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Abstract

We discuss the singular behavior of solutions to two-dimensional, general second-
order, uniformly elliptic equations in divergence form, with bounded measur-
able coefficients and discontinuous Dirichlet data along a portion of a Lipschitz
boundary. We show that the conjugate to the solution develops a singularity that
is at least logarithmic along the boundary at the points of discontinuity in the
boundary data.

A problem like this arises in the study of self-similar solutions to the hyper-
bolic conservation laws in two space dimensions given by the unsteady transonic
small disturbance (UTSD) flow equations. These solutions model the reflection
of a weak shock wave upon a thin wedge in the regime where the von Neumann
paradox applies.

The present result provides a step in the direction of understanding the nature
of the solutions to the UTSD equations near a triple point. It shows that the flow
behind the triple point cannot be strictly subsonic under some mild assumptions
on the solutions. c© 1999 John Wiley & Sons, Inc.

1 Introduction

In this paper, we use a theorem on harmonic measure theory to restrict the type
of singularities that the self-similar solutions to the unsteady transonic small distur-
bance (UTSD) flow equations may support. These constraints replace a previously
promising explanation of the von Neumann paradox of Mach reflection. Our main
theorem shows that the conormal derivative along the boundary (of a solution to a
two-dimensional boundary value problem with discontinuous Dirichlet data for a
strictly elliptic symmetric equation in divergence form) has an average at least of
O(1) on any interval (t, 2t) with a size that depends only on the ellipticity. Here t is
the distance to the discontinuity, and the statement is true for any sufficiently small
t. This implies that the conjugate variable exhibits at least logarithmic behavior
along the boundary in a neighborhood of the point of discontinuity. As explained
in Section 3, this then rules out such solutions as not physical.
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The paper is divided into four sections and an appendix. In Section 2 we present
the main theorem for general, second-order, symmetric, uniformly elliptic equa-
tions in divergence form, with bounded measurable coefficients in a Lipschitz do-
main. In Section 3 we explain the relationship of this theorem to the von Neumann
paradox and exhibit a class of exact solutions to the (nonlinear) UTSD equations
with a fan and a logarithmic singularity. The equations in the natural physical vari-
ables are not symmetric, but we exhibit here variables in which the problem takes a
symmetric form. In Section 4 we prove the main theorem. The appendix contains
some results from harmonic analysis and estimates used in the proofs.

Remark 1.1. Our proof depends on two results in harmonic measure theory of el-
liptic operators in divergence form: the doubling property of the harmonic mea-
sure and the boundary Harnack principle. In the symmetric case these results were
proved by Caffarelli, Fabes, Mortola, and Salsa [4]. Recently Kenig, Koch, Pipher,
and Toro [11] pointed out that the proofs can be reproduced for nonsymmetric op-
erators in divergence form. In this case, our proof here can be extended to the
nonsymmetric case as well.

2 A Theorem on Harmonic Measures

We shall describe the behavior of the solutions to a second-order, uniformly
elliptic, symmetric equation in divergence form, with bounded measurable coeffi-
cients in a two-dimensional Lipschitz domain, when the data has a jump disconti-
nuity at a boundary point.

We begin with a simple example, provided by any harmonic function u in the
half disc.

D+ = {x2
1 + x2

2 ≤ 1, x2 > 0} ,(2.1)

with boundary data u(x1, 0) = 1 for x1 < 0 and u(x1, 0) = 0 for x1 > 0.
Near the origin, the function u behaves asymptotically as θ/π, where θ is the polar
angle. Therefore, the normal derivative to the boundary ux2(x1, 0) behaves as
1/(πx1). It follows that, if v = v(x1, x2) is the harmonic conjugate to u, then
vx1(x1, 0) ∼ −1/(πx1). Thus

|v(x1, 0)| ∼ −
1
π

log |x1| .

That is, if a harmonic function jumps along the boundary, then its harmonic conju-
gate has a logarithmic singularity at the point of discontinuity.

With the same domain and boundary conditions, consider a bounded function
σ satisfying a uniformly elliptic symmetric equation in divergence form. That is,1

Lσ = DiaijDjσ = div(A∇σ) = 0 ,(2.2)

1We use Di to indicate the partial derivative with respect to xi. We also use the convention
of summing over repeated indices. Finally, a superscript T on a vector or a matrix indicates the
transpose.
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where the 2× 2 matrix of coefficients A = A(x1, x2) = (aij) is bounded, measur-
able, symmetric, and, for some constant 0 < M ≤ 1,

M |~ζ|2 ≤ ~ζ TA(~x)~ζ ≤ 1
M
|~ζ|2(2.3)

for any ~x = (x1, x2)T in D+ and any ~ζ in R2.
Let now n̂ be the inner unit normal to the domain along the boundary ∂D+.

