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Abstract

Stratified flows in hydrostatic balance are studied in botirtmultilayer and
continuous formulations. A novel stability criterion isoposed for stratified
flows, which re-interprets stability in terms not of growthsmall perturbations,
but of the well-posedness of the time evolution. This refiptetation allows one
to extend the classic results of Miles and Howard conceratagdy and planar
flows, to the realm of flows that are non-uniform and unsteady.

(© 2000 Wiley Periodicals, Inc.

1 Introduction

Stratified flows occur ubiquitously in nature, with the atiosre and ocean as
prime examples. When the horizontal scales of a flow are maigjet than the
vertical ones, the flow satisfies to a good approximationhyarostatic balance
whereby the pressure at each position balances the weighedfuid above it.
Models for hydrostatically balanced flows come in two maimdta: multilayered
models, where the flow is assumed piecewise uniform in thiceérand models
with continuous shear and stratification. Typical real flb\arge a continuous strat-
ification profile, but approximately layered flows do aris®,ihstance, in river out-
flows, and in the “staircase” stratification profiles oftersetved in the ocean [12].
In addition, many numerical discretizations of the contimsi equations mimic the
physics of discrete homogeneous layers.
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Layered models are systems of conservation laws for massantentum in
each layer. Continuous models can also be written as sysiemgnitely many
conservation laws, corresponding to layers of vanishinkiiess, or as an infinite
system of evolution equations for vertical eigenmodes. thMtability analyses
have adopted the latter approach whereas here we exploferther. This is best
achieved through the introduction of an isopycnal coongirsystem [1], whereby
the fluid’s densityp replaces the depthas vertical coordinate. (This system is
appropriate for incompressible fluids; the equivalent falation for compressible
flows involves isentropic coordinates. For brevity, we witlly concern ourselves
here with incompressible fluids.)

This article uses the mathematical machinery behind syst#nsonservation
laws to shed light on issues pertaining stratified flows, ltdlorete (layered) and
continuous. In particular, it re-interprets the stabilioperties of the system in
terms of the well-posedness of its time evolution, instefith® more customarily
used rate of growth of small perturbations. This correspdodlassifying the sys-
tem according to its type: hyperbolic corresponding to istgl{more precisely,
well-posedness), and elliptic corresponding to instgbflill-posedness). Simi-
lar characterizations of stability in terms of type haverbaeticed in rheological
problems; see, for instance, [3].

This view provides a useful extension of stability theoresugh as the classical
results of Miles and Howard [13, 4], from their planar scésto more general,
non-uniform and unsteady flows. In the unstable Miles-Hasmenario, arbitrar-
ily large growth rates (hence the ill-posedness) occur foealkperturbations of
sufficiently short wave-lengths. This feature is capturgdabre-interpretation in
terms of a hyperbolic-elliptic transition. The physical mifastation of this tran-
sition remains the standard one: the time evolution becamsbematically ill-
posed because it is no longer possible to neglect mixindyeasibdel does.

Finally, solutions that remain in the hyperbolic regime bamnevertheless un-
stable in the classical sense: small perturbations may, ghowgh the growth rates
are bounded, and the catastrophic scenario of high freguesrturbations grow-
ing arbitrarily fast does not arise. In fact, examples of $genario, with unsteady
flows with Richardson numbers bigger thérbut are nonlinearly unstable over
long space and time scales, are presented in [10, 11].

This article exploits the strong analogy between the egnatfor layered and
continuously stratified flows. Section 2 presents a dedwatif the correspond-
ing models in parallel, attempting to achieve maximal sioiggl One can factor
out the mean stratification profile (or layer thickness) fitbim equations, allowing
solutions that consist of vertically periodic variationgoerimposed onto a back-
ground stratification.

Section 3 characterizes and computes the simple waves si#tem [8]. As
building blocks, simple waves have the advantage over the standard linear
modes, that they constitute fully nonlinear solutions. #&rtigular, they break,
hence leading to another mechanism for fluid mixing. To owviedge, simple



SHEAR INSTABILITY 3

waves in systems of infinitely many conservation laws hawvebeen considered
before.

Section 4 introduces the characterization of stabilityebdasn equation type,
and uses it to extend the Miles-Howard theorem on sheatligtdlinm steady pla-
nar flows to more general non-uniform, unsteady profileslsti develops similar
constructions for layered flows.

