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Abstract

A procedure is proposed for the dimensional reduction of time series. Similarly
to principal components, the procedure seeks a low-dimensional manifold that
minimizes information loss. Unlike principal components, however, the pro-
cedure involves dynamical considerations, through the proposal of a predictive
dynamical model in the reduced manifold. Hence the minimization of the uncer-
tainty is not only over the choice of a reduced manifold, as in principal compo-
nents, but also over the parameters of the dynamical model, as in autoregressive
analysis and principal interaction patterns. Further generalizations are provided
to non-autonomous and non-Markovian scenarios, which are then applied to his-
torical sea-surface temperature data. c© 2000 Wiley Periodicals, Inc.

1 Introduction

Complex systems typically involve a large number of degrees of freedom. Thus
to elucidate the fundamental mechanisms underlying one such system’s behavior,
one may consider its projection onto smaller-dimensional manifolds, selected so
as to capture as much of the dynamics as possible. A tool frequently used for
this purpose is principal components [12], whereby a linear subspace of prescribed
dimensionality of the phase-space of observations is sought, so as to maximize the
amount of the variability that is preserved when the data are projected onto it.

Given a dataset z j, j ∈ [1, . . . ,N], where each observation z j consists of n real
numbers, its first m (m ≤ n) principal components are given by x j = Q′x(z j − z̄),
where z̄ is the mean value of z, and Qx is an n×m matrix with orthonormal columns,
chosen so that ∑

N
j=1

∥∥(z j− z̄)−Qxx j
∥∥2 is as small as possible. From a statistical

perspective, among all m-dimensional subspaces, x is the one whose knowledge
minimizes the uncertainty of z. The matrix Qx consists of the first m columns of U
in the singular value decomposition

Z′ =USV ′,

where the elements Zi
j of the matrix Z′ ∈ Rn×N contain the ith component of the jth

observation minus its mean value z̄i over all observations, U ∈ Rn×n and V ∈ RN×N
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are orthogonal matrices, and S ∈ Rn×N is the diagonal matrix of singular values of
Z′, the eigenvalues of the empirical covariance matrix C = Z′Z sorted in decreasing
order.

In the probabilistic scenario underlying this procedure, the z j’s are independent
samples of a Gaussian distribution N (µ,Σ), z̄ is an estimate for its mean µ , and
the principal components estimate the principal axes of the covariance matrix Σ,
sorted in decreasing order by the fraction of the total variance that they explain. Yet
principal components are often sought for data that do not quite fit this scenario.
Of particular concern to us here is the situation where the z j’s form a time series,
representing snapshots of the vector z at equidistant times t j. In this context, the
dimensional reduction by principal components, oriented toward data compression,
lacks any concept of dynamics: the various snapshots z j are treated as independent
observations, which renders immaterial even the order in which they are sorted.
If there is an underlying dynamics, this is neither unveiled nor exploited by the
analysis.

An example is provided by the Empirical Orthogonal Functions (EOFs) [8, 16,
22, 23] –the name given to principal components in climate studies–, which take a
time series of atmospheric or oceanic data, subtract its time average or climatology,
and find those modes that explain the largest share of its variability. These modes
may then be assigned a dynamical interpretation, yet no dynamics ever entered
into their calculation: just the static variability of the data, treated as a series of
independent, unsorted observations.

In this paper, we develop an alternative methodology, highly reminiscent of
the principal-component framework, but with a dynamical core. We seek, as in
principal components, a hierarchy of manifolds, that we name “principal dynami-
cal components”. Attached to these manifolds is a model of predictive dynamics.
The cost function to minimize has, as in principal components, the variability in
the unrepresented variables, but also the fraction of the variability in the preserved
variables that is not explained by the dynamics. Thus the dynamical components
are characterized not by capturing most of the system’s variability, but by explain-
ing dynamically its largest possible share. Hence this methodology can be thought
of as a blend of autoregression analysis [1, 27], which is used as a reduced dynam-
ical model, and principal components, though the criterium for selecting a reduced
manifold differs from the latter’s. This proposal has much in common with that
of principal interaction patterns, proposed by Hasselman and further developed by
Kwasniok [9, 13, 14, 15], since both address simultaneously dynamics and dimen-
sional reduction.

Various other approaches have been pursued to build low-dimensional dynami-
cal models from time series, such as the Box-Jenkins methodology [1] in econom-
etry, singular spectrum analysis [2, 6], reduced stochastic models [11, 17], contin-
uous Markov chains [4], regime identification techniques [5, 10], balanced trunca-
tion methods [7, 19] and nonlinear principal component analysis [3, 18, 20, 21].
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There is no way we can do justice in this introduction to such a rich and fast-
growing field. The methodology proposed in this paper has, in our view, the virtue
of conceptual simplicity: a low-dimensional manifold and associated dynamical
model are sought, so as to minimize the 2-norm of the predictive uncertainty over
the given time-series.

We first present the new methodology as a natural extension of principal com-
ponents, in a linear, autonomous framework, with a dynamic manifold given by
x = Q′xz, where Qx is a fixed n×m orthogonal matrix, and the dynamics by x j+1 =
Ax j, where A is another fixed, m×m matrix. The definition of principal dynamical
components results in a minimization problem over both Qx and A, considered in
detail in the appendix. Section 2 presents this problem and provides an efficient
methodology to solve it. Yet many real problems are not autonomous: climate dy-
namics, for instance, is season-dependent. In Section 3 we extend the methodology
to non-autonomous situations and, more generally, to accommodate for the pres-
ence of exogenous variables and external controls, that appear in many engineering
applications. Here Qx and A depend on time and on those external variables. Sec-
tion 4 extends the procedure further to handle non-Markovian processes, where
the dynamics involves more than the immediate past. We illustrate the procedure
throughout with synthetic data and, in Section 5, we concern ourselves with a real
application to time series of sea-surface temperature over the ocean. Section 6
gives a probabilistic interpretation of the principal dynamical component proce-
dure, which provides a conceptual extension to general nonlinear, non-Gaussian
settings. The development of effective algorithms for the numerical implementa-
tion of this broad generalization will be pursued elsewhere.

2 The linear, autonomous framework

The probabilistic set-up for principal component analysis consists of indepen-
dent observations drawn from a Gaussian distribution. The natural extension to
time series has observations z j , j ∈ [1, . . . ,N] drawn from the linear Markovian
dynamics

z j+1 = N (Azz j,Σ
z).

Here the matrix Az models autocorrelation, and N represents a Gaussian process
with mean Azz j and covariance matrix Σz. Neither Az nor Σz are known to us;
instead, we seek an m-dimensional manifold x = Q′xz and reduced dynamics

x̃ j+1 = Ax j,

such that the predictive uncertainty or cost

c =
N−1

∑
j=1

∥∥z j+1−Qxx̃ j+1
∥∥2

=
N−1

∑
j=1

∥∥z j+1−QxAQ′xz j
∥∥2

is minimal. This is the conceptual basis of what we shall denote linear autonomous
principal dynamical component analysis.



4 M. D. DE LA IGLESIA AND E. G. TABAK

It is convenient to introduce y for the orthogonal complement of x, so that

z = [QxQy]

(
x
y

)
,

where Q= [QxQy] is an orthogonal matrix. Since the dynamics of y is not explained
by the model, we have ỹ j+1 = 0.