Then the inner conormal derivative associated with the operatorL = div A∇ above
is given by

Dν = n̂TA∇ .(2.4)

The conormal derivative is defined in such a way that, when equation (2.2) is writ-
ten as a first-order system (see equation (2.6) below), Dνσ coincides with the tan-
gential derivative of the conjugate variable η along the boundary.

We will then prove the following “averaging” theorem:

THEOREM 2.1 Consider a solution σ of (2.2) in the domain and with boundary
conditions as in (2.1). Let σ be bounded and between 0 and 1. Let σν = Dνσ
be the inner conormal along the bottom part of the boundary x2 = 0, i.e., σν =
{a21σx1 + a22σx2}

∣∣
x2=0. Then there exists a constant C > 0 such that, for any λ

with 0 < |λ| < 1,

ρλ =
∫ λ

λ/2
σν(x1, 0)dx1 ≥ C .(2.5)

The constant C depends only on the ellipticity of the operator L above in (2.2) and
(2.3). That is, C = C(M) only.

Translating this theorem to systems, we have the following, more general result:

THEOREM 2.2 Let σ and η satisfy a uniformly elliptic system in D+

a11σx1 + a12σx2 = ηx2

a21σx1 + a22σx2 = −ηx1

}
(2.6)

where the coefficients satisfy the same conditions as above in (2.2) and (2.3). Sup-
pose that the boundary data for σ is Hölder continuous except for a jump discon-
tinuity at the origin of coordinates. Then η goes to infinity at least logarithmically
along the boundary as the origin is approached.

Uniform ellipticity is invariant under bi-Lipschitz transformations; thus we
have the following:

COROLLARY 2.3 In Theorem 2.2, the half disc D+ can be replaced by any Lips-
chitz domain, where the solution σ of (2.6) satisfies Dirichlet boundary data that
are Hölder continuous except for a jump discontinuity at some point. Then the
theorem holds near the point of discontinuity, with η going to infinity along the
boundary (at least logarithmically) as the point of discontinuity is approached.
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3 The von Neumann Paradox of Oblique Shock Reflection

3.1 Description of the Problem

The problem that motivated this work is the so-called von Neumann paradox,
concerning a weak shock wave reflecting upon a very thin wedge. This problem has
been investigated theoretically by von Neumann [14, 18, 19], Morawetz [13], Brio
and Hunter [3], C̆anić and Keyfitz [5, 6], Tabak and Rosales [17], and many others.
We describe this paradox briefly here. The reader interested in a more complete
description should check the references above, the numerical work of Colella and
Henderson [7], and, in a broader context, the experimental work of Sturtevant and
Kulkarny [16] and the experimental and numerical work by Glaz, Colella, Glass,
and Deschambault [8].

Figure 3.1(a) schematically depicts a straight shock running parallel to a wall
and hitting a wedge. We model the dynamics of this problem with the Euler equa-
tions of inviscid gas dynamics. These are invariant under stretching of the inde-
pendent coordinates. The same applies to the configuration in Figure 3.1(a), which
we can adopt as the initial conditions for the followup flow. Thus the solution to
the problem (after the time t = 0 of Figure 3.1(a)) depends only on the self-similar
variables x/t and y/t (where x and y are the space coordinates measuring distance
along and from the wedge wall, respectively). We will make use of this fact below.

The flow configuration for t > 0 depends critically on the strength of the incom-
ing shock and the angle of the wedge. For moderate strengths and relatively large
angles, a pattern of regular reflection arises, whereby a reflected shock restores to
zero the component of the velocity normal to the wedge. For strong shocks and
relatively small angles, a Mach reflection takes place. In this, the incoming and
reflected shocks detach from the wedge, to which they are then joined by a much
stronger shock, the Mach stem. At the triple point where the three shocks meet,
a slip line appears, dividing the domain behind the reflected shock and the Mach
stem into two regions with different states.

The situation we are interested in, depicted in Figure 3.1(b), takes place for
an intermediate range of parameters (weak shocks and very small angles, the angle
scaling as the square root of the shock strength). Under these conditions, numerical
calculations and experiments show a reflection pattern that looks very much like
a Mach reflection. However, no slip line appears, and the state behind the “Mach
stem” is remarkably nonhomogeneous. This configuration is somewhat paradoxi-
cal, since the Euler equations of inviscid gas dynamics do not admit, in principle,
solutions with three sufficiently weak shocks meeting at a point.

