive first normal stress differences, commonly associated with visco-elastic

fluids that are suspensions of microscopic elastic fibers.

� 2003 Elsevier Inc. All rights reserved.
1. Suspension of fibers/filaments

The dynamics of flexible fibers or filaments 1 immersed in a fluid are important to understanding many

interesting problems arising in biology, engineering, and physics. For example, flexible fibers make up the

micro-structure of suspensions that show strongly non-Newtonian bulk behavior, such as elasticity, shear-
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thinning, and normal stresses in shear flow [13,24]; micro-organisms utilize for locomotion the anisotropic

drag properties of their long flexible flagella [6]; rheological measurements have been used to probe the

biophysical properties of filament-like biological polymers such as actin [10]. The dynamics of flexible
filaments are also relevant to understanding soft materials. Liquid crystal phase transitions lead to the study

of growing elastic filaments, [27,32], while solutions of worm-like micelles have very complicated and in-

teresting macroscopic behavior [5,19,24]. In all these problems, the filaments have large aspect ratios (length

over radius), ranging from order 10 to 1000 for natural to synthetic fibers, and up to many thousands in

biological settings.

From this list of examples, it is also plain that we are concerned here with systems where inertia of both

fluid and filament can be neglected, i.e. very low Reynolds number flows. Even so, this particular class of

problems is difficult to solve accurately with a grid based method. To do so rigorously, one would need to
solve appropriate elastic equations in the regions occupied by the filaments, fluid equations in the rest of the

domain, while connecting the two through appropriate boundary conditions on velocity and stress. Due to

these difficulties, several approximate methods have been developed.

One such class are the so-called bead-models. Here, the filament is modeled as a string of spherical beads,

possibly linked by inextensible connectors. The aspect ratios are typically moderate, with the dynamics

based upon moment and force balances and with the influence of the fibers on the flow field neglected

[34,36]. Variants of bead models have been applied to suspensions of rigid fibers (e.g. [8,36]) and of flexible

fibers (e.g. [22,34]). The treatment of non-local interactions varies from considering only lubrication forces
[36], from bead–bead interactions treated the same way regardless of whether the beads belong to the same

or different fibers [22], to using a slender body approximation to account for non-local interactions between

rigid rods [8].

The immersed boundary method [28] has also been applied to this class of problems. In this method, a

filament is discretized with connected Lagrangian markers, and their relative displacements by fluid mo-

tions are used to calculate the filament�s elastic response. Filament forces thus calculated are then dis-

tributed onto a background grid covering the computational domain, and used as forces acting upon the

fluid, thus modifying the surrounding fluid flow. Stockie [35] used an immersed boundary method (at
moderate Reynolds number) to simulate a single ‘‘filament’’ buckling in a linear shear-flow. In his treat-

ment, the filament was treated as an infinitely thin elastic boundary in a two-dimensional flow. The filament

was discretized using 40–80 Lagrangian markers, but the number of background grid points over the length

of the filament was sometimes as low as 7. In this case, the fiber width is an artificial numerical width only

that depends on the numerical discretization. If the fiber is to have a physical width, a fiber structure must

be constructed from a bundle of interwined elastic boundaries, see [25]. While widely applicable, a general

difficulty with the immersed boundary method is the current lack of efficient schemes for implicit time-

stepping so as to ameliorate the time-step constraints from elastic and tensile forces of the filament [26].
A very different approach is based on slender body theory, which exploits the large aspect ratio of the

fibers by using the slenderness ratio, e ¼ r=L (r is a fiber radius and L is a fiber length) as an expansion

variable. The simplest and most popular version is the leading-order local drag model which gives a local

relation between the velocity of the filament centerline and the force per unit length, f, that the filament

exerts on the fluid

8plðxt �UÞ ¼ cðIþ ŝ ŝÞf: ð1Þ

Here, l is the fluid viscosity, U is a given background flow, ŝ is the tangent vector to the centerline, ŝŝ is the

dyadic product, and c � ln e�1. A central example is an elastic filament where, for example, f ¼ �Exssss þ g
with E the bending rigidity, for which the dynamics is then given by a fourth-order PDE. Goldstein and

collaborators [11,12] have used versions of Eq. (1) to investigate the relaxational and forced dynamics of

stiff polymers. In the presence of a background shear flow, Becker and Shelley [4] used a local drag model to

study the flow induced buckling of a single elastic filament in the plane, and showed that instability to
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buckling was associated with generation of normal stress differences. On the numerical side, we see from the

local model with elastic response that the dynamics involve strong time-stepping constraints. Such con-

straints are also found in less approximate formulations.
The primary appeal of using a local drag model lies in its reduction of filament/fluid interaction to a

relatively simple equation on the filament centerline. However, the local drag model neglects non-local

hydrodynamic interactions, and while such interactions are actually of higher order in e, they are only

weakly separated from the leading order term by a factor logarithmic in e (i.e. the next-order terms in Eq.

(1) are Oð1Þ). Local drag models do not include interactions mediated by the intervening incompressible

fluid, be they from the filament itself or from other filaments and structures in the fluid.

Keller and Rubinow [23] have developed a non-local slender body approximation that captures the

global effect on the fluid velocity arising from the presence of the filament, making use of the theory of
fundamental solutions for Stokes flow. Their approach yields an integral equation with a modified Stokeslet

kernel on the filament centerline that relates the filament forces to the velocity of the centerline. Johnson

[21] added a more detailed analysis and a modified formulation that included accurate treatment of the

filament�s free ends, yielding an equation that is asymptotically accurate to Oðe2 log eÞ. G€otz [14] also de-

rived a slender body approximation, and performed a detailed analysis of the case of straight filaments, and

established a connection of this integral equation operator with Legendre polynomials. The major differ-

ence to local drag models is that this non-local approximation takes into account the influence of the fil-

ament on the flow field.
Shelley and Ueda [32,33] were the first to design a numerical method based on a non-local slender body

approximation for simulating flexible filaments. Their interest was understanding the dynamics of a flexible

filament growing everywhere along its length, motivated by observations of phase transitions in smectic-A

liquid crystals wherein thermodynamic and fluid dynamic effects compete to form space-filling patterns.

Their formulation and numerical methods relied strongly on the assumption that the filament was closed,

i.e. had no free ends, and that the filament dynamics were constrained to a plane in 3D space.

In this work, we consider multiple, interacting slender filaments with free ends in a three-dimensional

Stokes flow. For Stokes flow, boundary integral methods can be employed to reduce the three-dimensional
dynamics to the dynamics of the two-dimensional filament surfaces, [30]. Using slender body asymptotics,

this can be further reduced to the dynamics of the one-dimensional filament centerlines.

The result is a non-local slender body formulation that includes the effect of fluid–filament interactions,

as well as filament–filament ones (as mediated by the fluid). We develop a numerical method based on this

theory that allows for simulating highly flexible fibers. Since the three-dimensional problem at hand is

reduced to a set of coupled one-dimensional problems on each of the filament centerlines, the number of

discretization points needed for a desired resolution is much smaller than it would be for a grid based

method, such as the immersed boundary method, yielding a lower computational cost. Another important
fact is that the framework is suitable for introducing a semi-implicit time-stepping scheme, eliminating the

severe constraint on the time-step size arising from the elasticity. Unlike the bead-models, we separate our

formulation of the problem from its specific numerical treatment. This allows us to do resolution studies to

check the quality of our discretization.

In Section 2, we briefly review the non-local slender body theory, and give our formulation of the

problem. The filaments are assumed to be inextensible and to have finite bending rigidity, and the fiber

inextensibility generates an auxiliary integro-differential equation for the fiber tension. An analysis for

straight filaments shows that the original formulation of the slender body equations is not suitable for
numerical simulations (see Appendix B), and an appropriate regularization that does not change the the

asymptotic accuracy of the formulation is introduced in Section 2.4.

We further develop numerical methods for simulating filament dynamics, discussed in Section 3. Our

approach is based on second-order divided differences for spatial derivatives, combined with special

product integration methods that reflect the nearly singular nature of the integral operators (Section 3.1).
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Despite the presence in the dynamics of terms with many spatial derivatives, stable time-stepping with only

a first-order constraint on the time-step size is achieved by a mixed explicit/implicit treatment of the dy-

namics (Section 3.2). Several other issues are discussed, such as imposing spatial periodicity in our simu-
lations, the proper treatment of filament interactions, and demonstrating second-order convergence in our

simulations. We present illustrative numerical simulations for the dynamics of a single filament, and for 25

interacting filaments, set within background shearing flows (Sections 4.1 and 4.2).
2. Problem formulation

2.1. Non-local slender body approximation

The flows we are considering are at very low Reynolds numbers, so it is appropriate to consider the

Stokes equations. Denote the velocity field by uðxÞ, the pressure by pðxÞ, and let fðxÞ be a force acting on

the fluid, where x ¼ ðx; y; zÞ 2 R3. The Stokes equations read

rp � lDu ¼ f in X;
r � u ¼ 0 in X;

where l is the viscosity of the fluid.

Now, assume we have a filament in the flow, and let C denote its surface and uC its surface velocity. We
impose the no-slip condition on C and require that far away uðxÞ is equal to a background velocity U0ðxÞ,
also a solution to the Stokes equations. Hence,

u ¼ uC on C; u ! U0 for kxk ! 1:

In the case of several filaments this can be generalized by considering the union of all filament surfaces, and

imposing no-slip conditions thereon.

A full boundary integral formulation for this problem would yield integral equations on the surfaces of

the filaments [30]. For slender filaments, such a formulation would be very expensive to solve numerically.

Instead, we use the filament slenderness to reduce the integral equations to the filament centerlines. This is
done using fundamental solutions to the Stokes equations.

One such fundamental solution is the Stokeslet. If f ¼ dðxÞei, with ei the unit vector in direction i, then
uðxÞ ¼ !ðx; 0Þei is a solution to the Stokes equations, with the Stokeslet tensor given by

!ðx; x0Þ ¼
1

8pm
Iþ R̂ R̂

jRj ;

where I is the identity tensor, R ¼ x� x0 and R̂ the unit vector R̂ ¼ R=jRj.
In addition to the Stokeslet, higher order fundamental solutions can be constructed by differentiation.

The so-called doublet is defined as

!2ðx; x0Þ ¼
1

2
D!ðx; x0Þ ¼

1

8pm
I� 3R̂ R̂

jRj3
:

A non-local slender body approximation can be derived by placing fundamental solutions (Stokeslets and

doublets) on the filament centerline, then applying the technique of matched asymptotics to derive the

approximate equation. This step is very involved since it requires an inner as well as an outer expansion,

and then a reformulation of the outer expansion in the inner variables, so that a matching can be made. The
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formulation is closed by enforcing a no-slip condition on the filament surface, assuming the velocity to be a

function of arclength only, i.e. that there is no angular variation in filament velocity. In all this, higher order

terms in the slenderness parameter e have been neglected, and the final equation for the velocity of the
filament centerline is of order Oðe2 log eÞ. This accuracy holds also for a filament with free ends, if the ends

are tapered [21]. For details on the derivation, see [14,21,23].

This yields an integral equation for the centerline of the filament, which includes the effect on the flow by

the presence of the filament.