2.1 Two-dimensional case
The simplest scenario, appropriate for a first view of the proposed algorithm,

has the observations z j in a two-dimensional space, n = 2, and seeks a reduced
manifold x of dimension m = 1. We introduce the following notation:

z =
(

A
P

)
,

where, mimicking an application to climate dynamics, A stands for Atlantic and P
for Pacific spatially-averaged sea-surface temperatures,

x = Acos(θ)+Psin(θ) ,

y =−Asin(θ)+Pcos(θ) ,
where the angle θ defines the direction of the dynamic component x in (A,P) space,
and

x̃ j+1 = ax j ,

with the stretching factor a describing the deterministic component of the reduced
dynamics.

The cost function adopts the form

c(θ ,a) =
N−1

∑
j=1

∥∥∥∥( A j+1− Ã j+1
Pj+1− P̃j+1

)∥∥∥∥2

=
N−1

∑
j=1

∥∥∥∥( x j+1− x̃ j+1
y j+1− ỹ j+1

)∥∥∥∥2

=
N−1

∑
j=1

∥∥∥∥( x j+1−ax j
y j+1

)∥∥∥∥2

=
N−1

∑
j=1

(y j+1)
2 +(x j+1−ax j)

2 .

By contrast, the corresponding cost function for regular principal components in
this 2-dimensional scenario is

cpc(θ) =
N

∑
j=1

y j
2 :

the amount of variability in the unrepresented variable y.
The minimization of c can be solved iteratively: in each step, we first update the

parameter θ by second order descent of c with a fixed, and then a by minimizing c
with θ fixed. This minimization procedure is described in detail in appendix A.1.

As an illustration, we created data from the dynamical model

x j+1 = ax j + rxη
x
j ,

y j+1 = ryη
y
j ,
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for j = 1, . . . ,N − 1 (the initial values x1 and y1 are picked at random), where
N = 1000, the η

x,y
j are independent samples from a normal distribution, and we

adopted the values a = 0.6 for the dynamics1 , and rx = 0.3 and ry = 0.6 for the
amplitudes of the noise in x and y. Then we rotated the data through

A j = x j cos(θ)− y j sin(θ),
Pj = x j sin(θ)+ y j cos(θ),

with θ = π

3 , and provided the A j and Pj as data for the principal dynamical com-
ponent routine. The results are displayed in Figure 2.1. The first plot shows the
“observations” in the plane (A,P). These are treated as independent samples in
a regular principal component analysis; we keep instead track of their sequential
order, represented by the dotted lines in the plot. For this data, the first regular
principal component, drawn in black, is in fact orthogonal to the principal dy-
namical component, drawn in green. The reason is that the total variability has
a larger y-component, due to the bigger amplitude of the noise in y, while all
the variability that is explainable dynamically is in x. This is an extreme exam-
ple where regular principal components yield a leading mode that is absolutely
irrelevant from a dynamical viewpoint. The other three plots in the figure dis-
play the evolution of the estimates for a and θ and the cost function c, as func-
tions of the step-number. The dotted lines, drawn for reference, have the ex-
act values of a and θ in the data, as well as the unexplainable part of the cost,

c = 1
N−1 ∑

N−1
j=1

(
rxηx

j

)2
+
(

ryη
y
j

)2
≈ r2

x + r2
y = 0.45. Notice the fast convergence

to the exact solution, that in this example took 14 steps.

2.2 The multidimensional case
For dimensions n bigger than two, we write

z = [QxQy]

(
x
y

)
,

and
x j+1 = Ax j .

The minimization problem that defines Q = [QxQy] and A is

min
Q,A

c =
N−1

∑
j=1

∥∥∥∥z j+1−Q
(

AQx
′z j

0

)∥∥∥∥2

=
N−1

∑
j=1

∥∥∥∥( x j+1−Ax j
y j+1

)∥∥∥∥2

.

Notice that Q and A are not uniquely defined: any pair of orthogonal bases for the
optimal subspaces represented by x and y will give rise to different Q’s and A’s rep-
resenting the same dynamics. The algorithm proposed below walks nicely around
this degeneracy, avoiding unnecessary re-parameterizations of the two subspaces2 .

1 The value of |a| needs to be smaller than one for the time series not to blow up.
2 After performing the optimization, one can, if desired, resolve the degeneracy in the descrip-

tion of the dynamical manifold by choosing a natural basis for x, such as the one made out of the
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FIGURE 2.1. A two-dimensional example of the basic procedure. The
first plot displays the data points, with dotted lines joining successive
observations, and the directions for the first regular principal component
–in black– and the principal dynamical component –in green–, which in
this case are orthogonal to each other. The other three plots show the
evolution of the estimates for the parameters a and θ for the dynam-
ics and reduced manifold, and of and the cost function c –normalized
by (N− 1)– as functions of the step-number, with their exact values as
dotted lines.

As in the two-dimensional scenario, the most straightforward methodology, de-
scribed in appendix A.2, decouples the descent steps for A and Q. For the descent
steps in Q, we propose two different approaches. In the first, described in appendix
A.2, we perform an elementary rotation at a time, using the Givens rotation matrix
for a plane picked at random. Such approach can be costly in high dimensions:
seeking the optimal manifold through two-dimensional rotations requires the use
of many random planes. It would be far more effective if one could perform high-
dimensional orthogonal transformations at once, differentiating not with respect to
the angle θ in an arbitrary plane, but with respect to a general orthogonal matrix Q.
This is what we call a Lie algebra approach, described in detail in appendix A.2.

To create a simple synthetic example for the multidimensional case using a
Givens rotation approach, we chose n = 5 and m = 2, and created data from the

principal components of A. For non-normal A’s, there are two such bases: the eigenvectors of A′A
and those of AA′. Both are significant and sorted by sensitivity to perturbations: the former gives the
directions where initial perturbations yield the highest effect; the latter, the directions where these
effects manifest themselves after a time-step.



PRINCIPAL DYNAMICAL COMPONENTS 7

dynamical model

x j+1 = Ax j + rxη
x
j ,

y j+1 = ryη
y
j ,

for j = 1, . . . ,N − 1, where N = 1000, the η
x,y
j ’s are independent samples from

a normal distribution –two and three dimensional vectors respectively– and we
adopted arbitrarily the values

A =

(
0.4569 0.3237
−1.0374 1.0378

)
for the dynamics, and rx = 0.3 and ry = 0.6 for the amplitudes of the noise in x and
y. Then we rotated the data through an arbitrary orthogonal matrix,

z = [QxQy]

(
x
y

)
,

with

Qx =

(
−0.7044 −0.3823 −0.3407 −0.1985 −0.4497
0.5754 −0.1555 −0.1798 0.2477 −0.7423

)′
,

and generated the data displayed in the first panel of Figure 2.2. Running our
algorithm on these data yields estimates A∗ and Q∗x for A and Qx that, as remarked
before, are not univocally defined. Indeed, the algorithm found

A∗ =
(

0.6505 0.2401
−1.1591 0.8685

)
and

Q∗x =
(
−0.8143 −0.3258 −0.2896 −0.2545 −0.2865
0.4089 −0.2108 −0.2570 0.1873 −0.8290

)′
,

quite different in appearance from their exact values above.
To verify that Qx and Q∗x span the same plane and that A and A∗ represent the

same transformation in the corresponding coordinates, we project the two columns
of Q∗x onto the space spanned by those of Qx, through the projection P(Q∗x)

′ = BQ′x,
with B = (Q∗x)

′Qx, and define the relative errors

eQ =
‖(Q∗x)

′−BQ′x‖
‖Qx‖

, eA =
‖A−B−1A∗B‖
‖A∗‖

,

which vanish only if the two pairs of matrices represent exactly the same reduced
manifold and dynamics.

