
5 The Heat Equation

We have been studying conservation laws which, for a conserved quantity or set
of quantities u with corresponding fluxes f , adopt the general form

ut +r · f = 0.

So far, we have closed these systems with relations between the fluxes and the
conserved quantities of the form

f = f(u).

However, in many scenarios, f may depend not just on u but also on its gradient.
The simplest case, where u is a scalar and f = �ru, gives rise to the heat
equation:

ut = �u (108)

that we study in this section.

5.1 Physical origin

The heat equation appears in models in a multitude of ways. Fourier first
introduced it to describe heat transfer. Here u represents the temperature, which
is conserved as a manifestation of energy. Then Fourier argued the very intuitive
principle that heat flows from warmer to cooler areas, so, in the simplest, linear
model, it follows the direction of minus the temperature gradient, yielding (108).

The equation appears also in mechanical scenarios involving friction. For
instance, we can describe the flow of water through a porous media in terms of
the height h of the water column and its mean speed u. From conservation of
mass (linearized), we have

ht +r · u = 0. (109)

To close this equation, we invoke Newton’s law. The forces acting on the fluid
are the pressure, which is proportional to h, and the drag, proportional to minus
u. Then we can write

ut +rh = �u.

If the motion evolves slowly, as is often the case in porous media, we can neglect
the inertial term, and obtain

rh = �u.

Combining this with (109), we obtain again the heat equation

ht = �h.

The heat equation models di↵usive processes, which rule for instance the
evolution of the concentration of ink in water. To see this, think of the interface
between two regions with di↵erent concentrations. The fluid’s turbulence or, in
a smaller scale, just its molecules moving back and forth, will make mass cross
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the interface in both directions. For an incompressible fluid in a fixed domain,
the net mass flux is zero. Yet the net amount of ink carried through the interface
dos not vanish: mass coming from the area with the greater concentration will
carry more ink than the same amount of mass going the other way. Since the
net ink flow is proportional to the di↵erence of concentrations, we obtain again
the heat equation, once we take the limit of small traveled distances, so that
concentration di↵erences become derivatives.

This argument, refined and formalized, makes the heat equation appear
prominently in stochastic calculus: random, Brownian motion, gives rise to
di↵usion.

The tra�c model of our first few classes also yields the heat equation, if we
have the drivers look ahead and react to the gradient rather than to the car
density itself.

Finally, the heat equation also appears describing not natural phenomena
but algorithms: descent algorithms in optimization often evolve a field by follow-
ing its gradient. Also numerical approximations to partial di↵erential equations
often involve local averages of the solution –Godunov’s method is a clear ex-
ample of this. Such local averages, which act to reduce the gradients, obey
variations of the heat equation.

5.2 The fundamental solution

We start by solving the initial value problem

ut = �u , u(x, 0) = u0(x) (110)

in all of n-dimensional space. Using the fact that the equation is linear, if we
divide our initial value data into pieces, say

u0(x) = u1(x) + u2(x) ,

then u(x, t) will be the sum of the solutions to the initial value problems with
u1 and u2 as initial data. More generally, if

u0(x) =

Z
a(y)g(x, y) dy

and G(x, t, y) satisfies

Gt = �xG , G(x, 0, y) = g(x, y) ,

then

u(x, t) =

Z
a(y)G(x, t, y) dy

solves (110). There are many ways of decomposing quite arbitrary functions
u0(x) into elementary components; the Fourier Transform, for instance, will do
the job. This we will do a bit later (we need to honor Fourier when solving
his heat equation!), but presently we take a di↵erent approach, thinking of a
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function u0(x) as the sum of infinitely many functions, each giving us its value
at one point and zero elsewhere:

u0(x) =

Z
u0(y)�(x� y) dy ,

where � stands for the n-dimensional �-function.
Then our problem forG(x, t, y), theGreen’s function or fundamental solution

to the heat equation, is

Gt = �xG , G(x, 0, y) = �(x� y).

Since the heat equation is invariant under translation, we have that

G(x, t, y) = G(x� y, t, 0) ,

which, abusing language, we shall simply denote G(x � y, t). Then G(x, t)
satisfies

Gt = �G , G(x, 0) = �(x) , (111)

and u(x, t) can be written in the form

u(x, t) =

Z
u0(y)G(x� y, t) dy.