2.2. The slender body equations

Let the centerline of a filament be parameterized by arclength s 2 ½0; L�, where L is the length of the
filament and let xðs; tÞ ¼ ðxðs; tÞ; yðs; tÞ; zðs; tÞÞ be the coordinates of the filament centerline. In the cases we

consider, the arclength s is a material parameter for the filament, so that it is independent of t.
Assuming that the filament does not reapproach itself, and that the radius of the filament is given by

rðsÞ ¼ 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðL� sÞ

p
, so that rðL=2Þ ¼ eL, a non-local slender body approximation [14,21] of the velocity of

the filament centerline is given by

8pl
oxðs; tÞ

ot

�
�U0ðxðs; tÞ; tÞ

�
¼ �K½f�ðsÞ � K½f�ðsÞ; ð2Þ

where f is the force per unit length on the filament. The local operator K is given by

K½f�ðsÞ ¼ ½�cðIþ ŝ ŝðsÞÞ þ 2ðI� ŝ ŝðsÞÞ�fðsÞ; ð3Þ

and the integral operator K½f�ðsÞ is given by

K½f�ðsÞ ¼
Z L

0

Iþ R̂ðs; s0ÞR̂ðs; s0Þ
jRðs; s0Þj fðs0Þ

 
� Iþ ŝðsÞŝðsÞ

js� s0j fðsÞ
!
ds0: ð4Þ

Here, Rðs; s0Þ ¼ xðsÞ � xðs0Þ, and R̂R̂ and ŝŝ are dyadic products, i.e. ðR̂R̂Þkl ¼ R̂kR̂l. The constant

c ¼ logðe2eÞ, c < 0, where e ¼ rðL=2Þ=L is the slenderness parameter. The operator K½f�ðsÞ is a so-called

finite part integral; each term in the integrand is singular at s0 ¼ s, and the integral is only well defined when

the integrand is kept as the difference of its two terms.

Note that the operators K and K depend on the shape of the filament, as given by xðs; tÞ, even though this
is not explicitly indicated in the notation. In Eq. (2), the operator �cðIþ ŝ ŝðsÞÞ is that arising in local

slender body theory. The remainder includes non-local corrections which capture the global effect on the

fluid velocity from the presence of the filament. Johnson [21] showed that with this specific choice of the

radius (rðsÞ ¼ 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðL� sÞ

p
), formula (2) is uniformly accurate all the way out to, and including, the end

points of the filament.

Now, let x be any field point, not on the filament. The fluid velocity UðxÞ in this point is approximated

by

8pl UðxÞð �U0ðxÞÞ ¼ �
Z L

0

Iþ R̂ðs0ÞR̂ðs0Þ
jRðs0Þj

"
þ e2

2

I� 3R̂ðs0ÞR̂ðs0Þ
jRðs0Þj3

#
fðs0Þ ds0; ð5Þ

where now Rðs0Þ ¼ x� xðs0Þ; see [14]. Note that the second part of the integral will be negligible at all but

very small distances from the filament.

Eq. (2) gives the equation of motion for one filament subject to a background flow, given that the force

acting on the filament is known. The equation for the velocity at a field point (5) tells us how the presence of
one filament contributes to the total velocity field. If there are more filaments, the contributions from these
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filaments simply add, due to the superposition principle for linear Stokes flow. Hence, the background flow

for a filament that is interacting with other filaments will simply be modified with the contributions from

the other filaments; the other parts of Eq. (2) will stay the same.
While the asymptotic accuracy of Eq. (2) is Oðe2 log eÞ, the formula for the velocity field (5) is only

accurate to OðeÞ. Formally, the equations for multiple interacting filaments are therefore accurate to OðeÞ,
even though the most important contribution for each filament, i.e. the one from the filament itself, is

computed to Oðe2 log eÞ.
When there are several filaments, we introduce an indexing and denote the filaments by Cl, l ¼ 1; . . . ;M ,

and the filament coordinates by xlðs; tÞ ¼ ðxlðs; tÞ; ylðs; tÞ; zlðs; tÞÞ. For filament Cl, we have

8pl
oxlðs; tÞ

ot

�
�U0ðxlðs; tÞ; tÞ

�
¼ �Kl½fl�ðsÞ � Kl½fl�ðsÞ �

XM
k¼1;k 6¼l

VkðxlðsÞÞ
�

þ e2

2
WkðxlðsÞÞ

�
; ð6Þ

where we sum over VkðxlðsÞÞ þ ðe2=2ÞWkðxlðsÞÞ, the contribution from all other filaments to the velocity at

filament l. In particular,

Vkð�xÞ ¼
Z
Ck

Iþ R̂kðs0ÞR̂kðs0Þ
jRkðs0Þj

" #
fkðs0Þ ds0; ð7Þ

and

Wkð�xÞ ¼
Z
Ck

I� 3R̂kðs0ÞR̂kðs0Þ
jRkðs0Þj3

" #
fkðs0Þ ds0: ð8Þ

where Rkðs0Þ ¼ �x� xkðs0Þ, and R̂ is the normalized R-vector, as usual.

The integral defining Vkð�xÞ in the sum appears at first glance to decay as 1=jRj. However, in the cases we
study here, the filaments are so-called ‘‘force free’’ particles [2], and the specific form of f will imply that the

decay of Vkð�xÞ is actually 1=jRj2 and that the decay of Wkð�xÞ is 1=jRj4. This is discussed in Section 2.5.

2.3. Completing the formulation

For simplicity, we first discuss the case of a single filament. Eq. (2) is an integral equation that relates the

filament velocity to the forces acting on the filament. Here, we will assume that the filament forces can be

described by Euler–Bernoulli elasticity [31], and take

fðsÞ ¼ �ðT ðsÞxsÞs þ Exssss: ð9Þ

Here, we denote derivatives with respect to arclength with a subscript s, thus giving xs ¼ ŝ and xss ¼ jn̂,
with n̂ the principal normal. The first term in Eq. (9) is the filament tensile forces, with T the tension, which

resists compression and extension. The line tension T ðsÞ will act as a Lagrange multiplier ensuring that the

filament remains inextensible. The second term represents bending forces, with E the rigidity. Twist elas-

ticity is neglected [12]. The ends of the filament are ‘‘free’’, that is, no forces or moments are exerted on

them, so that xssjs¼0;L ¼ xsssjs¼0;L ¼ 0 and T js¼0;L ¼ 0. Note that fðsÞ ¼ ðd=dsÞFðsÞ, where FðsÞ ¼ �T ðsÞxs þ
Exsss, and so Fð0Þ ¼ FðLÞ ¼ 0.

Assuming U0ðx; tÞ to be a shear flow of strength _c, we non-dimensionalize the problem using the length

L, time t ¼ _c�1, and force F ¼ E=L2. The non-dimensional equations are controlled by two parameters, an

effective viscosity

�l ¼ 8pl_cL2

E=L2
; ð10Þ
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which represents a ratio between the characteristic fluid drag and the filament elastic force, and the as-

ymptotic parameter c ¼ logðe2eÞ.
Now, consider the assumption of inextensibility. Since the filament is inextensible, s will remain a ma-

terial parameter, and thus s and t derivatives can always be interchanged. Hence,

@tðxs � xsÞ ¼ 0 ) xs � xts ¼ 0: ð11Þ

This condition can be combined with Eq. (2) to derive an equation for the line tension, using Eq. (9). This

yields

�xs �
o

os
K½ðTxsÞs�
�

þ K½ðTxsÞs�
�
¼ xs �

o

os
�lU0

n
� K½xssss� þ K½xssss�

o
;

which can be expanded using the definition of the local operator K, and simplified using the following

ladder of differential identities, derived from xs � xs ¼ 1,

xs � xss ¼ 0; xs � xsss ¼ �xss � xss; xs � xssss ¼ �3xss � xsss: ð12Þ

The resulting simplified equation reads

2cTss þ ð2� cÞT ðxss � xssÞ � xs �
o

os
K½ðTxsÞs� ¼ �lxs �

o

os
U0 þ ð2� 7cÞðxss � xsssÞ � 6cðxsss � xsssÞ

� xs �
o

os
K½xssss�: ð13Þ

The line tension T ðsÞ acts as a Lagrangian multiplier, constraining the motion of the filament to obey the
inextensibility condition. However, the equation for T ðsÞ was derived assuming that the filament is of

exactly the correct length, and hence xs � xs ¼ 1 for all s. However, if there is a small length error present,

this error will not be corrected. On the contrary, the computed line tension could, depending on the

configuration, even act so as to increase this error.

In practice, numerical errors will be introduced into our computations, and we must therefore stabilize

the constraint. We replace the inextensibility condition (11) by

1

2
@tðxs � xsÞ ¼ xs � xts ¼ �lbð1� xs � xsÞ; ð14Þ

which is equivalent to the original condition when xs � xs ¼ 1, but which will act to remove the length error
if there is one.

The only modification of the equation for the line tension equation (13) is the appearance of an

extra term in the right-hand side: ��lbð1� xs � xsÞ. In this way the length error is penalized, and the

parameter b is referred to as the penalization parameter. The line tension equation is given in full in

Eq. (22).
2.4. Regularization of the integral kernel

An analysis of the straight filament case (see Appendix B) yields that the original slender body

equation is not suitable for numerical computations. This can be seen as a solvability condition for the

line tension equation that is not easily avoided for all e values of interest, and hence, since that equation

is derived from the time dependent equation, there are naturally related problems in computing the

dynamics.

As a remedy to this, while at the same time retaining the same asymptotic accuracy as the original

formulation, we introduce a regularized integral operator Kd½f�, defined as
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Kd½f�ðsÞ ¼
Z 1

0

Iþ R̂ðs; s0ÞR̂ðs; s0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRðs; s0Þj2 þ dðsÞ2

q fðs0Þ

0B@ � Iþ ŝðsÞ̂sðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
js� s0j2 þ dðsÞ2

q fðsÞ

1CAds0; ð15Þ

where dðsÞ ¼ d0/ðsÞ, where d0 ¼ me, m >
ffiffiffi
2

p
, and /ðsÞ 2 C1ðsÞ is given by

/ðsÞ ¼
mðs=cÞ; 06 s < c;
1; c6 s6 1� c;
mðð1� sÞ=cÞ; 1� c < s6 1;

8<: ð16Þ

where mðnÞ ¼ n2ð3� 2nÞ. The higher regularity of /ðsÞ is motivated by the fact that we will compute de-

rivatives of the integral operator in the line tension equation.

The regularized integral in Eq. (15) differs by Oðd20 log dÞ to the unregularized one (d ¼ 0). The outline for

this proof is given in Appendix B, where we also motivate the choice of d0.

2.5. Filament interaction

In the case of multiple filaments, the dynamics of one filament is coupled to all others through the sum

over VkðxlðsÞÞ and WkðxlðsÞÞ in Eq. (6), where VkðxlðsÞÞ and WkðxlðsÞÞ were defined in Eqs. (7) and (8).

The force fkðsÞ is a perfect derivative, i.e. fkðsÞ ¼ ðo=osÞFkðsÞ, where FkðsÞ ¼ �TkðxkÞs þ ðxkÞsss. Recall

that FkðsÞjs¼0;1 ¼ 0, due to the boundary conditions on Tk and ðxkÞsss. Integrating by parts, Eq. (7) can be

rewritten as

Vkð�xÞ ¼ �
Z
Ck

ðR̂k � ðxkÞsÞðIþ 3R̂kR̂kÞ � ððxkÞsR̂k þ R̂kðxkÞsÞ
jRkj2

Fkðs0Þ ds0; ð17Þ

where again Rkðs0Þ ¼ �x� xkðs0Þ, and R̂ is the normalized R-vector. The formula above for Vkð�xÞ explicitly
shows the 1=jRj2 decay of the interaction terms. We find that when jRj is not too small, this formula is

numerically better conditioned than the original, since the size of the integrand and the size of the integral is

of the same order in jRj, namely 1=jRj2. For the original formulation, the cancellation of the 1=jRj con-
tributions in the integrand must be achieved numerically to give the 1=jRj2 behavior of the integrand. In

addition, the formula (17) includes the integrated force Fk, instead of the force fk, reducing the order of the
highest derivative of xk from four to three.

Similarly, integration by parts of Wkð�xÞ gives

Wkð�xÞ ¼ �
Z
Ck

3ðR̂k � ðxkÞsÞðI� 5R̂kR̂kÞ þ 3ððxkÞsR̂k þ R̂kðxkÞsÞ
jRkj4

Fkðs0Þ ds0; ð18Þ

which shows explicitly its 1=jRj4 decay.
The numerical computation of Vkð�xÞ and Wkð�xÞ is discussed in Section 3.
2.6. Periodicity

In a background shear flow, filaments in any random initial configuration get dispersed in the streamwise

direction, and interactions are weak. It is therefore of interest to introduce periodic boundary conditions to

keep filaments within smaller distances to each other, and thereby also better mimic an infinite domain with

many interacting filaments.