The results are displayed in Figure 2.2. The first plot shows the first three com-
ponents of the data points z j. The second plot displays the evolution of the normal-
ized cost function c as a function of the step-number, with the dotted line displaying

the exact value of the unexplainable part of the cost, c∗ = 1
N−1 ∑

N−1
j=1

(
rx‖ηx

j‖
)2

+
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ry‖ηy

j‖
)2
≈ 2r2

x + 3r2
y = 1.26. The third and fourth plots display the evolution

of the errors eQ and eA defined above. Notice again the fast convergence of the
algorithm to the exact solution.
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FIGURE 2.2. A multidimensional, autonomous example, with n= 5 and
m= 2. The first plot displays the first three coordinates of the data points,
with dotted lines joining successive observations, the second plot shows
the evolution of the cost function, with its exact value as a dotted line,
and the third and fourth plots display the evolution of the errors eQ and
eA.

As an example of the descent procedure through general orthogonal transfor-
mations, we display in Figure 2.3 the results of a run similar to the one in Figure
2.2, but with much higher dimensionality: 5000 snap shots of an 80-dimensional
vector z, of which a reduced 17-dimensional dynamical submanifold x is sought.
We have adopted isotropic noise, rx = ry = 0.3. A few things are worth noticing
in this run. On the one hand, the fast convergence: in around 50 steps one reaches
a manifold which captures essentially all the dynamical information. This number
of steps is to a large degree dimension independent: it follows from the choice of a
learning rate, ε = 0.1 for this run, and a typical angle to rotate, of order π/2 (this
accounts for the first 10-20 steps; the learning rate decreases exponentially as one
approaches the optimal solution). Also worth noticing are three related phenom-
ena: that the routine finds a total cost slightly below the exact one underlying the
data, that the manifold it converges to is close to but not exactly the one the data
have been built from, and that the matrix representing the dynamics, though not
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exact either, is closer to the one proposed than the manifold where it acts. All three
facts share the same explanation: since we have a relative small number of obser-
vations, N = 5000, for a space of dimension n= 80, random autocorrelation among
small dimensional submanifolds of the data may overcome the smallest eigenval-
ues of the underlying matrix A. Hence more variability can be explained by this
random autocorrelation than by those smallest eigenvalues, thus accounting for the
smaller value of the cost function found and the discrepancy among the manifolds.
The fact that the discrepancy in A is smaller follows from the fact that the direc-
tions associated with those smallest eigenvalues have little weight in the norm of
A.
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FIGURE 2.3. Same as Figure 2.2, but in much higher dimensions: n =
80 and m= 17, run through gradient descent in Q. The number of steps to
convergence is roughly independent of the dimensionality of the space.
For a relatively small number of observations (5000 in this run), one
should not look for dynamical manifolds of too-large dimensionality,
else one would be capturing just random autocorrelation among the data.

2.3 Non-zero means
We have worked so far under the assumption that all means have been removed

from the problem: the plane x goes through the origin, and the transformation given
by the matrix A is linear, not affine. If the observations z have a well-defined mean
(that is, if there is not a trend over time that makes the local mean of z evolve), these
assumptions are fine: it is enough to remove from z its mean –the “climatology” of
atmosphere-ocean science– ad initio, and add it back at the end. However, for the
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non-autonomous scenario to be described below, it will be necessary to consider
nontrivial means. In order to have our methodology prepared for this more general
case, we consider the means in our present autonomous situation too, even though
they have no practical consequence. Then we write

z− z̄ = Q
(

x
y

)
,

and
x j+1 = Ax j +b .

It is convenient to partition z̄ into its x and y components,

x̄ = Q′xz̄ , ȳ = Q′yz̄.

The addition of the mean x̄, however, is unnecessary, for its effects can be absorbed
into the drift b. In this case we have to include in the minimization problem the
drift b and the mean ȳ. The detail of the gradients with respect to these new two
variables can be found in the Appendix A.2.

3 Non-autonomous problems

We have considered up to now only autonomous problems, where the manifold
x and the corresponding dynamical model are assumed to be time-independent.
Yet there are many examples of practical importance where this assumption does
not hold. Consider, for instance, climate-related data, such as monthly averages
of sea-surface temperatures at various locations, recorded over many years. One
should expect much of the dynamics to depend on seasonal changes in insolation.
We should, accordingly, have a time-dependent dynamical model, with a period of
one year. Similarly, in long series of economic or financial data, we should expect
a change in the dynamics as populations or affluence levels change, new markets
arise, new tools are developed. The corresponding dynamical model should not
longer be constant, nor periodic as in the seasonal case, but rather evolve slowly,
with scale separation between the time-scale of the dynamics and that of the evo-
lution of the model itself (without the hypothesis of scale separation, little can be
inferred statistically from the data, since the dynamical model can be adjusted in-
stantly to account for each individual observation).

To incorporate this into our framework, it is enough to add a qualifying sub-
index “t” (or more precisely “ j”, since our time-series are discrete) to the various
functions involved: Q, A, b and ȳ , plus the requirements of periodicity or scale
separation. For instance, Qt should satisfy either Qt+T = Qt in the periodic case,
or ‖Qt+1−Qt‖ � 1 for slowly varying trends. In this section, we discuss how
to modify the methodology of Section 2.2 so as to make it applicable to the non-
autonomous linear case.

The idea is simple: in the notation of the previous section, we are seeking a
time-dependent orthogonal transformation Qt and mean ȳt , and a time-dependent
dynamical model parameterized by At and bt . To this end, in each descent step,
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we pick at random a time t0 and propose, in order to update Q, a time-dependent
rotation angle θt in the k-l plane, centered at t = t0 3 . Similarly, we propose
time-dependent variations for ȳ, A and b:

θt = αF(t) , ȳt = ȳ+ vF(t) , At = A+BF(t) , bt = b+d F(t) ,

where F(t) is a given scalar function, centered at t0, and satisfying the correspond-
ing restrictions: periodicity, slow variation, etc., and the parameters α , a scalar, v
and d, vectors, and B, a matrix, are computed by descent of the cost function as
before. The details of the minimization problem can be found in appendix A.3.

The time t of the non-autonomous scenario discussed above is just one example
of an exogenous variable: one whose state is known independently at all times,
and that may affect the dynamics of the z’s. Other examples are state variables of
a bigger system of which the z’s are only a small part; and external controls.

One can collectively denote these exogenous variables s, and apply a straight-
forward generalization of the procedure above, where F is now a function of s
rather than the single variable t. In appendix B we describe a few choices for F
that we have found practical.

