
3 General First Order Equations

3.1 The general quasilinear first-order equation

Before considering dispersive systems and general first order equations, let us
see how far we can push the ideas about characteristics that we developed in
the context of tra�c flow. We saw that, for an equation of the form

⇢t + c(⇢) ⇢x = 0 ,

we could determine the solution by following characteristic lines, solving the
system of ordinary di↵erential equations

dx

dt
= c(⇢)

d⇢

dt
= 0 .

This idea can be easily generalized to scalar equations in more dimensions, with
more general coe�cients and nonzero forcing.

The general quasi-linear first order equation for a scalar function �(x), x 2
R

n, has the form
X

j

aj(�, x)
@�

@xj
= b(�, x) , (45)

where the vector of independent variables x may include time as its first compo-
nent, and the coe�cient aj ’s and the forcing b are given by prescribed functions
of the independent variables and possibly of the solution, but not of its deriva-
tives. If we introduce characteristic lines x(s) in R

n by the system of equations

ẋj(s) = aj(�, x) , (46)

where a dot denotes derivative with respect to the parameter s, then equation
(45) implies that

�̇(s) = b(�, x) . (47)

The equations in (46, 47) form a closed system of ordinary di↵erential equa-
tions, determining lines in the n+1 dimensional space (x,�). Given initial data
�(x) along a surface S(x) = 0, the characteristics may be used to find the solu-
tion in a neighborhood of the initial surface. For this, however, it is necessary
that the characteristics be transversal to the initial surface; i.e. that

rS · a 6= 0 , (48)

where a is the vector with components aj(�, x). When the condition (48) is not
satisfied, the characteristics are tangent to the surface S(x) = 0. Then not only
they do not provide information on the solution away from the initial surface,
but also they may contradict the initial data if the characteristic equation for �
is not satisfied along the surface S(x) = 0.
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In two dimensions, such as the x = (x, t) of tra�c flow, the surface S(x) = 0
is in fact a curve, and the non-degeneracy condition (48) simply states that this
curve should nowhere be tangent to a characteristic. By extension, surfaces
in any dimension not satisfying (48) are called characteristic surfaces. Two
properties characterize these surfaces: that the data provided on them cannot
be arbitrary, and that the equations do not fully specify the variation of the
solution in the direction transversal to the surfaces. As a consequence of the
latter property, the derivative of � normal to the surface may jump. This
provides a further characterization of characteristic surfaces, as those across
which the solution admits weak singularities. Later in the class we shall extend
this characterization to more general systems of PDEs.

3.2 Dispersive waves. Fourier Synthesis. Phase and group
velocities

The study of general first order equations, which we undertake in the next sub-
section, has many commonalities with the study of dispersive waves. We shall
consider first the latter, since these will provide intuition behind the meaning
of the general characteristic equations.

Why do waves in nature so often adopt a sinusoidal form? Linear systems
of di↵erential equations with constant coe�cients typically have exponential
solutions, which become sines and cosines for complex arguments. For instance,
the wave equation

utt � c
2�u = 0,

studied in the next section, has solutions of the form

u = cos(k · x� !t) and u = sin(k · x� !t),

which we may represent succinctly as the complex exponential

u = e
i(k·x�!t)

, (49)

where the frequency ! and the wavevector k satisfy the dispersion relation

!
2 = c

2kkk2 . (50)

Small-amplitude waves in the surface of lakes and oceans also have the the
complex exponentials in (49) as solutions; in this case, the dispersion relation
reads

!
2 = g kkk tanh(Hkkk) , (51)

where g ⇡ 10m/s
2 is the gravity constant, and H is the mean depth of the

unperturbed lake. Notice that, for small values of kkk (i.e., long waves), this
converges to the dispersion relation (50) for the wave equation, with the shallow
water wave speed c

2 = g H. We will derive the more general dispersion relation
(51) as an application of Laplace’s equation later in class.
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Still another example is provided by the Schrödinger equation of Quantum
Mechanics for a free particle,

�i t = � , (52)

with dispersion relation
! = kkk2. (53)

Examples abound (see the book by Whitham for many more examples, as
well as for a far more thorough treatment that we can a↵ord here) of dispersive
systems, which have much of their behavior encapsulated in a dispersion relation
of the form

! = ⌦(k) , (54)

valid for exponential solutions of the form (49).
Introducing the phase of the wave, ✓(x, t) = k · x � !t, we note that this

(and hence the solution) is constant along the line

x = x0 +
!

kkk
k

kkk t

(Here the factor k
kkk , absent in one dimension, is a unit vector in the direction

of propagation of the wave.) The speed

Cph =
⌦(k)

kkk
k

kkk (55)

at which the fronts move normal to themselves is called the phase velocity of
the waves. For sinusoidal waves, such as those given by the real or imaginary
components of (49), this is the speed at which crests and troughs propagate. It
appears, at first sight, that this is the most fundamental speed associated with
a wave. Hence we might be surprised when further analysis leads us to a quite
di↵erent conclusion, downplaying the role of the phase velocity, and highlighting
instead the group velocity