Our next task, therefore, is to find G.

5.2.1 The one-dimensional case

In one dimension, (111) becomes

Gt = Gxx , G(x, 0) = �(x).

We will find G following an instructive path. First, notice that, again because
of linearity, if u(x, t) satisfies the initial value problem

ut = uxx , u(x, 0) = u0(x) ,

then its derivative
v = ux

satisfies
vt = vxx , v(x, 0) = u

0
0(x) .

Therefore, instead of solving the problem for G, we can solve the simpler one
that its integral F satisfies:

Ft = Fxx , F (x, 0) = H(x),

where H(x) is the Heaviside function, zero to the left of x = 0 and one to its
right. Once we find F , we can simply write G(x, t) = Fx(x, t).
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The problem for F should remind us of the Riemann problem of some classes
ago, that also had piece-wise constant initial data; we will solve it using a similar
trick. First, we notice that the initial data are invariant under the stretching

x ! �x

for any positive �. The heat equation, on the other hand, is invariant under the
following combined stretching of x and t:

x ! �x , t ! �
2
t.

Hence the solution F needs to satisfy

F (�x,�2
t) = F (x, t)

for any positive value of �. In particular, adopting � = 1p
t
, we have that

F (x, t) = F

✓
xp
t
, 1

◆
= �(⇠),

where
⇠ =

xp
t
.

Hence

Ft = �1

2

✓
x

t
3
2

◆
�0(⇠) and Fxx =

✓
1

t

◆
�00(⇠) ,

and the heat equation becomes the ODE

�00 +
⇠

2
�0 = 0 ,

with solution

�(⇠) =
1p
4⇡

Z ⇠

�1
e
� s2

4 ds ,

the error function. The lower limit of integration and the constant factor outside
have been picked so that F agrees with the Heaviside function when t ! 0, and
so ⇠ ! ±1. Finally, we obtain our Green’s function

G(x, t) = Fx(x, t) =
1p
4⇡t

e
� x2

4t . (112)

5.2.2 The multidimensional fundamental solution

In dimensions n > 1 we need to change our argument, since we can no longer
think of the delta function as a derivative of a Heaviside. Instead, we jump
directly to the stretching argument. The problem for G is spherically symmetric,
so the solution can depend only on r and t. As in 1D, the heat equation is
invariant under the combined stretching

r ! �r , t ! �
2
t.

49



The initial data, however, is not. The n-dimensional � function satisfies

�(�x) =
1

�n
�(x),

as can be easily verified by integrating both sides over a domain including the
origin, and changing variables on the left to y = �x.

Then the symmetry that leaves both the equation and the initial data in-
variant is

r ! �r , t ! �
2
t G ! �

n
G.

It follows that
�
n
G(�r,�2

t) = G(r, t),

so picking � = 1p
t
, we have

G(r, t) =
1

t
n
2
G

✓
rp
t
, 1

◆
=

1

t
n
2
�(⇠),

with
⇠ =

rp
t
.

It is most convenient to write the heat equation in polar coordinates in the form
�
r
n�1

G
�
t
=

�
r
n�1

Gr

�
r
.

which in terms of � becomes the ODE
✓
⇠
n�1�0 +

⇠
n

2
�

◆0
= 0.

Integrating this once yields

�0 +
⇠

2
� = 0

–the constant of integration needs to vanish if we want sensible behavior as
⇠ ! 0–, so

� =
1

(4⇡)
n
2
e
� ⇠2

4

–this constant picked so that � integrates to one–, yielding the fundamental
solution

G(x, t) =
1

(4⇡t)
n
2
e
� |x|2

4t . (113)

Finally, the solution to the initial value problem (110) for u(x, t) takes the
form

u(x, t) =
1

(4⇡t)
n
2

Z
e
� |x�y|2

4t u0(y) dy : (114)

each point in the initial data irradiates a spherically symmetric Gaussian whose
radius expands as the square root of time and whose amplitude decays accord-
ingly so as to preserve mass.
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5.3 Solution through Fourier analysis

In the analysis of the prior subsection, we used the linearity of the heat equation
to solve it as a superposition of infinitely many initial value problems, each of
which represented the real initial data at one point. The advantage of this
approach is that each of the auxiliary initial value problems has data that is
localized in physical space. We saw how each of these localized data evolves, as
a spherically symmetric Gaussian whose variance grows linearly with time.