For clarity, we illustrate the non-autonomous procedure through a simple ex-
ample where n = 2,m = 1. We created data from the dynamical model

x j+1 = a jx j +b j + rxη
x
j ,

y j+1 = ȳ j+1 + ryη
y
j ,

for j = 1, . . . ,N − 1, where N = 1000, the η
x,y
j ’s are independent samples from

a normal distribution, rx = 0.3 and ry = 0.6, and we adopted the values a j =
6
5 cos2

(
2πt j

T

)
for the dynamics, b j =

1
2 sin

(
2πt j

T

)
for the drift, and ȳ j =

2
5 cos

(
2πt j

T

)
for the non-zero mean of y, where t j = j and T = 12, mimicking the twelve months
of the year that we will find again in our application to the sea-surface temperature
field in Section 5. Then we introduce, as before, “Atlantic” and “Pacific” tempera-
tures

A j = x j cos(θ j)− y j sin(θ j),

Pj = x j sin(θ j)+ y j cos(θ j),

with θ j =
π

6 sin
(

2πt j
T

)
, and provide the A j and Pj as data for the principal dynami-

cal component routine.
For this example, we have adopted the trial function F from (B.1). The results

are displayed in Figure 3.1. The first plot shows the “observations” in the plane
(A,P), with the first regular principal component drawn in black, and the 12 first

3 For simplicity, we describe all the extensions from here on in terms of the procedure using
Givens rotations. Adapting them to the far more efficient descent through the Lie algebra of the
orthogonal transformations is straightforward.
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principal dynamical components, one for each month, drawn in green. The other
plots in the figure display the evolution of the normalized cost function c, and the
estimated results for a(t), b(t), ȳ(t) and θ(t) at convergence (we only show the
first two periods). The dotted lines, drawn for reference, have the exact values
of a(t), b(t), ȳ(t) and θ(t) in the data, as well as the unexplainable part of the

cost, c∗ = 1
N−1 ∑

N−1
j=1

(
rxηx

j

)2
+
(

ryη
y
j

)2
≈ r2

x + r2
y = 0.45. Again, the algorithm

detects essentially the exact solution to the problem; the number of required steps,
about 60, is bigger than before, because various different trial functions F(t) are
involved, requiring at least one step for each.
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FIGURE 3.1. A low dimensional (n = 2,m = 1), non-autonomous prob-
lem. The first plot displays the data points, with dotted lines joining
successive observations, the first principal component in black, and the
twelve monthly first principal dynamic components in green. The other
plots show the final estimates for a(t), b(t), ȳ(t) and θ(t), for two pe-
riods of twelve snap-shots each, and the evolution of the cost function,
with the exact answers in dotted lines.

4 Higher order processes

We have considered so far dynamical models without memory, where the cur-
rent state of the system determines its future evolution through the matrix A. Yet
many real processes are not well-described by such models. For instance, if the ob-
servations consist only of positions x j in a system with non-negligible inertia, one
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would expect a better prediction by using, in lieu of the unavailable velocity field,
a second order model, x j+1 = D(x j,x j−1). Studying systems like this involves no
significant change in our procedure: either we extend the phase-space from the line
of x j’s to the plane of pairs (x j,x j−1) or, equivalently, consider matrices A that are
rectangular, with twice as many columns as rows. Entirely similar considerations
apply to higher order processes with longer memory.

We describe here the non-Markovian, non-autonomous case of order r, since
the autonomous scenario is just a special case of the non-autonomous one, and
the case with more general exogenous variables s is entirely similar. Our reduced
dynamical model now adopts the form

(4.1) x j+1 = D = b+
r

∑
i=1

Aix j−i+1,

where the drift b and the matrices Ai, i = 1, . . . ,r, as well as the orthogonal matrix
Qx defining the x’s, may in general be time-dependent. Each algorithmic step, we
update these matrices through

(Ai)t = Ai +Bi F(t) , bt = b+d F(t) , ȳt = ȳ+ vF(t) , θt = α F(t) ,

where F(t) is a given trial function as described in appendix B.
The cost function adopts the form

c =
N−1

∑
j=r

∥∥y j+1
∥∥2

+
∥∥x j+1−D

∥∥2
,

since the first x1, . . . ,xr are not specified by the dynamics. The details of the mini-
mization problem in this situation can be found in appendix A.4.

Again we choose, for the sake of clarity, to illustrate the procedure in its sim-
plest possible setting, which is autonomous, with n = 2, m = 1, and r = 3, the order
of the Non-Markovian process. We created data from the dynamical model

x j+1 = a1x j +a2x j−1 +a3x j−2 + rxη
x
j ,

y j+1 = ryη
y
j ,

for j = 3, . . . ,N− 1, where N = 1000, the η
x,y
j ’s are independent samples from a

normal distribution, and we adopted the values a1 = 0.4979,a2 = −0.2846,a3 =
0.1569 for the dynamics and rx = 0.3 and ry = 0.6 for the amplitudes of the noise
in x and y. Then, as before, we define

A j = x j cos(θ)− y j sin(θ),
Pj = x j sin(θ)+ y j cos(θ),

with θ = π

3 , and provide the A j and Pj as data for the principal dynamical com-
ponent routine. The results are displayed in Figure 4.1. Again the procedure con-
verges to the exact answer, this time for all elements of the multi-step dynamics.
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As in the first example, the first regular principal component is orthogonal to the
principal dynamical component, thus capturing none of the system’s dynamics.
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FIGURE 4.1. A multi-step process of order 3. The first plot displays
the data points, with dotted lines joining successive observations, their
regular first principal component in black and their first principal dy-
namical component in green. The other plots show the evolution of
the estimates for a1,a2,a3 and θ , as well as of the cost function, with
their exact values and the exact unexplainable part of the cost, c∗ =

1
N−1 ∑

N−1
j=1

(
rxηx

j

)2
+
(

ryη
y
j

)2
≈ r2

x + r2
y = 0.45, displayed in dotted

lines.

5 A real application: the global sea-surface temperature field

To see the workings of the new procedure on real data, we have chosen a topic
of present concern: the estimation of climatic variations and trends. For this, we
use a database of monthly averaged extended reconstructed global sea surface tem-
peratures based on COADS data (see [25]) from January 1854 to October 2009,
and ask whether we can extract from these a reduced low dimensional dynamical
model. A few before-hand considerations are in order:

• Climate dynamics, a real pressing issue, is treated just as an illustration
in this methodological paper. A far more in-depth treatment of how much
principal dynamical components can help increase climate predictability
and elucidate its causal relations will be pursued elsewhere.
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• The ocean is not an isolated player in climate dynamics: it interacts with
the atmosphere and the continents, and is also affected by external condi-
tions, such as interannual variations in solar radiation and human-related
release of CO2 into the atmosphere. The latter are examples of slowly
varying external trends that fit naturally into our non-autonomous setting
–the seasonal variations giving its periodic component. As for the land and
atmosphere, their dynamics is typically faster than that of the oceans, and
can be conceptually divided into two components: a part that is slaved to
the state of the ocean’s surface temperature –and hence can in principle be
included in its dynamical model–, and one that can be treated as external
noise. Including explicitly land and atmospheric observations involves at
least two further challenges, that will be pursued elsewhere: handling data
with disparate units –such as atmospheric pressure, ice extent and ocean
temperature–, and allowing for multiple time-scale dynamical models.
• Even within the ocean, the surface temperature does not evolve alone: it

is carried by currents, and it interacts through mixing with lower layers of
the ocean. As mentioned in Section 4, one way to account for unobserved
variables is to make the model non-Markovian: discrete time derivatives of
the sea-surface temperature provide indirect evidence on the state of those
hidden variables.