In order to study this paradoxical reflection, one may simplify the equations by
magnifying the vicinity of the triple point, using the knowledge of the longitudinal
and transversal scales for which the paradox takes place and the fact that the shocks
are weak. This leads to a multiple-scale asymptotic expansion (see, for instance,
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a) Shock reaching the tip of a wedge. b) Irregular reflection.

by the expansion

Area magnified

FIGURE 3.1. Irregular reflection of a weak shock wave.

[10] or [15]) yielding the leading-order system of equations

σt +
(1

2σ2)
x

+ ηy = 0
σy − ηx = 0

}
.(3.1)

The independent variables here are stretched by the small shock-strength parame-
ter ε. In terms of properly nondimensionalized and unstretched space (X,Y ) and
time T coordinates, we have: x = (X − cT )/ε, y = Y/

√
ε, and t = T , where c

is the speed of sound in the unperturbed state. The dependent variable σ is propor-
tional to the leading (O(ε)) perturbation terms in the expansions for the pressure,
density, temperature, and velocity parallel to the wedge wall. On the other hand,
η represents the leading (O(ε3/2)) term in the expansion for the component of the
velocity normal to the wedge.

In this asymptotic context, the initial data of Figure 3.1(a) become

(σ, η) =

{
(0, 0) for x > αy

(σ1,−ασ1) for x < αy.
(3.2)

An oblique shock with angle specified by its cotangent α moves into a state at
rest, hitting a rigid wall described by the no-flow boundary condition η = 0. The
intensity of the shock is measured by the value σ1 of σ behind it; the value η1 =
−ασ1 follows from the jump conditions across the shock. Using the symmetry of
the problem mentioned above, we introduce the self-similar variables

ξ =
x

t
and τ =

y

t
.

Then the system of equations (3.1) reduces to

−ξσξ − τστ +
(1

2σ2)
ξ
+ ητ = 0

στ − ηξ = 0

}
.(3.3)
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This system has the characteristics

dξ

dτ
= −τ

2
±

√
τ2

4
+ ξ − σ .

Thus equations (3.3) are of mixed type: hyperbolic when 1
4τ2 + ξ − σ > 0 and

elliptic otherwise. The sonic line is defined by 1
4τ2 + ξ − σ = 0.

The paradox mentioned earlier then follows from the following observations:

1. Equations (3.1) with initial data (3.2) do not allow regular reflection when
the parameter s = σ1/α

2 is greater than 1
2 . In fact, regular reflection in a

strict sense cannot arise for values of s greater than 2/(2 +
√

5) = 0.4721,
the sonic point. This follows from a straightforward computation (see, for
example, [17]).

2. (Experimental) For s larger than about 1
2 , three shocks are observed appar-

ently meeting at a point. This configuration appears in actual experiments
with weak shocks, even though very few physical experiments have s in the
required range [7, 18], in the numerical solution of the full Euler equations of
gas dynamics [1], and in the numerical solution of the asymptotic equations
(3.1) [17].

3. The asymptotic equations (3.1) do not admit three shocks separating three
continuous states. This theorem is proved, for example, in section (IV–B) of
[17]. The same result for the equations describing potential flow is proved in
[13]. The result also holds for the full equations of gas dynamics.

4. For values of the parameter s ranging between 1
2 and 2, under some weak as-

sumptions, the solution to equations (3.1) with the initial condition (3.2) has
to give rise to three shocks intersecting. This result is proved in section (IV–
c) of [17]. In particular, if the self-similar equations (3.3) are strictly elliptic
in the domain behind the reflected wave, the result that triple shocks arise
follows immediately.

5. (Numerical) The most refined numerical experiments to date, performed
both for the full Euler equations of gas dynamics by M. Berger [1] and by
Rosales and Tabak for the asymptotic equations (3.1), have failed to detect
any hyperbolic (supersonic) domain behind the reflected wave.

Thus there is a completely inexplicable contradiction between theory and ex-
periments, and even an apparent inconsistency within the theory alone. Attempting
a way out of this paradox, two of the authors here suggested (in [17]) that perhaps
there were three shocks after all, but that one of the states separating them was not
continuous. In particular, it would be enough if σ, η, or both could develop a (sin-
gular) fanlike structure behind the triple point, thus making all five observations
above consistent.

Such fans do exist in the hyperbolic domain of equations (3.3); they are given
by simple waves. When the equations become elliptic, however, simple waves are
no longer allowed and, for fans to exist, one of the variables has to grow without
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bound. But σ must be bounded, as can be shown theoretically in a number of ways
and is also apparent in all numerical computations.2 Thus, if one variable is to
grow without bound at the triple point, it had better be η. Such solutions with a fan
in σ and a logarithmic singularity in η exist; an exact family is computed below in
Section 3.2. On the other hand, a local growth of η near the triple point vaguely
resembling (at least qualitatively) a logarithm has been observed in numerical ex-
periments with very fine grids [17]. But such solutions bring in another problem:
In order to satisfy the jump conditions, η has to be bounded along the shocks.

