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Abstract

A novel, non-parametric clustering algorithm is developed, based on
flows in the space of soft assignments P i

k, representing the probability
that point xi belongs to class k. These flows have two drivers: a
nonlinear reaction component that relaxes P to an evolving Bayesian-
like posterior, and a diffusive component that relaxes P to its local
average, with a diffusivity ν that adapts dynamically so as to balance
the two components. The methodology extends to semi-supervised
classification, where a subset of the labels are known. In the limit of
infinitely many observations, it yields a set of non-standard reaction-
diffusion equations, which produces sharp boundaries between species
that separate spontaneously into well-balanced domains. Including
more than one diffusive network opens the way to a broader class of
applications, including the detection of regime changes in time series
and a clustering procedure based on numerous features that defeats the
curse of dimensionality. In the continuous limit, this extension results
in a novel, non-local class of diffusive operators.

1 Introduction

Assigning labels y to observations x is a central task in data science [1,
2], a typical instance being the assignment of a diagnostic to the results
of a clinical test. Supervised learning, which bases this assignment on a
training set of pairs {xi, yi}, is named classification or regression depending
on whether the label is categorical or continuous. In unsupervised learning,
the training set consists only of the observations {xi}, and the assignment
of labels acquires different connotations: factor discovery when the y are
latent variables that explain part of the variability in x, and dimension
or complexity reduction when y provides an economical or interpretable
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representation for x, named clustering when the labels y are categorical.
Semisupervised learning combines the two previous scenarios, with data that
includes a set of observations {xi} i ∈ {1, 2, . . . ,m} and only a partial list
of labels yi, i ∈ I = {i1, i2, . . . , in}, n < m. Then the assignment of labels y
to the complement of the labeled set I is based both on the available pairs
and on the distribution underlying the observations.

This article proposes a new methodology for the unsupervised and semisu-
pervised learning of categorical labels y ∈ {y1, . . . , yK}, i.e. clustering and
semisupervised classification, based on flows in probability space. The la-
beling proposed adopts the form of a soft assignment P ik = P (yk|xi). Here
the {xi} are samples of the distribution ρ of a multidimensional variable X
in a metric space, the {yk} are the labels, and P ik represents the probability
that sample xi has label yk, satisfying

0 ≤ P ik ≤ 1,
K∑
k=1

Pk = 1.

In the semisupervised case, the P ik are provided for i ∈ I.
In the method proposed, the P ik (either all of them for unsupervised

problems, or the unknown set for semisupervised problems) are initialized
to non-informative values and evolve in an algorithmic time t through a set
of differential equations that converge to a final assignment.

The dynamics for the {P ik}(t) has two components. The first component
is a continuous non-parametric Bayesian-like update, which relaxes the {P ik}
toward a posterior {P̃ ik}. The determination of the posterior uses the current
{P ik} both as a Bayesian prior and as weights to build an estimation for
the distribution ρk(x) for each class k. The non-parametric nature of this
estimation makes this update insensitive to any metric information in the
space X of observations. In order to restore this information, a second,
diffusive component is added to the dynamics, which relaxes P ik toward the
values of its neighbors in X-space. This approach turns out to be very rich,
permitting for instance the use of more than one notion of neighborhood,
which when clustering time series, allows the {P ik} to diffuse both in X
and in the (real) time variable T , and defeats the curse of dimensionality in
classification problems with numerous features.

The procedure requires as input:

1. Observations: samples {xi ∈ X}, i ∈ {1, 2, . . . ,m} of the underlying
distribution ρ(x),

2. The cardinality K of the categorical labels Y = {yk} sought,
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3. For semisupervised problems, the probability P ik ∈ [0, 1] for i ∈ I ⊂
{1, 2, . . . ,m} that sample xi has label yk,

4. One or more notions of distance dlij between pairs of points (xi, xj) in

X. If more that one distance dl is provided, also a weight λl assigned
to each.

It provides as output {P ik} ∈ [0, 1], with
∑K
k=1 P

i
k = 1. Even though the {P ik}

can be conceptualized as probabilities, the default choice for the algorithm’s
parameters for clustering returns hard assignments P ik ∈ {0, 1}, with the
intermediate soft assignments P ik(t) used only as computational tools, much
as in interior point methodologies for optimization.

The first part of the paper derives this system of data-driven differential
equations. In the second part we write the resulting system for the evolution
of the P ik(t) in a continuum limit as the number of observations grows. This
yields a non-local system of reaction-diffusion equations

∂Pk
∂t

= Rk + νDk.

Here Pk(x, t) is the continuum limit of P ik(t) → Pk(x
i, t), satisfying at all

times the conditions

0 ≤ Pk(x, t) ≤ 1,
K∑
k=1

Pk(x, t) = 1.

The probability density ρ(x) represents the distribution underlying the sam-
ples {xj}. The right-hand side of the system includes a non-local reaction
term R derived from the Bayesian update, and a diffusion term enforcing a
distance metric. The reaction term is

Rk(x, t) =

 Pk
Zk∑K

h=1
Ph

2

Zh

− 1

Pk
where

Zk(t) =

∫
Pk(x, t) ρ(x) dx

represents the total probability of class k. The diffusive term is

Dk(x, t) =
1

ρ
∇ · (ρ∇Pk) ,
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with a diffusivity ν that is adjusted over time through

ν =

√∑
k

∫
R2
kρ dx∑

k

∫
D2
kρ dx

,

so as to strike an adaptive balance between the reactive and diffusive com-
ponent of the system.

This system displays interesting dynamics that makes it an object of
study in its own right, in addition to shedding light on the nature of the
clustering algorithm.

Even though the methodology proposed relates in different ways to k-
means [3], to expectation-maximization density estimation through mixtures
[4], to diffusive maps [5] and to normalizing-flow-based clustering procedures
[6], it is fundamentally different from them and, to the extent of our knowl-
edge, from existing procedures for clustering and semi-supervised classifica-
tion. The system in the continuous limit can be compared to more standard
reaction-diffusion systems, such as those proposed as models for species com-
petition [7, 8]. In contrast to those, the boundaries between classes that it
yields are sharp and classes separate spontaneously into well-balanced do-
mains even in the absence of boundary conditions.

2 Evolutionary equations for clustering assignments

In order to motivate and derive the system ruling the time evolution of
the P ik(t), we first propose a parametric, continuous in time k-means-like
clustering algorithm based on a gradual relaxation to Bayesian updates.
Extending this procedure to a nonparametric setting loses information on the
geometry of the observations x, which is then restored through the addition
of a diffusive component to the flows.

