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Abstract

A descent procedure is proposed for the search of low-dimensional subspaces of a
high-dimensional space that satisfy an optimality criterion. Specifically, the procedure
is applied to finding the subspace spanned by the first m singular components of an n-
dimensional dataset. The procedure minimizes the associated cost function through a
series of orthogonal transformations, each represented economically as the exponential of
a skew-symmetric matrix drawn from a low-dimensional space.

Keywords: Principal component analysis.

1 Introduction

Many frequently arising problems involve finding the small-dimensional subspace X of a
larger space Z that minimizes a functional f(X). Probably the most ubiquitous among these
is the search of principal components: the m-dimensional subspace of Rn that best captures
the variability of a set of N observations zj . A closely related search is that of the subspace
spanned by the eigenvectors corresponding to the m largest eigenvalues of a positive definite
matrix C: when C is the empirical covariance matrix of the observations zk, the two problems
are the same.

These are orthogonally constrained minimization problems: we minimize a cost function
f(Qx), where Qx is an n×m matrix such that Qx

′Qx = Im. For instance, the second problem
above can be written in the form minQx f(Qx) = −tr(Qx

′CQx) [8]. Yet all these problems
have a critical degeneracy: two orthogonal matrices Qx are equivalent when they span the
same column space X. In this work, we propose a methodology that exploits this degeneracy
to yield a simple, yet very effective algorithm for the search for optimal subspaces. We focus
on principal component analysis, because of its wide applicability and because its particular
structure allows for extra simplifications.

A very general and powerful geometric view of optimization with orthogonality constraints
has been proposed in [3]. Here the degeneracy mentioned above is characterized in terms of the
Grasmann manifold, the quotient space of the Stiegel manifold of orthonormal n×m matrices
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with respect to the group of orthogonal transformations in their column space. The algorithm
of this article can be framed within this general viewpoint, and we have tried to refer to the
appropriate geometrical concepts throughout our discussion. Yet the methodology that we
propose does not really require the language and tools of differential geometry, which though
elegant and powerful, may obscure the conceptual simplicity of the proposed algorithm to
the non-specialist.

The main ingredients of the new algorithm are the completion of the matrix Qx into an
n×n orthogonal matrix Q = [QxQy], the factorization of Q into simpler orthogonal matrices
Qn, and the expression of each of these as the exponential of a skew-symmetric matrix Ak.
The degeneracy in the choice of Q results in a particularly sparse block structure for Ak,
which renders its exponentiation and the composition of the Qn’s much less computationally
expensive that they would be otherwise. In addition, the particularly simple form of the
objective function for principal components results in a very inexpensive implementation of
second-order descent on the entries of Ak.

A similar use of a matrix exponential representation for orthogonal matrices has been
applied in [9] to minimize the maximum eigenvalue of a family of symmetric matrices A(x).
Their methodology allows for second-order descent –i.e., Newton’s method– even when the
sought eigenvalue has multiplicity greater than one. In the general geometric view of [3, 2],
minimization of the cost function in the manifold of orthogonal matrices is achieved by moving
towards the optimum along geodesics, which are described by the exponential map. In order
to reduce computational costs, a truncated Taylor series expansion of the matrix exponential
has been used in [1] to perform an approximate steepest descent.

A straightforward but computationally intensive way to compute singular components is
through the singular value decomposition (SVD) of the n-by-N matrix z of observations:

z = UΣV ∗

where U is an n-by-n orthogonal matrix, Σ is a n-by-N diagonal matrix with real entries
σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0, and V a N -by-N orthogonal matrix. The calculation of the
SVD requires O(Nn2) flops [11]. The first m columns of U are the principal components
sought. The singular value decomposition also provides us with the optimal low-rank (m)
approximation to a general n×N matrix z:

z ≈ UmΣmV
∗
m

where the columns of Um and Vm are the first m columns of U and V respectively, and Σm

is a diagonal matrix containing the m largest singular values of z. Then

‖z − UmΣmV
∗
m‖ = σm+1

where σm+1 is the (m+ 1)-th singular value of z, and ‖ · ‖ is the spectral norm.
Among the novel alternative approaches for finding low-rank approximations to matrices,

randomized algorithms [4, 10] compute, with high probability, very accurate approximations
to matrices of arbitrary size.
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2 The problem