In a grid based method, one simply imposes periodic boundary conditions to introduce periodicity into

the problem. To do the same in this integral formulation, the sum in Eq. (6) needs to be extended to include
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the contributions of all the periodic images of all filaments. Assume that the domain is periodic in the êj
direction, and that the periodic length is dj. Then, the sum in Eq. (6) becomes

Pper
l ðsÞ ¼

XM
k¼1

X
p;

p 6¼ 0for k¼l Vp
kðxlðsÞÞ

�
þ e2

2
Wp

kðxlðsÞÞ
�
; ð19Þ

where Vp
kð�xÞ is defined as Vkð�xÞ in Eq. (17), with Rk replaced by Rp

kðs0Þ ¼ �x� xkðs0Þ þ pdjêj. Note that

V0
kð�xÞ ¼ Vkð�xÞ. Similarly, Wp

kð�xÞ is defined as Wkð�xÞ in (18) with Rkðs0Þ replaced by Rp
kðs0Þ. The extension to

more periodic directions is straightforward.

We can write the sum over p as

ð1� dklÞV0
kðxlðsÞÞ þ

X1
p¼1

V�p
k ðxlðsÞÞ½ þ Vp

kðxlðsÞÞ�:

For large p, one can show that jV�p
k ðxlðsÞÞ þ Vp

kðxlðsÞÞj � ðpdjÞ�3
, i.e. we have a 1=jRj3 decay of the terms in

the periodic sum above. The terms Wp
kð�xÞ decay two orders faster in 1=jRj, and being multiplied by e2=2,

they are negligible when jRj is not small.

Given this decay, we note that the sum above is unconditionally convergent. We discuss our numerical

treatment of this sum in Section 3.4.

2.7. Problem summary

We now summarize the equations that the numerical algorithm will be based on. All equations are in

non-dimensionalized form.

2.7.1. Single filament

Using the definition of the force in Eq. (9), the equation for the velocity of the filament centerline (2) in

the case of one single filament can be written as

�lxt ¼ �lU0 � KðsÞ
�
� ðTxsÞs þ xssss

	
� Kd½�ðTxsÞs þ xssss�: ð20Þ

The boundary conditions for the free ends are xss ¼ xsss ¼ 0 for s ¼ 0; 1. The local operator K was defined

in Eq. (3), and K½�ðTxsÞs þ xssss� can be explicitly expanded as

K
�
�ðTxsÞs þ xssss

	
¼ 2cTsxs þ ðc� 2ÞTxss � ðc� 2Þxssss � ðcþ 2Þðxs � xssssÞxs: ð21Þ

The auxiliary integro-differential equation for the line tension T ðsÞ in the case of one single filament is given

by

2cTss þ ð2� cÞT ðxss � xssÞ � xs �
o

os
Kd½ðTxsÞs� ¼ �lxs �

o

os
U0 þ ð2� 7cÞðxss � xsssÞ � 6cðxsss � xsssÞ

� xs �
o

os
Kd½xssss� � �lbð1� xs � xsÞ; ð22Þ

which we write as

Ls½T ; x� ¼ J ½x;U0�; ð23Þ

together with the boundary condition T ¼ 0 at s ¼ 0; 1. bP 0 is the penalization parameter. The constant

c ¼ logðe2eÞ and the non-dimensional constant �l ¼ 8pl_cL4=E, as defined in Eq. (10).
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The integral operator Kd½f� is defined as

Kd½f�ðsÞ ¼
Z 1

0

Iþ R̂ðs; s0ÞR̂ðs; s0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRðs; s0Þj2 þ dðsÞ2

q fðs0Þ

0B@ � Iþ ŝðsÞ̂sðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
js� s0j2 þ dðsÞ2

q fðsÞ

1CAds0; ð24Þ

where dðsÞ ¼ d0/ðsÞ, where /ðsÞ is such that /ðsÞ=s and /ðsÞ=ð1� sÞ are uniformly bounded. This regu-

larization was introduced in Section 2.4, and our choice of /ðsÞ was given in Eq. (16). A detailed analysis is

given in Appendix B.

2.7.2. Multiple filaments

For several filaments, we again index the filaments. For filament Cl, l ¼ 1; . . . ;M , the evolution equation

is given by

�l
oxlðs; tÞ

ot
¼ �lU0ðxlðs; tÞ; tÞ � K½fl�ðsÞ � Kd½fl�ðsÞ �

XM
k¼1;k 6¼l

VkðxlðsÞÞ
�

þ e2

2
WkðxlðsÞÞ

�
; ð25Þ

where fl ¼ �ðTlðxlÞsÞs þ ðxlÞssss. The expansion in Eq. (21) is used for evaluation of the local operator. The

sum over the contribution from all other filaments to the velocity at filament l is replaced by Pper
l ðsÞ in Eq.

(19) in case of periodicity. The integrals Vkð�xÞ and Wkð�xÞ in Eqs. (17) and (18) contain the integrated force

Fk ¼ �TkðxkÞs þ ðxkÞsss.
The line tension equation for TlðsÞ in the case of several filaments reads like Eq. (22), with the subscript

index l added, and with the addition of the following term to the right-hand side:

�ðxlÞs �
o

os

XM
k¼1;k 6¼l

VkðxlðsÞÞ
�

þ e2

2
WkðxlðsÞÞ

�
¼ �

XM
k¼1;k 6¼l

U½Tk; xk; xl�; ð26Þ

where the notation indicates that the integral terms in the sum depend on both Tk and xk through the

integrated force Fk. For l ¼ 1; . . . ;M , the line tension equation is given by

Ls½Tl; xl� ¼ J ½xl;U0� �
XM

k¼1;k 6¼l

U½Tk; xk; xl�; ð27Þ

where we have used the notation in Eq. (23). Again, in case of periodicity, the first sum in expression (26)

will be replaced by Pper
l ðsÞ in Eq. (19), and the sum over U will be extended accordingly.
3. Numerical methods

In this section, we first discuss the numerical discretization for one single filament, and then extend to

several interacting filaments.
The equations are discretized using a second-order time-stepping scheme, and second-order divided

differences to discretize the spatial derivatives. Product integration is applied to the integral terms.

An explicit treatment of all terms in the time-dependent equation (20) would yield a very strict fourth-order

stability limit for the time-step size, arising from the high derivatives of x. To avoid this, we treat all occur-

rences of xssss implicitly. We use a second-order backward differentiation formula [1]. Schematically, we write

xt ¼ Fðx; xssssÞ þGðxÞ; ð28Þ

where the dependence on xssss is to be treated implicitly, and all other terms are to be treated explicitly. We

approximate this decomposition by
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1

2Dt
3xnþ1



� 4xn þ xn�1
�
¼ Fð2xn � xn�1; xnþ1

ssss Þ þ 2GðxnÞ �Gðxn�1Þ; ð29Þ

where Dt is the time step, and tn ¼ nDt. For example, as given by the notation for F above, the nonlinear

term ðxs � xssssÞxs in the local operator (21) is discretized as ðð2xn
s � xn�1

s Þ � xnþ1
ssss Þð2xn

s � xn�1
s Þ. Combined with

the spatial discretization that is described in the following, we find that this time discretization yields only a

first-order constraint for the time-step size, i.e. Dt can be chosen proportional to the spatial grid size. For

the very first time step, before any previous time levels are available, we replace the time discretization

above by a first-order backward/forward Euler step.

Consider a uniform discretization in the arclength s of the filament centerline, with N intervals of step
size h ¼ 1=N . The discrete points are denoted sj ¼ jh, j ¼ 0; . . . ;N , and the values fj ¼ f ðsjÞ. Second-order
divided differences are used to approximate spatial derivatives. Dp denotes divided difference operators such

that Dpfj approximates f ðpÞðsjÞ to an Oðh2Þ error. Standard centered operators are used whenever possible,

but at boundaries skew operators are applied. For exact definitions, see (A.1)–(A.4) in Appendix A. These

stencils are used to compute xs, xss, xsss and xssss whenever needed. To apply the boundary conditions

xss ¼ xsss ¼ 0 for Eq. (20) at s ¼ 0 and 1, one-sided stencils are used (as defined in (A.2) and (A.3)).

3.1. Product integration

When the integral operator K was introduced in Eq. (4), we noted that the two terms in the integrand are

both singular at s0 ¼ s, and that the integral is only well defined for the difference of these two terms. For

the regularized operator, the terms are still nearly singular, and the numerical scheme must be designed with

care to accurately treat the difference of these terms.

To evaluate the integral operator acting on xssss, it is approximated by a piecewise linear polynomial

Q1xssssðsÞ ¼ D4xj þ
1

h
ðs� sjÞðD4xjþ1 � D4xjÞ

for sj 6 s6 sjþ1, for j ¼ 0; . . . ;N � 1. Here, D4 is the second-order divided difference approximation to the

fourth derivative, as defined in Eq. (A.4). Similarly, all other arguments to the integral operator Kd in Eqs.

(20) and (22) are approximated as piecewise linear polynomials. The only exception is in the equation for

the line tension (22), where T ðsÞ is approximated as a piecewise quadratic polynomial, so that its derivative

TsðsÞ is a piecewise linear polynomial. That is,

Q2T ðsÞ ¼ Tj þ
1

h
ðs� sjÞðTjþ1 � TjÞ þ

1

h2
ðs� sjÞðs� sjþ1ÞðTjþ1 � 2Tj þ Tj�1Þ

for sj 6 s6 sjþ1, for j ¼ 1; . . . ;N � 1. From the boundary conditions we have T0 ¼ TN ¼ 0. On the interval

½0; h�, this formula is applied asymmetrically and involves T0, T1, T2.
We rewrite the integral operator (24) as

Kd½g�ðsÞ ¼
Z 1

0

Iþ R̂ R̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRj2 þ dðsÞ2

q
264 � Iþ ŝ ŝffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs� s0Þ2 þ dðsÞ2
q

375gðs0Þ ds0
þ ðIþ ŝ ŝÞ

Z 1

0

gðs0Þ � gðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ dðsÞ2

q ds0 ¼ I1ðsÞ þ I2ðsÞ: ð30Þ

Consider first I1ðsÞ, whose integrand vanishes for a straight filament. For part of this integrand, with d ¼ 0

and s0 close to s, Taylor series expansion yields
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R̂ R̂

jRj �
ŝ ŝ

js0 � sj ¼ signðs0 � sÞxsxss þOðs� s0Þ;

and so, there is a jump discontinuity in the kernel. For d > 0, signðs0 � sÞ is regularized as signðs0 � sÞ �
ðs0 � sÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 � sÞ2 þ dðsÞ2

q
, which is still a sharp transition for a small dðsÞ. Therefore, care must be taken

when evaluating this integral.

We rewrite I1ðsÞ as

I1ðsÞ ¼
Z 1

0

Gðs; s0Þgðs0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ dðsÞ2

q ds0 ð31Þ

where Gðs; s0Þ is given by

Gðs; s0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ dðsÞ2

jRj2 þ dðsÞ2

s
ðIþ R̂ R̂Þ � ðIþ ŝ ŝÞ: ð32Þ

Gðs; s0Þ is a smooth function, that is Oðs0 � sÞ for s0 close to s, and identically zero for a straight

filament. Therefore, each component of G can be approximated to second-order by a piecewise linear

polynomial.

With both Gðs; s0Þ and gðsÞ piecewise polynomials, in order to evaluate both I1ðsÞ and I2ðsÞ we need to

evaluate integrals of the form

Z sjþ1

sj

ðs0 � sjÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
js� s0j2þ dðsÞ2

q ds0 ¼
Z sjþ1

sj

ðs0 � sjÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 � sjÞ2þ bðs0 � sjÞþ cþ dðsÞ2

q ds0 ¼
Z h

0

apffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ baþ cþ dðsÞ2

q da

where b ¼ 2ðsj � sÞ and c ¼ ðsj � sÞ2, and p ¼ 0; . . . ; 4. These integrals have analytical formulas, becoming

somewhat lengthy as p increases. By evaluating these integrals analytically, the rapidly changing part where

s0 is close to s can be treated exactly. The highest polynomial degree (p ¼ 4) is needed for the term Txss in

the line tension equation, where T is piecewise quadratic and xss is piecewise linear. This results in a cubic
gðsÞ in the notation above, to be multiplied by Gðs; s0Þ in the evaluation of I1ðsÞ.