Yet there is another natural choice for the representation of the initial data:
one that is local not in real but in Fourier space. We have touched briefly on
this in the section on dispersive waves, where we saw that sinusoidal solutions
are typical in many systems. In general, we should expect to find solutions of
the form

ak(t)e
ik·x (115)

in any linear system of partial di↵erential equations that has constant coe�cients
–more precisely, coe�cients that do not depend on the spatial coordinates x.
The reason is that the Fourier modes (115) are eigenfunctions of all spatial
derivatives. In particular, plugging the ansatz (115) into the heat equation
(108) yields

a
0
k(t) + kkk2a(t) = 0 ,

with solution
ak(t) = ak(0)e

�kkk2t

that decays exponentially, faster for the more rapidly oscillating modes.
Superposing many if these solutions –one for each possible value of the wave-

vector k– and fitting the ak(0) to the initial values for u0(x), we obtain

u(x, t) =

Z
û0(k)e

ik·x�kkk2t
dk, (116)

where

û0(k) =
1

(2⇡)n

Z
u0(y)e

�ik·y
dy (117)

is the Fourier transform of the initial data u0(x).
As an exercise, let us check that the general solution (116) through Fourier

modes to the initial value problem agrees with (114), the one computed through
the superposition of fundamental solutions: Plugging (117) into (116), we obtain

u(x, t) =
1

(2⇡)n

Z Z
u0(y) e

ik·(x�y)�kkk2t
dy dk.

Exchanging the order of integration and completing squares yields

u(x, t) =
1

(2⇡)n

Z ✓Z
e
�
���
p

(t)k�i x�y
2
p

t

���
2

dk

◆
u0(y) e

� kx�yk2
4t dy.
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The integral in k is that of a Gaussian displaced in the complex n-dimensional
space; it can be computed exactly:

Z
e
�
���
p

(t)k�i x�y
2
p

t

���
2

dk =
⇣
⇡

t

⌘n
2
,

and we recover (114).
What do we learn from the two forms of the general solution to the initial

value problem? The solution (114) in physical space tells us how point sources
di↵use, expanding with a square-root dependence on time. Notice also that,
although for any fixed time t the solution decays exponentially as |x| ! 1, it
is nowhere zero for any positive time, no matter how small. So, in a sense, the
speed of di↵usion is slow in the bulk, converging to zero as t ! 1, while in
another sense it is infinite, carrying information from the initial disturbance at
x = 0 all the way to infinity at time t = 0+. This can be contrasted with the
hyperbolic scenarios we studied before, that had finite characteristic speeds at
which information propagated, so that no information reached beyond the area

of influence of the initial data but, once the information did reach a point, the
local solution was a↵ected by a sizable amount.

The solution (116) in Fourier space teaches something altogether di↵erent:
small-scale features (with correspondingly large wavenumbers kkk) decay faster
than those with longer scales. This is the e↵ect of di↵usion acting to suppress
high gradients: it first eliminates the data’s micro-structure, essentially replac-
ing it with its local average, which evolves over a longer time-scale. Again,
this can be compared with the dispersive scenario, where di↵erent wavenum-
bers do not decay, but instead travel at di↵erent speeds. In fact, it is instructive
to compare the heat equation (108) with the Schroedinger equation for a free
particle,

i t +� = 0. (118)

Notice that the two are formally identical if one is allowed to introduce an imag-
inary time, t ! it, or equivalently an imaginary di↵usion coe�cient. Then the
decay rate kkk2 for the heat equation becomes the dispersion relation ⌦ = kkk2
for Schroedinger’s. In fact, this formal analogy is at the heart of the Feyn-
manKac formula, linking the path integrals of quantum mechanics –Feinman’s
contribution– to those of Wiener processes –Kac’s. Again, something we may
come back to in due time . . .