2 Layered and continuous stratified flows

In this section the equations describing hydrostaticadiiabced stratified flows
are derived for multilayer systems, and continuously i$iedtflows are then com-
puted as a limiting case. In the Boussinesq approximatina,aan factor out the
mean stratification. This allows considering flows that aneedically periodic
perturbation of a background profile.

In a system oN layers with uniform density and horizontal velocity, cornse
tion of mass for each layer reads

2.1) h + (hiul), =0,

whereh! is the layer thickness and the fluid velocity. Conservation of momen-
tum adopts the form

<plhlul>t+(p‘hl(ul)“g(pi*i+pJ—%><zJ+%—z"5>> -
X
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wherep! is the density of layej, andp andz stand for the pressure and height at
the interfaces between layers. The terms on the right-higiedo$ the momentum
equation represent the form drag among layers. Since tlais iaternal force of
the system, it dissappears when adding over all layersjigggthe conservation of
total momentum

N N /o 1 .1 L1
(2.3) (Zplhlul> +<Zhl <p](ul)2+§(pl+2+p12)>> =0

X

The pressure satisfies the hydrostatic relation
(2.4) pl~2 —pl*Z =gplhl,

whereg is the gravity constant. Using conservation of mass and yideolstatic
balance to simplify the momentum equation (2.2), one obtain
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In terms of the Montgomery potential

(2.5) Mj:%(p”%+pj—%)+gpi%(zj+%+zi—%)’

the system can be written in the form
htj +(hJuJ)X = 07
. 1
UtJ +UJU)J(+EM)J( = 0,
M+t M

pitt—pl
ZjJF% _ijz_zl — hJ

i1
— +3
_gzJ 27

The Boussinesq appoximation involves neglecting the tffgfadensity changes
on the inertia, that is, replacing’ by a constanpy in the equation fory above.
Then, assuming for simplicity thdtp = pJ — pi*1 is independent of, and non-
dimensionalizing

vgmt
—t
Xo

—>|\/|j
R N

(whereg' = g%’? is the reduced gravity is a typical length, and the thicknekg

is defined for later convenience bg= % 5\ hi), one obtains the set of equations
describing multilayer flows:

h + (hiub), = 0,
(2.6) W+ ulul+Mm) =0,
MM = —h

wherel\; is the discrete second difference

MM =MITE_omi M-t
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In order to obtain the equations describing continuoudifitiation, one uses
the alternative non-dimensionalization

go t
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whered = %fhdp andr is the density difference between the bottom and top of
the domain. Taking the limit of smallp, yields the system of partial differential
eqguations modeling internal waves in isopycnal coordsate

h + (hu)x = 0,
2.7) W+ U+ My =0,

These equations are strongly reminiscent of those desgrébsingle layer of shal-
low water flow, but with the pressure term and the layer thicknesls, which
are identical in shallow waters, related instead througlviag®n problem in the
vertical.

Subtracting from both the continuous and discrete systemgiean stratifica-
tion (or mean layer width), one can make the replacements

h— (1-9)
MI— M= (1),
2
for the discrete system and, for the continuously stratifiesk,
h— (1-9

1
M —M—Zp?.
— 2p
It is not necessary to assume constant background stragificeor layer width—
to make these substitutions: the variab§x) may have a nonzero horizontal
average. Their vertical average, on the other hand, is delto our choice offig
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andd in the nondimensionalizations above. The discrete equatiecome
i~ ((1-9)u), =0
(2.8) ut+ululy+ Ml =0,
MM =3

and the continuous ones

§—((1-9u)x =0,
(2.9) U + U+ My = 0,
This setting permits the use of periodic boundary condgtionthe vertical di-

rection, which simplifies many theoretical developmentsnég, from now on, the
dependent variableS M andu, are periodic ik and in eitherj or p:

SN t) =9 (xt), Fx+Lt)=9(xt),

Sx.t,p+1)=S(xt,p), SXx+L,t,p)=Sxtp),
In addition,Shas zero vertical mean:

%81:0 [/OFS(x,t,p)dpzo},

which implies that
N

(2.10) > (1-9)v),=0 [/Or((l—S)u)Xdp:O}.