2.1 Parametric time-evolution clustering

This subsection describes a Bayesian-driven, parametric algorithm for clus-
tering that motivates the non-parametric methodology that follows. In this
algorithm, the P jk (t) are used as weights to estimate a probability density
ρk(x, t) per class. For instance propose that the ρk are Gaussians, use the
weights

wjk(t) =
P jk∑m
j=1 P

j
k
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corresponding to the fractional contribution of xj to class k to estimate the
mean and covariance matrix of each class:

µk(t) =
∑
j

wjkx
j , Σk(t) =

∑
j

wjk

(
xj − µk

) (
xj − µk

)T
,

and set
ρk(x, t) ∼ N (µk,Σk). (1)

Since the wjk depend on t, all quantities which follow do too, which we will

not indicate explicitly in what follows. Then, considering the current P jk as
a prior, one can compute the posterior through Bayes’ formula:

P̃ jk =
P jk ρk

(
xj
)∑K

h=1 P
j
h ρh (xj)

and relax P jk smoothly towards P̃ jk with
dP j

k
dt = P̃ jk − P

j
k . This gives rise to

the nonlinear system of differential equations

dP jk
dt

=

(
ρk
(
xj
)∑K

h=1 P
j
h ρh (xj)

− 1

)
P jk . (2)

The initial conditions can be chosen as the uniform distribution P jk = 1
K

(or another prior if available) plus a small random perturbation required
to break the symmetry among classes. Equation (2) is a system of m ×K
ordinary differential equations where the K constraints (1) can be used to
reduce the size of the system to (m− 1)×K. An approximate solution may
be obtained by implementing a simple forward Euler approximation(

P jk

)n+1
−
(
P jk

)n
∆t

=

 ρk
(
xj , tn

)
∑K
h=1

(
P jh

)n
ρh (xj , tn)

− 1

(P jk)n , (3)

where
(
P jk

)n
is the approximate solution at algorithmic time t = tn. Figure

1 displays a successful application of this algorithm to a situation where the
distributions underlying three clusters are indeed Gaussian.

Before switching to a non-parametric setting, it may be useful to place
this parametric algorithm in context by comparing it to two standard related
algorithms, k-means and expectation-maximization (EM). In k-means,

1. The assignment to classes is hard at each step, so P jk ∈ {0, 1} and

wjk ∈
{

0, 1
mk

}
, where mk is the number of samples currently assigned

to class k.
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Figure 1: Three Gaussian clusters. Top left: sample points from three Gaus-
sian distributions in the plane. Top right: same samples, colored by class
and overlayed with contours of the generating distributions. Bottom left:
class assignment by the algorithm and corresponding estimated distribu-
tions. Bottom right: probabilities P jk (t). Notice that these all asymptote
to zero or one, i.e. all final assignments are rigid. Notice also how some
samples are –correctly– assigned to classes whose center is not the closest in
Euclidean norm, something that k-means cannot achieve.
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2. Only the means {µk} are estimated, not the covariance matrices {Σk}.

3. Instead of estimating P̃ jk through Bayes theorem, one assigns P̃ jk = 1
to the class k with mean µk closest to xj . Thus points may be assigned
to clusters under whose distribution they have small probability.

4. One adopts
(
P jk

)n+1
=
(
P̃ jk

)n
, rather than relaxing P jk toward P̃ jk

through a time-dependent flow.

An alternative comparison contrasts the evolution (2) above with EM
based density estimation by Gaussian mixtures. This does not cluster the
data, but produces an estimation of ρ(x) consisting of a mixture of K Gaus-
sians with weights pk, i.e. find pk, µ̃k, Σ̃k such that

ρ(x) =
∑
k

pk N (µ̃k, Σ̃k).

The key difference between the two procedures is the prior used in Bayes
formula. Whereas the algorithm described uses the current value of P jk as
prior, EM uses pk (i.e. the global probability of sampling from class k). The
two are related by

pk =
1

m

∑
j

P jk .

Thus EM produces an estimation of the global density ρ(x), consisting
of a mixture of K Gaussians from which soft assignments can be inferred,
while the algorithm above produces a characterization, where each sample
i has its own hard assignment to a class (i.e P jk converging to either zero
or one), in addition to an estimate of each cluster density ρk(x). The hard
assignment results from the nonlinear feedback in (2).

The choice of Gaussian distributions in our first example limits the proce-
dure’s applicability, as the clusters sought may have arbitrary distributions,
with nontrivial shape and topology. Figure 2 (top-left) shows an example
where the two true clusters spiral around each other, which the algorithm
cannot possibly capture (top-right). We may remedy this through a more
general parametric algorithm using kernel density estimators, which replace
the Gaussian distributions ρk in (1) by

ρk(x, t) =
∑
l

wlk(t) K
(
x, xl

)
, K(x, y) ≥ 0,

∫
x
K(x, y) dx = 1,

with a kernel K of choice. For example, we choose isotropic Gaussians with
tunable bandwidth σ

K =
1√
2πσ

e|x−xl|
2/σ2
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in the example of Figure 2. This kernel-based extension is not very costly,
as the kernels are only applied to pairs of sample points, so the matrix

K l
j = K

(
xj , xl

)
can be pre-computed before implementing the flow in (1), which requires
repeated evaluations of

ρk(x
j) =

∑
l

wlk K
(
xj , xl

)
=
∑
l

wlk K
l
j .

While this approach is more flexible, it requires careful choice of param-
eters: figure 2 shows how, depending on the bandwidth σ, the algorithm
either behaves similarly to its Gaussian counterpart, roughly dividing space
into two half-planes (middle-left), or segments the spirals into smaller pieces
(bottom-left). In this example, while a precisely tuned value of the band-
width yields the correct assignments (middle-right), the solution is sensitive
to small changes in the bandwidth, the value of ∆t and the initial, nearly
uniform, random soft assignment to classes. The plots also display the corre-
sponding kernel density estimations, which are consistent with the resulting
clusters.

The landscape associated with kernel density estimation is too highly
non-convex to give robust clustering results for complex underlying distri-
butions. More generally, a procedure grounded on density estimation is not
ideal: one can easily conceive situations, such as high-dimensional settings,
where robust density estimation is beyond reach, yet clustering still makes
sense. Moreover, the data at hand will not always lie in smooth manifolds
X where a density can be defined: discrete variables such a gender, day of
the week and country of origin are ubiquitous in data bases. With this in
mind, the next section introduces a purely non-parametric approach, which
bypasses density estimation altogether.

2.2 Measure driven non-parametric time-evolution

The algorithm of the prior subsection was based on a model for the prob-
ability distributions ρk within each class, which were Gaussians in the first
implementation shown and weighted sums of Gaussian kernels in the second.
In order to move beyond these parametric and semi-parametric approaches,
consider first an ideal scenario with infinitely many samples {xj} available
or, equivalently, with a known probability measure ρ(x) underlying the data.
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Figure 2: Two interlocked spirals. Top left: raw data. Top right: para-
metric clustering using Gaussians. Middle left: semi-parametric clustering
using kernel density estimation, with bandwidth σ = 0.7. Even though the
estimated ρk are locally better tuned to the actual data, the procedure still
performs a roughly linear partition of the samples. Middle right: same, with
σ = 0.6. This time the correct clustering is obtained, showing that the true
distribution underlying the data is within the reach of kernel density esti-
mation. However, results are sensitive to bandwidth and initialization: the
solution landscape is too rich in suboptimal classifications for the algorithm
to arrive consistently at the correct one. Bottom left: same, with σ = 0.5.
For smaller bandwidths, each spiral is divided into segments, often joined to
nearby segments from the other spiral. Bottom right: class assignment by
the non-parametric procedure described herein, not associated to a density
estimation per class.
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Then the soft assignment P jk (t) sought is replaced by a function Pk(x, t), the
weights are given by

wk(x, t) =
Pk(x, t)

Zk(t)
, Zk(t) =

∫
Pk(x, t) dρ(x), (4)

and the conditional probability estimation step yields

ρk(x, t) = wk(x, t)ρ(x) =
Pk(x, t)ρ(x)

Zk(t)
. (5)

Formula (5) can be considered as a natural generalization of the weighted
parametric density estimation, where we are weighting the full probability
distribution. It is also an instance of Bayes theorem, derivable from the two
alternative ways in which one can write the joint probability for yk and x:

Prob (yk, x) = ρ(x)Pk(x) = Zk ρk(x).