From N multidimensional observations zj ∈ Rn, j = 1, . . . , N , one seeks the hyperplane
through the origin of given dimension m < n that best captures the variability of z. In
typical applications to dimensional reduction, m is much smaller than n, seeking either data
compression for storage or transmission, or a small-dimensional manifold where the phe-
nomena underlying the observational set z can be more easily understood. In terms of the
operator P that projects onto the hyperplane, the cost function to minimize is

min
P
c =

1

2N

N∑
j=1

‖zj − P (zj)‖2 , (2.1)

the 2-norm of the distance between the points and their projection. The hyperplane sought
can be characterized by a set of m orthonormal vectors spanning it. Writing these vectors as
columns of a matrix Qx, the projection operator P acquires the matrix representation

P = QxQx
′.

We can assign coordinates x ∈ Rm to the projection P (z) through

x = Qx
′z, P (z) = Qxx.

Furthermore, we can introduce coordinates y in the orthogonal complement to x, through(
x
y

)
=

[
Q′x
Q′y

]
z, x ∈ Rm, y ∈ Rn−m, Q = [QxQy] orthogonal.

In terms of these, the minimization problem (2.1) adopts the form

min
Q

c =
1

2
‖y‖2, (2.2)

where the bar stands for averaging over the N observations.
Alternatively, one can introduce the empirical covariance matrix

C ∈ Rn×n, Cji = zizj ,

which transforms, under orthogonal maps Q of z as above, through

C → Q′CQ.

Partitioning C into four blocks, two for the covariance matrices of the x and y variables alone,
and the other two for their cross-covariance,

C =

[
Cxx Cyx
Cyx
′
Cyy

]
, (2.3)
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the problem becomes

min
Q

c =
1

2
tr
(
Cyy
)
. (2.4)

Thus there are two equivalent formulations of the problem: in (2.2), one seeks the hyper-
plane spanned by the first m principal components of the matrix z; in (2.4), the hyperplane
of the first m eigenvectors of the non-negative definite matrix C. The second formulation is
more compact, since the individual observations are gone from the picture. The first, how-
ever, lends itself to useful generalizations, such as the search for time-dependent or nonlinear
principal components. Either formulation can be handled by the algorithm described below.

If it is the principal components themselves that one seeks, not just the space spanned
by them, it is enough to diagonalize the m×m symmetric matrix Cxx ,

Cxx = USU ′,

and write
Q̃x = QxU. (2.5)

The columns of Q̃x are the principal components sought; the corresponding diagonal elements
of S times the number of observations N are the squared singular values.

3 The algorithm

We propose an iterative algorithm that writes the desired orthogonal transformation Q as
the composition of simpler orthogonal maps Qk:

Q = . . . Q3Q2Q1Q0.

Thus, in each step, one has
zk = Qkz

k−1, z0 = Q0z,

where Q0 is a pre-conditioning orthogonal matrix to be described below. Equivalently, in
terms of the covariance matrix C,

Ck = QkCk−1Qk
′.

Orthogonal matrices Q ∈ Rn×n depend on 1
2n(n − 1) parameters. The simplest way to

make this dependence explicit is to write Qk as the exponential of a skew-symmetric matrix
Ak:

1

Qk = eAk , Ak
′ = −Ak.