We have adopted as our dataset the sea-surface temperature monthly means
between January 1854 to October 2009 of the 50 points displayed on the map in
Figure 5.1, covering much of the world oceans in a roughly homogeneous manner.

In order to apply our methodology to the data, we need to select a class of
trial functions from Subsection B, the dimension m for the reduced manifold x,
and the order r of the non-Markovian process. The trial functions for the periodic
component that we have used for these runs are the monthly discrete δ -functions
from (B.2), with T = 12. This takes to a new depth the idea behind the use of
a “monthly climatology” in climate studies: not only the climatological mean is
computed independently for each month, but also the dynamical model and mani-
fold may change significantly from month to month. In the runs reported here, we
have not modeled any inter-annual trend.

The following physical considerations suggest picking r = 3 for the order of
the Markov process. A simplified conceptual model for the upper mixed layer of
the ocean is that of a rotating shallow layer of water, forced by the atmosphere
from above and the deep ocean from below. In such model, the active dynamical
variables are the two horizontal components of the velocity and the layer’s thick-
ness. The surface temperature can be thought of as an emergent of the evolution of
these three variables and the external forcing. Conservation of mass and horizontal
momentum, the core dynamics of the layer, are three differential equations, each
involving one time derivative. Hence reducing the system to a single variable –the
temperature, the only one available in the data– yields a third order differential
equation: two time derivatives relate to the evolution of gravity waves, the third to
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FIGURE 5.1. The 50 points on the ocean used for the procedure.

the potential vorticity. In our discrete setting, this corresponds to a Markov process
of order three.

Figure 5.2 illustrates a line of reasoning for choosing the values of m and r. The
figure on the left shows, for a fixed m = 4, the evolution of the final error when we
move the order of the non Markovian process from r = 1 to r = 64 . For reference,
the dotted line shows the value of 1

N ∑
N
i=5 S2

i , where the S’s are the singular values
of the real dataset, with the monthly climatology subtracted. We find for r = 3 the
steepest drop of the final error, consistent with our reasoning above. Therefore we
pick r = 3 for the order of our non Markovian process. In the figure on the right, we
observe, for this fixed r = 3, the evolution of the final error when m = 1, . . . ,6. The
isolated points correspond to the sum of squared singular values, 1

N ∑
N
i=m+1 S2

i . We
observe that for m= 4 this error matches almost exactly the one from the dynamical
components. This can be interpreted in the following way: for smaller values of m,

4 This final error is calculated for a number of steps such that the difference between the final
error and the error 1000 steps before is less than 0.01; therefore the number of steps used for each
value of r may be different. Notice that we are using the descent procedure through Givens rotations,
hence the large number of steps involved. When a far more thorough exploration of the application of
principal dynamical components to the climate is pursued elsewhere, a basic ingredient for efficiency
will be the descent through general orthogonal transformations Q described at the end of Section 3.
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accounting for the dynamics allows us to reduce the information loss even beyond
the theoretical maximum –for autonomous settings– provided by the singular value
decomposition. Beyond m = 4, on the other hand, the biggest share in the further
reduction of information loss is probably due to the increased bare dimensionality
of the model, more than to a further refinement of the dynamics. Hence we pick
m = 4 for the dimension of our reduced dynamical manifold.
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FIGURE 5.2. Predictive uncertainty as a function of the dimension m
of the reduced dynamical manifold and the order r of the process. The
figure on the left shows the final error for a fixed m = 4 and r = 1, . . . ,6.
The dotted line is the sum 1

N ∑
N
i=5 S2

i of the squared singular values of
the data, with the monthly climatology removed. The figure on the left
shows the final error for a fixed r = 3 and m = 1, . . . ,6, with the isolated
points displaying the corresponding uncertainty in the standard principal
component procedure, 1

N ∑
N
i=m+1 S2

i .

Next we show various results for the chosen parameters, m = 4 and r = 3,
displayed for the time window from January 1991 to January 1999, which in-
cludes three El Niño years, represented by vertical lines; one of them, in 1998,
the strongest ever recorded. Figure 5.3 shows the evolution of the four components
of the manifold x in solid lines and, in dotted lines, the same components predicted
from the prior three months.

One question one may ask is whether the reduced dynamical manifold x is
dominated by a small set of locations on the ocean. This would be manifest in
having the columns of Qx dominated by a few significant rows. Yet the columns
of Qx do not have a meaning per se: x is a four dimensional manifold, but each
component xi lacks individual meaning. To fix a reference frame in the manifold
x, we resort to the matrix A1: its four left principal components U in A1 = USV ′

provide a natural set of coordinates in x-space. Figure 5.4 displays the first four
columns of Qx(t)U(t), t = 1, . . . ,12. We observe between four and six dominant
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FIGURE 5.3. Real and predicted dynamical components (the manifold
x). The vertical lines mark El Niño years.

peaks; the four clearest ones corresponding to the points 19, 24, 37 and 41 in
Figure 5.1. This suggests that a reduced dynamical model for the ocean could be
built from four to six selected locations. Notice that these four points are on the
Pacific ocean, in locations that one would naturally associate with the strongest El
Niño signals.

Figure 5.5 shows the observed ocean surface temperature for these four points,
comparing them with the ones predicted by the algorithm, in dotted lines. We
see that the approximation is quite sharp, particularly near El Niño years, where
changes of temperatures are most significant. Even though we have chosen to plot
only these four temperatures, all of the 50 points used are well-predicted by the
procedure 5 .

Finally, we monitor the evolution of a measure of the global anomalies asso-
ciated with El Niño. To this end, we compute a discrete analogue of the running
3-month mean SST anomaly in the El Niño regions [26]. In particular, we average
the temperatures on the points 16, 17, 24, 28, 29, 32, 33, 37, 41 and 42 on the
map in Figure 5.1, for a time window from February 1964 to October 2009. These
10 points are not all strictly included in what are known as El Niño regions (there
are four of them, 1+2, 3, 4 and 3.4), but they are the closest on our discrete map
to the union of all of them. We observe in Figure 5.6 the warm (positive) peaks,
coinciding with El Niño years, the cold (negative) peaks corresponding to La Niña

5 By “prediction” here we mean prediction based on the three previous values of x; the possibility
of a longer term prediction using principal dynamical components will be explored elsewhere.
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FIGURE 5.4. Dependence of the four components of the reduced man-
ifold x on the individual locations on the ocean for the twelve months
of the year. A natural coordinate system in x is the one provided by the
principal components of the first dynamical matrix A1. Notice that four
to six points on the ocean dominate the dynamics.

years and, in dotted lines, the predicted values of these SST anomalies generated
by the principal dynamical component procedure.