The equation for the posterior then transforms as follows:

P̃ jk =
P jk ρk

(
xj
)∑K

h=1 P
j
h ρh (xj)

→ P̃k(x) =
Pk(x)Pk(x)ρ(x)

Zk∑K
h=1 Ph(x)Ph(x)ρ(x)

Zh

Extending the parametric procedure, one would then evolve Pk(x, t)
through the integro-differential equation resulting in the reaction termRk(x, t)
presented in the introduction:

∂Pk(x, t)

∂t
= Rk(x, t) ≡

 Pk(x,t)
Zk(t)∑K

h=1
P 2
h
(x,t)

Zh(t)

− 1

Pk(x, t). (6)

The steady states of (6) and their stability are characterized by lemma 4.1,
and the ground state by lemma 4.2. These lemmas show that (6) necessarily
converges to rigid assignments –i.e. to P jk ∈ {0, 1}– and that the ground
state has classes of equal size Zk = 1

K .
Note that the data (that is, the probability measure ρ(x)) appears in

(6) only through the integrals defining the Zk, which represent the expected
values of Pk under ρ(x) or, equivalently, the total mass in each class k. This
is convenient since, when implementing the non-parametric algorithm in real
scenarios, we will need to return to a discrete setting where only samples
{xj} of ρ(x) are available. In that case, expected values can be naturally re-
placed by the corresponding empirical means. Another consequence though
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is that the system does not use any metric information, as the algorithm
is indifferent to whether two points xi, xj are near or far from each other.
This is in contrast to the parametric scenarios, where the estimated ρk(x, t)
linked neighboring points. In order to restore metric information while re-
taining the fully non-parametric nature of the algorithm, we add diffusion
to the evolution equation:

∂Pk(x, t)

∂t
= Rk(x, t) + νDk(x, t), (7)

where D is a diffusion operator and ν is a scalar viscosity or diffusivity. In
particular, when X is a smooth manifold and ρ(x) is a probability density,
we can adopt

Dk =
1

ρ(x)
∇ · (ρ(x)∇Pk(x, t)) . (8)

This relaxes the probabilistic assignments Pk at each point toward their local
averages, thus pushing nearby points to have similar assignments. Including
the density ρ in the probability flux is natural, as diffusion should only act
in the presence of particles to carry the assignment Pk. Locations with small
density are natural boundaries between clusters, across which one would not
want class-assignment to diffuse. The factor 1

ρ follows from the requirement

that diffusion conserve the total mass Zk =
∫
Pk ρ dx in each class, for which

ρDk must be in divergence form.
To better understand the nature of the added diffusive terms, rewrite

(7) as an advection-reaction-diffusion equation,

∂Pk
∂t
− ν∇ρ

ρ
· ∇Pk = Rk + ν∆Pk (9)

and notice that the drift velocity of Pk

−ν∇ρ
ρ

= −ν∇ ln ρ

points in the direction of decreasing global density, diverging from areas
of high density and converging to areas of low data density, thus creating
stronger gradients between clusters in these regions. Notice also that, even
though (9) exchanges probability among neighboring values of x for each k
independently, it preserves the condition

∑
k Pk(x, t) = 1.

The system in (7), together with a dynamic determination of the diffusiv-
ity ν to be discussed below, constitutes the core evolution equation proposed
in this article. In this form, it is a novel system of partial integro-differential
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reaction-diffusion equations, which we will study in more detail in section 5.
Our immediate goal, however, is to adapt it to real data situations, where
the probability mesure ρ(x) is only known through a set of available sample
points.

2.3 Sample-driven non-parametric time evolution

When ρ(x) is only known through a collection of sample points {xj}, a
natural unstructured grid for the spatial dependence is provided by these
observations themselves. The evolution equation, evaluated at these points
with P jk (t) = Pk(x

j , t), yields the system

dP jk
dt

= Rjk + νDj
k, (10)

with

Rjk(t) =

 P j
k
Zk∑K

h=1
P j
h

2

Zh

− 1

P jk , Zk(t) =
1

m

m∑
j=1

P jk (11)

and Dj
k a discrete diffusion term, based on the following considerations.

The regular Laplacian is minus the variational derivative of the squared
gradient (i.e. the Dirichlet energy), and similarly

∇ · (ρ(x)∇Pk(x, t)) = − δ

δPk

[
1

2

∫
‖∇Pk‖2ρ(x)dx

]
.

Thus it is natural to start with a similar measure of the variability of Pk in
the graph provided by the observations. Given a distance d in the sample
space X, we introduce a set of weights ci,j inversely proportional to the
square distance between points xi and xj

ci,j =
1

d (xi, xj)2 + ε2
.

When implementing the algorithm we truncate this distance for computa-
tional convenience, keeping only the n nearest neighbors, i.e. the n largest
values of ci,j for each i, setting all other ci,j to zero.

We included an ε � 1 in the weights in order to mollify them, since
pairs of samples (xi, xj) can be arbitrarily close. Though such pairs should
in most situations be assigned to the same cluster, we would not want their
assignments to be rigidly slaved to each other, as a nearly infinite value of
ci,j would imply. The reason is that there may be other factors pushing their
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assignments apart, such as prior information in semi-supervised scenarios,
or the existence of additional diffusivity networks, discussed in section 3.2.1

Now, consider the total weighted variability

C(P ) =
1

2

∑
i,j

ci,j
(
P i − P j

)2
.

Since
∂C

∂P i
=
∑
j

(ci,j + cj,i)
(
P i − P j

)
,

we introduce the graph-Laplacian matrix L:

Lji = (ci,j + cj,i) for i 6= j, Lii = −
∑
j

(ci,j + cj,i) , (12)

and define the discrete diffusion as

Di
k =

∑
j

LjiP
j
k .

Notice that this term does not create probability but just redistributes it,
as it preserves the sum of the P jk for each class k. It also preserves the

condition that
∑
k P

j
k = 1, like its continuous counterpart. The fact that

the matrix L so built is sparse will highly reduce the computational cost of
the semi-implicit numerical scheme proposed below.