In the limit of infinitesimal rotations, the (i, j) entry of Ak represents the angle of rotation in
the plane spanned by the zi and zj coordinates. Yet any rotation in a plane spanned by two x

1This applies only those orthogonal matrices Qk that are orientation preserving (i.e., have det(Qk) = 1),
but this restriction is immaterial to our application, since it is only the sub-space spanned by the first m
columns of Qk that matters, not the individual vectors describing it or their sign.
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or two y coordinates alone would only re-parameterize the subspaces spanned by the columns
of Qx or Qy without changing them. Hence we may restrict consideration to matrices Ak of
the block form

Ak =

(
0 Sk
−Sk ′ 0

)
, Sk ∈ Rm×(n−m),

describing only rotations with one leg in the x and one in the y subspaces. In the geometric
language of [3], this corresponds to only making moves in the Stiegel manifold of orthonormal
n×m matrices that are, to leading order, also moves in the Grasmann manifold.

Matrices of this form are easy to exponentiate, using the compact singular value decom-
position of Sk:

Sk =
m∗∑
j=1

σjujv
′
j , uj ∈ Rm, vj ∈ Rn−m,

where m∗ = min(m,n−m). Then

Qk = eAk = I +Ak +
Ak

2

2!
+ · · · =

(
Qx,x Qx,y
Qy,x Qy,y

)
=(

0m∗ 0
0 In−m∗

)
+

m∗∑
j=1

(
uj 0
0 vj

)(
cos (σj) sin (σj)
− sin (σj) (cos (σj)− 1)

)(
u′j 0

0 v′j

)
, (3.1)

as can be verified by carrying out the Taylor expansion by blocks. The interpretation of
(3.1) is straightforward again in the limit of infinitesimal rotations, where the m(n − m)
rotations given by the entries of Sk –one for each pair of coordinates (xi, yj)– can be far more
economically described by just m∗ rotations, with angles given by the principal values σj of
Sk, in the planes spanned by the corresponding left and right principal components.2

3.1 Gradient descent

In order to complete the description of the algorithm, we need only specify the matrix Sk
to use in each step. This must be chosen so as to descend toward a minimal value of the
cost c in (2.2) or (2.4). Notice that, up to here, no reference has been made to this cost,
so the description so far applies to any problem where an m-dimensional subspace of an
n-dimensional space is sought. From here on, we focus on the specific cost at hand, whose
structure leads to further simplifications.

The simplest choice for Sk is through gradient descent:

Sk = −αG, (3.2)

2The notation in (3.1), well-suited for computation, may not be so clear geometrically. To clarify it,

decompose the identity matrix In−m∗ into
∑m∗

j=1 vjvj
′ + P , where P = In−m∗ −

∑m∗

j=1 vjvj
′ represents the

projection onto the subspace orthogonal to the first m∗ principal components vj . This has the effect of
canceling out the ones substracted from cos(σj) in (3.1), and replacing the In−m∗ by the projection operator
P , thus providing the geometrical picture described in the text.
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where

Gji =
∂c

∂Sji

∣∣∣∣∣
Sk=0

is the gradient of the cost function c, and α > 0 is a –possibly adaptive– learning rate. Since
Sji corresponds to the angle of rotation in the (xi, yj)-plane, we have that

∂yk

∂Sji

∣∣∣∣∣
Sk=0

= −δjkxi,

so

Gji =
1

2

∂‖y‖2

∂Sji

∣∣∣∣∣
Sk=0

= −xiyj ,

or, in terms of (2.3),
G = −Cyx .

We adopt two different learning rates α for the examples of gradient descent in section 6.
The first one is given by

α =
ε√

|G|2 + ε2
, (3.3)

where
|G|2 =

∑
i,j

Gji
2

and ε is the desired size for rotations away from the minimal c:

|G| � ε⇒ |Sk| ≈ ε

Close to cmin the gradient G is small, and the steps must become correspondingly smaller,
to avoid overshooting. The choice in (3.3) then yields steps of size

|Sk| ≈ |G| (3.4)

An alternative learning rate α, denoted by α∗ in the numerical examples, uses Newton’s
method in the direction of the gradient:

α = −
∂c
∂α
∂2c
∂α2

,

a method that we will refer to as quadratic gradient descent.
For any fixed vector v, we have

∂c (αv)

∂α
= v ·G,
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where G is the gradient of c and the dot product between two matrices A and B is defined
as 〈A,B〉 = tr (A′B). Similarly,

∂2c

∂α2
= v ·Hv,

where H is the Hessian of c. Hence, along the direction v = G of the gradient,

α = −
∂c
∂α
∂2c
∂α2

= − G ·G
G ·HG

= − Cyx · Cyx
Cyx · (CxxC

y
x − CyxCyy )

, (3.5)

using an expression for H derived below.

