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Abstract An adaptive methodology is proposed to solve the data–driven
optimal transport problem: to find the coupling between two distributions
that minimizes a transportation cost, when the distributions are only known
through samples. The methodology bypasses density estimation, using adap-
tive kernel functions to reduce the problem to a sequence of finite linear pro-
gramming problems.

Keywords optimal transport · linear programming · data analysis

1 Introduction

The optimal transport problem has received a considerable interests in recent
years, due in part to its wide scope of applicability in fields that include econo-
metrics, fluid dynamics, automatic control, transportation, statistical physics,
shape optimization, expert systems and meteorology [12,2].

In a modern formulation of Monge’s original statement of the optimal
transport problem, one has two probability density functions ρ(x), x ∈ Rd
and µ(y), y ∈ Rd. A map M from Rd to Rd is said to preserve mass (or to
push forward ρ into µ) if, for all bounded subset S ⊂ Rd,∫

x∈S
ρ(x)dx =

∫
y∈M(S)

µ(y)dy . (1)

For smooth one-to-one maps, this yields the differential condition

|det(∇M(x))|µ(M(x)) = ρ(x) . (2)
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Among all mass preserving maps, one seeks the optimal map that minimizes
a cost such as the Wasserstein distance

dp(ρ(x), µ(y)) =

(
inf
M

∫
‖M(x)− x‖pρ(x)dx

)1/p

, (3)

where p ≥ 1 is fixed.
Monge’s formulation, which seeks a map M(x) connecting ρ(x) and µ(y), is

not easy to work with, as it leads to problems that are nonlinear and not always
have solutions. In addition, many applications do not require the transport
between ρ(x) and µ(y) to be one-to-one. Kantorovich [9] proposed a relaxation
where the map y = M(x) is replaced by a more general coupling π(x, y):

min
π(x,y)

∫
c(x, y)π(x, y)dxdy

s.t

∫
π(x, y)dx = µ(y)∫
π(x, y)dy = ρ(x)

π(x, y) ≥ 0.

(4)

Here c(x, y) is a pointwise cost function such as ‖y − x‖p; the unknown is
the joint distribution π(x, y) with marginals ρ(x) and µ(y). It has been shown
that, under suitable conditions on the cost function and the marginals, the
solution to Kantorovich’s problem also solves Monge’s, i.e. the coupling π(x, y)
is concentrated on a line y = M(x) [5].

Among the methods that have been proposed to solve the optimal trans-
port problem numerically, Benamou and Brenier [7] proposed a fluid mechanics
framework, constructing an optimal path from ρ(x) to µ(y) by solving an op-
timization problem with a partial differential equation as a constraint. Haber,
Rehman and Tannenbaum [6] proposed a modification of the objective func-
tion, discretized both the objective function and the constraints and solved the
problem using sequential quadratic programming. Other numerical procedures
can be found in[1,4,10,11].

All these procedures assume that the marginal distributions ρ(x) and µ(y)
are known explicitly. Yet this is not the case in the great majority of applica-
tions, where these distributions are only known through a finite set of samples
{xi} and {yj} from ρ(x) and µ(y) respectively. A formulation of the optimal
transportation problem in terms of samples was proposed in [3], which also
developed a methodology for its numerical solution following a gradient flow
in feature-space that pushes ρ(x) to the target distribution µ(y) through a
time-dependent map z(x; t), with z(x; 0) = x and z(x;∞) = y(x).

In this article, we propose an alternative methodology for solving the
sample-based optimal transportation problem, using Kernel functions in both
primal and dual space to discretize the problem into a finite linear program-
ming one. The Kernel functions are chosen adaptively in a sequence of such
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problems, where the active constraints in the solution to the current dual
problem provide the basis to build the Kernel functions that define the next
problem in the sequence, so as to improve the accuracy of the numerical solu-
tion without overly increasing the problem’s size.