In fact, more is true: the volume flux

Q=%(i—9)u’k [Q:/Ora—swdp}

is, under the Boussinesq approximation, also the total méume (replacep’ by

po in the momentum density in equation (2.3)). Hence, it is ndy spatially

uniform, as (2.10) implies, but also constant in time, sitm@l momentum is
conserved. This can be shown from the equations in (2.8) tyngdhem by parts,
which yields

N

(2.11) [Z (1-9)u

Equivalently, in the continuous case,

(2.12) [/(l—S)udp]t—i—[/((l—S)uz+M+%(Mp)2>dp} =0.

X

N

+ Z(l—Sj)uszerJr%(M”l—Mj)z =0.

t

X
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Integrating these equations over the horizontal period, @sing the fact -from
(2.10)- that the term differentiated with respect to timepatially uniform, it fol-
lows that the total volume flux (and momentum densi@is constant.

One can apply this result in closing the systems (2.8) arfy).(At first sight
it is not entirely clear how the evolution equations in eitbéthese systems are
to be closed. The difficulty is tha¥l is not entirely determined fror$ by the
Poisson problem — since the vertical meadrof M is left undetermined. However,
in view of (2.11) and (2.12), the terms differentiated ineidlissappear (since they
are constant), and we obtain

(2.13) My = — <%(AM)2+(1—S) u2>
X
in the discrete case, and
— 1
(2.14) My = — <§Mg+(l—8)u2>x

in the continuous one.
Both systems (2.8) and (2.9) conserve energy, given by

(2.15) E— /(Ek+ E,) dx,
where

1 2 "1 2
(2.16) Ek:glz(l—sj)uj [Ek:./o S(1-9u dp}
and

217) E,— S /ZH% a3 12 [E / d /rzzd ]
. = zdz= § =7 = [pzdz= | =

are the kinetic and potential energy densities, respédytive

3 Simple waves

As the number of layers in the system grows, and in the cootisuimit, the
system’s behavior becomes increasingly complex. It is eoi@nt then to isolate
individual simple waves, which can be thought of as “buiddiiocks” of the more
complex dynamics [8]. Moreover, as we shall see, the studyngble waves sheds
light on the system'’s stability.

For a nonlinear hyperbolic system of the type

(3.1) Vi +A(V)vx =0,

Iin particular, if a Galilean transformation is performedisatQ is initially zero, it remains zero
forever.
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wherev(x,t) is a vector with components;, simple waves are solutions of the
form

(3.2) Vj(x,t) = V(& (x1)).

In other words, all components of the vector solution arefions of a single scalar
function & (x,t). Plugging this ansatz into (3.1) yields the eigenvalue jerob

(3.3) (A(V(§)) —c(é)) Ve =0,
where
o) =5
which can be re-written as an equation for the evolutiod:of
(3.4) &t +c(§)éx=0.

The characteristic speed¢ ) follows from the eigenvalue of (3.3); the correspond-
ing eigenvectol; yields by integratiorV (&), the phase-space representation of
the simple wave. Notice that there is some freedom in themétation ofV (¢ ):

the initial vectorV (& = 0) can be chosen arbitrarily, and the eigenvedfprcan

be re-scaled at will (this second freedom, however, amdorjtsst a reparameter-
ization of V(&).) Oncec(&) is known, we can find (x,t) from any initial data

¢ (x,0) by solving the scalar equation (3.4) by the method of chargstics, and
then reconstruct the full vector solutie(x,t) through the identity (3.2).

Figures 1 and 2 show snapshots of two simple waves, one porréing to the
largest (first-baroclinic) eigenvalue of a three-layertsys and the other to the
second-largest (second-baroclinic) eigenvalue of a aixtayer system. In both
cases, sinusoidal initial data are followed as they evoite a breaking wave. In
order to continue the solution after the breaking time, aule is required, possibly
involving mixing [5, 15, 6].