3.2 Second order descent

In order to improve the rate of convergence of the algorithm beyond that of gradient descent,
one can introduce the Hessian

H i2j2
i1j1

=
∂2c

∂Sj1i1 S
j2
i2

∣∣∣∣∣
Sk=0

and use Newton’s method, solving for Sk the system∑
hl

Hhl
ij S

l
h = −Gji . (3.6)

This appears at first sight to be quite costly, since the system in (3.6) has m(n−m) equations
and unknowns. Yet the particular structure of the cost function comes to our help: the
Hessian for c from (2.2) has entries

H i2j2
i1j1

= δj2j1 xi1xi2 − δ
i2
i1
yj1yj2 ,

which allows us to write the system (3.6) in the simple matrix form

CxxSn − SnCyy = Cyx . (3.7)

Both Cxx ∈ Rm×m and Cyy ∈ R(n−m)×(n−m) are positive definite matrices and, near con-
vergence, all eigenvalues of Cxx are larger than those of Cyy . This implies the existence of a
unique solution to (3.7), given by

Sn = U ′ZV,

where
Cxx = UΛU ′, Cyy = V ΓV ′,

with U and V orthogonal and Λ and Γ diagonal matrices, and

Zji =
(Cyx)

j
i

Λii − Γjj
.
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Using this explicit formula involves diagonalizing Cyy , a prohibitively expensive task. However,
the fact that the Λii’s are larger than the Γjj ’s implies also the convergence of the following
iterative algorithm to find Sk:

S0
k = 0

Sh+1
k = (Cxx )−1

(
Cyx + ShkC

y
y

)
, (3.8)

which involves solving systems with only m unknowns.
This ordering between Λii’s and Γjj ’s holds near the optimum, since the cost function c is

precisely the trace of Cyy : if any eigenvalue of Cxx were smaller than one of Cyy , exchanging
the corresponding eigenvectors between the x and y subspaces would produce a smaller cost.
Yet this criterion for the convergence of (3.8) needs not hold at the onset of the algorithm.
To address this, one can resort to a simple pre-conditioning step, sorting the variables by
their individual variance. Thus Q0 is a permutation matrix that sorts the entries on the main
diagonal of the covariance matrix C in decreasing order. To further precondition, one could
take a few steps of gradient descent. More effective, however, is to use, for a small number
of steps kp, (3.8) with only one iteration:

Sk = (Cxx )−1Cyx , k ≤ kp. (3.9)

Since Cxx is positive definite, the resulting Sk lies in a direction in which the cost c decreases:
(Sk, G) < 0. In fact, (3.9) can be used throughout in lieu of (3.8), since Cxx is a robust
surrogate for the full Hessian H. The rate of convergence is, of course, worse than by using
(3.8). On the other hand, the computational cost per step is much cheaper, particularly if
one is using the matrix of observations Z rather than the covariance C: there is no longer
need to compute Cyy in each step, the most costly component of the covariance.

4 Computational complexity

There are two possible implementations of the algorithm: one in terms of the n×N matrix z of
observations, and the other in terms of the n×n covariance matrix C. If one is provided with
z and chooses to implement the algorithm in terms of C, computing C = zz′ requires O(n2N)
flops. Other than this and the cost of the preconditioning steps, negligible in comparison to
the others, each iteration of the algorithm requires:

• Finding Sk though (3.2), (3.9) or (3.8).

• Exponentiate Ak to form Qk.

• Update C through Ck = QkCk−1Qk
′, or z though zk = Qkzk−1 .