5.4 Arrows of time

Consider the integral �(t) over all of space of a function �(u), where u(x, t)
satisfies the heat equation (108). Then

�0(t) =

Z
�
0(u) ut dx =

Z
�
0(u)�u dx =

Z ⇥
r · (�0(u)ru)� �

00(u) kruk2
⇤
dx

so

�0(t) = �
Z

�
00(u) kruk2 dx (119)

52



(Notice that this statement remains true for integrals over finite domains, pro-
vided that the domain has insulated boundaries, i.e. boundaries across which
the normal flux of �,

@�(u)

@n

vanishes.) If �00(u) has a definite sign –i.e., if �(u) is either strictly convex or
strictly concave–, then (119) implies that �(t) is monotonically increasing or
decreasing, providing an “arrow of time”: a distinction between the past and
the future. This arrow only stops once u(x, t) is completely uniform throughout
the domain.

To give more flavor to this principle, let us consider the case in which u(x, t)
represents a density, so it is everywhere positive (we’ll see shortly that this
property, if true for the initial data, is preserved by the heat equation.) Then
the entropy

s = �u log(u) (120)

is a convex function of u, so it must increase continuously, until the flow reaches
a state of maximal entropy consistent with the conservation of the integral of
u: a state where u is uniform. This is a heat-equation version of the second
principle of thermodynamics. It was Eddington who first spoke of the entropy as
an “arrow of time”, with the universe always moving towards a state of maximal
disorder or randomness.

Here comes an arrow of time of a di↵erent nature, also associated with the
heat equation. Taking the gradient of (108) yields

rut = �ru.

Next we take the inner product of both sides with ru and integrate over the
full domain, yielding

d

dt

Z
1

2
kruk2 dx =

Z
ru ·�ru dx = �

Z X

j,k

����
@
2
u

@xj@xk

����
2

dx  0, (121)

where we have applied the divergence theorem to the right-hand side of the
equation, a component of ru at a time. The quantity

U =

Z
1

2
kruk2 dx (122)

is sometimes denoted the energy associated with u (although, in the original
context of the heat equation, with u representing the temperature, the thermal
energy is the integral of u, not of its gradient.) We see that this energy decreases,
providing another arrow of time. The meaning of this particular arrow is clearly
related to the heat equation’s tendency to suppress gradients. But there is more
to this story. Consider the variational derivative of U with respect to u:

�U

�u
= ��u (123)
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(you may want to review your calculus of variations.) It follows that the heat
equation (108) can be written in the form

ut = ��U

�u
. (124)

In words, the heat equation can be thought of as a descent flow of the energy U ,
since the variational derivative is the infinite-dimensional version of the gradient.
It is no wonder, therefore, that U should decrease with time:

dU

dt
=

Z
�U

�u
ut dx = �

Z ✓
�U

�u

◆2

dx = �
Z
(�u)2 dx  0. (125)

Puzzle: Are the two expressions we found for dU
dt , (121) and (125), equivalent?

5.5 Di↵usion and Brownian motion

Now that we have seen the irreversibility associated with the heat equation, and
alluded to it in terms of entropy, disorder and randomness, maybe it is time to
look back at its physical origins, particularly as it relates to stochastic processes.
We will first look at one-dimensional random walks, and soon generalize things
to multidimensional Langevin processes and their corresponding Fokker-Planck
equations.

Consider a walker on the real line that, at regular intervals �t, moves to the
left or right, with equal probabilities, a fixed distance �x. If the walker starts
walking at time t = 0 from x = 0, what is the probability P

n
j of finding it in

position x = xj = j�x at time t = tn = n�t? We can answer this question
recursively: in order to be in x = xj at time tn, the waker must have been one
step to the left or right the step before. Then

P
n+1
j =

P
n
j�1 + P

n
j+1

2
, (126)

where the 1
2 is the probability of stepping in each direction. We can reorganize

this expression in the form

P
n+1
j � P

n
j

�t
=

1

2

�x
2

�t

P
n
j+1 � 2Pn

j + P
n
j�1

�x2
, (127)

suggestive of a finite-di↵erence approximation to the one-dimensional heat equa-
tion.

