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Abstract

An extension of the optimal transport problem is proposed, which includes a family of transformations incurring no transportation
costs. This extension improves the co-registration among imagery datasets where transformations such as rotations, displacements
and changes of perspective are a natural component of data acquisition. More generally, it provides a strategy for co-registration that
blends the robustness of optimal transport with the interpretability of models. The extended optimal transport problem pairs two
distributions with minimal additional distortion, while identifying a cost-free, explainable component of the map. A data-driven
formulation is developed, as well as a methodology for its numerical solution. The latter complements gradient descent with a
game-theory inspired approach, favoring collaborative moves between the cost-free and the unrestricted transformations. Sample
validations are provided. The methodology is illustrated through its successful application to matching pairs of both synthetic
and real images, which are conceptualized as weighted samples from underlying distributions, and through the determination of
treatment effects by co-registering treated and untreated populations in a synthetic example.

1. Introduction

In image processing, a common task in data analysis is to es-
tablish a co-registration between a pair of data sets: the process
of aligning and overlaying data sets to improve the accuracy of
analysis, such as matching objects or locations in photographs
taken at different times and angles. One of the key applica-
tions of co-registration is to detect changes driven by different
sources of variability that warrant attention. Factors contribut-
ing to the noteworthy changes that make image co-registration
challenging include

• physical (unexplained) factors contributing to changes in
data that causes content deformations, such as tree growth,
presence or absence of a vehicle, or an object broken over
time,

• and perceptual (modeled) factors bringing changes in
data that are natural or well-understood components of
data acquisition and, therefore, independent of object/loca-
tion correspondence, such as changes in lighting, spatial
extent, perspective, and resolution.

Thus, there is a need for co-registration methodologies that are
robust to such a wide multitude of variabilities.

In Mathematics there are methodologies that are by their very
nature robust to changes of the physical kind. One group of
these is referred to as optimal transport (OT) based problems
(Villani et al., 2009) OT methods conceptualize change as two
distributions of information. One is considered the reference
or ”source” (e.g. the earlier photograph of a scene). The other
is considered the target (e.g. the latter photograph). Selecting
one over the other as source versus target has no effect, as each
are treated as probability distributions. OT methods seek a pair-
ing among of the distributions with minimal distortion. Thus,

actual changes between the data sets are intrinsic to the meth-
odology’s conceptual framework. More precisely, the optimal
transport problem seeks a co-registration between two probab-
ility distributions ρ(x) and µ(x), x ∈ Rd, in the form of an
invertible map y = T (x) satisfying the push forward condition

ρT
def
= T#ρ = µ, (1)

that the pre-images of all measurable sets B preserve their meas-
ure, ρ(T−1(B)) = µ(B). Among all maps T satisfying (1), the
optimal map minimizes a total transportation cost C of deform-
ing ρ(x) into µ(y).

While well-suited to address physical changes in a scence, the
OT methodology does not intrinsically handle variability of the
perceptual kind. For example, if an image has been rotated, for
instance, the optimal map T will deform it, in order to minim-
ize the Euclidean transportation cost. Instead, the aim of this
research is to enable rotations and other admissible transforma-
tions to be performed by default, thereby incurring no transport-
ation costs. In a rough sense, the approach presented herein can
be considered as a pre-processing step. With this is mind, an
extension to the classical OT problem is proposed that includes
a family of cost-free transformations.

The choice of transformations, Q, that should be cost free is
application-dependent. Below are some realistic examples, al-
though this paper considers the formulation and validation of
only a subset of these:

1. For comparing images of handwritten digits, a sensible
cost-free family of transformations Q includes translations,
rotations and zoom-in/out of the digits.

2. For some photographs, Q should filter out the perspective
and distance from which the pictures were taken.



3. For pictures of natural settings, the desire may want to ex-
clude the effect of the time of the day, day of the year,
and weather from the analysis, so as to establish a co-
registration among pictures of the same place taken at dif-
ferent times. For that Q would be the group of time and
weather-sensitive transformations related to variations of
sunlight and cloud cover.

The proposed formulation for a modified optimal transport prob-
lem in this article detects both sources of variability simultan-
eously, where the cost-free map Q accounts for the perceptual/-
modeled changes and the cost-minimizing map T resolves the
complete co-registration including physical changes in content.