The exponentiation of Ak requires finding the compact singular value decomposition of Sk,
or O

(
m(n−m)2

)
flops. Because of the structure of the resulting Qk from (3.1), multiplying

it on either right or left by an n-dimensional vector involves O(mn) operations, so updating
z requires O(mnN) flops, while updating C requires O

(
mn2

)
flops.
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In terms of C, finding Sk though gradient descent, (3.2), requires O(m2) flops, through
the approximate second order in (3.9), O(m3) + O(m(n − m)) flops, and, through the full
second order procedure in (3.8), O

(
m(n−m)2

)
flops. In terms of z, we need to add to these

the O(m(n −m)N) flops of the computation of Cyx for (3.2) and (3.9), or the O(n2N) flops
of computing all of C for (3.8).

As for the required number of steps, it depends on the accuracy sought and the method-
ology chosen for descent: if (3.8) is used, the rate of convergence is super-quadratic, so the
number of steps grows at worst logarithmically with the problem’s size. This still hold ap-
proximately for (3.9) if only a reasonable level of accuracy is sought. If, on the other hand,
one seeks to capture variability up to a small fraction of the difference between the mth and
m+1th singular values of z, then the latter alternative requires substantially more steps than
the former. Regarding the number of iterations required in (3.8), see the examples below.

In summary, when the algorithm is implemented in terms of the covariance matrix C,
the full Hessian in (3.8) should be used for descent, and the resulting total work per step is
O
(
mn2

)
, with a number of steps that depends only weakly on the problem’s size. This still

holds for the procedure in terms of z when the number of observations N is comparable or
smaller than n, the total number of variables. When N > n, it may be worth trading a larger
total number of steps for the lighter work per step, O(mnN), of using (3.9) for descent.

5 Alternative procedures

The most costly component of the procedure described is the computation of the compact
singular value decomposition of Sk: even though this involves only m � n principal com-
ponents, m can still be large. There are at least two possible approaches to reducing this
cost. The most straightforward one is to carry out the singular value decomposition only
approximately. For instance, one may seek just the first m′ � m principal components of
Sk, using recursively the algorithm of this article.

A more radical approach is to propose, at each step, a matrix Sk of the form

Sk =
m∑
j=1

σjujv
′
j ,

where the uj ’s and vj ’s are prescribed orthonormal vectors of dimension m and (n − m)
respectively: instead of computing the optimal Sk among general m × (n − m) matrices
and then finding its singular value decomposition, we are limiting our search to matrices
with prescribed principal components, but free singular values σj . It is easy to see that the
optimal σ’s satisfy the following projected version of (3.7):

σj
[
u′jC

x
xuj − v′jCyyvj

]
= u′jC

y
xvj , (5.1)

a single scalar equation for each σj that requires no iteration. Moreover, the resulting Sk has
a known singular value decomposition, thus reducing the computational cost of each step to
the calculation of O(m) products of matrices times vectors.
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There are various alternatives on how to select the singular components uj and vj , each
involving a trade off between the computational cost of each step and the global rate of
convergence. A thorough exploration of the possible strategies, however, lies beyond the
scope of this paper.

6 Numerical examples

In this section, we illustrate the performance of the algorithm presented in this paper via
several numerical examples, some synthetic and one using oceanographic data.

First, we apply our methodology to two classes of matrices with singular values decaying in
ways that have been deemed typical in practice [10]: exponential in one class, and exponential
followed by linear decay in the other. We also experiment with the gap between the mth and
(m+ 1)th singular values. To build the covariance matrix C0, we propose a diagonal matrix
Σ0 of singular values with the desired properties, randomly draw an orthogonal matrix Q0,
and define C0 = Q0Σ0Q

′
0.

