Introduction to PDEs 2018, ninth assignment, due Monday November 19th

1) (page 67 of the notes.) For functions $u(x)$ defined on the segment $\left(x_{l}, x_{r}\right)$, let $I(u)$ denote the squared norm of its derivative:

$$
I(u)=\int_{x_{l}}^{x_{r}}\left(u^{\prime}(x)\right)^{2} d x
$$

a) Show by induction on the cardinality n of the partition of $\left(x_{l}, x_{r}\right)$ into sub-segments, $\left(x_{l}, x_{1}, \ldots x_{n}, x_{r}\right)$, that the straight line

$$
u(x)=u_{l}+\left(u_{r}-u_{l}\right) \frac{x-x_{l}}{x_{r}-x_{l}}
$$

minimizes $I(u)$ over all continuous piecewise linear functions $u(x)$ satisfying the boundary conditions

$$
u\left(x_{l}\right)=u_{l}, \quad u\left(x_{r}\right)=u_{r} .
$$

b) Prove that the discrete version of the 1d Laplace's equation in a segment,

$$
u_{j+1}-2 u_{j}+u_{j-1}=0, \quad u_{0}=u_{l}, u_{n}=u_{r}
$$

is equivalent to the minimization of the discretized version of $I(u)$:

$$
I_{d}(u)=\sum_{j=0}^{n-1}\left(u_{j+1}-u_{j}\right)^{2}
$$

Prove this in two ways: using your result from part a) (i.e. comparing the actual solution to the discrete set of equations and the minimizer of I_{d}), and by mimicking, in the discrete scenario, the calculus of variations (you will have to introduce a "discrete variation" η_{j}, and perform a "summation by parts".)
2) Using Green's functions, solve the problem

$$
\frac{d^{2} u}{d x^{2}}=\left\{\begin{array}{l}
1 \text { for } x \leq \frac{1}{2} \\
0 \text { for } x>\frac{1}{2}
\end{array}, \quad u(0)=u(1)=0\right.
$$

3) Develop the appropriate Green's functions and use them to solve the problem

$$
\frac{d^{2} u}{d x^{2}}=\left\{\begin{array}{l}
1 \text { for } x \leq \frac{1}{2} \\
0 \text { for } x>\frac{1}{2}
\end{array}, \quad u(0)=\frac{d u}{d x}(1)=0\right.
$$

4) Verify your answers to the 2 prior questions by solving the same problems again simply by integrating twice and fitting the integration constants to the boundary conditions.
5) A function $u(x, y)$ satisfies the equation

$$
\Delta u=e^{-2 y} \sin (x)
$$

in the strip

$$
0<x<\pi, \quad y>0
$$

and the boundary conditions

$$
u(0, y)=u(\pi, y)=0, \quad u(x, 0)=\sin (3 x), \lim _{y \rightarrow \infty} u=0
$$

Find $u_{y}(x, 0)$.