The idea of simple waves can be extended from the multilagse ¢to the con-
tinuously stratified equations (2.9), by replacing the inglén (3.2) by the contin-
uous variablep:

(3.5) u(x,t,p) = U(&(xt),p)
M(xt,p) = M(§(xt),0)

(where we uséM rather thanS as dependent variable, so as to have differential
rather than integral operators). This results in the system

36 <w_?%.&i><$>:<8>’

which yields the second-order differential equationNgy.
29°Mg

=Mpp Mg,
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FIGURE 3.1. First baroclinic simple wave in a three-layer systepiau

its breaking time. The color code represents the valuesofetocityu,

and the solid lines the position of the interfaces betwegerka The fig-

ure on the left has the initial value, corresponding to asimal profile

for £(x,0); the figure on the left depicts the simple wave near its break-
ing time. The profile is vertically periodic: the form of thetérface at
the base of the bottom layer matches the one at the top of fheroqpst

layer.

02 04 06 08
X

FIGURE 3.2. Second baroclinic simple wave in a sixteen-layer syste
up to its breaking time. The conventions for plotting andrtreaning of
the two figures are the same as for Figure 1.

To our knowledge, this idea of extending simple waves toinaonus systems
of [infinitely many] conservation laws has not been expldvetbre. For stratified
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flows, it allows us to go beyond the well-known linear intdrwaves [9] to their
fully nonlinear counterpart.

4 Stability criteria

The eigenvalue problem (3.3) does not necessarily haverealysolutions. In
other words, stratified flows are systemsmiked type hyperbolic when all eigen-
values ofA(v) are real, and elliptic otherwise. The presence of elliptimdins is
associated with an instability of the system: when the egastturn elliptic, the
initial-value problem for them becomes ill-posed [7], amiltions can be found
that are initially arbitrarily close, yet diverge from eaather in arbitrarily short
time intervals. This perspective on the stability problenmiore powerful than the
conventional one, in which one looks for exponentially groyvsolutions of the
equations linearized around a global profile. With this apph we can character-
ize the stability of non-uniform, evolving, solutions, addtect the places where
the time-evolution becomes ill-posed, and hence mixingexed. The calculation
is local: it suffices to determine whether the system matraexg particular point
(x,t) has or not a complete set of real eigenvalues.

lll-posedness is a much more dramatic scenario that reggtability. The fact
that perturbations grow does not necessarily invalidat®aem nor calls for a new
closure. Yet when the growth-rate of perturbations is unbled, the model stops
making sense. Hence ill-posedness is typically an indinathat new physics is
required. In the present study, the missing physics is thatixing among fluid
layers.

The classic results of Miles and Howard [13, 4] on shearalpiity for stratified
flows can be re-interpreted in terms of well-posedness, andénextended to non-
planar, unsteady profiles: When the eigenvaligecomplex, equation (3.7) can be
rewritten in the form

9P ((u-g)2+)°

Multiplying through byl\/l_g and integrating irp, we obtain
Mop

oM
/' apf " (u—cr)2+c?)

The imaginary part of this equation yields

M 2
26;/((u_cr;;+ci2)2(U—Cr)\'V'z| dp =0.

Hence a necessary condition for the imaginary pactradt to vanish is thatu—c;)
change sign; in particular, there must exist a critical taybkerec, = u. Near such

(U—cr +ici)%Mg .

2

2(u—chrici)2 \ME\de =0.
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point, one may expand (3.7) into
9°M
(Up(Po))?(p — o) 5 = Mpp(po) M

or
9°M _
where the Richardson numbiris given by
Ri— Moo (Po) ‘
(Up(0))?
This Euler equation has solutions of the form
Mg =[p—po|” ,
with

1 /1 :

WhenRi> 1/4, these solutions are singular, suggesting thaRiar 1/4 it is
not possible focto have an imaginary part. This fact can be establishedaigdy,
following the same lines as in the classical proof by Mile3][fbr shear-instability
of planar flows. Instead, we mimic the alternative, simpleopby L. Howard [4]
in the paper immediately following Miles’ in the same issBeturning to equation
(3.7), and making the change of variables

Mg = (Vu—c) o,

equation (3.7) adopts the self—adjoint form

1,/2
(u-c)g) + <%u~_ M) 0=0.

u—=cC

Multiplying by @ and integrating, one obtains

1, Mp+ iu?
T 2 S UPP T 4Y 2 —
/[ (u-o)lg/ +<2u - )vm]dp 0.