We monitor the convergence to the hyperplane sought through two quantities: the cost
function c = tr(Cyy ), which should converge to its true value given by

ctrue =

n∑
k=m+1

(Σ0)
k
k ,

and

eQ =
1√
m
‖Q′x(I − (Q0)x (Q0)

′
x)‖F , (6.1)

the Frobenius norm of the difference between the subspace spanned by the m columns of the
matrix Qx computed by the algorithm and its projection over the subspace X, spanned by
the columns of the true (Q0)x.

The first class has exponentially decaying singular values given by

σj = σj/mm , j = 1 . . . n, (6.2)

while, for the second class, the singular values are chosen in such a way that the first m values
decay exponentially and the remaining ones linearly [10]:

σj =

{
(σm)(j/m) , for j ≤ m
σm ·

(
m
j

)
, for j > m.

. (6.3)

In both cases, we have adopted σm = .01. In order to study the effect of the relative gap
between the mth and (m+ 1)th singular values, we have also studied the following example:

σj =

{
(σm)(j/m) , for j ≤ m
ασm ·

(
m+1
j

)
, for j > m.

(6.4)
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where α ≤ 1.
Our first set of experiments takes data from (6.2), with m = 32 and n = 512, and

compares the performance of three candidate procedures, sorted by their computational cost
per step:

1. straightforward gradient descent, with the maximal learning rate in (3.2) set to ε = 0.1,

2. quadratic gradient descent (3.5),

3. using Cxx as a surrogate for the full Hessian in (3.9),

4. applying the full second order procedure in (3.8), with 100 iterations per step, after 10
preconditioning steps that use just the Cxx component of the Hessian as before.

As we can see in the results, displayed in figure 1, all four procedures converge, but at very
different rates, with the full second-order descent converging to machine precision in just
three steps after the preconditioning.

The second set of experiments takes data from (6.4) with m = 32 and n = 512, and
three values of α: the degenerate case with α = 1, with no gap between the last resolved and
first unresolved singular values, α = 0.9, with a small gap, and α = 0.5, with a significant
gap. The results, displayed in figure 2, show the effect of increasing the number of steps in
the iterative procedure (3.8) for inverting the Hessian. With a large spectral gap, just one
iteration per step does a perfect job. For the more challenging case of α = 0.9, the number
of iterations affect the global rate of convergence; with about 50 iterations we have again
full convergence in just three steps. The situation is similar for the degenerate case with
α = 1, though here too many iterations can be in fact counter-productive: since the largest
eigenvalue of Cyy is never smaller than the smallest of Cxx , the iterative procedure may fail to
converge.

The third set of experiments, displayed in figure 3, uses data from (6.3), and shows
the effect that the problem’s size, through the dimensions m and n, has on the rate of
convergence. Here again 10 preconditioning steps are followed by the inversion of the full
Hessian, through (3.8) with 100 iterations. The results indicate that the dimension n of the
space Z of observations has nearly no effect on the rate of convergence, while the effect of
the dimension m of the subspace X sought is more pronounced, though also minimal.

To assess the performance of the descent procedure on a real-life application, we chose
a database comprising extended reconstructed global sea surface temperatures based on
COADS data [6]. From these monthly averages, ranging from January 1854 to June 2005, we
isolated those corresponding to the month of December. The data is provided on a 180-by-89
grid, a resolution of 2 degrees in both latitude and longitude. After discarding those points
that lie over land, we are left with 150 records of December temperatures with 11, 074 points
each. We subtract the climatology of each point on the sea surface –that is, its average De-
cember temperature over the 150 years– and store the adjusted data in the n-by-N matrix
Z, where n = 11, 074 and N = 150. We seek the first three principal components of Z. To
this end, instead of working with the high-dimensional matrix C = ZZ ′ ∈ Rn×n, we consider
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Figure 1: Comparison of gradient descent with both learning rates α, the use of Cxx as a
surrogate Hessian, and of the full Hessian. The data has exponentially decaying singular
values, as in (6.2), with σm = .01. A subspace of dimension m = 32 is sought in a space
of dimension n = 512. On the left, a logarithmic plot of the cost function as a function
of the step; on the right, the measure eQ from (6.1) of the error in the determination of
the subspace X. Notice the very fast convergence of the fully second-order procedure, in
magenta, which takes just three steps after the preconditioning to reach machine precision.
The pseudo-second-order procedure in (3.9), in red, is a strong competitor, balancing a slower
rate of convergence with a much reduced work per step. As expected, both gradient descent
methods are considerably slower. However, the quadratic gradient descent with learning rate
α∗ from (3.5) , in blue, outperforms the regular gradient descent with α from (3.3), in green.