3.2. Discretization of the line tension equation

In the line tension equation (22), terms like xs � ðo=osÞKd½g� appear. These differentiated integral terms are

approximated to second order by

o

os
Kd½g�ðsÞjs¼si

� 1

h
Kd½g�ðsjþ1=2Þ
�

� Kd½g�ðsj�1=2Þ
	
: ð33Þ

For each half point sjþ1=2, the values of all terms in the integral operator that are functions of s are

computed by linear interpolation using the values at sj and sjþ1. The integral over s0 is then evaluated as

usual. The compact centered approximation of the derivative in Eq. (33) is important to achieve a stable

numerical approximation of the line tension equation.

From the second part of the integral operator I2ðsÞ in Eq. (30), xs � ðo=osÞKd½g� (with gðsÞ ¼ ðTxsÞs and
xssss), yields a term
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xs �
o

os
I2ðsÞ½ � ¼ xs �

o

os
ðI

264 þ ŝ ŝÞ
Z 1

0

gðs0Þ � gðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ dðsÞ2

q ds0

375: ð34Þ

There are several factors to consider when deciding how to numerically discretize this expression. It is
important to achieve a good cancellation between the two terms in the integral operator in Eq. (34),

which vary rapidly close to the boundary. It is especially important since we are taking a derivative of the

result.

There are also some considerations for the interior errors. The second term of xs � ðo=osÞðI2ðsÞÞ in Eq.

(34) is �xs � ðo=osÞ½ðIþ ŝ ŝÞgðsÞuðsÞ�, where
uðsÞ ¼ logðdðsÞ�2
1� sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� sÞ2 þ dðsÞ2

q
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ dðsÞ2

q
Þ

� �
:

��
ð35Þ
Carrying out the differentiation, this yields a term in which gðsÞ is differentiated. For gðsÞ ¼ xssss, this will

yield xsssss.

The best treatment in order to reduce the errors in the interior is to analytically reformulate terms with

higher derivatives. We can use the ladder of identities in expression (12), extended by
xs � xsssss ¼ �3xsss � xsss � 4xss � xssss; ð36Þ
to express select higher order terms as lower order ones.

In doing this, we will however treat differently the two terms in Eq. (34), and the cancellation between the

two close to the boundary, where the terms vary rapidly, will not be as good. Indeed, there is a trade off

between achieving good boundary treatment and the smallest possible interior errors. Introducing a con-

stant u0 6¼ 0, we can write ~gðsÞuðsÞ ¼ ~gðsÞ½uðsÞ � u0� þ ~gðsÞu0. With u0 ¼ uð1=2Þ (Eq. (35)), the bulk of the

total term is in the second part in the interior, while the rapid transition at the boundaries occurs in the first

part.

In this manner we split the second term of the integral into two terms – one term which we add to the
first term of the integral before applying o

os, and a second term which is reformulated analytically. In this

way, the bulk of the total term will be reformulated analytically, reducing the interior errors, while the

boundary treatment is unaffected.

Following these ideas, the quadrature has been implemented the following way. For gðsÞ ¼ ðTxsÞs, we
rewrite Eq. (34) as
xs �
o

os
ðI

264 þ ŝ ŝÞ
Z L

0

ðTxsÞsðs0Þ � ðTxsÞsðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ dðsÞ2

q ds0

375

¼ xs �
o

os
ðI

264 þ ŝ ŝÞ
Z 1

0

ðTxsÞsðs0Þ � ðTxsÞsðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ dðsÞ2

q ds0

0B@ þ u0ðTxsÞsðsÞ

1CA
375� ð2Tss � T ðxss � xssÞÞu0 ð37Þ
with u0 ¼ uð1=2Þ, as defined in Eq. (35). To improve the numerical treatment of the integral with
gðsÞ ¼ xssss, we rearrange and reformulate it as
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xs �
o

os
ðI

264 þ ŝ ŝÞ
Z L

0

xssssðs0Þ � xssssðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ dðsÞ2

q ds0

375
¼ �6

o

os

Z L

0

xssðs0Þ � xsssðs0Þ � xssðsÞ � xsssðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 � sÞ2 þ dðsÞ2

q ds0

264 þ u0xssðsÞ � xsssðsÞ

375
� 2

o

os

Z L

0

xssssðs0Þ � ðxsðs0Þ � xsðsÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 � sÞ2 þ dðsÞ2

q ds0

264
375

þ xss �
Z L

0

xssssðs0Þ � xssssðsÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 � sÞ2 þ dðsÞ2

q ds0 þ 6u0ðxss � xssss þ xsss � xsssÞ: ð38Þ

In this way, there are in effect no xsssss terms computed, as was the case in the original formulation. The o=os
operator is discretized with a centered narrow approximation as given in Eq. (33).

3.3. Numerical methods for several filaments

The dynamics of multiple filaments are coupled to each other through the sum in Eq. (25). In this
section, we discuss both the temporal and spatial treatments of this term.

3.3.1. Time-stepping

The evolution of the centerline of one filament is coupled to the evolution of all others, through the sum

in Eq. (25). We treat this coupling term explicitly (that is, as part of GðxÞ in (29)) in our time integration

scheme). That means that in the dynamics of xlðs; tÞ, l ¼ 1; . . . ;M , only ðxlÞssss is treated implicitly. In the

resulting linear system for xnþ1
l ðsÞ, l ¼ 1; . . . ;M , the contribution from the other filaments will therefore be

in the right-hand side, and so the big system decouples into separate linear systems for xnþ1
l ðsÞ, l ¼ 1; . . . ;M .

In the coupling term, the derivativesðxkÞsss for k 6¼ l appear through the integrated force FkðsÞ in the

integrals Vk and Wk in Eqs. (17) and (18). These integrals can be considered as smoothing operators on

ðxkÞsss so long as the filaments remain well separated. We find in most instances that the explicit treatment

of this term as done does not alter the first-order time-stepping constraint that holds for the discretized

problem for one single filament.

3.3.2. Solving for the tensions

The equation for the line tensions TlðsÞ, l ¼ 1; . . . ;M , is given in (27). This is a system of coupled time-
independent integro-differential equations that, given certain shapes of the filaments, yields the corre-

sponding line tensions. To avoid solving one very large linear system for the line tensions on all the

filaments, we introduce a fixed point iteration, in which we use the newest updates of the Tk �s available

(k 6¼ l), when computing TlðsÞ.
Introducing an iteration index q, we initialize T 0

l , l ¼ 1; . . . ;M , to be the line tensions corresponding to

the filament shapes at the previous time steps. In iteration qP 1, for l ¼ 1; . . . ;M , solve

Ls½T q
l ; xl� ¼ J ½xl;U0� �

Xl�1

k¼1

U½T q
k ; xk; xl� �

XM
k¼lþ1

U½T q�1
k ; xk; xl� ð39Þ

for T q
l and define .ql to be the relative max norm of the difference between consecutive iterates T q

l and T q�1
l .

Set .q ¼ maxl .
q
l . The iteration is terminated when .q is below a given tolerance.
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3.3.3. Spatial evaluation

To evaluate the integrals VkðxlðsÞÞ andWkðxlðsÞÞ in the sum in Eq. (6) we use the trapezoidal rule. This is

a second-order method and it is accurate so long as jRj is not too small.
When evaluating these integrals it might occur that two filaments come within close proximity of each

other. If, for a fixed s value on filament l, jRj < 12h for any node value of s0 on filament k, we perform a

refined calculation of the integral. There are two levels of refinement. The first is to simply divide the

intervals in the integral where R is small into five subintervals, and use the trapezoidal rule on each of these.

This yields a better approximation of the 1=jRj2 and 1=jRj4 terms. The second refinement level is needed

when we get within an e-scale from the filament centerline.

To compute the velocity contribution from a filament, there are two different formulas available. Away

from filament k, we compute the velocity contribution at a point �x from this filament by evaluating
Vkð�xÞ þ ðe22ÞWkð�xÞ. If �xwould fall on the centerline of filament k, the velocity modification that this filament

introduces can be computed using the right-hand side of the time-dependent equation (20), with U0 ¼ 0.

The first formula is not defined as the distance to the centerline goes to zero. The second formula is valid

within the filament; in the derivation it was assumed that the velocity on the surface of the filament is a

function of s only, without any angular dependence. These formulas differ slightly on the surface of the

filament, see the discussion after Eq. (5).

Assuming that the radius of the filament is uniformly e (even though the filaments are actually tapered),

two centerlines of different filaments should not be closer than 2e apart, and if they touch, they should move
with the same velocity at that point. Denoting the normal distance to the filament centerline by d, it is
therefore natural to set the velocity to the centerline velocity if d 6 d0, interpolate linearly between the two

approximations if d0 < d < 2d0, and use the regular velocity formula if dP 2d0. The natural choice would
be d0 ¼ 2e, which we for our discretization modify to read d0 ¼ maxðh; 2eÞ, where h is the grid size in the

arclength s.
3.4. Imposing periodicity

The introduction of periodicity to the problem was discussed in Section 2.6, where the sum Pper
l ðsÞ was

introduced. This sum includes not only the velocity contributions from all the other filaments, but from all

the periodic images.

Assume that we want to compute the contribution from filament k to filament l. In the case of peri-

odicity, for i ¼ 0; . . . ;N , we need to computeX
p¼�1;

1

p 6¼0 for k¼l

Vp
kðxlðsiÞÞ

�
þ e2

2
Wp

kðxlðsiÞÞ
�
: ð40Þ

The R-vector in the definitions of Vp
k and Wp

k is then given by Rp
kðs0Þ ¼ xlðsiÞ � xkðs0Þ þ pdjêj; see the remark

below Eq. (19).

The second term, Wp
kðxlðsiÞÞ, is multiplied by e2=2 and decays as 1=jRp

k j
4
. It is therefore negligible for all

but small jRp
k j.

As jpj is increased, i.e. as jRp
kj gets large, R

p
kðs0Þ will not vary much in the integrand for V

p
kð�xÞ. We make

the approximation to replace R
p
kðs0Þ with R

p
kð1=2Þ and move it out of the integral. We will then only need to

integrate one symmetric dyadic productZ
Ck

ðxkÞsFkðs0Þ ds0: ð41Þ

Once we have the six independent components of this integral, and Rpð1=2Þ for any p, we can for any �x
compute the approximation eVp

kð�xÞ to V
p
kð�xÞ as defined below the sum (19).
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We now replace the sum (40) by

X
p¼�1;

1

p 6¼0 for k¼l

Vp
kðxlðsiÞÞ

�
þ e2

2
Wp

kðxlðsiÞÞ
�
þ

X
26 jpj6Q

eVp
kðxlðsiÞÞ; ð42Þ

where eVp
kð�xÞ is defined as Vkð�xÞ in (17), but with Rkðs0Þ replaced by Rp

kð1=2Þ.
In total, 2Qþ 1 terms are included in the sum. We compute the contributions from filament k and its two

closest periodic images without any approximation. For the contributions from the images further away,

we approximate Vp
kð�xÞ by eVp

kð�xÞ, and neglect e2Wp
kð�xÞ=2. If k ¼ l, the only difference is that the term p ¼ 0 is

excluded from the sum.

We have assumed here that jRp
kðs0Þj is smallest for p ¼ 0. The domain is however periodic, and it might as

well instead be smallest for p ¼ �1 or p ¼ 1. If this is the case, the indexing of the summation should be

shifted accordingly, so as to be centered around that p value.
In Appendix C, we present numerical results that show that adding the sum over the approximate terms

in Eq. (42) is a substantial improvement compared to simply truncating the sum at jpj ¼ 1.