To actually take the limit as �x and �t get small, we need some extra
considerations. First, we need to re-interpret the discrete P

n
j in terms of a

function defined on the real line. The natural choice is a probability density
⇢(x, t). In terms of this, Pn

j can be interpreted as the integral of ⇢(x, tn) between
xj� 1

2
and xj+ 1

2
. Then we need to take a succession of walks, with decreasing

time intervals and step-sizes. Yet this needs to be done so that the quotient

r =
1

2

�x
2

�t
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remains finite, or else the evolution equation will trivialize. Therefore the step-
size �x needs to scale as the square-root of the time interval �t. With all
this done, we can now the limit of (127), and obtain the one-dimensional heat
equation

⇢t = ⌫ ⇢xx,

where the di↵usivity ⌫ is the limit of r as �t and �x go to zero.
Let us now generalize this to arbitrary dimensions and more general walks

that do not have a fixed step �x. Instead, consider a probability distribution
µ(y|x, t,�t) for all possible steps y in R

n. The distribution may depend on
the position x and time t from which we are walking away, and is temporarily
associated with a fixed time-interval �t. Then the probability density ⇢(x, t +
�t) is given by the following generalization of (126):

⇢(x, t+�t) =

Z
⇢(x� y, t)µ(y|x� y, t,�t) dy, (128)

so

⇢(x, t+�t)� ⇢(x, t) =

Z
[⇢(x� y, t)µ(y|x� y, t,�t)� ⇢(x, t)µ(y|x,�t)] dy,

(129)
where we have used the fact that µ integrates to one.

We need to impose some requirement on µ as �t gets smaller. First, we
should expect the distribution of steps to be concentrated near y = 0. Then we
can approximate the right hand-side of (129) using the first two terms in the
Taylor expansion, and the left-hand size with a time derivative:

�t
@⇢(x, t)

@t
⇡

Z 2

4
nX

j=1

�yj
@(⇢µ)

@xj
+

1

2

nX

j,k=1

yjyk
@
2(⇢µ)

@xj@xk

3

5 dy =

�
nX

j=1

@ (⇢µ̄j)

@xj
+

1

2

nX

j,k=1

@
2 (⇢cj,k)

@xj@xk
,

where

µ̄(x, t,�t) =

Z
y µ(y;x, t,�t) dy

is the expected value of the displacement, and

cj,k(x, t,�t) =

Z
yjyk µ(y;x, t,�t) dy

its covariance matrix. In order to make nontrivial contributions to the limit as
�t ! 0, both of these need to scale proportionally to �t:

µ̄(x, t,�t) ⇠ u(x, t) �t , cj,k(x, t,�t) ⇠ dj,k(x, t) �t,

in which case we obtain in the limit the Fokker-Planck equation

@⇢

@t
+r · (⇢u) = 1

2

nX

j,k=1

@
2 (dj,k⇢)

@xj@xk
. (130)

55



If the drift u vanishes and the covariance matrix d equals twice the identity, we
recover the normalized heat equation (108).

Notice the similarity between the left-hand side of (130) and the equation for
conservation of mass in fluids. Indeed they are the same, though we are talking
here of probability rather than fluid densities. The drift term u represents the
deterministic part of the walk, and plays the same role as a fluid velocity: if, in
the mean, the walker tends to go from one place to another, then the probability
of finding it in the latter will increase over time. The terms on the right-hand
side correspond instead to the fluctuating part of the velocity field, yielding
di↵usion, as we have argued in section (5.1).

5.6 Boundary conditions

We have dealt so far with the heat equation (108) in all of space. Yet more often
than not we are concerned with the evolution of the solution in a bounded do-
main, subject to boundary conditions: the evolution of the temperature within
a loaf of bread just taken from the oven and cooling in the open air, the time
required for the various ingredients to mix throughout in a stew. Then we solve
the heat equation in a domain ⌦ with initial data and with conditions on the
boundary �⌦ that are typically of one of these forms:

• Insulation:
@u

@n
= 0, (131)

where n is the direction normal to the boundary. The total heat content,

H =

Z

⌦
u(x, t) dx (132)

is constant, as follows from integrating (108) over ⌦ and applying the
divergence theorem.

• Dirichlet:
u = f(x, t), (133)

which specifies the value of the solution on the boundary.

• Neumann:
@u

@n
= g(x, t), (134)

specifying the heat flux. The insulated scenario (131) is a particular case
of this. The total heat content H from (132) satisfies

dH

dt
=

Z

�⌦
g.