The outline of the paper is as follows. In section 2, we formulate the problem
using data points directly and use kernel functions to relax the problem to a
finite linear programming problem. In section 3, we propose an algorithm
to adaptably update the kernel functions. Section 4 contains some numerical
results, and a summary is provided in section 5.

2 Problem formulation

We start with Kantorovich’s formulation of the optimal transport problem:

min

∫
c(x, y)π(x, y)dxdy

s.t

∫
π(x, y)dx = µ(y)∫
π(x, y)dy = ρ(x)

π(x, y) ≥ 0

(5)

Introducing Lagrange multipliers ϕ(x) and ψ(y), one can write the problem
in an equivalent unconstrained formulation:

min
π(x,y)≥0

max
ϕ(x),ψ(y)

∫
c(x, y)π(x, y)dxdy −

∫
ϕ(x)

[∫
π(x, y)dy − ρ(x)

]
dx

−
∫
ψ(y)

[∫
π(x, y)dx− µ(y)

]
dy,

(6)

from which the dual problem can be found by exchanging the order of the
minimization and maximization:

max
ϕ(x),ψ(y)

min
π(x,y)≥0

∫
(c(x, y)− ϕ(x)− ψ(y))π(x, y)dxdy

+

∫
ϕ(x)ρ(x)dx+

∫
ψ(y)µ(y)dy

(7)

yielding

max

∫
ϕ(x)ρ(x)dx+

∫
ψ(y)µ(y)dy

s.t. ϕ(x) + ψ(y) ≤ c(x, y).

(8)

In most applications, the distributions ρ(x) and µ(y) are only known through
samples, hence the need to develop a formulation that uses these samples di-
rectly. If one has two sets of samples: {xi}nx

i=1 from ρ(x) and {yj}
ny

j=1 from
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µ(y), it is natural to modify the dual problem 8, replacing the expected values
of ϕ(x) and ψ(y) by their empirical means:

max
1

nx

∑
i

ϕ(xi) +
1

ny

∑
j

ψ(yj)

s.t. ϕ(x) + ψ(y) ≤ c(x, y)

(9)

Introducing Lagrange multiplier again, one could find the primal problem for
which 9 is the dual:

min

∫
c(x, y)π(x, y)dxdy

s.t

∫
π(x, y)dx =

1

ny

∑
j

δ(y − yj)∫
π(x, y)dy =

1

nx

∑
i

δ(x− xi)

π(x, y) ≥ 0.

(10)

But this is again a Kantorovich optimal transport problem, where the original
distributions ρ(x) and µ(y) have been replaced by discrete distributions with
uniform probability among the sample points available. Clearly this is not the
problem we would like to pose: the points {xi} and {yj} are random sam-
ples from presumably smooth distributions ρ(x) and µ(y), not their discrete
support.

From a data-analysis viewpoint, the difficulty above can be attributed to
over-fitting: with only a finite number of sample points, one cannot optimize
over an unrestricted, infinite-dimensional space of functions π, ϕ and ψ, else
one over-fits the samples, placing a delta function around each. Instead, one
should restrict the space of functions available for optimization. A natural way
to do this that preserves the linearity of the problem is to introduce a family
of kernel functions and restrict the space of solutions to those of the form

ϕ(x) =

Nx∑
i=1

βxi G(cxi , α
x
i , x)

ψ(y) =

Ny∑
j=1

βyjG(cyj , α
y
j , y)

and

π(x, y) =

Nc∑
k=1

λkG̃(C̃k, Σk, x, y),

where for concreteness we have adopted as kernel functions G(c, α, x) and
G̃(C̃, Σ, x, y), Gaussian distributions with means c and C̃ and covariance ma-
trices α and Σ respectively.
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With the solutions restricted in this way and the constraints relaxed ac-
cordingly, the modified dual problem (9) becomes

max
βx,βy

Nx∑
i=1

βxi
1

nx

nx∑
l=1

G(cxi , α
x
i , xl) +

Ny∑
j=1

βyj
1

ny

ny∑
l=1

G(cyj , α
y
j , yl)