While there are literally hundreds of approaches to image match-
ing, the use of “Common Feature Detectors (CFDs)” has re-
tained prominence over several decades. CFDs are deployed
predominantly for object detection, image recognition, and cam-
era motion estimation and generally can address image match-
ing when translation, rotation, and scaling are needed (Kuai
et al., 2010). As an example, the OpenCV library (Bradski,
2000) offers several well-established ones. These include Bin-
ary robust Independent Elementary Features (BRIEF), Oriented
Fast and rotated BRIEF (ORB) (Kulkarni et al., 2013), bin-
ary robust invariant scalable keypoints (BRISK) (Leuteneg-
ger et al., 2011), and Learned Arrangement of Three Patches
(LATCH), which is built on local binary patterns using trios
of mini-patches for descriptor generation (Levi and Hassner,
2016). All have different performance metrics and specific at-
tributes. For example, LATCH tends to outperform both Scale
Invariant Feature Transform (SIFT) (Lowe, 2004) and Accel-
erated Kaze (AKAZE) (Alcantarilla et al., 2013), in terms of
affine capabilities, despite AKAZE’s use of finite element diffu-
sion to accelerate the Gaussian scale estimation in conjunction
with either a floating-point descriptor or a modified local dif-
ference, binary descriptor for improved detection and enhanced
matching.

Notably, these approaches rely on the essence of labeling and
pairing and, hence, cannot be extended to higher dimensional-
ity. The methodology proposed in this article, by contrast, ex-
tends naturally to any number of dimensions by discovering a
distribution-wise correspondence. The reader is also directed to
a different body of work of relevance titled Shuffled Regression
[ (Li et al., 2021) and (Pananjady et al., 2018)], which seeks
the linear map between sets that best matches their underlying
distributions.

The optimal-transport and model-based co-registration proposed,
herein, can be extended to highly disparate problems, some
physically very different from image processing. For instance,
the same framework addresses the estimation of the effect of
a treatment, which could refer to an actual long-term medical
treatment, a habit such as smoking or exercising with potential
effects on a person’s health condition, indicated by metrics such
as blood pressure or glucose level, or any other intervention
whose effect one seeks to estimate. There the treatment’s effect
is represented by the map T between an untreated and a treated
population, and Q consists of a parametric model of this effect
based on prior knowledge. Notice that the data in this case con-
sists of samples drawn from two populations, in contrast with
those treatments where each patient’s state can be observed be-
fore and after treatment, so the pairing between populations is
known before hand. The same notion of treatment and toolbox

for analysis applies well beyond medical applications, quanti-
fying for instance the effect of economic policies on a nation’s
wealth.

2. Formulation

Traditionally, the regular optimal transport problem adopts the
form

min
T

C(T ) = Eρ [c (x, T (x))] subject to T#ρ = µ. (2)

Here c(x, y) is an externally provided pairwise transportation
cost satisfying c ≥ 0 and c(x, y) = 0 ⇔ x = y. A canonical
cost in normed spaces is given by

c(x, y) =
1

2
∥y − x∥2, (3)

which will be adopted for this paper’s numerical examples.

In order to include “free” displacements Q, this paper proposes
to replace the formulation in (2) by

min
T,Q

Eρ [c (Q(x), T (x))] subject to T#ρ = µ, Q ∈ F ,
(4)

where F is the family of allowed cost-free transformations. In
this formulation, T is still required to push forward ρ to µ, but
the pairwise cost c no longer measures the transportation cost
between the original x and T (x). Instead, it measures a reduced
cost where x has been optimally displaced to Q(x), using the
additional freedom provided by the familyF . Thus the joint op-
timization problem (4) on T and Q pushes forward ρ(x) to two
different distributions: to µ = T#ρ, and to µ̃ = Q#ρ, so that
the corresponding expected value of the pairwise transportation
cost between the two is minimal.

If the family F is sufficiently rich to push forward ρ to µ on its
own through a map Q ∈ F , the optimal solution has T = Q and
zero total cost. When such completely cost-free transportation
is not available, Q(x) can be thought of as a solution to the
relaxed problem

Q#ρ ≈ µ, Q ∈ F ,

with minimal transportation cost between µ̃ = Q#ρ and µ.
This yields the alternative formulation

min
Q∈F

Wc (Q#ρ, µ) , whereWc (µ̃, µ) = min
π(z,y)∈Πµ̃,µ

Eπ [c (z, y)]

(5)
is the c-Wasserstein distance and Πa,b is the set of distributions
coupling a and b. When F is the family of linear maps, this
formulates Shuffled Regression in terms of optimal transport.

The formulation in (4) is well-suited for a double-flow proced-
ure, with two flows that trace the maps z = T (x) and w =
Q(x), respectively. In applications, the distributions ρ and µ
are not provided in closed form but, instead, through a finite
number of samples. Replacing (4) by a data-driven formulation
requires writing in terms of the sample sets X = {xi}Ni=1 ∼ ρ
and Y = {yj}Mj=1 ∼ µ:

1. The maps themselves z = T (x) and w = Q(x), which
we represent through their values zi, wi on the available



samples xi. Then

zi(t) = T (xi, t) , wi(t) = Q (xi, t) ,

where t represents an algorithmic time associated with the
flows.