The argument above was based on translating a variational formulation
from the continuous to the sample-based case. If desired, a more direct argu-
ment can be made based directly on the final form of the discrete operator.
Fixing the class, and in the simplest case of one-dimensional data with a
matrix c built using just the closest neighbor and without mollification, the
argument is as follows:

Di = ci,i+1

(
P i+1 − P i

)
− ci−1,i

(
P i − P i−1

)
=

P i+1 − P i

(xi+1 − xi)2
− P i − P i−1

(xi − xi−1)2

=
P̂
i+ 1

2
x

xi+1 − xi
− P̂

i− 1
2

x

xi − xi−1

(
where P̂

i+ 1
2

x =
P i+1 − P i

xi+1 − xi

)
1In order to fix ε in a way that will be consistent with those extensions, we first

normalize the {xj} so that they have unit variance, xj → 1
s
xj , s =

√
tr (xxt), and then

adopt ε = 1
m

, which has the order of a typical distance between neighboring points.

13



=
1

xi+
1
2 − xi−

1
2

[
xi+

1
2 − xi−

1
2

xi+1 − xi
P̂
i+ 1

2
x − xi+

1
2 − xi−

1
2

xi − xi−1
P̂
i− 1

2
x

]

=
1

xi+
1
2 − xi−

1
2

[
ρ̂i+

1
2

ρ̂i
P̂
i+ 1

2
x − ρ̂i−

1
2

ρ̂i
P̂
i− 1

2
x

] (
where ρ̂i+

1
2 =

1

xi+1 − xi
)

≈ 1

ρi
∂

∂x
(ρPx)

∣∣∣
xi
,

where we have used the fact that typical distances between neighboring
points are inversely proportional to the local density.

2.4 Choices for the diffusivity

In order to cluster data using either the density-driven PDEs in (7) or the
data-driven ODEs in (10), one needs to set the value of the diffusivity ν. If
this is too small, the influence of the metric is too weak to affect the clus-
tering, and the solution yields spatially unconnected assignments depending
solely on the initial assignment of the P jk . If the diffusivity is too large, on

the other hand, the process converges to a uniform, non-informative P jk = 1
K .

A good value of ν would establish a balance between the reaction term in
(7,10) which tends to break the P jk into ones and zeros without regards for
their proximity, and the diffusive term, which renders spatially uniform the
probabilistic assignments to each class.

To strike this balance automatically and adaptively, we propose

ν = α
‖R‖
‖D‖

, (13)

where α is a fixed parameter and we are using the Frobenius norm, i.e.
the square root of the sum over classes of either the squared Euclidean or
ρ-weighted L2 norms in the discrete and continuous settings respectively.

To decide on the value of α, notice that, at convergence, one must have

R+ νD = 0, so ‖R‖ = ν‖D‖.

Hence, if α < 1, we necessarily have at convergence R = 0, which implies
that all assignments are rigid, with the P jk ∈ {0, 1} (The solution P jk = 1

K ,
which also makes R = 0, is unstable.) On the other hand, if α > 1, the
solution necessarily converges to D = 0, yielding a uniform assignment for
each connected component of the data (here the connectivity is established
through the matrix c defining L.) A natural choice is to select a value of α
equal to or slightly smaller than 1, so that diffusivity can bring about the
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spatial information encoded in the matrix L before the reactive components
in R dominate and freeze the solution with hard assignments.

In order to solve (10) numerically, we replace the time derivative on the
left-hand side with the finite difference approximation

dP jk
dt
→

(
P jk

)n+1
−
(
P jk

)n
∆t

.

For the right hand-side of (10), since Rjk is nonlinear, it is natural to treat
it explicitly i.e. to evaluate it at the current time n. Doing the same with
Dj
k, on the other hand, would necessitate the use of very small time inter-

vals ∆t to avoid the numerical instability associated to the CFL condition
for diffusion. Moreover, special care would be required to guarantee that P
remains non-negative throughout. Thus we treat the diffusion term implic-
itly, a choice for which Lemma 4.3 shows that any ∆t ≤ 1 yields a stable,
positivity preserving scheme.

Typically we use ∆t = 0.99 and, in clustering experiments, α = 0.95.
The value of α strictly below 1 accounts both for the aforementioned desir-
ability of hard assignments and from the fact that the time-discrete problem
with a large timestep does not behave identically to the continuous problem.
In particular, in order to update the diffusivity ν, we estimate ‖D‖ explicitly,
at time tn, which is slightly inaccurate, since we are applying D implicitly,
at time tn+1. On the other hand, we will see below that, in semi-supervised
settings, it makes sense to use values of α bigger than one.

The bottom-right panel of figure 2 shows the new non-parametric proce-
dure succeeding on the same example where the parametric and the kernel-
density-estimation based approach had mostly failed. Unlike those ap-
proaches, the non-parametric procedure does not depend on any probability
density estimation.

3 Extensions and examples: semisupervised clas-
sification and multiple data types

The clustering procedure developed above admits a number of quite straight-
forward extensions. This section describes two such extensions: to semisu-
pervised classification, where some labels are known before-hand, and to
the use of complementary features in clustering. As a particularly impactful
application of the latter, we develop a new methodology for the clustering
of time series, which can be used for determining when a process switches
between different regimes.
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3.1 Semisupervised classification

In semisupervised classification problems, one is given a set of samples for a
subset I of which the labels P ik are known, and seeks a label assignment for
the remaining samples. The procedure extends to this scenario with minimal
changes: the known P Ik are given from the start and not updated by the
algorithm, while the others are updated as before. The known samples are
included in the Laplacian operators, and therefore the labels of the other
samples can diffuse toward the labels of their pre-labeled neighbors. Thus
each iteration of the algorithm now reads:

νn = α
‖Rn‖
‖LPn‖

,

(
P jk

)n+1
=


(
P jk

)n
+ ∆t

(
Rjk

)n
+ νn∆t

∑
i L

j
i

(
P ik
)n+1

for j 6∈ I,(
P jk

)n
for j ∈ I

Unlike pure clustering, in semisupervised classification one can use val-
ues of α larger than one for the determination of the diffusivity, since the
existence of available labels forbids a uniform P . As a consequence of this
higher diffusivity, not all P ik necessary converge to either 0 or 1. Figure 3
shows that intermediate values of P do indeed show up in areas where the
class assignment is not unambiguously determined by the available data.

3.2 Multiple metrics (independent diffusions)

One can think of the ci,j as weights attached to a connectivity graph based
on the geometry underlying the samples {xi}. A natural extension applies
to situations with more that one such “geometry” exists. These various
metrics may be associated to different features or covariates, to real networks
associated to the data points or, as discussed in the next subsection, to space
and time.