s.t

Nx∑
i=1

βxi

∫∫
G(cxi , α

x
i , x)G̃k(C̃k, Σk, x, y)dxdy

+

Ny∑
j=1

βyj

∫∫
G(cyj , α

y
j , y)G̃k(C̃k, Σk, x, y)dxdy

≤
∫∫

c(x, y)G̃k(C̃k, Σk, x, y)dxdy ∀k,

(11)

with corresponding primal problem

min
λk>0

Nc∑
k

λk

∫∫
c(x, y)G̃(C̃k, Σk, x, y)dxdy

s.t

Nc∑
k

λk

∫∫
G̃(C̃k, Σk, x, y)G(cyj , α

y
j , y)dxdy =

1

ny

ny∑
l

G(cyj , α
y
j , yl) ∀j

Nc∑
k

λk

∫∫
G̃(C̃k, Σk, x, y)G(cxi , α

x
i , x)dxdy =

1

nx

nx∑
l

G(cxi , α
x
i , xl) ∀i.

(12)
An advantage of choosing Gaussian kernel functions is that, when the cost

function c(x, y) is the squared distance between x and y –the one most fre-
quently used– all the integrals in problem (11) can be found analytically and
written in closed form. Then (11) becomes a conventional linear programming
problem that can be solved through standard procedures, such as simplex or
interior point. The question left therefore is how to choose the kernel func-
tions: restricting them to Gaussians still leave open their number, means and
covariance matrices (centers and generalized bandwidths in the language of
machine learning.) This choice must be necessarily adaptive, as it depends on
the number of sample points available and their distribution.

Since under suitable conditions the solution to Kantorovich’s problem (5) is
concentrated on a map y = y(x), the choice of the kernel functions G̃(C̃, Σ, x, y)
is particularly challenging, as the distribution they need to resolve has singular
support, which is not known a priori but rather emerges as part of the solu-
tion. Thus the covariance matrices Σ adopted should be highly anisotropic,
but with principal directions that one initially does not know. A natural way
to address this is through an iterative procedure that solves a sequence of
linear programming problems of the form (11), each with kernel functions de-
termined using the solution to the previous problem in the sequence. This
procedure is discussed in detail in the following section.
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3 Adaptive algorithm

We solve a sequence of linear programming problem of the form 11. The ac-
tive constraints in the solution to each of these problems are indicative of
the support of π(x, y), a fact that we use to update the family of kernels
G̃(C̃k, Σk, x, y), making it progressively more attuned to the underlying solu-
tion.

3.1 Initialization

At the onset of the algorithm, the only information at our disposal are the
data points, which characterize the distributions ρ(x) and µ(y) implicitly,
while leaving quite open the unknown joint-distribution π(x, y). Thus the
choice of Kernel functions G(cxi , α

x
i , x) and G(cyj , α

y
j , y) for the marginal dis-

tributions can be based on solid information, while that of the initial Kernels
G̃(C̃k, Σk, x, y) can barely go beyond a rough counting of unknowns and active
constraints (hence the need for the iterative procedure.)

1. Initialization of cxi and cyj .
In order to find centers that capture the marginal distributions underlying
the sample points, we divide the latter into several clusters –numbering
Nx and Ny for the {xi} and {yj} respectively– through K-means [8] and
adopt the mean of each cluster as a center. This way, each “class” of sample
points, presumably captured by an individual cluster, is represented among
the Kernel functions. Since the first step is exploratory and cannot provide
a very accurate solution to the original problem, we use a small number of
clusters, adopting Nx = Ny = 5 in the numerical examples below.

2. Initialization of αxi and αyj
The α’s play the dual role of covariance matrices and bandwidths, and
must therefore be estimated as local covariance matrices from the data,
but with a degree of locality that allows the various Kernel functions to
overlap smoothly. Thus one cannot simply calculate covariance matrices
using the data in each cluster separately, since then contiguous Kernel
functions would not overlap. Instead, we use all sample points to calcu-
late αxi –an identical procedure applies to αyj – but weighting the points
according to their proximity to xi :

αxi =
∑
k

w̃ik(xk − cxi )(xk − cxi )T .