For each filament, we only need to evaluate the integral (41) once, where after we can form the periodic

contribution from this filament to any other filament by multiplying by constant terms and summing up.

Therefore, this improvement can be done to a very small extra cost.

The approximate sum (42) is used also in the line tension equation, where we write ðxlÞs � o=os acting on

this sum asX
p¼�1;

1

p 6¼0 for k¼l

Up½Tk; xk; xl� þ
X

26 jpj6Q

~Up½Tk; xk; xl� ð43Þ

in accordance with the notation introduced in Eq. (26).

3.5. Summary of the numerical algorithm

Assume that we are on time level tn, and that xn
l and xn�1

l are known, for all filaments l ¼ 1; . . . ;M . To

advance to time level nþ 1, for each filament Cl, l ¼ 1; . . . ;M , do the following:

(i) Compute first- to fourth-order spatial derivatives of xn
l using the difference stencils defined in Appendix

A.

(ii) Compute the line tension T n
l . The line tension equation (22) is an auxiliary equation, and is a function

of an instantaneous shape x and the parameters of the problem only. In the case of several filaments,

apply the fixed point iteration introduced in Eq. (39).

(iii) Compute the contribution from all other filaments on the level n, the sum in Eq. (25), in the manner

discussed in Section 3.3.

(iv) To obtain xnþ1
l , solve Eq. (25), with fk ¼ �ðTkðxkÞsÞs þ ðxkÞssss. In doing this, we use the time discreti-

zation (29), with all occurrences of ðxlÞssss treated implicitly. All other terms defined on filament l, as
well as the sum of the contributions from the other filaments are treated explicitly.

These are the main steps of the algorithm. Below follows some additional comments about the solution

process.

• In the case of periodicity:

s In (ii), replace the sum in Eq. (25) byPper
l ðsÞ in Eq. (19). ComputePper;n

l ðsÞ by replacing each sum over

p as in Eq. (40) by the approximate sum in Eq. (42).

s In (iii), add the term for k ¼ l in the right sum in (39), and replace U½Tk; xk; xl� in the sums by the ap-

proximate periodic sum in (43).
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• Through the fixed point iteration introduced for the line tension equation (Eq. (39)), the line tension

solves on the different filaments are decoupled. On each filament we need to solve a linear system of

equations for the node values ðTlÞi, i ¼ 1; . . . ;N � 1 (T0 ¼ TN ¼ 0 due to the boundary conditions).

Due to the non-local integral operator in the left-hand side of Eq. (22), the matrix will be full, and
we solve the system by direct LU factorization.

• Since the contribution from the other filaments is treated explicitly in the time-dependent equation (iv),

also here we solve a system of equations for each filament, with the coupling terms in the right-hand side.

The number of unknowns is 3ðN þ 1Þ; the x, y and z coordinates for si, i ¼ 0; . . . ;N . Due to the implicit

treatment of the non-local integral operator acting on ðxlÞssss, the system matrix is full. Again, we use a

direct method to solve this system.

In addition to the physical parameters of the problem, we have introduced a few numerical parameters.

In our simulations, if nothing else is noted, we define dðsÞ ¼ d0/ðsÞ with /ðsÞ as in Eq. (16) with c ¼ 0:1 and
d0 ¼ 2e. The penalty parameter b in the line tension equation is typically set to 20. The time-step size Dt and
N (where the grid size h ¼ 1=N ) will be given for each run. In case of periodicity, Q in the sum (42) is

typically set to 20.
4. Numerical results

4.1. One single filament in the plane

A straight rod in a plane shear flow will rotate about its center and possibly translate with the fluid.

However, a flexible rod can become unstable to buckling if the shear rate is high enough. We begin by

giving the analytical solution assuming that the filament is perfectly straight, and then move to results for

the general case.

Assume that a straight filament is inserted in the xy-plane in a planar shear flow U0ðxÞ ¼ aðtÞðy; 0; 0Þ,
with its center point at ð0; 0; 0Þ. Let h be the angle of the filament to the x-axis; see Fig. 1.

We then have the following exact solution to the unregularized slender body equations:

xðs; tÞ ¼ 1

2
ð1� 2sÞêh; T ðsÞ ¼ � �l

8

aðtÞ sin 2h
cþ 2

sð1� sÞ; ð44Þ

s 2 ð0; 1Þ, where êh ¼ ðcos h; sin h; 0Þ and hðtÞ is given by

ht ¼ �aðtÞ sin2 h; hð0Þ ¼ h0: ð45Þ

In classical work, Jeffery provided the analogous exact solution for a long slender ellipsoid in a shear

flow 2 [20]. The so-called ‘‘Jeffery orbit’’ for a constant shear flow (aðtÞ ¼ 1) is

ht ¼
�1

1þ e2
sin2 h



þ e2 cos2 h
�
: ð46Þ

From this, one sees that there is an Oðe2Þ error in the angular velocity in the solution from the slender body
equations (45). This is within the order of accuracy of the slender body approximations. However, in the

special case of inserting the straight filament parallel to the x-axis, there will be no rotation in the slender

body approximation. In reality, there will be a small torque acting on the filament in this case, and this

Oðe2Þ contribution is disregarded in the slender body approximation, and captured in Eq. (46).

For a straight filament held fixed in a uniform flow in alignment with the flow, the slender body

equations yield a drag coefficient of 2=3½logð2=eÞ � 1=2��1
, as normalized by half the filament length. If the
2 The shape rðsÞ ¼ 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� sÞ

p
, assumed when deriving the slender body equations is that of a long slender ellipsoid.
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Fig. 1. Rotation of a straight filament with U0ðxðsÞÞ ¼ ðyðsÞ; 0Þ. Upper row: without line tension (T ¼ 0). Lower row: line tension T ðsÞ
included.
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filament orientation is orthogonal to the flow direction, the drag coefficient is 4=3½logð2=eÞ þ 1=2��1
. These

two results agree to Oðe2Þ to the exact result of Chang and Wu [7] for an ellipsoid, the base shape upon

which our slender body theory is based 2, see [21].

The Jeffrey orbit solution yields that the time to complete one period is Tperiod ¼ 2pðe�1 þ eÞ. For a

slender filament, only a small fraction of this time is needed to cover a majority of the orbit. The rest of the
time is spent in alignment or near alignment with the x-axis. As e decreases, the time needed to cover the

main part of the orbit stays almost the same, while the period time increases linearly in e�1. Hence, for

e ¼ 10�2, it takes only about 4% of the period time to cover 90% of the orbit, for e ¼ 10�3 it takes ap-

proximately 0.4% of the time, for e ¼ 10�4, 0.04%, etc.

This simple case of a straight filament also offers insight into the action of the line tension. When the

filament is inserted at an angle of h0, the y-coordinates of the end points are sin h0, and � sin h0, respectively.
Without any tension in the fiber, to resist compression and extension, the points on the filament will follow

the background shear flow, and the filament will initially be compressed. At h ¼ p=2, the length will be
2 sin h0. After this point the filament will be extended again. When the line tension is included as given by

the inextensibility condition, the filament rotates with a fixed length; see Fig. 1. The line tension is initially

negative in order to resist the compression of the filament. When the filament becomes vertical, it is in a

neutral position, and the line tension is zero. As the filament continues to rotate, it comes under extension,

and the line tension becomes positive in order to prevent the filament to extend. The total velocity field UðxÞ
that produces this motion differs significantly from the undisturbed shear flow U0ðxÞ in points close to the

filament.

If we introduce a small perturbation to the inextensible filament, so that it is not exactly straight, then
there are two possible scenarios. One is that this perturbation will disappear with time and the filament will

become straight. However, if the filament is under compression for some time, and if the value of �l, which
relates the strength of the shear flow to the bending rigidity of the filament, is large enough, then buckling

occurs [4]. As we increase �l, this buckling becomes more pronounced. This is demonstrated in Figs. 2–4,

where we display the results from simulations of a single, flexible filament.

The initial angle h0 is chosen such that a straight filament inserted at this angle at t ¼ 0 will be vertical at

t ¼ 49:664. This yields h0 ¼ p� arcsinðgÞ, where g ¼ ð49:6642 þ 1Þ�1=2
and h0 � 0:9936p. We define the

initial shape as

xðaÞ ¼ cosðh0Þða� 1Þ=2;
yðaÞ ¼ sinðh0Þða� 1Þ=2þ dya4ð1� aÞ4

ð47Þ

for a 2 ð0; 1Þ, with dy ¼ �10�4. We then numerically rescale x and y as functions of the arclength s, such
that the length of the filament is 1. This is a very small perturbation compared to a straight filament. The
numerical parameters for the runs are N ¼ 200, Dt ¼ 0:0064. We have e ¼ 10�3 and d0 ¼ 2e.



–0.5 0 0.5
–0.5

0

0.5

t= 0
–0.5 0 0.5

–0.5

0

0.5

t= 48.128
–0.5 0 0.5

–0.5

0

0.5

t= 48.64
–0.5 0 0.5

–0.5

0

0.5

t= 49.152

–0.5 0 0.5
–0.5

0

0.5

t= 49.664

–0.5 0 0.5
–0.5

0

0.5

t= 50.176

–0.5 0 0.5
–0.5

0

0.5

t= 50.688

–0.5 0 0.5
–0.5

0

0.5

t= 51.2

Fig. 2. Slight buckling occurs for �l ¼ 2� 105.
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Fig. 3. Pronounced buckling occurs for �l ¼ 3� 105.
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We note that if the initial configuration x is reflected to �x, it will evolve under the symmetry x ! �x.

Hence, if we change the sign of the perturbation, the filament will buckle in the other direction.

With the initial angle of the filament being somewhat smaller than 180�, it will slowly start to rotate. Until

it has passed the vertical axis, it is under compression, most strongly when it is at 45� angle to the x-axis. As

the vertical line is passed, the filament comes under extension. If a buckling occurs, it occurs while the fil-

ament is under compression, and the filament will later extend to a straight shape again. As �l increases, the

fluid can exert a greater and greater compressive stress on the filament, inducing a larger buckling.
In Fig. 5, the line tension T ðsÞ corresponding to the filament shapes in Fig. 3 has been plotted. The

analytical solution for a straight filament (Eq. (44)) is plotted for comparison (dashed line). For a straight

filament, the line tension is a negative parabolic function up to the time where the filament is vertical, to

resist a compression of the filament. Also here, the line tension starts out similar to this, but as the filament
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plotted for comparison (dashed line).
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Fig. 4. Substantial buckling occurs for �l ¼ 4� 105.
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buckles, is attains a more complicated structure, needed to enforce the inextensibility for this curved fila-

ment. When the filament extends to a straight shape again, the line tension attains once more its parabolic

shape, with a positive sign to resist the extension.

The contribution of the fiber forces to the fluid stress (in addition to the stress tensor for the background

flow) can be computed as

R ¼
Z 1

0

fðsÞxðsÞ ds; ð48Þ

where fx is a dyadic product, see [3].
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Since the stress tensor is only determined to within an additive isotropic tensor, only the normal stress

differences N1 ¼ R11 � R22 and N2 ¼ R22 � R33 can be measured in experiments. For a linearly sheared

Newtonian fluid (i.e. with no filaments present), the normal stress differences are zero. For a non-New-
tonian fluid, the first normal stress difference can be measured in for example a cone-and-plate rheometer,

as the thrust per unit area of the plate. This thrust tends to push the plates apart if N1 is positive, but tends

to pull them together if N1 is negative.

The evolution of N1 for a straight filament (dashed curve) and a buckling filament (solid curve) is shown

in Fig. 6. As the straight filament rotates in a shear flow, the integrated normal stress difference over a full

rotation is zero and hence does not yield a net contribution. (This is in generally true for a single straight

rod, as can be shown by direct calculation). If the filament bends, this is not true. The symmetry of the first

normal stress difference that holds for a straight filament is broken, and there is a net contribution. The
integral over the time interval shown in Fig. 6 yields 0 for the straight filament (dashed line) but 579.3 for

the buckling filament. The anti-symmetric configuration x ! �x yields identical normal stresses, and hence

there is no configuration that can yield a negative normal stress contribution that can cancel the positive

contribution.