6 Probabilistic perspective and extension to nonlinear dynamics

Throughout this article, we have defined and developed the principal dynamical
component procedure in terms of the minimization of a specific cost function: the
sum of squares of the prediction errors. In this section, we assign a meaning to this
cost in terms of the log-likelihood function of a probabilistic model. Framing the
principal dynamical component procedure in a probabilistic setting has two main
advantages: to permit a more thorough interpretation, and to extend its applicability
beyond the linear models developed in this article. We sketch such generalization
in this section; its algorithmic implementation, under current development, will be
presented elsewhere.

Generally, a probabilistic model for a time series z j ∈ Rn involves the transition
probability density

T (z j+1|z j) .

(This corresponds to the Markovian, autonomous scenario, the only one that we ad-
dress in this section. The extension to non-autonomous and non-Markovian cases,
involving a transition probability density of the form T (z j+1|z j,z j−1, . . . ,z j−r, t,s),
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FIGURE 5.5. Observed and predicted ocean surface temperature for
four selected points. The vertical lines mark El Niño years.

is straightforward). The principal dynamical component proposal considers a di-
mensional reduction of such transition probability density, using the following el-
ements:

• A coordinate system z = z(x,y), x ∈ Rm, y ∈ Rn−m, with corresponding
projection operators Px and Py:

x = Px(z(x,y)), y = Py(z(x,y)).

• A reduced dynamical model given by a transition probability density in
Rm:

d (x j+1|x j) .

• A probabilistic embedding

e(y|x).

The transition probability density for z is then given by

T (z j+1|z j) = J (z j+1) e(y j+1|x j+1) d (x j+1|x j) ,

where x = Px(z), y = Py(z), and J(z) is the Jacobian determinant of the coordinate
map z→ (x,y).



PRINCIPAL DYNAMICAL COMPONENTS 21

1965 1970 1975 1980 1985 1990 1995 2000 2005
−1

−0.5

0

0.5

1

1.5

2

t

A
no

m
al

ie
s

FIGURE 5.6. Observed and predicted 3-month mean SST anomalies
from February 1964 to October 2009, quantifying El Niño and La Niña
intensities. Only El Niño years are marked with vertical lines; La Niña
years correspond to strong negative anomalies.

A natural measure of the goodness of the model is the log-likelihood function

L =
N−1

∑
j=1

log [T (z j+1|z j)] .

In particular, in the setting of Section 2, we have the projections

(6.1) Px(z) = Q′xz, Py(z) = Q′yz,

where Q = [QxQy] is orthogonal, so J(z) = 1. The embedding and reduced dynam-
ics are given by the isotropic Gaussians

(6.2) e(y|x) = N (0,σ2IN−m)

and

(6.3) d (x j+1|x j) = N (Ax j,σ
2Im),

where Ik stands for the k× k identity matrix. Consequently, the log-likelihood
function is given by

L =
N−1

∑
j=1
−
[

n
2

log(2π)+n log(σ)+
1

2σ2

(
‖x j+1−Ax j‖2 +‖y j+1‖2)] .
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Thus maximizing the log-likelihood L over Q and A is equivalent to minimizing
the cost function

c =
1

N−1

N−1

∑
j=1

(
‖x j+1−Ax j‖2 +‖y j+1‖2) ,

that we have used throughout the paper; the corresponding optimal value of σ is
given by

σ =
( c

n

) 1
2
.

This interpretation immediately suggests the following generalization, which
remains within the realm of Gaussian distributions and linear maps: keep the or-
thogonal projections in (6.1), but replace the embedding (6.2) and dynamical model
(6.3) by the more general

e(y|x) = N (0,Σy),

d (x j+1|x j) = N (Ax j,Σx),

where Σx and Σy are general covariance matrices. The resulting log-likelihood
function is

L=
N−1

∑
j=1
−1

2
[
log((2π)n|Σx||Σy|)+

(
x j+1−Ax j,Σ

−1
x (x j+1−Ax j)

)
+
(
y j+1,Σ

−1
y y j+1

)]
.

This formulation has the advantage of providing a natural ranking of the coordi-
nates x and y, through the principal components of the corresponding covariance
matrices.

More generally, one can propose different, typically nonlinear, families of dis-
tributions, projections and dynamical models, and maximize the corresponding
log-likelihood function. The proposed distributions can be given parametrically,
in which case the maximization of the log-likelihood is over their parameters, or
non-parametrically, for instance as an extension of the methodology proposed in
[24]. Thus the principal dynamical component methodology extends naturally to
very general scenarios, with nonlinear reduced dynamical manifolds, stochastic,
nonlinear dynamical models, and non-Gaussian embeddings. This extension, how-
ever, goes beyond the scope of this paper, and will be pursued elsewhere.

7 Conclusions

A new methodology has been developed for the dimensional reduction of time
series. The procedure seeks a low dimensional manifold x and a dynamical model
x j+1 = D(x j,x j−1, . . . , t) that minimize the predictive uncertainty of the series. The
procedure has been successfully tested on synthetic data, and illustrated with a
real application to time series of sea-surface temperature over the ocean. Finally,
a probabilistic interpretation of the principal dynamical component procedure was
proposed, providing a conceptual extension to general nonlinear, non-Gaussian set-
tings.
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One item not addressed in this article is the selection of a time-scale: it is as-
sumed throughout that the time-intervals ∆t between the times tn for which data
is available correspond to the natural time-scale for the dynamics. Yet this is not
necessarily the case; the observations may over or under-resolve the underlying
dynamical processes. In the former case, one might apply the procedure devel-
oped here not to the individual snap-shots provided by the observations but to their
averages over longer time-windows compatible with the dynamics. A more sophis-
ticated option, beyond the scope of this article, is to consider a multi-scale version
of the algorithm, combining short and long-term dynamical components.

Appendix: The minimization problem

In this appendix we give full details about the minimization problem for the
parameters A and Q described in Sections 2, 3 and 4.

A.1 Two dimensional linear, autonomous case
The descent steps in a are given by

∂c
∂a

=−2
N−1

∑
j=1

(x j+1−ax j)x j.

Equating ∂c
∂a to zero yields the standard regression formula

a =
∑

N−1
j=1 x jx j+1

∑
N−1
j=1 x2

j
.

If now we update x and y through a further rotation

x← xcos(θ)+ ysin(θ) ,

y←−xsin(θ)+ ycos(θ) ,

we have

∂c
∂θ

= 2a
N−1

∑
j=1

[
(ax jy j− (x j+1y j + x jy j+1))cos(2θ)+(

x j+1x j− y j+1y j +
a
2
(
y2

j − x2
j
))

sin(2θ)
]
.

Rather than seeking a closed expression for θ that would make this derivative van-
ish –notice that θ is implicitly included in the definition of the x and y’s–, it is
preferable to descend the gradient

∂c
∂θ

∣∣∣
θ=0

= 2a
N−1

∑
j=1

[ax jy j− (x j+1y j + x jy j+1)]
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or, more efficiently, to involve also the second derivative

∂ 2c
∂θ 2

∣∣∣
θ=0

= 2a
N−1

∑
j=1

[
2x j+1x j−2y j+1y j +a

(
y2

j − x2
j
)]
,

and compute the θ that minimizes the quadratic local approximation to c:

θ = θq =−
∂c
∂θ

∣∣∣
θ=0

∂ 2c
∂θ 2

∣∣∣
θ=0

.