With i fixed, rather than computing a weight w̃ik for each sample point
xk, we save computational cost by computing a weight per cluster K:

w̃ik = ŵiK(k) =
wiK(k)∑

K wiK ×Nx
K

, wiK = e
−( diK

di
)2
.

Here K(k) denotes the cluster to which the kth sample belongs, Nx
K is the

number of points in cluster K, diK is the distance between cxi and cxK , and
di is the smallest distance diK among all clusters K 6= i.
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3. Initialization of C̃k and Σk.
Since initially one lacks any information on the joint distribution π(x, y),
one needs to base the choice of initial parameters for the corresponding
Kernel functions on the available samples from the marginal distributions
ρ(x) and µ(y). The simplest choice for the covariance matrix Σ is a uniform
one, given by

Σ =
1

Nx

(
Σx 0
0 Σy

)
. (13)

Here Σx and Σy are the empirical covariance matrices of the marginal
distributions:

Σx =
1

nx

∑
k

(xk − x̄)(xk − x̄)T , Σy =
1

ny

∑
k

(yk − ȳ)(yk − ȳ)T ,

where x̄ and ȳ denote the means of the {xi} and {yj}. The choice of the
prefactor 1

Nx
in (13) stems from the fact that O(Nx) constraints will be

active in the solution, and one would like the corresponding kernels to have
bandwidths that would make them overlap with each other.
For the kernel centers, a natural choice would be the Cartesian product cij
of the cxi and cyj . However, this does not provide enough constraints on the
problem 11, whose solution is therefore typically unbounded. The reason is
that one needs the Nx +Ny constraints that will be typically active to lie
in a neighborhood of the unknown support y(x) of the solution π(x, y). Yet
from a rectangular Nx ×Ny grid of centers, only O(Nx) will lie near y(x).
To enlarge the number of constraints, we sample n points from each Gaus-
sian distribution centered at cij with covariance matrix Σ and use these
Nc = n×Nx×Ny samples as centers for the Kernel functions. Rather than
drawing these samples randomly, we found that it yields better results to
use more regularly distributed samples. A simple, semi-random procedure
that works well is the following: in order to obtain N2 samples from a stan-
dard multivariate Gaussian distribution, we sample N points from each of
N spherical surfaces, where the radii of the spheres are obtained from N
equispaced points on a segment via the Box-Muller transformation. The N
points from each spherical surface are sampled randomly. Next we trans-
form these samples from a standard Gaussian into samples from the desired
distribution with center C and covariance matrix Σ though the linear map

x→ Ax+ C, where A = Σ
1
2 .

3.2 Update of the Kernel parameters

After the first step, the information available on the marginal distributions
does not change –it is always provided by the samples that define the problem–
but much can be learned about the joint distribution π(x, y): the constraints
that are active in the solution to the previous problem in the sequence point
to the support of π(x, y). This permits a progressive refinement of the choice
of Kernel parameters to more accurately represent the solution π(x, y).
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1. Update of the marginal Kernel parameters cxi , cyj , αxi and αyj
The procedure for updating the centers cxi and cyj and covariances αxi and
αyj is the same as for their initialization, except that, as a more accurate
solution is sought, the numbers Nx and Ny of clusters need to be pro-
gressively increased. In the numerical examples below, we increase both by
three in each step, unless this leads to unbounded solutions, in which case
the increase in cluster numbers is made smaller.