Cg = rk⌦(k) , (56)

where rk denotes the gradient in wave vector space.
Before exploring this issue further, notice that a knowledge of the dispersion

relation (54) allows us to solve the initial value problem for linear waves in
homogeneous media rather concisely. For we can superimpose many solutions
of the form (49), and write

u(x, t) =

Z
û0(k) e

i(k·x�⌦(k)t)
dk , (57)

where û0(k) is the Fourier Transform of the initial data u(x, 0) = u0(x):

û0(k) =

✓
1

2⇡

◆d Z
u0(x) e

�i k·x
dx , (58)
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and d is the dimension of the space. When more than one function is required as
initial condition (for instance both u(x, 0) and ut(x, 0) are required for the wave
equation), this typically results in the dispersion relation ⌦(k) being multival-
ued, as is the case of (50). Then the integral (57) becomes a sum of integrals
involving the various branches of ⌦(k), and with amplitudes that can be related
to the Fourier Transforms of the various functions provided as initial data.

We can generalize the globally uniform exponential solution (49), and con-
sider modulated waves of the form

u(x, t) = ⇢(x, t) ei ✓(x,t) , (59)

where we now define the wave vector and frequency to be

k = k(x, t) = rx✓ , ! = !(x, t) = �✓t . (60)

(Notice that these agree with the former definitions when ✓ = k·x�!t.) The idea
behind writing a solution in this form is to describe approximately sinusoidal
waves that may either be moving through a variable medium, or have been
generated by a variable source. An example of a wave moving through a variable
medium is that of ocean waves approaching a shore, and hence moving through
waters of variable depth. Technological applications of variable sources include
telephone, radio, TV and internet signals sent through space via modulated
electromagnetic waves.

Behind the ansatz of a modulated wave lies the assumption of scale sepa-

ration: the amplitude ⇢(x, t) and the wave vector and frequency k(x, t), !(x, t)
need vary little within one period of the wave. Plugging the ansatz (59) into
a linear system under this assumption yields a dispersion dispersion as in (54),
with the caveat that now the frequency ⌦ may depend not just on the wave
vector k, but also on space and time:

! = ⌦(k, x, t) . (61)

On the other hand, because of the definition of k and ! as derivatives of the
phase, their cross–derivatives need to match:

kt +rx! = 0 . (62)

Equation (62) can be thought of as a conservation law for the number of waves,
where the wavenumber k represents the spatial density of waves, and the fre-
quency ! represent the flux of waves per unit time (You may want to play with
this idea first in one spatial dimension, where the intuition behind it is easier.)
Replacing (61) in (62) yields the equation

kt + (Cg ·rx) k = �rx⌦. (63)

(Try deriving this equation: you will need the fact that @ki
@xj

= @2✓
@xi@xj

= @kj

@xi
.)

Hence, along the characteristic lines

ẋ = Cg = rk⌦ , (64)
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the wavenumber satisfies
k̇ = �rx⌦. (65)

Notice that the frequency ! = ⌦(k, x) also satisfies a similar equation:

!̇ = ⌦t + ẋ ·rx⌦+ k̇ ·rk⌦ = ⌦t . (66)

In particular, if the dispersion relation does not depend on x and t (i.e., the
medium is homogeneous and stationary), then both the wavenumber and the
frequency are constant along characteristics. Hence the group velocity Cg can be
thought of as the speed at which the wavenumber and the frequency propagate.
These quantities are far more fundamental for the characterization of the wave
than its phase ✓, moving at the phase speed Cph. Here go two examples that
illustrate the significance of this distinction:

• Wave packets: Looking at the Hudson or at a pond in Central Park in a
breezy day, you will notice that small capillary surface waves, a centimeter
or two in wavelength, move in packets, broader wave envelopes that prop-
agate at a speed di↵erent from their individual wave components. The
latter appear to be born continuously at one end of the packet, and van-
ish at the other. The individual waves move at the phase velocity Cph,
the packet as a whole at the group velocity Cg.

• Waves and particles: One of the peculiar phenomena that gave rise to
quantum mechanics is the observation that small particles, such as elec-
trons, sometimes di↵ract as if they were instead waves. It turns out that
these particles can be modeled as wave packet solutions to a dispersive
system, the Schrödinger equation (52), moving as particles at the group
velocity, but with phases moving at the phase speed.

3.3 Characteristics of nonlinear equations

A dispersion relation (61) relates the spatial and temporal derivatives of the
phase of the solution to a linear system. In general, a first order partial dif-
ferential equation relates the first order derivatives of a function, the function
itself, and the position in space and time. It adopts the general form

F (x,�, p) = 0 , (67)

where x = (xj) is the vector of independent variables (possibly including time),
�(x) is the scalar function that we would like to determine from (67), and

p = (pj) =
⇣

@�
@xj

⌘
is a vector containing the partial derivatives of �.