The imaginary part of this expression is

Myp + Lu?
(42) I [WF— ﬁj’_icjzvmz] dp =0.
It follows that, forc; not to vanish,

) M 1
(4.3) Ri=— uf)zp <3

Hence, for an hydrostatically balanced flow to be ill-poseitiftic) it is nec-
essary that the local Richardson number be smaller than warter, a result that
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extends the range of validity of Miles’ and Howard’s beyotebsly, planar strati-
fication profiles.

Similar computations can be carried out for multilayer flo#rst, we prove
that instability can only arise when there are critical layeln the discrete case,
this means that the real part of the unstable eigenvalueoh@swithin the range
of the velocities. To show this, the equation for simple veag@rresponding to
(3.7) in the continuous case) is

1-5
|:(UJ —C) Az—l-uj—_é ME,J =0.

Multiplying by I\Wm and summing by parts, one obtains

1-S
ZWMEN —71\'\/'6,1\220
The imaginary part is
N 1-S
_zciz(uj—cr)ﬁ| e’ =0,

and, clearly ifc; # 0, thenu; — ¢; has to change sign, and hengés in the range
of theu;.
To make an argument similar to Howard's in the discrete case,introduces

@ = \/_C, multipllies (4) by\/% and adds by parts, yielding

N

> [Vu-owa-olstel

1-S
(uj— J +\/u,—CA2\/u,—c> o] ] =0,

wherec = ¢ +ic;. The real part ot can be absorbed in thg's, and the imaginary
part of the equation becomes

%'m V—ie) W —ieo| |8

(L:llz:-iz (o} +Im[\/uj iCiAz\/Uj —iCiJ> |(pj|2:0,

j i

or,if ¢ #0,

1-5 .
ZF 05, 0j+1) [A" @ +<m +2—F (0, 1) — F(Ujvujl)> @ =o.

{j = LCJIJ F(u,v):%\/l—uv+\/(l+u2)(l+v2).

where
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This expression can be simplified further by changing véemlto u = sinh(x),
v = sinh(y). ThenF (u(x),v(x)) = cosh*¥ , and, in terms of

(4.4) 6, = sinh™ (ﬂ> ,

Ci
one obtains

N . _ P
2 %0 : 29H1'|A+fpj|2

1-§ P 6,-—6,-_1>_ . <9j—9j+1> 2
+<7cizcosh?(9j) 25|nh7-<74 2sinft - l@|” =0,

the discrete equivalent to (4.2).

In fact, if one considers the differences #f's to be small and performs the
corresponding truncated Taylor expansion, one recove2} ¢4actly. However, it
is not clear how to go beyond this heuristics, and obtain asssry condition for
instability as in the continuous case.

The problem is that thé differences are not necessarily small even if those in
theu's are: the occurrence of in (4.4) amplifies, wheg; is small, the effect of the
shear. Because of this difficulty, we analyze the stabilftynaltilayer flows on a
case by case basis in [14, 2], concentrating on two and thyeg-systems. These
are not only the cases that appear most frequently in apiplisa but also consti-
tute, in a certain sense, the discrete equivalent of (hé&)expansion near a critical
layer: one is not allowed in the multilayer case to Taylopaaxd the fields, but
may instead attempt to capture the presumably “local” attaraf the instability,
by concentrating on the layers between which the sigupf- ¢;) changes.

5 Conclusions

This article formulates a unified description of stratifieowfs in hydrostatic
balance, including both multilayered and continuoushatdéied flows. Remov-
ing the mean stratification profile from the independentalads allows one to
consider vertically periodic fluctuations around a backgubstratification profile.
These periodic flows provide a simpler setting for analyta@amsiderations than
flows bounded in the vertical by lids or free surfaces.

By adopting a multilayered—isopycnal approach, one carktbi the equations
as a system of conservation laws indexed by the density. réhlization permits
computing nonlinear simple waves up to their breaking tiarg] to introduce a
novel characterization of stability, based on the locaétitpyperbolic or elliptic) of
the system. With this characterization, one can to reqinétrclassical theorems on
shear instability of stratified flows and extend them intorgse@m of non-uniform,
unsteady flows.
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The methodology and results described in this article fon@ oint of depar-
ture for the study of mixing, the onset of which can be atteldurequently to shear
instability and breaking waves.
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