2. The push-forward constraint that ρT ≡ T#ρ = µ, which
is rewritten in terms of the Kullback-Leibler divergence

KL (ρT , µ) =

∫
log

(
ρT (z)

µ(z)

)
ρT (z) dz = 0. (6)

Since the relative entropy between any two distributions is
non-negative, the condition in (6) minimizes KL (ρT , µ)
over the map T , a formulation that will be instrumental
in the construction of a flow-based descent algorithm. In
terms of the samples {zi} ∼ ρT , thus

KL (ρT , µ)→ K̂L (Z, Y ) =
1

N

∑
i

log

(
ρ̂T (zi)

µ̂ (zi)

)
,

(7)
which is complemented with kernel density estimation,

ρ̂T (y; {zi}) =
1

N

N∑
i=1

κa (y, zi) ,

µ̂a(z; {yj}) =
1

M

M∑
j=1

κa (z, yj) .

(8)

The demonstrated numerical examples use Gaussian ker-
nels of the form κa(·, γ) = N(γ,A2), where A2 ∈ Rd×d

is a diagonal covariance matrix, with entries Akk = ak

determined by the rule of thumb along each independent
dimension.

3. The constraint that Q ∈ F . Families F are considered
with an explicit parametric form, so any Q ∈ F is spe-
cified by its defining parameters α.

4. The cost function Eρ [c (Q(x), T (x))], for which a sample-
based formulation replaces the expected value by the em-
pirical mean:

C (Q(X), T (X)) =

∫
c (Q(x), T (x)) ρ(x) dx

→ Ĉ(W,Z) =
1

N

∑
i

c (wi, zi) .

3. Description of the algorithm

A sample-based driven formulation of the problem in (4) reads

min
z,α

L ≡ 1

N

∑
i

c (wi, zi) +
λ

N

∑
i

log

(
ρT (zi)

µ (zi)

)
, (9)

wi = Q (xi, α) , Q ∈ F ,

where µ and ρT are estimated from their samples {yi} and
{zj} through (8), and the parameter λ > 0 penalizing non-
compliance with the push forward condition evolves over time
as described in Appendix A.1. Adopting parametric maps that
form a group over α,

Q (Q(x, α), β) = Q(x, γ(α, β)), Q(x, 0) = x,

allows discretization of the flow wi(t) into near-identity maps:

wi

(
tn+1

)
= Q (wi (t

n) , αn) , ∥αn∥ ≪ 1.

Then the minimization problem in (9) can be solved by tracing
discrete flows (zn, wn), determined through gradient descent of
L:

z0i = w0
i = xi, zn+1

i = zni − η
∂L

∂zi
,

wn+1
i = Q (wn

i , α
n) , αn = −η ∂L

∂α
,

where η is an adaptive learning rate (described in Appendix
A.2) and all partial derivatives of L are evaluated at (z = zn, w =
wn, α = 0).

Yet such a straightforward descent procedure has limitations.
On the one hand, the initial values adopted, zi = wi = xi

may be far from the optimal {z∗i , w∗
i }, possibly beyond their

basin of attraction under gradient descent. On the other, it is
more efficient for z and w not to descend L independently but to
“act collaboratively”. To see this, consider a deformation-free
scenario, where a map Q ∈ F could satisfy the push-forward
condition on its own, so the optimal answer should have zi =
wi. Yet whenever this condition holds, ∂L

∂α
= 0, so only z

evolves, leaving w behind. If instead, the minimization process
is considered as a two-player game in which w and z could
“anticipate” how the other would react to their displacement,
they could move together, conspiring to make L decrease in
ways that neither alone could.

To address these limitations, the initialization of z and w is
improved through a preconditioning procedure, thereby mov-
ing from gradient descent to a game-theory-based approach,
whereby two players, with strategies z and α respectively, seek
to optimize the objective function both directly and through ac-
tions that lead the other player to act in a convenient way.