In the particular case of quasilinear equations, studied in subsection (3.1),
F is linear in the p’s; i.e. it has the form

F =
X

j

aj(x,�) pj � b(x,�) .
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In this case, we found that special characteristic lines exist, x = x(s) , � = �(s),
along which the partial di↵erential equation (67) yields a system of ordinary
di↵erential equations for the x’s and �. Now we will show that this construction
extends to the solution of equation (67) even when F depends nonlinearly on
p. In fact, this was shown already in subsection 3.2 for functions F that do not
involve � (the phase ✓) explicitly, and had been solved for �t in terms of the
other variables, to yield the dispersion relation (61).

In this subsection, we build the characteristics or rays of (67) fast and me-
chanically. Time allowing, we shall explore later the geometrical and physical
meaning of this powerful, seemingly magical technique. Assume that special
lines exist, and write them in terms of a parameter s in the form

x = x(s)

� = �(s)

p = p(s) .

Denoting by dots the derivatives with respect to s, the components of p satisfy
the equation

ṗj =
˙@�

@xj
=

X

i

@
2
�

@xj@xi
ẋi . (68)

In order to get closed equations involving only x, � and p, we need to eliminate
the second derivatives of � from (68). To do this, di↵erentiate (67) with respect
to xi, where F is considered as a function of the x’s alone, through the –yet
unknown– dependence of � and p on x:

0 =
dF

dxj
=
@F

@xj
+ pj

@F

@�
+
X

i

@
2
�

@xj@xi

@F

@pi
. (69)

Comparing (68) and (69), we notice that the choice

ẋj =
@F

@pj
(70)

turns (68) into

ṗj = � @F

@xj
� pj

@F

@�
. (71)

To complete the system (70, 71), we need an equation for �̇; this is given by

�̇ =
X

j

@�

@xj
ẋj =

X

j

pj
@F

@pj
. (72)

The equations in (70, 71, 72) form a closed system, whose solutions determine
a family of lines in the 2n+1 dimensional extended phase space (x,�, p). Initial
data are typically given by the values of � = �(q) over a surface x = x(q),
where q = (qj) is an n � 1 dimensional parameter. To start the solution along
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characteristics, though, we need to compute the pj(q)’s as well. Their values
follow from the system

@�

@qj
=

X

i

pi
@xi

@qj
(73)

0 = F (x(q),�(q), p(q)) . (74)

For each value of q, this system for p is not degenerate if the normal to the

surface (74) in p space, ns = (ns
i ) =

⇣
@F
@pi

⌘
, is not in the space generated by the

normals to the planes (73), nj =
⇣
n
j
i

⌘
= @xi

@qj
. In view of (70), this is equiva-

lent to saying that the characteristic passing though the point (x(q),�(q), p(q)),
projected onto the space xj of independent variables, should not be tangent to
the surface x(q) at the point q. When this condition is not satisfied, the initial
data and the di↵erential equation may contradict each other and, even if this is
not the case, they are not enough to extend the solution away from the initial
surface. Such degenerate surfaces are called, again, characteristics. A partial
justification for such an abuse of notation is that, when there are only two in-
dependent variables, the characteristic surfaces and the characteristic lines are
the same geometrical objects.

3.4 Hamilton-Jacobi equations

Back in the section on dispersive waves, we wrote a general dispersion relation
(61) relating the frequency ! and the wave vector k. Here we rewrite the same
equation, just changing notation:

St +H(x, t, p) = 0 , (75)

where p = rxS. Clearly H, the Hamiltonian, plays the role of the dispersion
relation ⌦, S, the action, that of the phase �, p, the momenta, replace the wave
vector k, and the frequency ! just lost its name, being now simply refered to
by its definition, �St. In this new language, an equation of the general form
(75) is called a Hamilton–Jacobi equation, and plays a central role in theoretical
physics. There is more than a historical reason for this duality of language: the
fact that the fundamental notions of waves and mechanics can be formulated in
identical terms amazed Hamilton when he discovered it, and lies at the heart of
their identification in quantum mechanics.

The characteristic equations for (75) are, using the time t for their parame-
terization,

ẋ = rp H (76)

ṗ = �rx H (77)

Ḣ = Ht , (78)

the Hamilton equations of classical mechanics. Notice that, if we identify x(t)
with the trajectory of a particle or group of particles, the vector p with the actual
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mechanical momenta mẋ (where m denotes the particle’s mass, taken here for
notational simplicity to be the same for all particles), and the Hamiltonian with
the system’s total energy

H =
|p|2

2m
+ V (x) , (79)

(where V represents the system’s potential energy and the quadratic form in
the p’s its kinetic energy), then the characteristic equations become

ẋ =
p

m
(80)

ṗ = �rx V , (81)

Newton’s equations of motion in a potential field. Behind this fact lie the vari-
ational principles of mechanics and optics and the formal grounds for Quantum
Mechanics. I hope that you will find the time to explore these fascinating fields,
which unfortunately lie outside the scope of this class.
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