Two of the authors conjectured (in [17]) a way out of this paradox, which would
have η growing without bound (as the triple point is approached) only within some
wedge but not along either the reflected shock or the Mach stem. The main theorem
in this paper (coupled with the observation in Remark 3.1 below that the system
(3.3) can be written in symmetric form) shows that, if this is to be the case, the
equations behind the triple point cannot remain strictly elliptic.

3.2 A Family of Exact Solutions with a Fanlike Singularity

Since the self-similar Euler equations have locally centered simple waves, we
may expect the USTD equations to have some kind of distorted fanlike solutions.
Here we describe a family of exact solutions to equations (3.3) with a singularity
at an arbitrary point (ξ0, τ0). The Galilean invariance of the equations can be used
to choose ξ0 = 0. The sign of 1

4τ2 + ξ−σ determines whether a solution is locally
elliptic or hyperbolic. Applying this criterion at the critical point, we replace σ
by σ − 1

4τ0
2, whose sign determines the local character of the equations. We still

call the new variable σ to avoid introducing new names. The system (3.3) then
becomes (1

4τ2
0 − ξ

)
σξ − τστ + σσξ + ητ = 0

στ − ηξ = 0

}
.(3.4)

We introduce polar coordinates centered at (0, τ0). We represent the angle θ
by its cotangent ψ, which has a natural interpretation as the characteristic slope
dξ/dτ . Thus let

ψ =
ξ

τ − τ0
and ρ =

√
ξ2 + (τ − τ0)2 .(3.5)

In these variables, the system in (3.4) becomes(
1 + ψ2

) ((
σ + τ0ψ +

1
4
τ2
0

)
σψ − ψηψ

)
+ ρ

(((
1
4
τ2
0 + σ

)
ψ − τ0

)
σρ + ηρ

)
− ρ2

√
1 + ψ2 σρ = 0 ,

(3.6)

(
1 + ψ2

)
(ψσψ + ηψ)− ρ (σρ − ψηρ) = 0 .(3.7)

2Note that σ determines the speed of sound. An unbounded σ would be physically meaningless.
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We will restrict our attention to solutions where σ does not depend on ρ. In
addition, we further simplify the equations by replacing them by two of their linear
combinations, namely, [(3.6) + ψ(3.7)] and [ψ(3.6)− (3.7)]. Thus(

σ +
(

ψ +
1
2
τ0

)2
)

σψ + ρηρ = 0 ,(3.8)

ψ

((
σ +

(
ψ +

1
2
τ0

)2
)
−

(
1 + ψ2

))
σψ −

(
1 + ψ2

)
ηψ = 0 .(3.9)

By cross-differentiation, it follows that ηψρ = 0, so that

η(ρ, ψ) = η1(ρ) + η2(ψ) .(3.10)

Then equations (3.8) and (3.9) reduce to the ODEs

ρη′1(ρ) = c ,(3.11) (
σ +

(
ψ +

1
2
τ0

)2
)

σ′(ψ) = −c ,(3.12)

η′2(ψ) = −cψ
σ + τ0ψ + 1

4τ2
0 − 1(

σ +
(
ψ + 1

2τ0

)2 )
(1 + ψ2)

,(3.13)

where c is an arbitrary constant. Two different cases arise, depending on whether c
equals 0 or not.

Case 1. c = 0 Then equation (3.11) shows that η does not depend on ρ. Thus
both η and σ are functions of the same single variable ψ, and we are dealing with
a simple wave. From equation (3.12), we get

σ = −
(

ψ +
1
2
τ0

)2
,(3.14)

so σ is nonpositive. Thus the solution lies in the hyperbolic domain. Finally, it
follows from (3.13), after using (3.12) and (3.14) to remove the 0/0 on the right-
hand side, that

η =
2
3

(
ψ +

1
2
τ0

)3
− 1

2
τ0

(
ψ +

1
2
τ0

)2
+ d ,(3.15)

where d is another arbitrary constant. The solution in (3.14) and (3.15) is the fan
emanating from a point already computed in equation (12) of [17].

Case 2. c 6= 0 Then, from equation (3.11), η grows logarithmically as ρ goes to
zero:

η1 = c log ρ + d ,(3.16)

for d a constant. It now turns out that equation (3.12) is exactly solvable. To see
this, take

s =
σ

c2/3 and Ψ =
1

c1/3

(
ψ +

1
2
τ0

)
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as the independent and dependent variables, respectively. A Riccati equation fol-
lows:

Ψ′ + Ψ2 + s = 0 .