The extra stress tensor is symmetric, and the shear stress R12 ¼ R21 is plotted in Fig. 7. As a comparison,

we plot with a dashed line the shear stress for a straight filament, and can note that the filament, by the

buckling, reduces the added shear stress.

4.1.1. Convergence

To check the convergence of our numerical method, we have performed the same runs as presented in

Figs. 2–4 with N ¼ 200 also with N ¼ 50 and N ¼ 100 points. The time step is scaled accordingly, and so

the three set of runs have been made with ðN ;DtÞ ¼ ð50; 0:0256Þ, ð100; 0:0128Þ and ð200; 0:0064Þ. Note the
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Fig. 6. The first normal stress difference N1 ¼ R11 � R22 is plotted as a function of time, for �l ¼ 4� 105. The normal stress difference

for a straight filament, same �l is plotted with a dashed line for comparison. The solid vertical line indicates t ¼ 49:664, the time at

which the straight filament is vertical.
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Fig. 7. The shear stress R12 ¼ R11 is plotted as a function of time, for �l ¼ 4� 105. R12 ¼ R21 for a straight filament, same �l is plotted

with a dashed line for comparison.



A.-K. Tornberg, M.J. Shelley / Journal of Computational Physics 196 (2004) 8–40 29
absence of any high order time-step constraint. The largest differences between the three resolutions is

naturally found in the simulations for the largest �l-value, where the filament bends the most. For the times

plotted in Fig. 4, the convergence rate based on the consecutive solutions varies between 1.89 and 2.22. The
norm we use is the average error in the Euclidean distance between the discrete points on the filament. For

the lower values of �l, N ¼ 50 also resolved the filament shape well, as seen in the left plot of Fig. 8 for
�l ¼ 3� 105. However, when we increase �l, so that we get an even higher curvature of the filament, N ¼ 50

is not a sufficient resolution, as seen in the right plot in Fig. 8 (�l ¼ 4� 105). The errors are largest in the

most bent region in the center of the filament, and also near the free ends.

The filament is inextensible, so it is also of interest to monitor the length errors during the simulations.

The error in the length of the filament is naturally largest when the filament is most buckled. In Fig. 9, the

absolute values of the length errors as a function of time have been plotted for the three sets of runs. From
left to right we have �l ¼ 2� 105, 3� 105 and 4� 105, and in each plot, the length error is plotted for

N ¼ 50, 100 and 200. In all three sets of runs, the peak in the length error is reduced by more than a factor

of four as the resolution is doubled. We have used the penalization in the line tension equation as intro-

duced in Eq. (22), with b ¼ 20.

Without penalization, the length errors would be larger, and could render very inaccurate simulations

for cases with large deformations. The exact choice of b is however not so important: choices of b ¼ 10, 20

or 50 affect the results only very marginally.
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The penalization is active and interacts with the numerical solution in the simulation – if length errors

start to grow, the penalization term gets larger and will act more strongly to reduce them. This can be

viewed as introducing some pulling at discrete points to rearrange them at a uniform spacing in arclength.
How the points will be redistributed depends on the solution itself.

A slight shift in the y-position of the filament, as we have gone through the buckling phase, will over time

lead to a larger shift in the x-coordinate of the center position, due to the nature of the shear flow. In the

end of the simulations, we do not always get a convergence rate close to 2 if we measure the difference

between consecutive solutions. In the three set of runs presented in this section, the convergence rate is

higher than second order in the end of the simulations. For other simulations, convergence rates might be

smaller than 2 instead. However, if we center the three solutions for the filament coordinates at the origin,

we do measure close to second-order convergence. At the late time t ¼ 61:44, we have an order of con-
vergence of 1.97.

4.2. Interacting filaments

In rheological experiments for fiber suspensions, a stationary or oscillatory shearing background flow is

often imposed. One can measure properties such as the stress response and the time scale for this response

and the distribution of fiber orientations.

Below, we present a simulation where 25 filaments of equal length are inserted into an oscillatory
background shear flow. Periodic boundary conditions are imposed in the streamwise (x) direction. In Fig. 1,

we defined the angle h in the xy-plane such as, for the steady flow, the straight filament in the plane is under

compression for p > h > p=2, and under extension for p=2 > h > 0. In the oscillatory flow, this is true for

the first half of each period, where as the situation will be reversed in the second half period, when the flow

is in the opposite direction. Hence, filaments that are under compression will become under extension when

the flow reverses, and vice versa.

The parameters are �l ¼ 1:5� 105 and e ¼ 10�2. We use N ¼ 100 points to discretize each filament, and a

time step Dt ¼ 0:0128. We define the background shear flow U0 ¼ ðsinð2pxtÞy; 0; 0Þ, where x ¼ ð2000DtÞ�1
,

so that one period is 2000 time steps.

To impose the periodicity in the x-direction, we make use of the approximation introduced in Eq. (42).

The accuracy of this approximation is investigated in Appendix C. We define the periodic interval in x to be

of length 2 (twice the filament length).
Fig. 10. Filament configurations at t ¼ 0:0 and t ¼ 25:6. The velocity U0 ¼ ðsinð2pxtÞy; 0; 0Þ is zero at these points in time.



Fig. 11. Filament configurations at t ¼ 38:4 and 49:024. The velocity profile of the background shear flow U0 ¼ ðsinð2pxtÞy; 0; 0Þ is
indicated at the bottom.

A.-K. Tornberg, M.J. Shelley / Journal of Computational Physics 196 (2004) 8–40 31
The initial filament configuration is shown in the left plot in Fig. 10. All filaments are of length 1, and are

initially straight. In the case of one single filament in Section 4.1, we introduced a small perturbation to the

straight filament to excite buckling. In this case, the filament interactions will be sufficient for this purpose.

In the right plot in Fig. 10, the filament configuration is shown after one period, at t ¼ 25:6. In Fig. 11, the

filament configurations at t ¼ 38:4 and 49.024 are plotted.

When the filaments buckle, they store elastic energy that can later be released back to the system. The
total elastic energy is defined as

Eelas ¼
X25
k¼1

1

2

Z
Ck

jðxkÞssj
2
ds; ð49Þ

where jðxkÞssj is the curvature of filament k as a function of arclength s. In particular, Eelas is proportional to

the trace of the bending part of the extra stress tensor (Eq. (48)). Eelas is plotted in Fig. 12 versus time for

five periods of the oscillating shear.

In the plot of the elastic energy (Fig. 12), we can see that the elastic energy has a peak around t ¼ 23:3.
At this time, many filaments are strongly bent, after which they start to relax as the flow slows down. At

t ¼ 25:6 (configuration plotted in Fig. 10), the background velocity is zero, and the flow is changing di-

rection. At t ¼ 38:4 (Fig. 11) after one and a half period, there is little elastic energy in the system. Many

filaments are close to being straight, and the ones that are bent show only moderate bending. On the other
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Fig. 12. Total elastic energy Eelas as defined in Eq. (49) plotted versus time t. The period for the oscillating shear flow is 25.6, and the

dashed lines marks each half-period, i.e. the points in time when the background flow changes direction.
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Fig. 13. Elastic energy plotted versus time t for four different filaments. The total elastic energy is plotted in Fig. 12.
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hand, by t ¼ 49:024 (Fig. 11), many filaments are again buckled strongly, and at this point, the system has

its maximum elastic energy within the second period.

In Fig. 13, we plot the elastic energy for four different filaments as a function of time. These four

filaments all develop rather high curvatures at some points in time. Viewing this as a sample of possible

evolutions, we see that there are filaments that buckle strongly in the first half period, and very little in

the second, or vice versa. There are also filaments that buckle to about the same degree in both the first

and the second half period. For some filaments, the maximum energy over one full period decays in
later periods, while it increases for others. Large elastic energies are for example found for filaments

with an initial position and orientation such that they undergo a small buckling in the first half-period

of the oscillations. As the direction of the flow changes, they have not been under extension long

enough to get completely straight, and still hold slightly bent shapes. They therefore bend strongly as

they get under compression when the flow direction changes, leading to a peak in the elastic energy in

the second half-period. Two examples of the elastic energies of such filaments are found in the two

lower plots in Fig. 13.

In a system of 25 filaments, the total elastic energy depends strongly on the initial configuration, sug-
gesting that the number of filaments is as yet too small to get a good distribution of positions and ori-

entations.

Other interesting phenomena to study for suspensions are filament orientation, suspension viscosity as a

function of volume fraction and flexibility of the fibers, and normal stress differences. In the simulation

presented here, all filaments are of equal length, and it is also interesting to study the effect of different

length distributions of the filaments on the above mentioned properties.

Considering first normal stress differences, we find that already one single filament that buckles in the

plane yields a positive integrated first normal stress, which is not the case if buckling does not occur. As
discussed in Section 4.1, there is no configuration that can yield a negative normal stress contribution that

cancels that positive contribution. Hence, even in dilute suspensions of fibers, where the interactions be-

tween filaments are weak, the buckling of the fibers will yield a net positive first normal stress difference.

It is also possible to extract information and there from compute bulk properties of the suspension.

However, in order for these bulk properties to be representative for a filament suspension, the simulations

must include a larger number of filaments.
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To include the interactions of the filaments, we need to compute the contribution from M � 1 other

filaments for each filament, or from 3M � 2 filaments if we as in this case include a periodic layer of boxes in

the streamwise direction (the cost to compute the approximate terms in the periodic sum is negligible). This
yields that the cost to compute the interactions grows proportional to M2.

The time-step size is proportional to 1=N , where N is the number of points on the filament, and so the

number of time steps is proportional to N . In each time step, the leading order terms of the computational

cost are C1MN 3 þ C2M2N 2. The first term comes from solving separate systems for the M filaments for both

the implicitly discretized dynamics equation and the line tension equation, with the number of unknowns

proportional to N . The second term comes from computing the interaction between the different filaments.

When the number of filaments is small, the first term dominates, but as the number of filaments grow, the

computation for the interactions take up a majority of the computational time.
The next step in the development of the numerical algorithm is therefore to make this summation

procedure more efficient, using modern fast summation strategies [9,29,37]; thereby reducing the cost of this

part to OðMN logðMNÞÞ or even OðMNÞ.
5. Concluding remarks

We have developed a formulation, based on slender body asymptotics, for simulating the non-local
hydrodynamics of slender flexible fibers immersed in an incompressible Stokesian fluid. The mathematical

description has the form of a system of integral equations along the filament centerlines and takes into

account the influence of all fluid–filament and filament–filament interactions. This formulation is also

appropriately regularized, with no loss of asymptotic accuracy, so as to satisfy a solvability condition and

to control possible instabilities occurring at length-scales below those described by a slender body ap-

proximation.

The numerical method is based on finite differences to compute derivatives in space and time, implicit

time-stepping, and product integration to treat the integral terms. The numerical quadrature procedure is
carefully designed to resolve rapidly changing terms and to achieve a good cancellation between the dif-

ferent parts of the integral operators. We have demonstrated the ability of our method to simulate flows

with many interacting filaments and where substantial buckling of the filaments occur. We have shown the

second-order convergence of the method, and that length errors are well controlled when the line tension

equation is stabilized with the penalization term.

This method can be applied to several very interesting fluid dynamics problems. Our simulations here

have given new results on the fundamental behaviors of single and multiple interacting filaments in steady

and oscillating shear flow, showing in particular the development of complicated shape perturbations and
the storage and release of elastic stress. Becker and Shelley [4] used a local drag model to identify a sharp

transition to buckling for a single elastic filament in shear, arguing that this transition was associated with

the development of first normal stress differences. While the point of transition showed good agreement

with experiments, the growth of stresses did not. This discrepancy may be due to the lack of filament–

filament interactions in their model, a point we can now begin to address by investigating the growth of

stresses past a buckling transition as a function of filament concentration. An important element in doing

this will be increasing the number of filaments in our simulations.