• Newton’s law of cooling:

@u

@n
= u� f(x, t), (135)
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combining Dirichlet and Neumann. Here the rate of heat loss is propor-
tional to the di↵erence between the temperature u at the boundary and
the given temperature f of an external fluid, such as air or water.

Few of these problems can be solved readily in closed form; I’ll pose some of
these as problems (with hints) for you to work out. In all problems, u(x, 0) =
u0(x) within ⌦.

Problem 1: ⌦ is the semi-infinite line [0,1), with homogeneous Dirichlet
condition

u(0, t) = 0.

Hint: The heat equation preserves the oddity of solutions.

Problem 2: ⌦ is the semi-infinite line [0,1), with homogeneous Neumann
condition

ux(0, t) = 0.

Hint: The heat equation preserves the evenness of solutions.

Problem 3: ⌦ is the finite segment [0, 1], with homogeneous Dirichlet condi-
tions

u(0, t) = u(1, t) = 0.

Hint: By expanding by oddity on the two ends, you end up building a periodic
initial condition. This can be expanded in terms of sines, and we know how
each sine evolves in time. Question: How does the solution look like for long
times? Provide a simple formula.

Problem 4: ⌦ is the finite segment [0, 1], with time-independent Dirichlet
conditions

u(0, t) = a, u(1, t) = b.

Hint: Invoke linearity to add the solution of the previous problem and one that
is time-independent and solves the non-homogeneous boundary conditions.

5.7 The backward heat equation

So far we have used the heat equation to predict the future temperature of
an object that has an initial distribution u0(x). Can we do things the other
way around: knowing the present temperature distribution, infer the one in the
past? The problem would look identical to the one we posed before,

ut = �u , u(x, 0) = u0(x) ,

but now we want the solution u(x, t) for t < 0. In order not to twist our heads
too much looking backwards in time, we can make the simple change of variables
t ! �t, which yields

ut = ��u , u(x, 0) = u0(x) , (136)
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the initial value problem for the backward heat equation, and look now at positive
values of t.

There are a number of intuitive reasons why we shouldn’t expect this pro-
gram to work out too well. If I have removed my bread loaf from the oven two
hours ago, at this time it is probably as cold as it will ever be. Could I, by
looking at its nearly homogeneous temperature distribution carefully, infer at
which temperature it left the oven? More generally, imagine we start with a very
irregular temperature field. Di↵usion will tend to homogenize it very rapidly,
reducing the gradients. Could we uncover, from the comparatively smooth and
uniform later distribution, the details of the mess we started with? Di↵usion
models mixing. Given a well-mixed state, it is hard to figure out where each of
its components started.

Mathematically, this translates into the statement that the initial value prob-
lem (136) is ill-posed. By this we mean that insignificant changes in the initial
data can give rise to huge di↵erences in the solution. In more precise mathe-
matical terms, the solution at any fixed time t is not a continuous function of
the initial data. The best way to see this is through a simple example. Con-
sider Problem 3 from above, but for the backward heat equation (136), with
sinusoidal initial data:

ut = �uxx in 0 < x < 1,

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x) = a sin(2⇡nx).

The solution to this problem is –you worked it out for negative times in Problem
3–

u(x, t) = ae
(2⇡n)2t sin(2⇡nx).

Now we can use this solution to play the ✏� � game of continuity. With u0 = 0,
the solution is clearly u(x, t) = 0. For a given ✏ > 0 and fixed time T , can
we always find a � such that, if the initial data satisfies ku0(x)k < �, then
ku(x, T )k < ✏?

The answer is negative. In the exact solution above,

ku(x, T )k = e
(2⇡n)2T ku0(x)k.

So no matter how small �, we can always find an integer n large enough that
ku(x, T )k > ✏, contradicting continuity. Notice in passing that this argument is
independent of the choice of a norm.

In this argument, continuity is killed by the large wavenumbers. This agrees
with our intuition that it is the small-scale structure that is most rapidly av-
eraged away by di↵usion, and hence hardest to recover from the solution at a
later time.