the far more compact C∗ = Z ′Z ∈ RN×N : each eigenvector u of C can be recovered from the
corresponding eigenvector v of C∗ with eigenvalue σ2 through

u =
1

σ
Zv.

Figure 4 shows the convergence of the algorithm; here the true singular values and prin-
cipal components needed to evaluate the error at each step were computed independently
through a standard Matlab routine. For this real data, convergence to machine precision
took place just one step beyond preconditioning. Figure 5 displays the first three principal
components on a map: each location corresponds to one component of the singular vector,
with its value represented through color grading. In atmosphere and ocean science, these
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Figure 2: Dependence of the rate of convergence of the second order algorithm on the number
of iterations in (3.8). The data have the form in (6.4) with σm = .01, m = 32 and n = 512.
The plot on the left corresponds to the case with α = 1, with no gap between the mth and
(m + 1)th singular values. In this degenerate case, the solution for the optimal manifold X
is not unique, and the iterative procedure for inverting the Hessian may fail. On the right,
the case with α = 0.5, a large gap between the last resolved and first unresolved singular
value. Here a few iterations suffice, since (Cxx )−1Cyy is small. In the middle, a more regular
case, not degenerate but with no significant gap between the resolved and unresolved part
of the spectrum. In all cases, a sufficient number of iterations per step is enough to yield
convergence in just a handful of steps after the initial 10 for preconditioning.

are referred to as Empirical Orthogonal Functions (EOFs) [7] and often associated with pat-
terns of climate variability. The variability associated with El Niño Southern Oscillation, for
instance, is easily identifiable as the second principal component.

7 Extensions

This article is mainly concerned with the computation of principal components, yet much
of the methodology developed can be extended to a variety of scenarios. In this concluding
section, we briefly sketch how some of these extensions might proceed. We discuss only those
extensions where the manifold X sought is linear; extensions to curved manifolds, such as
principal curves and surfaces, will be developed elsewhere.

The basic elements of the procedure, as described in section 3, apply to any situation
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Figure 3: Effect of the problem’s size on the rate of convergence. The singular values are
computed as in (6.3) with σm = .01. In the top figures, the dimension of the subspace X
sought is fixed at m = 32 while the dimension n of the full space Z is varied over an order
of magnitude. In the bottom figures, the reverse is true: n is fixed at n = 1024 while m is
varied. The rate of convergence shows almost no sensitivity to n, and little to m.

where an m-dimensional subspace of an n-dimensional space is sought: the factorization
of Q into the composition of simpler orthogonal matrices Qk, the expression of the latter as
exponentials of a matrix Ak with only m(n−m) independent entries, and the reduction of the
exponentiation process to the calculation of a small-dimensional singular value decomposition.
Hence similar procedures apply to the following problems:

• Non-autonomous principal components: When the observations zj = z(tj) rep-
resent a time series, the subspace of principal components X sought may depend on
time: for instance, if in the oceanographic application above, we would have consid-
ered all months, not just December, we should have sought month-dependent principal
components, with a period of one year. The procedure developed in this paper adapts
easily to this scenario: one can seek a time-dependent orthogonal transformation Q(t)
by proposing, for each Qk(t), a transformation of the form

Qk(t) = eAk(t), Ak(t) = fk(t)Ãk,

where Ãk is a time-independent skew-symmetric matrix, and fk(t) is a prescribed func-
tion of t. The idea, pursued in [5] for principal dynamical components –see the item
below–, is that any time-dependent orthogonal transformation can be factorized into
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Figure 4: Search for the first three spacial principal components of the December sea-surface
temperature field. On these real data, the convergence of the second order procedure to
machine precision is nearly instantaneous, requiring just one step beyond the 10 used for
preconditioning.