Another very interesting, and very current, set of problems starts with the discoveries that fluids can be
mixed efficiently at low Reynolds number by using viscoelastic fluids [17,18], and that such fluids can be

used for control of microfluidic devices [16]. Important elements underlying such technological possibilities

are the nonlinearities and additional time-scales associated with elastic response. Models based upon the

nonlinear interactions of elastic filaments with background flows, and with each other, could shed light on

the basic mechanisms.
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In order to increase the number of filaments in our simulations, there are two main improvements to be

made. The first is to implement a fast summation strategy, such as is done for potential flows [15], for

evaluating the Stokeslets and doublets arising from discretization of the filament–filament interactions. Of
particularly interest here are the recent advances in the area of ‘‘kernel-independent’’ methods which are

readily adapted to a variety of summation kernels [9,29,37]. The second is to parallelize the method. This is

rather straightforward as most of the computations are done on each filament separately, and interaction

terms are treated in an explicit manner.

In this paper, we have considered only rather dilute suspensions, and have not focused much on the very

near interactions of two filaments. In near-range interactions, lubrication forces are active and need to be

modeled more accurately. One possible approach is to represent filament surfaces explicitly in the region of

nearby filament interactions, perhaps within the context of a boundary integral representation of surface
velocity, and treat the ‘‘far-field’’ via slender body asymptotics.
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Appendix A. Finite difference formulas

The filament centerlines are discretized uniformly in the arclength s, with N intervals, i.e. with grid size

h ¼ 1=N . The discrete points are given by sj ¼ jh, j ¼ 0; . . . ;N , and we use the notation fj ¼ f ðsjÞ.
We introduce divided difference operators Dp, so that Dpfj approximates the derivatives f ðpÞðsjÞ to an

Oðh2Þ error, for p ¼ 1; . . . ; 4. The standard centered operators are used whenever possible, but at bound-

aries we apply skew operators. We define:

D1fj ¼
ð�fjþ2 þ 4fjþ1 � 3fjÞ=ð2hÞ; j ¼ 0;
ðfjþ1 � fj�1Þ=ð2hÞ; 16 j6N � 1;
ð3fj � 4fj�1 þ 2fj�2Þ=ð2hÞ; j ¼ N :

8<: ðA:1Þ
D2fj ¼
ð�fjþ3 þ 4fjþ2 � 5fjþ1 þ 2fjÞ=h2; j ¼ 0;
ðfjþ1 � 2fj þ fj�1Þ=h2; 16 j6N � 1;
ð2fj � 5fj�1 þ 4fj�2 � fj�3Þ=h2; j ¼ N :

8<: ðA:2Þ
D3fj ¼

ð� 3
2
fjþ4 þ 7fjþ3 � 12fjþ2 þ 9fjþ1 � 5

2
fjÞ=h3; j ¼ 0;

ð� 1
2
fjþ3 þ 3fjþ2 � 6fjþ1 þ 5fj � 3

2
fj�1Þ=h3; j ¼ 1;

ðfjþ2 � 2fjþ1 þ 2fj�1 � fj�2Þ=ð2h3Þ; 26 j6N � 2;

ð3
2
fjþ1 � 5fj þ 6fj�1 � 3fj�2 þ 1

2
fj�3Þ=h3; j ¼ N � 1;

ð5
2
fj � 9fj�1 þ 12fj�2 � 7fj�3 þ 3

2
fj�4Þ=h3; j ¼ N :

8>>>>><>>>>>:
ðA:3Þ
D4fj ¼

ð�2fjþ5 þ 11fjþ4 � 24fjþ3 þ 26fjþ2 � 14fjþ1 þ 3fjÞ=h4; j ¼ 0;
ð�fjþ4 þ 6fjþ3 � 14fjþ2 þ 16fjþ1 � 9fj þ 2fj�1Þ=h4; j ¼ 1;
ðfjþ2 � 4fjþ1 þ 6fj þ�4fj�1 þ fj�2Þ=h4; 26 j6N � 2;
ð2fjþ1 � 9fj þ 16fj�1 � 14fj�2 þ 6fj�3 � fj�4Þ=h4; j ¼ N � 1;
ð3fj � 14fj�1 þ 26fj�2 � 24fj�3 þ 11fj�4 � 2fj�5Þ=h4; j ¼ N :

8>>>><>>>>: ðA:4Þ
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Appendix B. Regularization

B.1. Analysis for the straight filament case

We here analyze the unregularized equation for the case where the filament is straight, and Eq. (13) for

T ðsÞ simplifies greatly. The unit tangent vector xs is then constant, and all higher derivatives of x are zero.

The equation reads

2cTss � xs �
o

os
K½Tsxs� ¼ �lxs �

o

os
U0: ðB:1Þ

Using that in this case, R̂ R̂ ¼ ŝ ŝ and jRj ¼ js� s0j in the definition (4) of K½f�, Eq. (B.1) becomes

�lxs �
o

os
U0 ¼ 2

o

os
cTs

�
�
Z 1

0

Tsðs0Þ � TsðsÞ
js0 � sj ds0

�
:

This equation can be integrated to read

cTs �
Z 1

0

Tsðs0Þ � TsðsÞ
js0 � sj ds0 ¼ gðsÞ; ðB:2Þ

where gðsÞ is some scalar function of s.
G€otz [14] has showed that the operator

S½u�ðaÞ ¼
Z 1

�1

uða0Þ � uðaÞ
ja0 � aj da0 ðB:3Þ

is diagonalizable by the Legendre polynomials Pn, i.e.

S½Pn� ¼ �knPn 8n 2 N0; ðB:4Þ

where the eigenvalues kn are given by

kn ¼ 2
Xn
i¼1

1=i; n > 0 and k0 ¼ 0: ðB:5Þ

Asymptotically, kn ! 2ðlog nþ cÞ where c ¼ 0:57721 . . . (Euler�s constant) as n ! 1.

With s ¼ ðaþ 1Þ=2, defining #ðaÞ ¼ TsðsÞ, Eq. (B.2) can be written as

c#ðaÞ � S½#�ðaÞ ¼ g
aþ 1

2

� �
:

Expanding # and g on the Legendre polynomials Pn, and using relation (B.4) we find that this continuous

problem will not have a solution unless

cþ kn 6¼ 0 8n: ðB:6Þ

For n ¼ 0, kn ¼ 0, and since c ¼ logðe2eÞ < 0, cþ k0 < 0. As n gets large, cþ kn ! logðe2eÞ þ 2 log nþ 2c ¼
2 logð ffiffiffi

e
p

enÞ þ 2c ¼ 2 logð ffiffiffi
e

p
ecenÞ. Hence, for large enough n, cþ kn will be positive for a fixed small e. For

some n, we might therefore have cþ kn equal to, or very close to 0.

In Fig. 14 kn has been plotted as a function of n. Overlayed in the figure are lines for �c for e ¼ 10�2,

10�3 and 10�4. The kn curve passes the �c level as cþ kn goes from negative to positive. For e ¼ 10�2, the

value of cþ kn is negative for n ¼ 33 and positive for n ¼ 34. For e ¼ 10�4, we have n ¼ 3404 and 3405,

respectively.
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Fig. 14. kn as defined by (B.5) plotted versus n. The dashed lines indicate the values of �c ¼ � logðe2eÞ for e ¼ 10�2, 10�3 and 10�4

from the bottom and up.
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Expanding a function in terms of Legendre polynomials, finer scales are resolved as more polynomials

are included, i.e. as n increases. One can view the solvability condition (B.6) as a constraint not to resolve

scales smaller than the e-scale, which are the length-scales below those captured by the slender body theory.

The n value for which the quantity kn þ c turns positive is approximately proportional to 1=e. For very
small values of e, the asymptotic value of kn yields that this occurs at n > e�

1
2
�ce�1.

Even if the condition is discrete, and could be avoided by a clever choice of e, the condition will change

as a filament becomes non-straight, and thus there is no such choice that safely avoids the solvability

condition being violated. In practice, the solvability condition sets a limit on what resolution can be used to

discretize the problem. For larger e, like e ¼ 10�2, where the permitted resolution is the lowest (n < 34 was

found above), this would not be sufficient to resolve the shape of the filament during the course of a

simulation, even as it attains a moderate curvature. The line tension equation is derived from the equation

for the velocity of the filament centerline, and so there are naturally related problems with the evolution
equation. For the case of a closed loop in the plane, Shelley and Ueda [33] studied the time dependent

slender body equations and noted that the jump discontinuity in the kernel gives rise to a high wave number

instability at sufficiently high wave numbers, beyond k � 1=e. In short, the original equations are not

suitable for numerical discretization.

B.2. Regularization of the integral operator

As a remedy for making their equations suitable for numerical simulations, Shelley and Ueda [33]

suggested a regularization of the integral operator as in Eq. (15), but with a constant d. They furthermore

showed, that for a closed filament, the regularized integral operator Kd in Eq. (15) with d constant differs

from the unregularized one (d ¼ 0) by Oðd2 log dÞ. Therefore, if d � e, the asymptotic accuracy of the

slender body equations with the original operator replaced by the regularized one is still Oðe2 log eÞ, i.e. the
two formulations are asymptotically equivalent.

However, in our case, the curve is not closed, and we have to consider the general case of a filament with

free ends. The analysis in this case shows that while the regularization again modifies K½f�ðsÞ to Oðd2 log dÞ if
s is in the interior, the modification is only OðdÞ as s approaches one of the free ends. This alters the as-

ymptotic accuracy (if d � e) of the regularized equations, which we would like to avoid.

Instead, we replace the constant d by a variable dðsÞ. With dðsÞ ¼ d0/ðsÞ, where /ðsÞ is such that /ðsÞ=s
and /ðsÞ=ð1� sÞ are uniformly bounded, the regularization introduces a modification of Oðd20 log d0Þ. With

d0 � e, this again yields a formulation that is asymptotically equivalent to the original formulation. An
outline of this proof is given in the next section of this appendix. One possible choice of /ðsÞ 2 C1ðsÞ is

given in Eq. (16).

So, is a choice of d � e sufficient to remove the solvability condition? To answer this question, we return

again to the line tension equation (Eq. (13)). Here, we can note the presence of the second-order term 2cTss,
but also that there is another such term hidden in the integral operator. With d ¼ 0, the integral in Eq. (15)
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is only defined when both terms are included, and none of the terms in the integral can be evaluated by

them selves. With d > 0 however the second term in the integral can be written as

�ðIþ ŝðsÞ̂sðsÞÞfðsÞ
Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
js� s0j2 þ d2

q ds0 ¼ �ðIþ ŝðsÞŝðsÞÞfðsÞuðsÞ;

where uðsÞ ¼ logððsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ d2

p
Þð1� sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� sÞ2 þ d2

q
Þ=d2Þ. Using this, it can be noted that in the line

tension equation, the term �xs � ðo=osÞK0
d½ðTxsÞs�, yields among others a term 2uðsÞTss. Adding this to the

original elliptic term, the coefficient is 2ðcþ uðsÞÞ. This expression will be smaller than zero for all values of

s only if d >
ffiffiffi
e

p
e. If d is smaller than this limit, there will be some value for s for which the coefficient is

zero, and the ellipticity of the equation is destroyed. This is by no means a complete analysis, but numerical

tests confirm the result, that this is the limit for sufficient regularization.

Also in the case with a variable dðsÞ, numerical experiments show that with d0 >
ffiffiffi
e

p
e, this variable dðsÞ

provides enough regularization to remove the solvability condition.

B.3. Asymptotic equivalence

Let Kd½f�ðsÞ be defined as in Eq. (15) with dðsÞ ¼ d0/ðsÞ. Assume j/ðsÞj6 1, and /ðsÞ 2 CðRÞ with /ðsÞ=s
and /ðsÞ=ð1� sÞ uniformly bounded. Let K0½f�ðsÞ be defined as in Eq. (15) with d ¼ 0. Then, we have that

Kd½f�ðsÞj � K0½f�ðsÞj6Cd20 log d0: ðB:7Þ

The outline for how this can be shown follows below.