The procedural extension is quite straightforward: one replaces (10) with

dP jk
dt

=

 P j
k

Zk(t)∑K
h=1

P j
h

2

Zh(t)

− 1

P jk +
∑
l

νl
∑
i

L(l)jiP
i
k, (14)

where each value of l corresponds to a distinct connectivity network and
each operator L(l) takes into consideration only the distances in the l’th
metric. Thus class assignments can diffuse between distant points, provided
that they are close in some of the metrics.
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Figure 3: Semi-supervised clustering. Left: data-points, with their assign-
ments displayed by color and black circles marking those points where the
labels were known. Right: probabilities P jk . Notice that while the points in
the yellow cluster are assigned unambiguously, those points near the bound-
ary between the red and blue clusters receive soft assignments, as permitted
by a value α = 1.75 > 1 used for the adaptive diffusivity.

In order to extend the adaptive determination of the diffusivity, one sets
beforehand a set of weights λl > 0,

∑
l λl = 1, attached to each network, so

that νl = νλl, with

ν = α
‖R‖∑
l λl‖Dl‖

, (15)

and Dl = LlP.

3.2.1 Clustering of time series

A natural application of the extension just discussed is to the clustering
of time series, where the goal is to classify behavior into different regimes
and find the corresponding switching times. Here one associates to each
observation xj the time tj as a covariate, and defines two sets of connectivity
weights: one (or more) associated with the space of the {xj}, and another
with proximity in time. As a consequence, probability diffuses in time as
well as space, inhibiting frequent jumps among clusters in the time variable.

For a simple example, consider two clusters, with overlapping distribu-
tions

ρ±(x) = N (±1, 1) ,

and a process whereby the cluster is determined by the sign of a latent
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variable z satisfying the SDE

dz = −Vz dt+ dW, V = z4 − 2z2, (16)

with two meta-stable states symmetric at z = ±1. We draw 500 samples
of x at regular intervals ∆t = 0.02. The data for the clustering algorithm
consists of pairs (tj , xj), each to be assigned to one of the two clusters. Figure
4 displays the generation of data for this example and the reconstruction by
the algorithm of the time evolution of the underlying two-regimes.
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Figure 4: Clustering of a time series. The plot on the left displays the
data-generation process: a sample trajectory z(tj) of a discretized version of
the stochastic process in (16) in blue, the corresponding assignment to the
classes cj ∈ {+,−} (plotted in red as 1s and 2s) and the samples xj from
the corresponding ρ± as black stars. The plot on the right displays in blue
the classes reconstructed by the algorithm, in excellent agreement with the
actual classes (in red).

3.2.2 A synthetic medical example

Diffusion through multiple metrics can also be applied to the diagnosis
of medical conditions with a variety of symptoms which are not always
present. We provide here an example where conditions are reconstructed
from symptoms. Let the variables xl for l = 1, . . . , L represent measurable
quantities where the symptoms may manifest. For instance, we may have
x1 = body temperature, x2 = blood pressure, x3 = white cell count, etc.
Let ρlb(xl) represent the background, asymptomatic distributions for these
variables. The classes k = 1, . . . ,K represent the various possible conditions
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to diagnose, such as the common cold, the flu, pneumonia or no ailment at
all. Denote by pk the prior probability of condition k in the population
under study.

For each condition k and variable xl, there is a probability slk ∈ (0, 1)
that the symptoms manifest, and a distribution ρlk(xl) when they do. It
follows that the full distribution Rl(xl) for each variable xl is given by

Rl(xl) =
∑
k

pk
(
slkρ

l
k(xl) +

(
1− slk

)
ρlb(xl)

)
.

In a synthetic example, we generate data {xjl } for n patients as follows.
For each patient j, we draw their condition k from the distribution pk. Then,
for each variable xl, we draw the presence of symptoms from slk and then

draw xjl from either ρlb(xl) or ρlk(xl) accordingly. In the example shown
below, we have adopted L = 8 real variables xl, K = 3 conditions with
probability pk = 1/3 each, n = 500 patients, background conditions

∀l ρlb = N(0, 1),

probabilities of symptom manifestation

∀k ∀l slk =
3

4
,

and symptomatic variable distributions

ρlk = N
(
µlk, 1

)
, µlk =

1

2
+ (3k − 2l) .

We applied the algorithm with one diffusive network per variable, with
equal weight λl = 1

8 assigned to each. Figure 5 displays the results of
the converged assignment in four plots, each corresponding to the plane of
two variables, with the samples colored by condition. The five misdiag-
nosed cases, circled in black, lie either in the asymptomatic area around
xl = 0 or at the interface between the distribution corresponding to two
conditions. By contrast, running on the same data the code with one sin-
gle eight-dimensional diffusive network yielded a much greater number of
misclassifications, 76 in this case.

Besides its immediate medical applicability, this example points to gen-
eral features of the potential of clustering in a multi-metric setting:

1. The blessing of dimensionality. One can repeat the synthetic med-
ical example changing the number L of variables observed –and corre-
sponding networks. Figure 6 displays the number of misclassifications
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Figure 5: Results from a synthetic medical example with eight clinical vari-
ables associated to distinct diffusive networks, clustered into three possible
diagnoses, displayed by color. The five misclassifications, marked by black
circles, display few symptoms, which are moreover either ambiguous or more
typically attributable to different conditions.
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as a function of L, a number that decays rapidly, reaching in this typ-
ical realization of the data, one for L > 8 and zero for L > 15. On the
one hand, this is consistent with the intuitive fact that each additional
observable xjl provides additional information on the class kj . How-
ever, it runs contrary to the “curse of dimensionality”, which haunts
clustering algorithms such as k-means in high dimensions. Assigning
a network per variable avoids this curse altogether, as outlying values
of a particular variable xl do not stop the probability pk from diffusing
across the other available networks.

2. Robustness to outliers. More generally, the availability of more
than one diffusive network makes the clustering algorithm robust to
outliers, since high barriers along some diffusive network do not inhibit
diffusion along the others.
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Figure 6: Number of miss-classifications, for a fixed data set, as a function of
the number of variables observed. When an individual network is assigned
to each variable, high-dimensionality is a blessing, not a curse.
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4 Properties of the reaction–diffusion system

Some properties of the reaction–diffusion system of Section 2.2 are proved in
this section that shed light on its applicability and on the numerical scheme
that we use to solve it. First we study what steady solutions the system
has and which are dynamically reachable, also interpreting the evolution
in terms of maximising a likelihood. Then we prove that the proposed
numerical method is stable for time-steps ∆t ≤ 1. Finally, we derive the
continuous limit of multi-diffusive networks, which gives rise to a family of
non-local diffusion operators.

4.1 Convergence

We first show that the only stable steady solutions to (6) are rigid assign-
ments with no empty class.

Lemma 4.1. All steady states of (6) can be built by selecting K numbers
Zk ≥ 0 with ∑

k

Zk = 1.

and a subset W of the space X (the set of rigid assignments) with measure
w (extreme choices have W empty or W = X). Then

1. For each x ∈W , select a class k and assign Pk(x) = 1 and Ph6=k(x) =
0, so that

∀k
∫
W
Pk(x) dρ(x) = w Zk.

2. For all x 6∈W , assign
Pk(x) = Zk.

Of these steady states, only those with W = X –i.e. only rigid assignments–
and no class with Zk = 0 are dynamically stable.