Linearizing with the substitution

Ψ =
ω′(s)
ω(s)

yields Airy’s equation

w′′(s) + sw = 0 .(3.17)

Thus the solution to equation (3.12) is given by the implicit formula

ψ +
1
2
τ0 = c1/3ω′

(
σ

c2/3

) (
ω

(
σ

c2/3

))−1
,(3.18)

where w(s) is any solution to Airy’s equation. Notice that a locally elliptic solution,
with σ > 0, corresponds to the oscillatory domain of the Airy functions, while a
locally hyperbolic solution, with σ < 0, corresponds to the domain where the Airy
functions behave exponentially.

Summarizing, we have built a family of exact solutions to the equations where
σ depends only on the angle in polar coordinates. Except for the hyperbolic simple
wave case (c = 0) in these solutions, the variable η grows logarithmically with
the distance to the origin of coordinates. The conjecture by two of the authors
[17] mentioned at the end of the previous subsection can be rephrased as follows:
Can an “elliptic” solution somewhat like the ones in this section for c 6= 0 be
constructed so that the logarithmic growth in η will be restricted to a wedge (with η
bounded outside this wedge)? Such a solution would play—in the context of weak
shock reflection at grazing incidence—the same role slip lines play for “regular”
Mach stem, triple-point structures. The theorems in this paper show that this is not
possible, at least if one imposes some mild restrictions on the nature of the solution
(mainly, uniform ellipticity and a bounded measurable σ near the triple point; see
the next subsection).

3.3 Relationship to the General Setting
In this section we will show in detail how the UTSD problem described in

the prior subsection is a particular case of the general setup of the theorems in
Section 2. We will also make a few comments regarding the possible significance
of our results for the von Neumann paradox problem.

System (3.3) can be written in the following divergence form:

Lσ = div(A(σ, ~x)∇σ) = 0 ,(3.19)

where ~x = (x1, x2)T = (ξ, τ)T and the matrix A is given by

A =
(

σ − x1 −x2
0 1

)
.(3.20)
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This system is not in symmetric form. However, in Remark 3.1 we show that it
can be transformed to a symmetric form by a very simple transformation. Thus
the results of Section 2 can be used in this context. Nevertheless, the variables for
the symmetric form do not have a natural physical interpretation. Thus we do our
presentation here in terms of the form above, where the connection with the actual
physical problem is easy to visualize.

Consider now the region Ω behind the reflected shock and the Mach stem, as
observed in the experiments, for the situation described earlier in Section 3.1. This
region is bounded by the reflected shock, the Mach stem—these two intersecting
at the triple point ~x0 = (ξ0, τ0)T—and the wall.3 We concentrate now on the
vicinity of the triple point and assume that there is some neighborhood of ~x0 where
the equations are uniformly elliptic—in fact, the numerical experiments suggest
that this is true for all of Ω as defined above! Thus we assume that there exists a
neighborhood B of ~x0 and a constant 0 < M ≤ 1 such that σ is measurable in B

and, for any ~x = (x1, x2) in B and any ~ζ in R2,

M |~ζ|2 ≤ ~ζ TA(~x)~ζ ≤ 1
M
|~ζ|2 .(3.21)

Clearly, this is equivalent to

|σ(~x)| ≤ K and σ(~x) >
1
4
x2

2 + x1 + cM(3.22)

for any ~x in B where K and cM are positive constants. Then the operator L in
(3.19) satisfies the requirements of the theorems in Section 2, using the result in
Remark 3.1.

We now focus on the triple point ~x0, which belongs to ∂B, and assume that, in
a neighborhood of it,

• ∂B is the graph of a Lipschitz function (in some system of coordinates),
• on one side (∂B−, to the “left”) of ~x0, σ has Hölder-continuous boundary

values

σ(~x) = f1(~x)(3.23)

that converge to f− = f1(~x0) at the triple point,
• on the other side (∂B+, to the “right”) of ~x0, σ also has Hölder-continuous

boundary values

σ(~x) = f2(~x) ,(3.24)

which converge to f+ = f2(~x0) at the triple point, and
• we have (this inequality actually determines what is right and left above):

f+ − f− > 0 .

3See Figure 3.1(b). The region extends to infinity in the stretched coordinates of equations (3.1)–
(3.3).
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Note that the numerical calculations suggest that the right side corresponds
to the Mach stem, which is the strongest shock in the picture.

These hypotheses lead to a contradiction via the main theorem in this paper: A
logarithmic singularity in η at the triple point is not compatible with the shock jump
conditions for a structure as assumed here. Thus at least one of them must be false.
The most likely candidate seems to be the uniform ellipticity in equation (3.22)
above. Otherwise, the solution would be forced to be quite singular, as all the other
hypotheses above are regularity conditions. While the numerical evidence points
quite strongly against the existence of an hyperbolic “pocket” behind the triple
point,4 it is not so clear-cut as to the possibility of the flow being sonic right there.
A direct numerical check of this is quite hard, and there is little positive evidence
for it in the most refined numerical calculations available to us.