3.1 Preconditioning with the free transformation

In the alternative problem formulation in (5), the family of free
transformations approximates the full map as much as possible,
so as to minimize the transportation cost between µ̃ = Q#ρ
and µ. Hence a natural preconditioning procedure considers
Q alone, bringing the {wi} as close as possible to the {yj}
distribution-wise. This step is now formulated in terms of the
relative entropy between ρQ := Q#ρ and µ:

min
Q∈F

K̂L (W = Q(X), Y ) =
1

N

∑
i

log

(
ρQ (Q(xi))

µ (Q(xi))

)
,

(10)
where ρQ(·) and µ(·) are replaced by their Kernel density estim-
ations based on the {wi} and {yj}, respectively. Next, equation
(10) is minimized through gradient descent over the parameters
α in Q(w,α), and set at the end of the preconditioning pro-
cedure zi = wi so that the initial values of Z and W for the
second phase of the algorithm are paired and close to the Y
distribution-wise.

This preconditioning procedure is similar in nature to a max-
imal likelihood-driven, normalizing flow (Tabak and Vanden-
Eijnden, 2010, Tabak and Turner, 2013) with three main dif-
ferences: a) the target distribution is not necessarily Gaussian,
b) the target is specified not by a closed form expression but



by a finite set of samples, and c) the parametric maps at each
step are constrained to adopt the form of the specified cost-free
transformations.

3.2 Multiplayer games

This minimization problem is now rewritten as a game between
two players with strategies W and Z, each trying to minimize
the objective function L not only through the direct effect of
their move on L, but also through the indirect, second order
effect produced by the expected response of the other player to
their move.

Next is the application of a general methodology for multi-
player games restricted to two players with the same objective
function L in (9), which yields following system for evolving
w and z:

zn+1 = zn − ηz
[
∇zL− ηz[∇2

zαL] · ∇αL
]
,

αn+1 = −ηα
[
∇αL− ηα[∇2

zαL] · ∇zL
]
,

wn+1 = Q
(
wn, αn+1

)
.

Here z, w and α stand for the vectors with components {zi},
{wi} and {αj} respectively,∇a for the gradient operator in the
a-variables, and∇2

zαL for the off-diagonal block in the Hessian
of L(z, α). The logic underlying this procedure is that each
player anticipates how the other player will react to their action
and how the reaction will affect their own objective function.

4. Numerical examples

This section illustrates the effectiveness of the methodology
proposed through a series of pairs of two-dimensional datasets
corresponding to both synthetic and real images and through
the determination of treatment effects in a synthetic example.
These were selected to illustrate highly specific aspects of the
cost-free transformations.

4.1 Synthetic images

Rotated rectangle In this first example, both the source and
the target distributions ρ and µ are uniform on 20 × 4 rect-
angles centered at the origin, but the two rectangles are rotated
by an angle θ = π

3
with respect to each other. In order to for-

mulate the data-based optimal transport problem, 500 particles
are drawn from each distribution, as shown on the leftmost and
rightmost panels on the top row in Figure 1. The source and
target are sampled independently, so there is no one-to-one cor-
respondence between their samples themselves.

The natural cost-free maps for this problem are rigid rotations
about the origin, parameterized by the rotation angle θ. To
appreciate the need for cost-free transformations, consider the
second panel on the top row of Figure 1, with respect to the
solution to the regular optimal transport problem between source
and target. For better visualization of the map Z = T (X), the
particles are aligned with a color scheme based on their initial
positions in the source distribution. As the image shows, pure
optimal transport fails to identify the rotation, producing instead
significant deformation that destroys the color-alignment, res-
ulting in a very counter-intuitive co-registration. The optimal
map could not possibly have consisted of a pure rotation, since
under the canonical cost (3), the optimal maps are necessarily
curl free (McCann, 1995).

By contrast, the third panel of the top row in Figure 1 shows
that when cost-free rotations {Q(x)} = {(Rθ)x

∣∣ θ ∈ [0, 2π)}
are allowed, then the transported particles align correctly under
a close-to-zero cost, since the rotation is fully recovered by the
cost-free map Q alone.

Modified rectangle In the previous example, the initial and
final distributions were rotated versions of each other, so the op-
timal solution had T = Q. In order to include physical deform-
ations that Q alone cannot capture, this example is modified by
perforating a circle of radius 1 from the target distribution, as
shown on the right panel of the 2nd row of Figure 1. In this
example, preconditioning rotates the source rectangle with zero
cost, while another 300 steps of multiplayer game successfully
complete the job, emptying out the hole, as shown on the 2nd
row, resulting in an overall transportation with non-zero cost.