A little extra care is required when applying the quadratic approximation far from
the optimal θ : if ∂ 2c

∂θ 2

∣∣∣
θ=0
≤ 0, then we must do descent instead:

(A.1) θ =−εl
∂c
∂θ

∣∣∣
θ=0

,

where εl > 0 is a chosen learning rate. Also, if θq is too big, we must limit our step
size:

|θ |= max(|θq|,ε),
where ε is the maximum allowable step in θ . It is sensible to relate the values of
the two ε’s through

εl =
ε√

ε2 +
(

∂c
∂θ

∣∣∣
θ=0

)2
,

which, when applied to (A.1), yields descent steps of size bounded by ε , and much
smaller near the optimal θ .

A.2 Multidimensional linear, autonomous case
The descent steps in A are given by

(A.2)
∂c
∂A

=−2
N−1

∑
j=1

(x j+1−Ax j)x′j .

Instead of descending the gradient we can, as in the two-dimensional case, directly
solve ∂c

∂A = 0, yielding

A = X1X0
′ (X0X0

′)−1
,

where
X0 = [x1, . . . ,xN−1] and X1 = [x2, . . . ,xN ] .

For the descent steps in Q, we propose two different approaches. In the first, we
use representations of any orthogonal matrix Q as a product of Givens rotation, in
which case we only have to differentiate with respect to the angle θ . In the second,
we use a Lie algebra approach, where we differentiate with respect to a general
orthogonal matrix Q.
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A Givens rotation approach for Q

We note that any orthogonal matrix can be factorized as a product of Givens
rotations of the form

Rkl(θ) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . cos(θ) . . . sin(θ) . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . −sin(θ) . . . cos(θ) . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1


,

which act in the plane of the two coordinates k and l, rotating them an angle θ .
Then we can, in each descent step, pick at random the two indices k and l, and
perform a rotation following the derivative of c with respect to θ at θ = 0. From
the observation above about degeneracy, however, we note that picking both k and
l from either the dynamical coordinates x or their orthogonal complement y alone,
serves no purpose other than re-parametrization. Then we always pick k at random
in [1, . . . ,m], and adopt l =m+h, with h picked at random in [1, . . . ,n−m]. In order
to consider arbitrary directions in these two manifolds though, we first perform a
random orthogonal transformation to each:

x→ Qr
xx, y→ Qr

yy,

where Qr
x,y are random orthogonal matrices.

For each Givens rotation, we have

(A.3)
∂c
∂θ

∣∣∣
θ=0

=−2
N−1

∑
j=1

[
yh

j+1Akx j + yh
j

m

∑
p=1

Ak
p

(
xp

j+1−Apx j

)]
and
(A.4)
∂ 2c
∂θ 2

∣∣∣
θ=0

= 2
N−1

∑
j=1

[
xk

j+1Akx j−2yh
j+1Ak

kyh
j +

m

∑
p=1

[
xk

jA
k
p(x

p
j+1−Apx j)+(yh

jA
k
p)

2
]]

.

As before, θ can be computed so as to minimize the quadratic local approximation
to c:

θ = θq =−
∂c
∂θ

∣∣∣
θ=0

∂ 2c
∂θ 2

∣∣∣
θ=0

,

with the same caveats on big steps as in the one-dimensional case.
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A Lie algebra approach for Q

A general orthogonal transformation depends on n(n−1)/2 parameters which,
for Q near the identity, are best represented as the independent entries of a skew-
symmetric matrix S (the Lie algebra of the orthogonal group):

Q = eS, with Si j =−S ji.

When S is small, each entry Si j defines a two-dimensional differential rotation
in the plane i j. In our case, however, we are not interested in rotations within
the x or y manifolds, since these would act only as re-parameterizations of the
manifolds. Then we need only to consider the m(n−m) entries where, borrowing
the notation from the first procedure, i = k ≤ m and j = m+ h, and their skew-
symmetric counterparts. For these, we can compute the gradient of the cost c,

Gi j =
∂c

∂Si j
,

and write, by descent,

Q = eS, Si j =−
ε√

ε2 + |G|2
Gi j,

where
|G|2 = ∑

i, j
G2

i j.

This makes steps of size ε far from the optimal Q, and smaller near it, to avoid
oscillations. The computation of Q = eS is far less expensive that it would be
for a general n× n matrix, since S has only m(n−m) independent entries, and a
simple block structure, that can be exploited to reduce the cost of the calculation
significantly.

Alternatively to the gradient descent above, we can compute also the Hessian

Hkl
i j =

∂ 2c
∂Si j∂Skl

,

and can write the second order step

Q = eS, ∑
i j

Hkl
i j Si j =−Gkl.

This is not very efficient in this crude form though, since it requires solving a
system of equations in m× n unknowns. There are efficient ways of carrying the
descent in Q to second order, but these will be presented elsewhere.

The first derivatives of c with respect to Si j are the same as those with respect
to θ in (A.3), with k = i and h = j−m. The diagonal elements of the Hessian, H i j

i j ,
also agree with the second derivatives in (A.4). For the off diagonal terms, we have

∂ 2c
∂Si1 j1∂Si2 j2

=−2
N−1

∑
j=1

[
yh1

j+1Ak2
k1

yh2
j + yh2

j+1Ak1
k2

yh1
j − yh1

j yh2
j Ak1

′
Ak2
]

for j1 6= j2
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and

∂ 2c
∂Si1 j1∂Si2 j2

=−
N−1

∑
j=1

[
−
(

xk2
j+1Ak1 + xk1

j+1Ak2

)
x j−

(
xk2

j Ak1 + xk1
j Ak2

)
x j+1

+
(

xk2
j Ak1

′
+ xk1

j Ak2
′)

Ax j +
(

Ak2
k1
+Ak1

k2

)
yh

jy
h
j+1−2

(
yh

j

)2
Ak1
′
Ak2
]

for j1 = j2

with k1,2 = i1,2 and h1,2 = j1,2−m (differential rotations do not commute to second
order, hence the complex look of this last expression).

Non-zero means case
For the non-zero means we have the gradients

(A.5)
∂c
∂b

=−2
N−1

∑
j=1

(x j+1− (Ax j +b))

and

(A.6)
∂c
∂ ȳ

=−2
N−1

∑
j=1

(y j+1− ȳ) ,

that can be used either for descent or for the direct calculation of the optimal b and
ȳ.

A.3 Non-autonomous case
The descent steps in this situation are similar to the formulas given in Section

A.2, but introducing non-autonomous considerations. Then equations (A.3) and
(A.4) generalize into

∂c
∂α

∣∣∣
α=0

=−2
N−1

∑
j=1

[
w j+1yh

j+1 (Akx j +bk)+w jyh
j

m

∑
p=1

Ak
p

(
xp

j+1−Apx j−bp

)]
and

∂ 2c
∂α2

∣∣∣
α=0

= 2
N−1

∑
j=1

[
(w j+1)2xk

j+1 (Akx j +bk)−2w j+1w jyh
j+1Ak

kyh
j+

m

∑
p=1

[
(w j)2xk

jA
k
p(x

p
j+1−Apx j−bp)+(w jyh

jA
k
p)

2
]]

,

and equations (A.2), (A.5) and (A.6) into

∂c
∂B

=−2
N−1

∑
j=1

w j (x j+1− (Ax j +b))x′j ,

∂c
∂d

=−2
N−1

∑
j=1

w j (x j+1− (Ax j +b))
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and
∂c
∂v

=−2
N−1

∑
j=1

w j (y j+1− ȳ) ,

where the weights w j are given by

w j = F(t j) .