Remark 3.1. The similarity form for the equations in the variables that arise natu-
rally from physical considerations, namely (3.3), is not symmetric. However, we
point out here that a simple transformation can reduce the equations to symmetric
(in fact, diagonal) form. Instead of taking ~x = (ξ, τ)T as in equations (3.19) and
3.20, let now:

x1 = ξ +
1
4
τ2 and x2 = τ .(3.25)

Then, in terms of the new dependent variables

S = σ +
1
2
x1 +

1
4
x2

2 and N =
1
2
x2(σ − x1)− η ,(3.26)

the system of equations (3.3) takes the simple form

(σ − x1)Sx1 = Nx2

Sx2 = −Nx1

}
(3.27)

where σ−x1 = S − 1
2x1− 1

4x2
2. Notice that the transformation is, in fact, not only

smooth but also invertible.

4 Proofs of the Theorems

In this section, we prove Theorems 2.1 and 2.2.

4.1 Proof of Theorem 2.1.
The first observation we make is that the semiannular region

Sr(d) =
{

1
2
d ≤ r ≤ d , x2 ≥ 0

}
,(4.1)

where d > 0 and r =
√

x2
1 + x2

2 can be rescaled to the standard region Sr(2),
corresponding to d = 2. This can be done by the transformation (see Figure 4.1)

4Further, analytical plausibility arguments based on the behavior and propagation of simple waves
for the system (3.3) can be made that also suggest that a hyperbolic region is not possible.
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σ = 0

σ = 1

0 <= σ <= 10 
<=

 σ
 <

= 
1

σ = 1 σ = 0

0 <= σ <= 1

σ = 1 σ = 0

0 <= σ <= 1

u = 1

u = 0

u =
 0

u 
=

 0

3

3

3

3

FIGURE 4.1. Map from a semiannular region into a fixed square and
comparison with a solution with simpler data.

~x −→ (2/d)~x. We note that this map preserves all the properties of the equation
and data (including symmetry) with no change in the constant M in (2.3). The
integral in (2.5) is invariant.

Next, we observe that Sr(2) is bi–Lipschitz equivalent to the unit square

S1 = {0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1} ,(4.2)

via the map ~x −→ (r − 1, (1/π)θ)T (see Figure 4.1). Again, the properties of the
equation and data are preserved (including symmetry) and the integral in (2.5) is
invariant.

By the maximum principle, σ is bounded between 0 and 1 in all of D+. For
any 0 < |λ| < 1, consider the region Sr(d) for d = |λ| and map it into the unit
square S1 as above. In this region σ satisfies the boundary data:

σ = 0 on x2 = 0 and σ = 1 on x2 = 1 ,(4.3)

with 0 < σ < 1 in the remaining part of ∂S1. The integral in equation (2.5) is now

ρλ = sign(λ)
∫ 1

0
Dνσ(x1, q)dx1 ,(4.4)

where q = 0 if λ > 0 and q = 1 if λ < 0. We shall now prove the theorem for λ
positive (the proof for λ negative is entirely similar). It is enough to show that (the
inequality here is part (ii) of Lemma A.4, proved in the appendix)

ρ3 =
∫ 1

0
Dνu3(x1, 0)dx1 ≥ C ,(4.5)
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where u3 satisfies the same equation as σ in the domain S1 with the boundary data

u3(x1, 1) = 1 and u3(x1, 0) = u3(0, x2) = u3(1, x2) = 0 .(4.6)

This follows because: (a) From the maximum principle σ ≥ u3, and (b) both σ and
u3 vanish on x2 = 0. Thus Dνσ ≥ Dνu3 on the x2 = 0 side of S1.

4.2 Proof of Theorem 2.2

We can decompose the solution σ of the problem into two parts, σ = cjσ1+σ2,
where σ1 satisfies the hypothesis of the previous theorem, cj is a constant (the size
of the jump discontinuity at the origin), and σ2 is uniformly Hölder continuous up
to the boundary, including the origin. This follows by appropriately decompos-
ing the boundary data and then applying the results of Littman, Stampacchia, and
Weinberger [12, theorem 9.1] to the existence of σ2.