ρ

Qθ#ρ

T1#ρ

min
T1

C = W22(ρ, ρT1)

min
θ

C = 0
̂θ ≈ π

3

μ2ρT2

ρT1 ρQθ μ1

T2#ρ

min
θ,T

C = W22(ρQθ
, ρT)

KL(ρQθ
, μ1) ≈ 0

KL(ρT1, μ1) ≈ 0

≈ 1.52 ⋅ 101

≈ 3.34 ⋅ 10−1

KL(ρT2, μ2) ≈ 0

Regular OT Cost-free transport Extended OT with cost-free component Interaction

Figure 1. Initial samples from the source (leftmost) and samples
from the target (rightmost), their position after transportation,

displaying Z = T (X) with color assignment, under pure
optimal transport (2nd panel, top row) and with cost-free

rotations (3rd panel, top row) for a rigidly rotated target and, on
the second row, after 100 steps of preconditioning and 200 steps
of the multiplayer-game with cost-free rotations for a perforated

and rotated target.

4.2 Real images

Next the algorithm is applied to real world images drawn from
the photograph of Mount Fuji shown in Figure 2 and the MNIST
data (Deng, 2012). Co-registration among images, matching
objects and locations in noisy backgrounds are common in data
applications. In order to apply the proposed methodology to im-
ages, the images must first be interpreted as distributions with
pixels serving as samples thereof. The following subsection de-
velops such interpretation for black-and-white pictures.

4.2.1 Images as distributions: a formulation in terms of
weighted pixels So far the problem has been posed in terms
of two distributions ρ and µ, known through samples {xi} and
{yj}. The situation with images is somewhat different: the data
consists of two images known through two sets of values asso-
ciated to a uniform grid of pixels. This raises two questions:
(1) can an image be described as a probability distribution, and
(2) are pixel values in any sense equivalent to random samples
thereof? For simplicity, these questions are addressed for black-
and-white pictures, though similar considerations apply to color
pictures and higher spectral datasets.



Figure 2. Full image of Mount Fuji with 664*1601 pixels, each
containing one color channel in a gray scale between 0 and 1.

Physically, images are indeed probability distributions, as they
represent the local density of photons hitting the screen. Even
though understanding the physical underpinning of images is
not required for their analysis, it is comforting to know that
treating images as distributions is not just a convenient math-
ematical construct. Thus an image can be described as a distri-
bution ρ(x), where x =

(
x1, x2

)
is supported on a rectangular

frame. Larger values of ρ correspond to a higher density of
photons per unit area weighted by their energy (i.e. to more
whiteness).

In this conceptualization, the ρ and µ are still distributions. Yet
instead of random samples from them, values in a gray scale
are readily available ρi, µj ∈ [0, 1] attached to equally-sized
pixels, as demonstrated in Figure 3. Even though the location
of the pixels is fixed, it is important to think of them as movable,
since moving them is what optimal transport procedure does. A
natural way to reconcile these two perspectives is to think of the
pixel locations as particularly regular samples from a uniform
prior distribution U and of {ρi}, {µj} as weights that correct
for the fact that the actual distributions are not uniform:

ρi ∝
ρ (xi)

U (xi)
, µj ∝

µ (yj)

U (yj)
,

where the constant U is provided with arguments just to em-
phasize the sample re-weighting concept. Then the modified
data-driven problem setup seeks a map that pushes forward a
source to a target distribution, respectively known through two
sets of weighted samples {(xi, ρi)}Ni=1 and ({(yj , µj)}Mj=1. The
corresponding flow moves the samples zi(t) = T (xi, t), while
keeping their weights ρi fixed.

Figure 3. Visualization of a 3*3 image as a set of weighted
pixels.

Since both the relative entropy and the transportation cost are
defined through expected values under ρ, their weighted empir-
ical versions are

K̂L(ρ, µ) =
1∑
i ρi

∑
i

ρi log

(
ρT (zi)

µ (zi)

)
, (11)

and

Ĉ (Q(X), T (X)) =
1∑
i ρi

∑
i

ρi c (Q(xi), T (xi)) . (12)

Kernel density estimation also derives from an expected value.
Thus, µ and ρ can be estimated from their sampled pairs
{(yj , µj)}Mj=1, {(xi, ρi)}Ni=1, through a weighted sum of kernel
functions:

µ̂a(y; {yj}) =
1∑
j µj

M∑
j=1

µjκa (y, yj) ,

ρ̂b(x; {xi}) =
1∑
i ρi

N∑
i=1

ρiκb (x, xi) .

where the bandwidths a and b are proportional to the pixel size
along each axis.

To visualize the weighted samples throughout the transporta-
tion, the samples are reconstructed into pixels drawn from the
same distribution via kernels as elaborated in A.3.

Rotated, blurred and distorted image of Mount Fuji To
demonstrate the processes, first only small fractions of the pic-
ture of Mount Fuji in Figure 2 are modified by rotating, blurring
and deforming, so as to test both the free transformations (rota-
tions in this case) and the additional changes.