Let us subtract and add a term to the integral operator, and then split it into two parts, Kd½f�ðsÞ ¼
I1ðsÞ þ I2ðsÞ, where

I1ðsÞ ¼
Z 1

0

Iþ R̂ R̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRj2 þ dðsÞ2

q
264 � Iþ ŝ ŝffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs� s0Þ2 þ dðsÞ2
q

375fðs0Þ ds0; ðB:8Þ
I2ðsÞ ¼ ðIþ ŝ ŝÞ
Z 1

0

fðs0Þ � fðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s0Þ2 þ dðsÞ2

q ds0: ðB:9Þ

For each of I1ðsÞ and I2ðsÞ, we will split the integral into sub-intervals, taking out the interval where s0 is
close to s to be treated separately. The integrals are split into the following sub-intervals:

ðB:10Þ

where x ¼ ð1=2Þminðx1;x2;x3; . . .ÞPC > 0. Here, xi is the radius of convergence for expansion of
components of f and x, assumed sufficiently differentiable.

We start by considering I2ðsÞ. In the case when js� s0jPx, the difference between the regularized and

unregularized integral can be found by Taylor expansion. In the case where js� s0j < x, we again Taylor

expand, and then make use of the recursive formula

Z
apffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ dðsÞ2
q da ¼ 1

p
ap�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ dðsÞ2

q264 � ðp � 1ÞdðsÞ2
Z

ap�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ dðsÞ2

q da

375:
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From here, we need to show the closeness of the first part to the unregularized result, and the boundedness

of the second part. Again, we Taylor expand. A special case is where s < x or s > 1� x. In this case, we

need the use the assumption that /ðsÞ=s and /ðsÞ=ð1� sÞ are uniformly bounded, to get the result of Oðd20Þ.
Now, turn to I1ðsÞ. We rewrite this integral as was done in Eqs. (31) and (32).

We need to compare the result of this integral to the unregularized result with d ¼ 0. Again, we follow

the same route, although the Taylor expansions are more involved. In this case, after Taylor expanding in

the case where js� s0j < x, we apply the more general recursive formulaZ
ajþ2i

ða2 þ dðsÞ2Þiþ1=2
da ¼ 1

j
ajþ2i�1

ða2 þ d2Þi�1=2
� dðsÞ2 jþ 2i� 1

j

Z
ajþ2i�2

ða2 þ dðsÞ2Þiþ1=2
da:

Again, we need to show the closeness of the first part of the unregularized result, and the boundedness of

the recursive terms.

For most parts, the regularized integral differs from the unregularized by Oðd20Þ. However, one recursive

term in the expansion of I2ðsÞ as well as of I1ðsÞ is only bounded by a constant times d20 log d0.Hence, in total,
we find that Kd½f�ðsÞ � Kd½f�ðsÞj j6Cd20 log d0.
Appendix C. Numerical test of periodicity

In Section 3.4, we discussed the evaluation of the periodic sum (40). In Eq. (42), we introduced an

approximation to this sum in which we included the terms for p ¼ �1; 0; 1, and approximations for

26 jpj6Q. In this section, we want to study the quality of this approximation.

Given a filament shape and the corresponding line tension at some time, we compute the following

vector valued sums at a set of test points:

Rrefð�xÞ ¼
XP
p¼�P

Vpð�xÞ; ~RCð�xÞ ¼
X1
p¼�1

Vpð�xÞ; ~RQð�xÞ ¼ ~RCð�xÞ þ
X

26 jpj6Q

eVpð�xÞ:

The filament, which in this test lies in the xy-plane, and its two closest periodic images are plotted in Fig. 15.

The periodicity is in the x-direction, with the period length d1 ¼ 2. The filament is discretized with N ¼ 200

points, and the integrals are evaluated using the trapezoidal rule. The test points are placed along a vertical

line, �0:86 y6 0:8, with x-coordinate �x.
In Fig. 16, jRrefð�x; y; 0Þj is plotted versus y for three different values of �x. The term has been scaled by 1=�l.

The magnitude decreases as we place the test points further away from the filament, up until the next
periodic image becomes the closest one.

If we include only the contributions for p ¼ �1; 0; 1 in the sum, as in ~RCð�xÞ, the relative error can be

rather large, as can be seen in Fig. 17. As long as the test points are much closer to one copy of the filament
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Fig. 15. A filament and its closest two periodic images. The vertical dashed line indicates the line with x ¼ �x along which we place the

test points.
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than to the others, this contribution dominates, and the sum is also well balanced, and the error is rather

small. For �x ¼ 0:9 however the test points are about the same distance from two copies of the filament, and

the largest relative error is 6.7%. If we add the contribution for p ¼ 2 to the sum, the error decreases to
3.4%.

In this discussion, we should however remember that when the closest distance between say filaments 1

and 2 is large, the contribution from filament 2 to filament 1 will be small compared to other contributions,

such as from filament 1 itself. Therefore, an error of 6.7%, although not satisfactory, is not catastrophic.

When we add the sum of approximative terms to the truncated sum, as in ~RQð�xÞ, the error is significantly
decreased, as can be seen by comparing the plots in Fig. 18 to the ones in Fig. 17. Also here, the largest

error is naturally found for �x ¼ 0:9, but in this case it is much smaller, about 0.7%.

Several different tests have been made with different shaped filaments, different layouts, etc. The filament
in our test here has a rather high curvature. For filaments that are less bent, the periodic approximation

works even better. It also improves more if the length of the periodic interval is increased.

To conclude, we have seen that an addition of our periodic approximation significantly improves the

result compared to simply truncating the sum. This is done to a very low cost, since once the integral in Eq.

(41) has been evaluated, the result can be used to compute the approximation eVpð�xÞ for any �x and p. If
evaluating the exact contribution, Vpð�xÞ, the integral must be recomputed for each new �x and p.



40 A.-K. Tornberg, M.J. Shelley / Journal of Computational Physics 196 (2004) 8–40
References

[1] K.E. Atkinson, An Introduction to Numerical Analysis, Wiley, New York, 1989.

[2] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.

[3] G.K. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech. 41 (1970) 545–570.

[4] L. Becker, M. Shelley, The instability of elastic filaments in shear flow yields first normal stress differences, Phys. Rev. Lett. 87

(2001) 198301.

[5] M.E. Cates, S.J. Candau, Statics and dynamics of worm-like surfactant micelles, J. Phys.: Condens. Matter 2 (1990) 6869–6892.

[6] S. Childress, Mechanics of Swimming and Flying, Cambridge University Press, Cambridge, 1981.

[7] A.T. Chwang, T.Y.-T. Wu, Hydrodynamics of low-Reynolds-number flow. Part 2. Singularity method for stokes flow, J. Fluid

Mech. 67 (1975) 787.

[8] X. Fan, N. Phan-Thien, R. Zheng, A direct simulation of fibre suspensions, J. Non-Newtonian Fluid Mech. 74 (1998) 113–135.

[9] Z. Gimbutas, V. Rokhlin, A generalized fast multipole method for nonoscillatory kernels, SIAM J. Sci. Comp. 24 (2002) 796–817.

[10] T. Gisler, D.A. Weitz, Scaling of the microrheology of semidilute F-Actin solutions, Phys. Rev. Lett. 82 (1999) 1606–1609.

[11] R. Goldstein, S. Langer, Nonlinear dynamics of stiff polymers, Phys. Rev. Lett. 75 (1995) 1094.

[12] R. Goldstein, T. Powers, C. Wiggins, Viscous nonlinear dynamics of twist and writhe, Phys. Rev. Lett. 80 (1998) 5232.

[13] S. Goto, H. Nagazono, H. Kato, Polymer solutions. 1: Mechanical properties, Rheol. Acta 25 (1986) 119–129.

[14] T. G€otz, Interactions of fibers and flow: asymptotics, theory and numerics, Ph.D. Thesis, University of Kaiserslautern, Germany,

2000.

[15] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325–348.

[16] A. Groisman, M. Enzelberger, S. Quake, Microfluidic memory and control devices, Science 300 (2003) 955–958.

[17] A. Groisman, V. Steinberg, Elastic turbulence in a polymer solution flow, Nature 405 (2000) 53.

[18] A. Groisman, V. Steinberg, Efficient mixing at low Reynolds numbers using polymer additives, Nature 410 (2001) 905.

[19] A. Jayaraman, A. Belmonte, Oscillations of a solid sphere falling through a wormlike micellar fluid, Phys. Rev. E 67(6) (2003),

Art. No: 065301.

[20] G.B. Jeffery, The motion of ellipsoidal particles immersed in viscous fluid, Proc. R. Soc. Lond. A 102 (1922) 161–179.

[21] R.E. Johnson, An improved slender-body theory for stokes flow, J. Fluid Mech. 99 (1980) 411–431.

[22] C.G. Joung, N. Phan-Thien, X. Fan, Direct simulation of flexible fibers, J. Non-Newtonian Fluid Mech. 99 (2001) 1–36.

[23] J. Keller, S. Rubinow, Slender-body theory for slow viscous flow, J. Fluid Mech. 75 (1976) 705–714.

[24] R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, Oxford, 1998.

[25] S. Lim, C.S. Peskin, Simulations of the wirling instability by the immersed boundary method, SIAM J. Sci. Comput. (to appear).

[26] A. Mayo, C. Peskin, An implicit numerical method for fluid dynamics problems with immersed elastic boundaries, Contemp.

Math. 141 (1993) 261–277.

[27] P. Palffy-Muhoray, B. Bergersen, H. Lin, R. Meyer, Z. Racz, Filaments in liquid crystals: structure and dynamics, in: S. Kai (Ed.),

Pattern Formation in Complex Dissipative Systems, World Scientific, Singapore, 1991.

[28] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.

[29] J. Phillips, J. White, A precorrected-fft method for electrostatic analysis of complicated 3d structures, IEEE Trans. Computer-

Aided Des. Integrated Circuits Syst. 16 (1997) 1059–1072.

[30] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge,

1992.

[31] L. Segel, Mathematics Applied to Continuum Mechanics, MacMillan, New York, 1977.

[32] M. Shelley, T. Ueda, The nonlocal dynamics of stretching, buckling filaments, in: D. Papageorgiou, Y. Renardi (Eds.), Multi-

Fluid Flows and Instabilities, AMS-SIAM, 1996.

[33] M.J. Shelley, T. Ueda, The stokesian hydrodynamics of flexing, stretching filaments, Physica D 146 (2000) 221–245.

[34] P. Skjetne, R.F. Ross, D.J. Klingenberg, Simulation of single fiber dynamics, J. Chem. Phys. 107 (1997) 2108–2121.

[35] J.M. Stockie, Simulating the motion of flexible pulp fibres using the immersed boundary method, J. Comput. Phys. 147 (1998)

147–165.

[36] S. Yamamoto, T. Matsuoka, Dynamic simulations of fiber suspensions in shear flow, J. Chem. Phys. 102 (1995) 2254–2260.

[37] L. Ying, G. Biros, D. Zorin. A kernel independent fast multipole algorithm, Technical Report TR2003-839, Department of

Computer Science, Courant Institute, New York University, 2003.


	Simulating the dynamics and interactions of flexible fibers in Stokes flows
	Suspension of fibers/filaments
	Problem formulation
	Non-local slender body approximation
	The slender body equations
	Completing the formulation
	Regularization of the integral kernel
	Filament interaction
	Periodicity
	Problem summary
	Single filament
	Multiple filaments


	Numerical methods
	Product integration
	Discretization of the line tension equation
	Numerical methods for several filaments
	Time-stepping
	Solving for the tensions
	Spatial evaluation

	Imposing periodicity
	Summary of the numerical algorithm

	Numerical results
	One single filament in the plane
	Convergence

	Interacting filaments

	Concluding remarks
	Acknowledgements
	Finite difference formulas
	Regularization
	Analysis for the straight filament case
	Regularization of the integral operator
	Asymptotic equivalence

	Numerical test of periodicity
	References