Notice that, from Theorem 2.1, the conjugate variable η1 to σ1 has at least a
logarithmic singularity near the origin. This follows because: For any 0 < λ < 1
and any integer n

η1

(
1
2n

λ, 0
)
− η1(λ, 0) =

∫ 1
2n λ

λ
(η1)x1(x, 0)dx

= −
∫ 1

2n λ

λ
Dνσ1(x, 0)dx

=
n∑

j=1

∫ 1
2(j−1) λ

1
2j λ

Dνσ1(x, 0)dx

≥ nC =
(
− log2

(
λ

2n

)
+ log2(λ)

)
C .

Also, since (η1)x1(x, 0) = −Dνσ1(x, 0) ≤ 0 for x > 0, η1(x, 0) is monotone for
x > 0. Thus

η1(x, 0) ≥ C0| log(x)|(4.7)

near the origin (the same argument works for x < 0) for some constant C0 > 0.
Further (as follows from the results in section 6.5, part II, of [2]), the conjugate

variable η2 to σ2 has a finite Cα norm for some α positive. Thus it is bounded. It
follows that η = η1 + η2 has at least logarithmic behavior near the origin. This
completes the proof.

Appendix

In this appendix we use the harmonic measure theory of [4] to prove the lemma
needed in Section 4. We shall work in the square S1 (see equation (4.2)) and
consider Dirichlet problems for a uniformly elliptic symmetric operator L defined
as in equations (2.2)–(2.4).



776 I. M. GAMBA, R. R. ROSALES, AND E. G. TABAK

Notation and Definitions

• I1 , . . . , I4 denote the four sides of S1, labeled consecutively in counterclock-
wise fashion with I1 the “lower” side corresponding to x2 = 0.
• G~y = G~y(~x) is the Green function for the operator L with the singularity at

the point ~y inside S1. That is, G~y vanishes on ∂S1 and

−LG~y = δ(~x− ~y) ,

where δ is the Dirac delta. We note that the Green function is positive inside
S1.
• For any point ~y inside S1, the harmonic measure associated with L is a posi-

tive measure µ~y on ∂S1 such that, given any arc A along ∂S1,

µ~y(A) = u(~y) =
∫

∂S1

χADνG~y ds .(A.1)

Here ds is the arc length, χA is the characteristic function of the set A, and u
solves

Lu = 0 in S1

u
∣∣
∂S1

= χA

}
.(A.2)

We now quote two theorems in harmonic measure theory of elliptic operators
in divergence form as they apply to our situation. These results were proven by
Caffarelli, Fabes, Mortola, and Salsa [4]—see theorem 2.3 (p. 631) and theorem
1.4 (p. 627), respectively.

THEOREM A.1 (Doubling Property of the Measure µ~y) Given two adjacent arcs of
equal length (say, A and B) along ∂S1:

µ~y(A) ≤ Cdµ~y(B)(A.3)

for some constant Cd ≥ 1 that depends only on the distance from the point ~y to the
boundary ∂S1 and the ellipticity of the operatorL. That is, Cd = Cd(dist(~y, ∂S1),
M) only.

THEOREM A.2 (Boundary Harnack Principle) Let u and v be positive solutions in
S1 of Lσ = 0. Suppose that they vanish simultaneously along some arc A on ∂S1.
Then u and v satisfy

v(~x)
u(~x)

≤ Ch
v(~y)
u(~y)

(A.4)

for any points ~x and ~y inside S1, where Ch ≥ 1 is a constant that depends only on
the ellipticity of L and the distance from the points ~x and ~y to the complement to
the boundary ∂S1 of A. That is, Ch = Ch(dist({~x, ~y}, ∂S1 −A),M) only.

Divide the boundary ∂S1 of S1 into a sequence of N consecutive arcs of equal
length. Then sequentially apply Theorem A.1 to each pair in the sequence, starting
from some arbitrary member of the set. The sum of all the measures in the set must
be equal to 1, thus:
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COROLLARY A.3 Given N consecutive and disjoint arcs of equal length (say,
A1, . . . , AN ) covering ∂S1, we have

µ~y(Ai) ≥ Cm = Cm(dist(~y, ∂S1),M,N) ,(A.5)

where Cm > 0 is a constant depending only on the indicated arguments. In fact,
in terms of Cd in Theorem A.1, we have Cm = (Cd − 1)(CN

d − 1)−1.

Consider now the function u3 defined in equation (4.6). That is, Lu3 = 0 in S1
with data u3 = χI3 on ∂S1. Alternatively, we have, from equations (A.1)–(A.2):

u3(~x) = µ~x(I3) .(A.6)

LEMMA A.4 (Properties of u3) (i) If D is any set compactly contained inside
S1,

u3
∣∣
D
≥ Cu = Cu(dist(D, ∂S3),M) ,(A.7)

where Cu > 0 is a constant that depends only on the indicated arguments.
(ii) Along I1 (the interval opposite to I3),∫

I1
Dνu3 ds ≥ C > 0 ,(A.8)

where C = C(M) > 0 is a constant that depends solely on the ellipticity of
L and ds is the arc length on the boundary.