Starting with a simple co-registration case, the source image is
selected as a 80*80 section of the top of Mount Fuji. For the
target, the same image rotated by an angle of π/6 is employed.
To ensure that co-registration is purely based on the picture’s
content and not on recognizing the rectangular contour of the
images, the corner edges of both source and target images were
removed. This left only the two inscribed circles visualized in
Figure 4.

T1#ρ

ρ

μ1ρT1

̂θ ≈ π
6

μ2

μ3

ρT2

ρT3

KL(ρT1, μ1) ≈ 0Qθ#ρ

ρQθ

Qθ#ρ

Qθ#ρ

T2#ρ

T3#ρ

KL(ρT2, μ2) ≈ 0

KL(ρT3, μ3) ≈ 0

min
θ,T1

C

min
θ,T2

C

min
θ,T3

C

Qθ#ρ

Cost-free transport Extended OT with cost-free component Interaction

Figure 4. Images (80*80 pixels) of the top of Mount Fuji as the
source, a rotated version as a first target in the 1st row, a further
blurred version in the 2nd row, and two other version with extra

local deformations of the pixels in the last two rows as
alternative targets.

In the rotation-only example with target represented in the right
panel of the 1st row of Figure 4, the preconditioning alone can
solve the problem, i.e. T = Q, as shown in the middle panel.



When the target image is not just rotated but also blurred, de-
formations are required. The blurring is introduced as a change
in resolution. The rightmost panel of the 2nd row in Figure 4
depicts the target, which is both rotated and artificially blurred,
using as high-to-low pass filter the convolution of the matrix of
pixel intensities with a Gaussian kernel. The results of the co-
registration procedure, displayed in the 2nd row, show how the
rigid rotation of the image as displayed in the 3rd panel –nearly
completed during pre-conditioning– is complemented by small,
local deformations that perform the task of blurring the image
as shown in the 3rd panel. The resulting transported image dis-
tribution is almost identical to the actual target with essentially
zero relative entropy.

In addition to artificial blurring, local stretching and compress-
ing of the pixels can also bring in deformations. The 3rd row in
Figure 4 depicts the results of applying the procedure to target
–rightmost panel– that is both rotated and locally stretched out
using a radial-based quadratic kernel

f1

((
r
θ

))
=

(
r + ϵ · r(R− r)

θ

)
, ϵ = 1,

where
(
r, θ

)T is the polar coordinates of each pixel in 2D, R is
the largest radius to the image center, and ϵ > 0 is some small
perturbation factor.

The last row of figure 4’s displays similar results when the target
is obtained through an angle dependent, radial-based stretching
and compressing of the image. After rotation, the pixels are
re-located through

f2

((
r
θ

))
=

(
r + ϵ · sin( 2πr

R
)

θ

)
, ϵ = 0.03.

MNIST data To further illustrate the procedure, co-registration
is applied to different instances of hand-written digits impor-
ted from the MNIST dataset (which contains several images
of each of the 0-to-9 digits, differing in size and hand-writing
style). Each image of a digit has 28×28 pixels with gray-scaled
weight, so the same set up of weighted samples can be used as
that employed for the examples on Mount Fuji. Co-registering
two instances of the same digit provides a more interesting chal-
lenge than the simple rotations and blurring we considered be-
fore, since the variety of hand-writing styles can bring in non-
standard deformation. Consider the two handwritten digits “3”
displayed in the first row of Figure 5.

As the target digit 3 seems to be slightly counter-clockwise-
rotated and vertically-compressed compared to the source di-
git 3, the family of cost-free transformations are extended –
adding to the rigid rotation the possibility of global translation
and stretching factors:

{Q(x)} = {Rθ x+s x+∆, with θ ∈ [0, 2π), s ∈ R,∆ ∈ R2}.

The results, displayed in the middle row of Figure 5, show
a consistent co-registration. Precondition rotates, translates,
and compresses the source digit 3, as shown in the 2nd panel.
The ensuing multiplayer-game algorithmic steps make small
adjustments to the rotation angle, displacement distance, and
the stretching factor, while further deforming the digit to com-
plete the map to reach the final status in the rightmost panel.
The extended explainability derived from the more comprehens-

T#ρ = μ μ

ρT1
(Qθ,s,Δ)#ρ

ρQθ,s,Δ

ρ

(QA,Δ)#ρ

T1#ρ

ρQA,Δ
ρT2

KL(ρT1, μ) ≈ 0

KL(ρT2, μ) ≈ 0

T2#ρ

min
θ,s,Δ,T1

C = W22(ρQθ,s,Δ, ρT1)
≈ 4.52 ⋅ 10−3

min
A,Δ,T2

C = W22(ρQA,Δ, ρT2)
≈ 5.34 ⋅ 10−4

Cost-free transport Extended OT with cost-free component Interaction

Figure 5. Two gray-scaled, hand-written digits 3 in different
styles as the source and the target. The middle column displays
cost-free components from the family of linear combinations of

rotation, scaling, and translation, and the corresponding
completion of the map. The right column shows the cost-free
affine transformation and the corresponding unrestricted push

forward map.

ive family of cost-free transformations, results in a small trans-
portation cost.