Proof. Steady states of (6) must satisfy

∀x ∀k

 Pk(x)
Zk∑K

h=1
P 2
h
(x)

Zh

− 1

Pk(x) = 0.

Then, for each value of x, either Pk(x) = 0 or

∀k Pk(x)

Zk
=

K∑
h=1

P 2
h (x)

Zh
. (17)
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Since the right-hand side of (17) is independent of k and both the Pk and
the Zk add up to one, we must have, in this case,

Pk(x) = Zk,

as stated in 2.
On the other hand, when all but one of the Ph(x) vanish, the remaining

one with Pk = 1, satisfies (17) automatically, since the sum on its right-
hand side has only one non-zero term. That the relative measure of the
rigid assignments in W must agree with their corresponding Zk follows from
the definition of Zk in (4), completing the statement in 1.

The instability of the steady non-rigid assignments, where 0 < Pk(x) < 1
and Pk(x) = Zk, can be seen as follows. Fix one such point x, and consider
a perturbation

Pk = Zk + εk(t), εk � 1,
∑
k

εk = 0.

Then

dεk
dt

=

 Zk+εk
Zk+µεk∑K

h=1
(Zh+εh)

2

Zh+µεh

− 1

 (Zk + εk) ,

where µ is the measure of the point x (zero if no measure is assigned to
small sets and 1

N for a discrete, equidistributed measure on N points). To
leading order in the {εh}, we have

dεk
dt
≈
(

1 + (1− µ)εk
1 +O (‖ε‖2)

− 1

)
(Zk + εk) ≈ Zk(1− µ)εk

Since µ < 1 and Zk > 0, the soft probability assignment is unstable.
To show that hard assignments to classes with Zk 6= 0 are stable, choose

an x with Pk(x) = 1 and, for any h 6= k, consider the perturbation

Ph = εh(t).

Then

dεh
dt

=

 εh
Zh+µεh∑K
l=1

(Pl+εl)
2

Zl+µεl

− 1

 εh ≈ (Zk
Zh
εh − 1

)
εh ≈ −εh,

which shows stability.
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Finally, in order to show that a class k with Zk = 0 is unstable, consider
a point x with measure µ rigidly assigned to another class h, and perturb
the corresponding Pk away from 0, i.e. consider Pk = εk(t). We have

dεk
dt
≈
( εk
µεk
1
Zh

− 1

)
εk =

(
Zh
µ
− 1

)
εk.

If point x is strictly contained in class h, then Zh > µ and Pk = 0 is unstable.

Notice that, in the discrete case, not all real values of Zk are possible
steady states: assume there are 0 ≤ n ≤ m points xj with probability

P jk ∈ {0, 1}, that is, n points have hard assignments to a particular cluster.

Denoting the number assigned to cluster k (i.e P jk = 1) by nk ≥ 0 (with∑
k nk = n), then, when nk 6= 0

Zk = nk/m.

For any remaining labels with nk = 0, one may choose Zk such that
∑
k Zk =

1. The remaining m− n points (the soft assignments) will then have

P jk = Zk.

In order to further study the flow of the system (6) and interpret the
solutions towards which it converges, we introduce a Lyapunov function,
the log-likelihood of the data points, that strictly increases as the system
evolves.

To develop an intuition for this Lyapunov function, consider first the
parametric version of the problem in section 2.1. It solves a maximum
likelihood problem:

max
P,α

L =
∑
j

log

(
K∑
k=1

P jkρk (xj ;αk)

)
.

There are K probability distributions ρk depending on parameters αk, and
each sample point xj is softly assigned to each of the K classes with prob-

ability P jk . The P and α are determined so as to maximize the likelihood
function L. By contrast, a density estimation by the mixture of K distri-
butions has a similar likelihood L and parameters α, but the individualized
assignments P jk are replaced by global probabilities Pk (our Zk), the weight
of each distribution in the mixture.
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Switching now to the non-parametric setting, consider first the idealized
situation where the distribution ρ(x) is known and one seeks the assignment
Pk(x). Then the ρk(x) are given by (5), and the likelihood function becomes

L =

∫
log

(∑
k

Pk(x)2ρ(x)∫
Pk(y)ρ(y) dy

)
ρ(x) dx,

while the diffusivity adds a non-smoothness cost

C =
ν

2

∑
k

∫
‖∇Pk(x)‖2ρ(x) dx,

that we will consider separately.
When the known distribution ρ(x) is replaced by samples {xj}, the like-

lihood function becomes

L =
∑
j

log

∑
k

P jk
2

Zk

 , Zk =
1

N

∑
j

P jk , (18)

and the cost for non-smoothness becomes

C =
ν

2

∑
i,j,k

cji

(
P ik − P

j
k

)2
.

Lemma 4.2. The reaction component of our clustering algorithm,

dP jk (t)

dt
=

 P j
k
(t)

Zk(t)∑K
h=1

P j
h

2
(t)

Zh(t)

− 1

P jk (t), Zh(t) =
1

N

∑
j

P jh(t), (19)

converges to a local maximizer of the likelihood L in (18). At the global
maximum or ground state, the corresponding classes have equal size, i.e. all
Zk’s are equal.

Proof. Consider first the direction of maximal ascent of L when all P jk are
strictly positive. Bringing in Lagrange multipliers λj to enforce the condition

that
∑
k P

j
k = 1, we have

L→
∑
j

log

∑
k

P jk
2

Zk

+ λj

(∑
k

P jk − 1

) ,
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so

∂L

∂P jk
= 2

P j
k
Zk∑
h
P j
k

2

Zh

+ λj ,

where we have temporarily considered the Zk as fixed external parameters.
If ∇L 6= 0, any

dP jk = αjk
∂L

∂P jk
, αjk > 0

is a direction of ascent of L, since

dL =
∑
j,k

∂L

∂P jk
dP jk =

∑
j,k

αjk

(
∂L

∂P jk

)2

> 0.

In particular, we can adopt αjk = P jk , which yields

dP jk = 2

P j
k

2

Zk∑
h
P j
k

2

Zh

+ λjP
j
k ,

where the condition that
∑
k P

j
k = 1 (and so

∑
k dP

j
k = 0) requires that

λj = −2,

so

dP jk = 2

 P j
k
Zk∑
h
P j
k

2

Zh

− 1

P jk = 2
dP jk (t)

dt
,

with
dP j

k
(t)

dt as defined in (19). It follows that the dynamics in (19) ascends

L when the Zk are fixed external parameters and all P jk are strictly positive

(When some reach zero, the condition that P jk ≥ 0 becomes active, which

again agrees with the dynamics in (19), which freezes zero values of P jk .)
We have shown in lemma 4.1 that this dynamics converges to rigid as-

signments P jk = δ
kj
k , where kj is the class k assigned to observation j. Then

L =
∑
j

log

∑
k

P jk
2

Zk

→ −∑
j

log
(
Zkj

)
= −N

∑
k

Z̃k log (Zk) ,

where

Z̃k =
1

N

∑
j

P jk
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is the actual size of class k under the current assignment. But this expres-
sion for L, a relative entropy, achieves its maximum when Zk = Z̃k. Thus
maximizing L over the external parameters Zk yields their correct definition
in terms of the P jk .