PROOF: (i) is an immediate consequence of (A.6) and Corollary A.3 with Ai =
Ii and N = 4.

For part (ii) we use Theorem A.2 on the rectangle

S1/4 = {0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1
4} ,(A.9)

with u = u3 and v = G~a. Here ~a = (0.5, 0.5)T is the center of S1, which is outside
S1/4. Both u and v vanish on three sides of S1/4 (all but the top side, corresponding
to x2 = 0.25). Thus we have

u3(~x) ≥ u3(~b )
G~a(~b )Ch

G~a(~x) ,(A.10)

where~b = (0.5, 0.125)T is the center of S1/4.
This last inequality is sensible as long as ~x remains away from the top side of

S1/4. In particular, we get arbitrarily close to the bottom side I1. Then, since both
G~a and u3 vanish on I3, we get for the inner conormal derivatives along I3 the
following inequality:

Dνu3 ≥ C∗DνG~a ,(A.11)

where

C∗ =
u3(~b)

G~a(~b)Ch

> 0 .
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We note that G~a(~b ) is bounded by a universal constant, dependent on the ellipticity
of L only because dist(~a,~b) is fixed. Thus, using part (i), we see that C∗ = C∗(M)
only. Then ∫

I1
Dνu3 ds ≥ C∗

∫
I1

DνG~a ds = C∗µ~a(I1) = C ,(A.12)

where C has the desired properties (use Corollary A.3 on the set I1, . . . , I4 for µ∗~a).
This concludes the proof.
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[6] C̆anić, S.; Keyfitz, B. L. A smooth solution for a Keldysh type equation. Comm. Partial Differ-

ential Equations 21 (1996), 319–340.
[7] Colella, P.; Henderson, L. F. The von Neumann paradox for the diffraction of weak shock

waves. J. Fluid Mech. 213 (1990), 71–94.
[8] Glaz, H.; Colella, P.; Glass, I. I.; Deschambault, R. L. A detailed numerical, graphical and

experimental study of oblique shock wave reflections. Lawrence Berkeley Laboratory Report
20033, University of California, 1985.

[9] Grüter, M.; Widman, K.-O. The Green function for uniformly elliptic equations. Manuscripta
Math. 37 (1982), 303–342.

[10] Hunter, J. K. Transverse diffraction of nonlinear waves and singular rays. SIAM J. Appl. Math.
48 (1988), 1–37.

[11] Kenig, C.; Koch, H.; Pipher, J.; Toro, T. Area integral and harmonic measure estimates for
nonsymmetric elliptic operators in divergence form. To appear in Adv. in Math.

[12] Littman, W.; Stampacchia, G.; Weinberger, H. F. Regular points for elliptic equations with
discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 43–77.

[13] Morawetz, C. S. Potential theory for regular and Mach reflection of a shock at a wedge. Comm.
Pure Appl. Math. 47 (1994), 593–624.

[14] Reines, F.; von Neumann, J. The Mach effect and height of burst. Collected works, 309–347,
Vol. VI, Macmillan, New York, 1963.

[15] Rosales, R. R. Diffraction effects in weakly nonlinear detonation waves. Nonlinear hyperbolic
problems (Bordeaux, 1988), 227–239, Lecture Notes in Math., 1402, Springer, Berlin–New
York, 1989.



CONSTRAINTS ON SINGULARITIES 779

[16] Sturtevant, B.; Kulkarny, V. A. The focusing of weak shock waves. J. Fluid Mech. 73 (1976),
651–671.

[17] Tabak, E. G.; Rosales, R. R. Focusing of weak shock waves and the von Neumann paradox of
oblique shock reflection. Phys. Fluids 6 (1994), 1874–1892.

[18] von Neumann, J. Oblique reflection of shocks. Collected works, 238–299, Vol. VI, Macmillan,
New York, 1963.

[19] von Neumann, J. Refraction intersection and reflection of shock waves. Collected works, 300–
308, Vol. VI, Macmillan, New York, 1963.

IRENE M. GAMBA RODOLFO R. ROSALES

The University of Texas at Austin Massachusetts Institute of Technology
Department of Mathematics Department of Mathematics

and TICAM 77 Massachusetts Avenue
RLM 8.100 Cambridge, MA 02139
Austin, TX 78712-1082 E-mail: rrr@math.mit.edu
E-mail: gamba@math.utexas.edu

ESTEBAN G. TABAK

Courant Institute
251 Mercer Street
New York, NY 10012-1185
E-mail: tabak@cims.nyu.edu

Received November 1997.