As before, equating the derivatives with respect to B, d and v to zero provides
simple closed forms for B, d and v, while α can be found through the minimization
of a local quadratic approximation to c. The appropriate choice of F is discussed
in the Appendix B.

A.4 Higher order case
In this case, we have

∂c
∂Bh

=−2
N−1

∑
j=r

w j (x j+1−D)x′j−h+1 ,

for every h = 1, . . . ,r, where D is given by (4.1),

∂c
∂d

=−2
N−1

∑
j=r

w j (x j+1−D) ,

and
∂c
∂v

=−2
N−1

∑
j=r

w j (y j+1− ȳ) ,

where w j = F(t j).
It is possible to get explicit expressions for B1, . . . ,Br by equating all ∂c

∂Bh
to

zero. We introduce the m×m matrices

Xh,k
0 =

N−1

∑
j=r

(
w j)2

x j−h+1x′j−k+1, Xh
1 =

N−1

∑
j=r

w j (x j+1−b)x′j−h+1,

where Xh,k
0 =

(
Xk,h

0

)′
. In terms of these, we get a block system of linear equations:

B1X1,1
0 +B2X2,1

0 + · · ·+BrX
r,1
0 =X1

1 ,

B1X1,2
0 +B2X2,2

0 + · · ·+BrX
r,2
0 =X2

1 ,

...
...

...
...

B1X1,r
0 +B2X2,r

0 + · · ·+BrX
r,r
0 =X r

1 ,

which determines the matrices B1, . . . ,Br.



PRINCIPAL DYNAMICAL COMPONENTS 29

For the angle α we proceed as in the previous sections, though a quadratic
approximation to c, using

∂c
∂α

∣∣∣
α=0

=−2
N−1

∑
j=r

[
w j+1yh

j+1 (D)k +
m

∑
p=1

(Dα)p

(
xp

j+1− (D)p

)]
,

and

∂ 2c
∂α2

∣∣∣
α=0

=−2
N−1

∑
j=r

[
−
(
w j+1)2

xk
j+1 (D)k +2w j+1yh

j+1(Dα)k

+
m

∑
p=1

[
(Dαα)p

(
xp

j+1− (D)p

)
− [(Dα)p]

2
]]

,

where

(Dα) =
r

∑
i=1

(Ai)
kw j−i+1yh

j−i+1, (Dαα) =−
r

∑
i=1

(Ai)
k (w j−i+1)2

xk
j−i+1.

Appendix: Trial functions

In this appendix we consider the issue of how to pick the functions F(s) and
corresponding weights w j = F(s j) (here we use s to denote either time or other
exogenous variables).We describe a few choices that we have found practical. First
of all, for the autonomous case, we have the trivial

F = 1 .

This should still be used in the more general case, to capture the s-independent
components of Q and A, but must be alternated with other functions F(s) with
non-trivial s-dependence.

B.1 One-dimensional functions
When s represents time, the domain of F(s) must be either the real line –for

the trend– or a parametrization of the unit circle –for periodic factors such as the
seasons. A sensible choice for the trend is

F(s) =
S√

S2 +L2
− F̄ , S = s− s0,

displayed on Figure B.1, depending on the choice of a center s0, picked at random
at each step, and a mollification parameter, the length-scale L (see below for more
details). As L→ 0, F(s) becomes piecewise constant, with a discontinuity at s= s0.
For larger values of L, the transition between the two constant states is smoothed
over an interval of order L. The subtraction of the mean F̄ over the observations is
intended to decouple the effect of these steps from the ones using F = 1, a function
concerned only with the mean. At the initial stages of the algorithm, L should be
large, providing a global perspective; then it should decrease gradually, to tune the
finer, more local details.
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FIGURE B.1. Plot of the function F(S) = S√
S2+L2

over the interval

[−10,10] for different values of L.

We can be more specific: calling L0 the largest length scale in s, we need L0/L
steps to cover it with transitions of length L. Then the amount dt of algorithmic
time spent using a length L should satisfy

dL
dt

∝ L,

leading to the expression

L = L0

(
L f

L0

) k
ktot

,

where k is the step number, ktot the total number of steps, and L f the smallest length
scale to be used, not to over-resolve the dynamics.

In the periodic case, we can make an entirely analogous proposal:

(B.1) F(s) =
sin(S)√

4sin2(S/2)+L2
, S =

2π (s− s0)

T
,

where T is the period; see Figure B.2.
Sometimes s can adopt only a discrete set of values: the months of the year, an

on-off control, etc. In that case, it may be useful to consider signature functions F
that are one on each of these values at a time, and zero on the others:

(B.2) Fi( j) = δmod( j,T ),i,

where T is the integer period.
An alternative to the F(s)’s above, which have local derivatives but global ef-

fects, are the more localized bumps given by

F(s) =
L3

(S2 +L2)3/2 − F̄ ,
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FIGURE B.2. Plot of the function F(S) = sin(S)√
4sin2(S/2)+L2

over the inter-

val [−π,π] for different values of L.

and

F(s) =
L3

(4sin2(S/2)+L2)3/2
− F̄ ,

displayed in Figures B.3 and B.4. We can also alternate between the two, or among
more proposals satisfying different needs.
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FIGURE B.3. Plot of the function F(S) = L3

(S2+L2)3/2 over the interval

[−10,10] for different values of L.

Still another natural alternative in the periodic case is to use Fourier components

Fc
k = cos(kS), Fs

k = sin(kS), S =
2πs
T

.

There is no need for a center s0 here, since the use of both sines and cosines ren-
ders the F spatially homogeneous. Each step one must use either Fc or Fs with
probability 1/2 each (discounting the steps with F = 1), and an integer value for
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FIGURE B.4. Plot of the function F(S) = L3

(4sin2(S/2)+L2)3/2 over the in-

terval [−π,π] for different values of L.

the wave number k. The latter should be sampled from a distribution that decays
rapidly with k, so as to result into smooth composite functions.

An advantage of the use of Fourier modes, particularly when only a finite num-
ber K of modes is allowed, is that one can store the accumulated amplitude added
to each mode at the various steps, and thus end up with explicit expressions for
the non-autonomous dynamical matrix A(s) and shift b(s) as finite Fourier series.
To obtain a similar bonus for the non-periodic case (i.e., for representations of the
trend), one would need to replace the functions above by others that do not in-
volve a variable length-scale L and random point s0. A simple choice is that of
monomials

Fk(s) = sk,

up to a power K. Then the dynamics is represented by a matrix A and a vector b
that depend explicitly on s through polynomials of degree K.

When the problem has more that one kind of variable –some periodic and some
trendy, for instance–, we can alternate the various types of function F(s) among
steps.

B.2 Multidimensional choices
When s lives in a multidimensional space, we can still use the one-dimensional

proposals involving s0 and L above, but picking the direction of space in which
they apply each step at random. Yet this is not a very effective procedure when the
dimensionality of s is large. An alternative is to use radial functions centered at s0,
such as

F(s) = e−r2
, r =

‖s− s0‖
L

.
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