2. Update of the centers C̃k for the joint distribution
We consider the active constraints from the previous step, i.e. those with
nonzero Lagrange multipliers λk, and obtain from each n new centers C̃l
by drawing n samples from the corresponding Kernel G̃(C̃k, Σk, x, y), us-
ing the same semi-random sampling procedure as in the initialization.
The choice of n is based on the total number of centers one would like
to have, which together with the number of Kernel functions discretizing
the marginal distributions accounts for the complexity of the resulting lin-
ear programming problem. Our choice in the experiments below has been
to leave this complexity nearly constant among iterations, increasing only
gradually as one seeks a higher resolution. In this way, a more accurate so-
lution is obtained not because the number of Kernel functions grows along
the procedure, but because these become progressively better distributed
along the support of π(x, y).

3. Update of the Kernel covariance matrices Σk for the joint distribution
For the covariance matrix Σk, we use a procedure similar to the one used
to update the marginal covariance matrices αxi . We first group the centers
C̃k into Nx clusters using K-means. For support center C̃k, we define

dk = max( max(dki, for C̃i in the same cluster as C̃k),

min(dkj , for C̃j in clusters different from C̃k))

where dki is the Euclidean distance between C̃k and C̃i. Here dk quantifies
the distance between cluster k and its closest neighboring cluster.
Then weights for all centers sampled from C̃l are given by:

wkl = e
−β

(
dkl
dk

)2

.

Then these weights are normalized and the covariance matrix sought is
given by the empirical weighted covariance matrix as for the kernels for
the marginal distributions. β is an adjustable parameter that depends on
the dimensionality of the problem in hand.

4 Numerical experiments

We illustrate this article’s procedure through numerical experiments with
marginal distributions in spaces of dimensions 1 and 2. Since the procedure
provides an estimate of the solution π(x, y) to Kolmogorov’s formulation of the
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problem, we need a way to estimate from this coupling the optimal map y(x)
of Monge’s formulation, for comparison with a known solution in the examples
here, and more generally because this map is the answer sought in a number
of applications.

A simple estimate for y(x) is the expected value of y under π(x, y), condi-
tional on x:

y(x) =

∫
y

π(x, y)∫
π(x, y)dy

dy. (14)

Notice that, for the Gaussian kernels adopted, all these integrals can be com-
puted in closed form, so the estimated y(x) is an explicit function of the
parameters λk in the optimal solution.

4.1 1D Gaussian distribution to 1D Gaussian distribution

For a first numerical example, we chose the simplest setting of two one-
dimensional Gaussian distributions with means µx, µy and standard devia-
tions σx, σy, for which the exact solution to Monge’s problem is the linear
map

y(x) = µy +
σy
σx

(x− µx) .

In the example shown, µx = 0,µy = 100, σx = 3 and σy = 2. The data consists
of 10000 samples randomly drawn from each distribution.

Figure 1 displays the evolution of the estimated joint distribution π(x, y)
through ten steps of the algorithm. We can see how this estimate, which is
quite bumpy and coarse in the first step, rapidly becomes smooth and more
slender, approximating very accurately the [singular] exact solution.

Figure 2 shows, for the same ten steps, the centers that the algorithm
adopts for the kernels for the joint distribution, and which of these become
active constraints in the numerical solution. The initial nearly uniform distri-
bution of centers, a reflection of our initial ignorance of the support of π(x, y),
is rapidly replaced by a set of kernels that adaptably capture the support of
the actual solution.

Figure 3 displays the evolution of the estimation (14) of the optimal map
y(x), which in this linear case becomes quite indistinguishable from the exact
solution far before the corresponding joint distribution develops a truly slender
support.

Finally, figure 4 displays the x-marginal of the estimated π(x, y) and com-
pares it to the actual Gaussian density ρ(x) underlying the data.