Finally, maximizing the resulting entropy

L = −N
∑
k

Zk log (Zk)

over Zk, yields equipartition:

Zk =
1

K
,

proving that the ground state of (19) has a rigid assignment to classes with
equal size.

Putting together the results of lemmas 4.1 and 4.2, we conclude that
the reactive component of the algorithm leads to rigid assignments where
no class is left empty, with a tendency toward equally sized classes, which
constitute the ground state. When we add the diffusive component, the
objective function L is augmented by

C ∝
∑
k

∫
‖∇Pk(x)‖2ρ(x) dx,

which penalizes jumps between classes, favoring interfaces between them
that are small in size and located in areas of small density ρ.

4.2 Time stepping

A key to an efficient implementation of the methodology is that one can
adopt time-steps ∆t of order one without compromising the algorithm’s
stability. This is proved in the following lemma.

Lemma 4.3. Replacing the system of ODEs in (10) by the semi-implicit
Euler scheme (

P jk

)n+1
−
(
P jk

)n
∆t

=
(
Rjk

)n
+ ν

(
Dj
k

)n+1
, (20)

with
∆t ≤ 1, (21)

preserves the properties that P jk ≥ 0 and
∑
k P

j
k = 1. Here the (·)n refer to

evaluating the corresponding terms at time-step n.
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Proof. The following two properties follow immediately from the definitions
of R and D:

1. If, for all j,
∑
k P

j
k = 1, then

∑
k R

j
k =

∑
kD

j
k = 0. (P1)

2. If all P jk are non-negative, Rjk is bounded below by −P jk . (P2)

In view of P1, the sum over classes
∑
k P

j
k remains always equal to one. P2,

on the other hand, jointly with the constraint (21) for ∆t, guarantee that
the P jk remain in the interval [0, 1]. To see this, consider the index j where
(Pk)

n+1 achieves its minimal value. We have(
P jk

)n+1
=

(
P jk

)n
+ ∆t

(
Rjk

)n
+ ν∆t

(
Dj
k

)n+1

≥ (1−∆t)
(
P jk

)n
+ ν∆t

(
Dj
k

)n+1

≥ 0,

since ∆t ≤ 1 by design,
(
P jk

)n
≥ 0 by inductive hypothesis, and

(
Dj
k

)n+1
=

∑
i

Lij

(
P ik

)n+1
=
∑
i 6=j

Lij

(
P ik

)n+1
+ Ljj

(
P jk

)n+1

=
∑
i 6=j

Lij

(
P ik − P

j
k

)n+1
≥ 0

by the minimality of
(
P jk

)n+1
and the non-negativity of the off-diagonal

entries of L. Thus all P jk remain non-negative. Since P jk add to one for each
j, it follows that none can exceed one either.

4.3 The continuum limit of multi-diffusions

Recall from section 3.2 the multi-diffusive operator

DdPk =
∑
l

νl
∑
i

L(l)jiP
i
k, (22)

where each L(l) acts over a subset of the coordinates of x. In the continuous
case, one might naively think that the discrete operator should converge,
when each network is associated with a feature xl, to the non-isotropic
diffusion ∑

l

νl∇l · (ρ(xl)∇lPk(x, t)) ,
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where ∇l is the gradient operator acting along the lth feature and

ρl(xl) =

∫
ρ(x)

∏
h6=l

dxh

is the xl-marginal of ρ(x). Yet the true extension of (14) to the continuous
scenario must involve a nonlocal process: points that are far in one con-
nectivity network, even not connected at all, may still diffuse in another.
Regular diffusive processes can never achieve this.

In order to extend (22) to a continuous setting, we consider two families
of averaging operators:

u l (xl) =

∫
u(x)ρ(x)

∏
h6=l dxh∫

ρ(x)
∏
h6=l dxh

,

which averages u(x) along all directions but xl, and a local averaging oper-
ator over xl, such as

v̂ l (x) =

∫
Ka (s− xl) v (x1, . . . , xl−1, s, xl+1, . . . xL) ds,

where Ka is a kernel function with mass 1, and bandwidth a that approaches
zero. This kernel defines a diffusion operator along the xl-direction:

Dlv = 2
v̂ l (x)− v (x)

a2
. (23)

For instance, adopting

Ka(s− z) =
δ(s− z + a) + δ(s− z − a)

2

yields, in the limit a→ 0,

Dlv =
v (. . . , xl + a, . . .)− 2v (. . . , xl, . . .) + v (. . . , xl − a, . . .)

a2
→ ∂2v

∂xl2
.

More generally, any local averaging operator .̂ defines a diffusion operator
along xl through (23). Then, the continuous limit of (22) becomes

DdPk =
∑
l

νl

(
P̂k

l
− Pk

)
.

This is an interesting sum of non-local diffusion operators: the l-th operator
subtracts Pk not from its local average, but from an average that, for the
l-th diffusive network, is local only in xl, but global over all other variables.
In two dimensions, Dd can be visualized as a diffusion based on averaging
over a thin cross of width a with the point (x, y) at its center.
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5 Simulations in the continuum limit

Combining a gradual, nonparametric Bayesian upgrade of the soft proba-
bility assignments Pk(x, t) with a diffusive process to make the assignments
consistent with the metric of the space X gave rise to the system (7). This
set of K reaction diffusion equations is non-conventional, as it includes a
non-local element, embodied in the integrals defining the Zk(t), and has an
adaptive diffusivity that automatically balances the reactive and diffusive
components of the evolution at all times. Experimenting with this system
in the continuum limit, in addition to providing insight into the mechan-
ics of the clustering procedure in the limit of infinitely many samples, is
interesting per se, as it turns out to display interesting dynamics.

We consider for simplicity the case with two classes 1 and 2. Then
P2 = 1− P1, Z2 = 1− Z1, and we have

2∑
k=1

Pk
2

Zk
=
P1

2 − 2Z1P1 + Z1

Z1(1− Z1)

so the system in (7) reduces to a single integro-differential equation for
P (x, t) = P1(x, t):

∂P

∂t
= R+ νD, (24)

where

R =

(
P (1− Z)

P 2 − 2ZP + Z
− 1

)
P =

P (1− P )(P − Z)

(P − Z)2 + Z(1− Z)
,

with

Z(t) =

∫
P (x, t)ρ(x) dx, (25)

and

D =
1

ρ(x)
∇ (ρ(x)∇P ) .

The diffusive evolves adaptively according to

ν = α

√∫
R2dx∫
D2dx

.

Without the coupling of Z and P through (25), equation (24) would be
a regular reaction diffusion equation, with three fixed critical points: the
two stable ones P = 1 and P = 0, separated by the unstable P = Z. Thus
the solution would rapidly evolve into regions of uniform P = 1 or P = 0,
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separated by a diffusive interface (when ν is constant). With Z smaller that
1
2 , the potential well at P = 1 would be deeper than the one at P = 0, so
diffusion would act across the interface, displacing it until P = 1 everywhere
(assuming that ρ(x) is nowhere 0) Similarly, if Z > 1

2 , then P will converge
to a uniform P = 0.