Affine transformation Instead of considering rotation, dis-
placement, and stretching separately, a more general family of
affine transformations can be introduced

{Q(x)} = {(I +A)x+∆ = x+Ax+∆,

with A ∈ Rd×d,∆ ∈ Rd}

where I ∈ Rd×d is the identity matrix and d represents the
dimension. This indicates any linear mapping A with some bias
∆ persists substantial integrity and incurs zero cost.

The results, displayed in the last row of Figure 5, show a differ-
ent, more robust correspondence between the source and the tar-
get. Precondition performs affine transformation of the source
digit 3, which obviously include rotation, translation, and com-
pression, as shown in the 2nd panel. The following multiplayer-
game algorithmic steps make small adjustments to the linear
mapping and the free displacement, while bringing extra de-
formation of the digit to reach the final status in the rightmost
panel. The even stronger explainability derived from the cost-
free family of affine transformations, results in an even small
transportation cost. In fact, the enhanced cost-free compon-
ents result in a different transportation destination with a better
alignment with the target digit 3 as shown in the rightmost two
panels in the last row.

4.3 Treatment effect

The additional cost-free transformations can also account for
prior knowledge on the potential effect of a treatment. When
studying the effect of a medical treatment, the control group
and the treatment group often consist of different populations,
i.e. one group of patients receive the treatment and the other
does not. Hence, unlike scenarios where the state of the same
patient before and after treatment are known, there is no point-
wise correspondence between the control group and the treated
group, corresponding to the source and target in the transporta-
tion set up. Then, co-registration serves to figure out the effect
of the treatment based on a distribution-wise map, attributed to
either modeled or data-driven sources of variability.



Lacking more detailed knowledge of the effect of a treatment,
a common and most straightforward characterization of the po-
tential effect is through a linear model. In this case, the family
of cost-free transformations consist again of affine maps, which
is the example that will be used for illustration,

{Q(x)} = {(I +A)x+∆ = x+Ax+∆,

with A ∈ Rd×d, ∆ ∈ Rd}.

The affine map pushing forward one distribution to another is
unique up to a group of affine-invariant surfaces. For example,
an isotropic Gaussian distribution is mapped to itself by any
rotation. Therefore, the discovery of the map through trans-
portation is only unique and well-conditioned when the source
data (control group) exhibits sufficient complexity and hetero-
geneity, which is typically the case in real data.

In the artificial experimental setup displayed in Figure 6, the
source data (control group) {xi} is distributed as a mixture (ρ)
of Gaussians distributions. The target (or experiment group) µ
is built from another set of patients {x̃j} generated from the
same Gaussian mixture and then “treated” through an affine
map (defined by A and ∆), with added noise that mimics the
uncertainty of treatment effects and a nonlinear correction that
mimics model error.

{xi}, {x̃j} ∼ ρ,

yj = Ax̃j +∆+ ϵ1σ1(x̃i) + ϵ2σ2i ∼ µ,

where ϵ1, ϵ2 are small positive numbers, σ1(x) = x3
1 represents

model error and σ2i ∼ N(0, 1) represents random noise.

Figure 6. Source data (control group) generated from a Gaussian
mixture, the final screenshot after the optimal transport, and
target data (experimental group), created through an affine

treatment with added noise and nonlinear corrections applied to
independent samples or ρ. The black circles and connecting

dashed lines show the predicted treatment effect on six patients.

Provided with no prior pairwise correspondence among the two
sets of patients in a noisy environment, the proposed algorithm
discovers the effect of the treatment, as shown in Figure 6. The
cost-free transformation successfully detects the modeled affine
transformation with little error. In this example, with zero bias
∆ = 0, it yields

A =

(
1 0.5
0.5 1

)
, Â =

(
0.9565 0.6432
0.4539 1.1102

)
,

where A is the true linear effect, and Â is the discovered affine
component of the map, with ∥A− Â∥2 ≈ 0.1912.