Qk’s of this form. Each fk(t) works as a building block for more general time-dependent
functions. The fk’s are typically simple functions, such as smooth localized bumps, with
properties that reflect those required from Q(t), such as periodicity or a minimal re-
solved scale. The only change in the cost function is the appearance of the fk(tj)’s as
weights for the various observations zj .

• Principal dynamical components: Again for time series zj = z(tj), regular principal
components do not yield any dynamical information, since all observations are treated
as independent samples of an underlying random process. A more natural manifold X
to seek, proposed in [5] and labeled “principal dynamical components”, is the one that
minimizes not the static information loss from considering only the projection x = Q′xz,
but rather the dynamical loss in the predictability of future events from x alone. In
the simplest case of first-order autonomous Markov processes, the corresponding cost
function is

c =
N−1∑
j=1

∥∥∥∥zj+1 −Q
(
AQx

′zj
0

)∥∥∥∥2 =
N−1∑
j=1

∥∥∥∥( xj+1 −Axj
yj+1

)∥∥∥∥2 , (7.1)

depending now not only on the transformation Q but also on a predictive linear model
given by the m×m matrix A. Minimizing c over A for Q given is a standard regression
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problem in m dimensions; minimizing c over Q for A given, on the other hand, can be
handled by the algorithm of this article, with the cost function given by (7.1). Notice
that this cost adds to the variance of the y variables, also present in regular principal
components, the variance of the fraction of the x variables not accounted for by the
predictive scheme represented by the matrix A.

• Continuous feature selection: A problem occurring frequently in applications is
finding the traits that allow one to differentiate most robustly among various popula-
tions. Examples are the search, in medicine, for those patterns in clinical tests most
suitable for the diagnosis of specific ailments and, in biology, for phenotypical differ-
ences between populations with altered genes. One way to pose this problem at the
linear level is the following: given a set of observations zkj ∈ Rn, where k ∈ [1 . . . np]
denotes the population from which the observation was drawn, and j ∈ [1 . . . N(k)] the
individual observation, find the set of m features

x = Q′xz

that best classify the samples among populations:

Qx = arg min
x=Q′xz

C = −
np∑
k=1

N(k)∑
j=1

log
(
P kj

)
,

where

P kj =
pk ρ

k
(
xkj

)
∑np

l=1 pl ρ
l
(
xkj

)
is the posterior probability for the observation xkj to belong to the kth population, pk is
a prescribed prior, and ρk(x) is the probability density of x in class k, estimated from
the observations, for instance through a Gaussian fit. The cost function C to minimize
represents the relative entropy between the posterior P and the known distribution
among classes. This cost has a far more convoluted dependence on Qx than the one for
principal components, but otherwise the structure of the two problems is the same.

8 Conclusions

A descent algorithm was developed for the calculation of principal components and, more
generally, for the search of low-dimensional subspaces of a high-dimensional vector space sat-
isfying an optimality property. The algorithm minimizes the cost function through a series of
orthogonal rotations, each represented as the exponential of a skew-symmetric matrix picked
from a comparatively small-dimensional manifold. The procedure is conceptually simple, eas-
ily extendable to different scenarios, and computationally effective, as demonstrated through
a series of test cases.
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First principal component

Second principal component

Third principal component

Figure 5: First three principal components of the December sea-surface temperature field, dis-
playing values by color intensity on the map. These are the Empirical Orthogonal Functions
of atmosphere and ocean science. The second component may be taken as representing the
variability associated with El Niño Southern Oscillation, with its typical pronounced warming
in the Eastern Pacific, offshore the coast of Perú. The corresponding singular values σ1,2,3
associated with these three components are 19.75, 3.74 and 2.91 respectively.
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