Yet in our system, Z is the expected value of P , evolving as P does.
This modifies the drift process described above, shifting its uniform final
state to a steady configuration with well-balanced classes. If at some point
the mass with P = 1 is larger than the one with P = 0, then Z > 1

2 , and
the drift towards P = 0 makes Z decrease. We first illustrate the dynamics
with one-dimensional simulations. In the simplest example with constant
ρ, this leads to two equal clusters and Z = 1

2 , as shown in figure 7 (top).
When ρ(x) is not uniform, the clusters may accommodate their sizes so that
their interfaces lie in areas of smaller density, as seen in the example in
figure 7 (middle and bottom). If the underlying ρ(x) has two well separated
“clusters” then the algorithm will choose boundaries to respect the natural
conditional probability, i.e. the ratio of Z to 1 − Z will converge to the
ratio of the mass in each cluster (middle). If the underlying probability
density has two peaks, the algorithm will converge to a cluster that bisects
the density (bottom).

The simulations shown in figure 7 used an implicit time-stepping for the
diffusion and an explicit one for the reaction. The timestep was chosen to be
1, with 256 spatial points in [0, 2π) and periodic boundaries, reflecting the
dynamics on S1. In figure 7 we chose α = 0.95. The effect of changing α to
values away from 1 is shown in figure 8. Here, the same computation as in
figure 7 (middle) was repeated with a lower value of α where nonlinearity se-
lects arbitrary clusters (depending on the randomised initial conditions) and
a larger value of α where diffusion dominates and clusters are not identified
with P converging to 1/2.

Next, we consider simulations in two dimensions with results of a typical
simulation shown in figure 9. One observes initially a coarsening dynamics,
as expected in reaction diffusion problems, followed by the separation into
sharply defined regions that follow the intuitive classification of the features
of the underlying distribution. The low probability background is assigned
primarily to one of the clusters. This simulation used a 256× 256 cartesian
grid with a time-step of 0.1 and α = 1. A smaller time-step was used in
order for the variable diffusivity to more accurately reflect the balance of
nonlinearity and diffusion. In parallel to the previous case, too low values
of α freeze in sharp domain boundaries too soon, whereas too large values
of α again lead to uninformative uniform P .
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Figure 7: Continuous Dynamics on S1. In all figures the dashed line is the
underlying probability ρ(x), the other lines correspond to P (x) at different
times, from the initial line with P (x) initialized to 0.5 plus noise, to the
final assignment where P (x) ∈ {0, 1}. Top: underlying probability ρ(x) is
uniform, and algorithm converges to equipartitioned clusters with arbitrary
boundaries (depending on initial conditions). Middle: underlying probabil-
ity is given by 2 well separated Gaussians with different masses. Bottom:
underlying probability is given by 2 mixed Gaussians with different masses.
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Figure 8: The effect of unbalanced diffusion and nonlinearity. Top: α = 1.2
where diffusion is too strong to result in clustering, despite the solution tend-
ing to cluster at intermediate times. Bottom: α = 0.5 where nonlinearity
selects arbitrary clusters dependent on the (random) initial data.

Finally we consider the case discussed in section 4.3 where diffusions
in the x and y directions are independent and nonlocal. The results are
shown in figure 10, where the initial data is similar to other experiments,
small random fluctuations about P = 1/2. The diffusion, which is strong at
initial times, results in a characteristic “tartan” pattern as the diffusion op-
erator averages over crosses centred at points in the domain. At later times
the evolution converges to clusters which include observations that may be
distant in one of the variables so long as they are close in another. In this
particular case the two Gaussians which have mass near y = 0 are clustered
together despite being distant in x. Conversely, the two Gaussians that are
closest end up in different clusters because they do not share similarity in
neither x nor y.

6 Summary

This article develops a novel methodology for the unsupervised and semisu-
pervised learning of categorical labels. In the limit of infinitely many sample
points, the proposed algorithm converges to a set of reaction diffusion equa-
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Figure 9: Two dimensional runs. The underlying distribution ρ(x, y) is
composed of three constants: ρ(x, y) = 0.0445 in the upper truncated disc,
ρ(x, y) = 0.085 in the lower truncated disc, and ρ(x, y) = 0.004 in the
remaining part of the domain. The figures show P (x, y, t) restricted (arti-
ficially) for clarity on the truncated discs at t = 0, 3, 6, 15, 21 from top left
to bottom left. The (unrestricted) function P (x, y, 21) is shown at bottom-
right. In the colour scale blue corresponds to P = 1 and yellow to P = 0
and therefore assignment to the 2 clusters.

34



Figure 10: Multi-diffusive experiment. The underlying distribution ρ(x, y)
is composed of four equal Gaussians (see top left), distant from each other
but two having similar x-coordinates for their centre and two having similar
y-coordinates for their centre. The figures show P (x, y, t) t = 5, 10, 40 from
top right to bottom right. In the colour scale, blue corresponds to P = 1
and yellow to P = 0 and therefore assignment to 2 clusters. Note that at
the final time the clustering is according to proximity in one of the variables
only. The background with constant low probability is assigned to minimize
interfaces between P = 0 and P = 1.
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tions. Critical to the evolution of the system is an adaptive diffusivity that
balances the reaction and diffusive terms through a parameter α. The final
state of the system experiences a fast transition in terms of this parameter,
from largely unstructured rigid assignment to classes for α < 1, to globally
uniform assignments for α > 1. For α ≈ 1, the evolution converges to rigid
assignments to the various states, in regions separated by spatially smooth
– but vertically sharp– interfaces. Unlike other reaction diffusion systems,
where lacking non-uniform boundary conditions the interface between equi-
libria moves until one state dominates all others, the new system favors
solutions converging to states of similar sized support.

The evolution ascends a Lyapunov function consisting of a regularized
log-likelihood of the data. Notably, the data itself appears only in the reg-
ularizing, diffusive terms. Even though maximum likelihood motivates the
development of the methodology and the construction of its Lyapunov func-
tion, its final, non-parametric form makes no assumption about the distribu-
tions underlying the data, bypassing density estimation altogether. The only
external data required is one or more notions of distance between points.
Thus the algorithm is indifferent to the dimensionality of the underlying
space, scaling only with the number of sample points available. This scaling
is made close to linear by keeping only near neighbors in the matrix that
organizes the data into a weighted graph.

The possibility to aggregate various notions of distance makes the method-
ology very flexible. In particular, the article shows how it leads to a natural
algorithm for the clustering of time series, and in a synthetic medical ex-
ample how it addresses the curse of dimensionality in a natural way by
dividing the variables among different diffusive networks. In the continuous
limit, this results in a set of novel, non-local, diffusive operators, which relax
the solution toward averages that are local in some dimensions but global
in the others.
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