5. Conclusions

This article proposes an extension of the optimal transport prob-
lem, accounting for natural transformations of the source distri-

bution that should be free of cost. Allowing such transform-
ations is key to a proper co-registration of data sets. The art-
icle develops a data-driven formulation of the extended prob-
lem and a numerical methodology for its solution. Applying
the new methodology to images requires a novel conceptualiza-
tion of images as probability distributions, with pixel values as
weighted samples thereof.

Four elements stand out among those requiring further develop-
ment:

1. In the examples provided herein, the free transformations
adopted a simple parametric form. Yet there are instances,
such as changes in luminosity or vegetation growth between
the source and target distributions, that would require to
learn the corresponding family of transformations from the
data.

2. Implementing the push-forward condition with less com-
putational cost than through the relative entropy and in a
way that extends to high-dimensional settings, to allow for
an effective co-registration of large data sets.

3. Extending the characterization as probability distributions
of images to more complex and irregular data sets requir-
ing co-registration, such as point clouds.

4. Historically, the class of OT methods has been computa-
tionally expensive, thus there is significant room for accel-
eration. One possible approach is further optimization of
the selected items for distribution where a set of guidance
could be developed that considers both the size of the data
sets and their complexity.
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A. Appendix / supplemental material

A.1 Choice of the penalization parameter λ

We allow the penalization parameter λ to depend on algorithmic
time, determining its value at each step through the extension of
a methodology first proposed in (Tabak et al., 2022). At each
step, the evolution of Z is determined from the competition
between two typically conflicting goals: to satisfy the push-
forward condition and to remain as close as possible to W ,
through the respective minimization of K̂L(Z, Y ) and Ĉ(W,Z).
The parameter λ assigns relative weights to these two compon-
ents. Since the push-forward condition is a hard constraint, we
require that the full Z-gradient of the objective function with re-
spect to Z projects positively onto the Z-gradient of K̂L(Z, Y ).
This provides a lower bound for λ.

In order to ensure that K̂L(Z, Y ) is non-increasing,

• We first compute the gradient of both components of the
objective function at the current position Z(t):

u := −∇ZK̂L(Z, Y ;Z)

∣∣∣∣
Z(t)

, v := −∇ZĈ(W,Z)

∣∣∣∣
Z(t)

.

• We choose a direction s of descent as a linear combin-
ation of u and v that projects positively onto u, so that
K̂L(Z, Y ) decreases to leading order in η:

Z(t+ η)− Z(t) ∝ s, s := v + λu, ⟨s,u⟩ ≥ 0.

To this end,

– if ⟨u,v⟩ > 0, set λ = 0,

– else, set ⟨s,u⟩ = ϵ∥u∥2, with 0 < ϵ < 1:

⟨s,u⟩ = ϵ∥u∥2

=⇒ ⟨v,u⟩+ λ∥u∥2 = ϵ∥u∥2

=⇒ λ = ϵ− ⟨v,u⟩∥u∥2 .

A.2 Choice of the learning rate η

We use a simple adaptive procedure to evolve the learning rates
for the transporting particles Z and W :

• Set an initial learning rate η0.

• At time t,

– double the learning rate ηt = 2ηt−1,

– while necessary, repeatedly half the learning rate un-
til the objective function at the new potential points
Z∗ = Z(t) + ηtŻ is smaller than at at Z(t), and set
Z(t+ 1) = Z∗ (and similarly for W .)

Algorithm 1 Update learning rate
ηt ← 2ηt−1 ▷ double step size
z(t+ 1)← z(t)− ηt · ∇z(t)L ▷ move data with current step
size
while L (z(t+ 1)) > L (z(t)) do ▷ terminate when the loss
decreases

ηt ← ηt/2 ▷ half step size
z(t+ 1)← z(t)− ηt · ∇z(t)L ▷ move data with current

step size
end while

A.3 Image reconstruction

Having conceptualized an image as a set of weighted samples
drawn from a distribution, we need to visualize the results of the
optimal transport procedure, which moves these samples {xi}
to the corresponding {zi}. This requires the inverse process,
taking as input a set of weighted samples –no longer uniformly
distributed– (zl, ρl) and producing an image: a set of intensity
values Ii on the original regular, rectangular grid {xi}. For this,
we can use kernels again:

I(xi) = Ii =
∑
l

ρl
κh(xi, zl)∑
h κa(xk, zl)

.

Because images are inherently local, we choose a kernel with
strictly local support and linear growth:

κh(·, c) = max

{
1− ∥ · −c∥∞

h
, 0

}
.

We pick as bandwidth h for image reconstruction the length of
the pixels’s sides, so that the effect of each zi on the image does
not extend beyond the boundaries of the pixel within which it
falls.