5.8 The forced heat equation

The forced heat equation
ut ��u = f(x, t) (137)
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appears in the presence of heating sources or, in general, of sources of whatever
the solution u models (pollution, underground water, etc.) Just like the forced
wave equation, it can be solved using Duhamel’s principle, which replaces the
forcing by the superposition of infinitely many initial value problems, one for
each time. We introduce an auxiliary function U(x, t, s), satisfying the initial
value problem for the unforced heat equation

Ut = �xU, U(x, s, s) = f(x, s), (138)

and write

u(x, t) = uh(x, t) +

Z t

0
U(x, t, s) ds, (139)

where uh is the unforced solution to the initial value problem

uht = �uh, uh(x, 0) = u0(x).

If the problem includes boundary conditions, one can make uh satisfy these, and
let U satisfy the corresponding homogeneous boundary conditions.

More generally, one has quite a bit of freedom on how to decompose a prob-
lem with non-homogeneous boundary data. Consider, for instance, the initial-
value problem with Dirichlet boundary conditions

ut ��u = f(x, t) , u(x, 0) = u0(x) for x 2 ⌦, u = g(x, t) on �⌦. (140)

One possibility is to divide u into two components:

u(x, t) = v(x, t) + w(x, t),

where v(x, t) is any function satisfying the boundary conditions, and w satisfies
the forced problem with homogeneous boundary data,

wt��w = f(x, t)�vt+�v , w(x, 0) = u0(x)�v(x, 0) for x 2 ⌦, u = 0 on �⌦.
(141)

In other words, one can make use of the linearity of the problem to creatively
trade-o↵ among the various di�culties it may entail. This applies as well to
numerical solutions, where we can build u(x, t) iteratively through a sum of
functions, each approximating whatever is left of the PDE and of the initial and
boundary conditions after removing all the previously computed ones.

5.9 The maximum principle

Since the heat equation models di↵usive phenomena, where thermal fluctuations
continuously average the solution locally, we should not expect new maxima or
minima to arise over time, unless they are imposed on the boundaries. A loaf
of bread will never develop anywhere a temperature higher than the one it had
when it had just been removed from the oven, unless it is placed in an even
warmer oven later on. Clearly the same should apply, reversing the sign of
the temperature, to a serving of ice-cream removed from the freezer. This is

59



the content of the maximum principle: the maximal and minimal values of the
solution to the heat equation are to be found either on the initial data or along
the boundary.

The proof is essentially the following: at an interior maximum, ut � 0 (not
necessarily zero, since u may still be growing) and �u < 0, contradicting the
heat equation. Yet we need to exclude degenerate maxima, where �u = 0
and some higher derivatives are nonzero. For this, we need to sophisticate the
argument a little bit.

Proof: Consider a domain ⌦ = ⌦x ⇥ [0 T ], where ⌦x is some fixed, bounded
spatial domain, and a smooth function v(x, t) satisfying

vt < �v. (142)

If v achieved its maximal value in ⌦ at time t = T and at a point x = x0 in the
interior of ⌦x, it would need to satisfy

vt(x0, T ) � 0, �v(x0, T )  0,

contradicting (142). Since this applies also for all times 0 < t  T , the maximal
value of v is achieved either at t = 0 or on the boundary �⌦x; let’s call this
combination of the initial time and spatial boundary �⌦ (notice that �⌦ does
not include the final time t = T .)

In order to extend this result to the heat equation, satisfying

ut = �u,

we need to create a family of v’s satisfying (142) and converging to u. One
possibility is to take

v(x, t) = u(x, t)� kt,

where k is a positive constant. Then

max(u)  max(v) + kT  max
�⌦

(v) + kT  max
�⌦

(u) + kT.

Taking the limit as k ! 0, we see that u also achieves its maximum on �⌦. The
argument for the minimum is the same, changing some signs and directions of
the inequalities.

Uniqueness: The maximum principle provides a simple proof of uniqueness
of the solution to the forced initial-boundary value problem. If two smooth
functions, u and v, both satisfy

wt = �w + f(x, t), w(x, t) = g(x, t) on �⌦,

then they are equal: their di↵erence, which satisfies the unforced heat equation
with homogeneous initial and boundary data, adopts its maximal and minimal
values on �⌦, where it vanishes.
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