4.2 1D Gaussian distribution to 1D uniform distribution

As a second one-dimensional example, we chose for ρ(x) a Gaussian distribu-
tion with mean 0 and standard deviation 3 and for µ(y) the uniform distribu-
tion on the segment [−10, 10], drawing from each again 10000 samples. Even
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Fig. 1 Evolution of joint distribution π(x, y) through 10 steps of the algorithm. The blue
line represents the exact solution, and the dotted grid lines correspond to the kernel centers
(cxi and cyj ) for the marginal distributions.

though the exact solution this time is nonlinear, the results are equally good,
as displayed in figures 5, 6, 7, 8 and 9. It is interesting to observe in figure 9 a
Gibbs-like phenomenon associated with the discontinuities of µ(y) at the two
ends of its supporting segment.
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Fig. 2 Evolution of the centers C̃k corresponding to the primal solution –or equivalently
constraints on the dual problem– through 10 steps of the algorithm. Represented in black
circles are the centers for the current step, and in red crosses the ones that become active
constraints, revealing the support of the current estimate for π(x, y).

4.3 2D Gaussian distribution to 2D Gaussian distribution

For our last example, we chose the optimal coupling between two two-dimensional
Gaussian distributions, both with mean (0, 0) and with covariance matrices(

4 1
1 16

)
and

(
1 −1
−1 4

)
respectively.
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Fig. 3 Evolution of the estimated optimal map (in red) displayed over the underlying exact
solution (in blue).

In order to display the four dimensional estimated solution π(x1, x2, y1, y2),
we selected six points (x1, x2) and displayed in figure 10 the corresponding π’s
as functions of (y1, y2). The exact solution in this case are six delta functions,
with locations shown as red dots. As the steps progress, the estimated solution
concentrates increasingly sharply around these centers.

To complement this figure, figure 11 displays the evolution of the two two-
dimensional marginal distributions of the estimated π(x1, x2, y1, y2) through
12 steps of the algorithm.
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Fig. 4 Evolution of the x-marginal distribution of the estimated π(x, y) (in blue) compared
with the actual ρ(x) underlying data (in red). The good agreement depends on two factors:
having centers and variances for the Kernel functions associated with the x-marginal dis-
tribution that sufficiently capture the marginal constraints, and parameters for the Kernel
functions associated with the joint distribution π(x, y) that do not overfit these constraints.

5 Summary

An adaptive methodology was proposed and developed to solve the data-driven
optimal transport problem: to find the coupling π(x, y) between two distribu-
tions ρ(x), µ(y) that minimizes the expected value of a pairwise transportation
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Fig. 5 Contours of the evolution of the estimate for the joint distribution π(x, y) through
12 steps of the algorithm, with the exact solution to the underlying problem displayed as a
blue line.

cost c(x, y), where the marginal distributions are only known through a finite
collection of samples.

The methodology replaces the marginal distributions by their samples
through the dual of Kantorovich’s formulation of the problem, where empiri-
cal means over the samples replace the expected values of the corresponding
dual variables. Then a collection of Kernel functions is introduced to turn this
problem into a finite linear programming one, and these kernels are evolved
through an adaptive algorithm that updates their number and parameters
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Fig. 6 Evolution of the centers C̃k through 12 steps of the algorithm. Represented in black
circles are the centers for the current step, and in red crosses the ones that become active
constraints, revealing the support of the current estimate for π(x, y).

based on the solution to the previous step in a sequence of increasingly refined
problems.

For the standard square-distance cost, adopting Gaussian Kernel functions
is particularly convenient, as all the integrals defining the sequence of problems
and the estimation of the optimal map y(x) from the coupling π(x, y) can be
computed in closed form.
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Fig. 7 Evolution of the estimated optimal map y(x) in red, with the exact solution to the
underlying problem in blue.
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Fig. 8 Evolution of the x-marginal of the estimated distribution π(x, y), compared with
the Gaussian ρ(x) underlying the data.
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Fig. 9 Evolution of the y-marginal estimated distribution π(x, y), compared with the uni-
form µ(y) underlying the data.
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Fig. 10 Evolution of the estimated optimal coupling π(x, y) for six specific points yj . The
exact solution is made of six delta functions concentrated on the points displayed in red.
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Fig. 11 Evolution through 12 steps of the algorithm of the marginal distributions, left for
x and right for y, of the estimated coupling π(x, y).
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