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A second-order Godunov method is proposed for the solution
of general systems of conservation laws on arbitrary grids. Some
applications are discussed: moving and deforming grids, local grid
refinement, Lagrangian grids that make contact discontinuities per-
fectly sharp, and a new way to solve the time dependent small
disturbance transonic flow equations of gas dynamics. As part of
the algorithm, a way is presented to solve generalized Riemann
problems with second-order accuracy. © 1996 Academic Press, Inc.

INTRODUCTION

Systems of conservation laws arise in most branches of
science and engineering; their numerical solution is often
required to settle both practical and theoretical issues.
Although many types of numerical methods have been
applied to systems of conservation laws, it is generally
established that the so-called ‘“‘conservative’ schemes are
best suited for problems involving shock waves, since they
treat weak solutions in a natural way. One of the most
popular conservative methods is one created by Godunov
[4]. Its popularity is due to its robustness and conceptual
simplicity and to the later work of Van Leer [14, 15], who
developed higher order versions of the scheme (Godunov’s
original was first-order accurate), and Colella and Wool-
worth [2], who applied it successfully to many problems
in fluid dynamics.

The algorithm proposed in this paper is a generalization
of these high order Godunov schemes that works in general
grids. The original motivation for it came about in a study
of the von Neumann paradox of oblique shock reflection
[12]. We were led to study the equations of unsteady small
disturbance transonic flow and found that these could be
most easily solved in an “oblique” system of coordinates
in space-time [13] which required a mild generalization of
a standard second-order Godunov. We soon realized that
the same ideas could be applied to a wide class of practical
problems, including grid refinement, moving domains, and
the accurate tracking of contact discontinuities. A brief
description of these applications constitutes the third sec-
tion of this paper.

In the first section we describe the new scheme. For the
sake of clarity in the exposition, we deal directly with the

generalized algorithm. The previous high order Godunov
methods on which it is strongly based can be found in the
original bibliography ([2, 4, 14, 15]) and in the book of
LeVecque [8].

In the second section we introduce a rigorous second-
order accurate way of solving the generalized Riemann
problem for arbitrary systems of conservation laws. This
is a tool required by all high order Godunov methods; the
algorithm presented here is quite general and conceptu-
ally simple.

1. A SECOND-ORDER CONSERVATIVE SCHEME ON
ARBITRARY GRIDS

We will develop an algorithm to solve one-dimensional
systems of conservation laws of the form

u + f(u)e =0, (1)

where u(x, t) and f(u) are n-dimensional vectors, and the
Jacobian matrix f'(u) has a complete set of real eigenval-
ues. Such systems describe how the integral of the density
u over an interval changes due to the flux f across its
boundaries. As Egs. (1) are hyperbolic and generally non-
linear, they may develop discontinuities even from smooth
initial data. After these discontinuities appear, we need to
give a meaning to (1). This leads to the consideration of
weak solutions, that may be defined in many equivalent
ways. We will choose one which has a clear interpretation
in terms of grids. Let us first rewrite (1) in the form

V- (f(u), u) =0,

in which the divergence is to be computed in the (x, f)
plane. Then apply Gauss’ theorem to any closed curve §
in (x, t), to get

[ (F@)wy,as =o. @)

Finally, define a weak solution to (1) as any piecewise
smooth function u(x, ¢) which satisfies (2) for all closed
curves S. Notice that a grid provides a natural discrete
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“basis” for the space of all closed curves, namely the
grid’s cells.

All smooth solutions to (2) satisfy (1), but (2) also admits
discontinuities, which must satisfy the “jump conditions”

[u] dx — [f]di = 0,

where the brackets stand for jumps in the enclosed vari-
ables. These constraints, however, are not enough, since
they allow too many discontinuities, making the solution
to the initial value problem for (2) generally nonunique.
There are many ways to get rid of this nonuniqueness: we
may require the solution to be stable under small perturba-
tions, to be the limit of a well-posed viscous modification
of (1), or to satisfy an appropriate ‘“‘entropy condition.”
In either characterization, what we have is a definite direc-
tion of time; some phenomena, such as the dissipation of
energy at shocks, are irreversible. For our algorithm, we
will see below that this determines how oblique some edges
of the computational grid may be.

Equation (2) will be our basic building block. Applied
to a cell, it yields a relation between the averages u and
fof u and f(u) at its edges. Notice that, in order to work
with an arbitrary grid in (x, ), we need to stop considering
u and f as two different entities, and, instead, to deal with
the “generalized” flux or density fAt — wAx, where Ax and
At, the projections of an edge on the x and ¢ axis, are
assigned a sign according to their orientation with respect
to the cell’s interior. The equation for a cell then becomes

> (fidt; — wAx;) = 0. 3)

The resulting system of equations is not enough to deter-
mine the u’s, as can be verified by simply counting the
number of cells and edges of a grid. In order to remedy
this, we need to distinguish between two kinds of edges,
that we will call “spatial” and “‘temporal.” For the time
being, we should think of the spatial edges as those approxi-
mately oriented in the direction of the x-axis and of the
temporal edges as those roughly in the #-direction. The
idea will be to compute the solution at the spatial edges
from (3) and, at the temporal edges, from some simple
initial-value-like problems. In order to understand how to
do this, let us begin with the description of a first-order
method, a generalization of Godunov’s original one.

In this first-order method, we replace the functions u
and f along the edges by their averages % and f. Suppose
that, while solving the equations on a grid, we are at the
stage illustrated on Fig. 1, in which the values of u are
known at the spatial edges S1, $2, and S3 and are to be
found at the temporal edges T'1, T2, and 73 and the spatial
ones S4 and S5.

The values at S4 and S5 will be computed using (3),
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FIG. 1. Spatial and temporal edges.

once the ones at 71, T2, and T3 are known. To find these,
we need one extra capability: that of advancing in time
piecewise constant initial data, i.e., solving the Riemann
problem for (1) with initial data provided on S1 and S2
or §2 and S3. Thus, the value of  on T'1 will be computed
by extending forward along 71 the data on S1 and S2,
while the values at 72 and T3 will arise from those at S2
and S3. Let us now see what restrictions this procedure
imposes on our grid (see Fig. 2).

We need the initial-value problems to be well posed.
This restricts the slope of the spatial edges, which must be
smaller than those of the characteristics. In other terms,
the direction of these edges must be “‘space-like.”

The temporal edges must lie entirely within the domain
of influence of two consecutive spatial edges alone. This
restriction is of the Courant—Friederichs type, as can be
seen by applying it to a case with horizontal spatial edges
and vertical temporal ones, where it reduces to the condi-
tion Ax/At > ¢, where ¢ is the maximum absolute value
of the characteristic speed.

When applying Eq. (3) to a closed contour of our grid,
we need to have one and only one spatial edge where the
solution is to be found. Therefore, although any number
(including zero) of temporal edges may leave a grid’s node,
the number reaching one from below must always be one.

Finally, notice that, when applying (3) to find u at a
spatial edge, the value we are really computing is fAr —
uAx. In order to determine u, we need to make the approx-
imation that f~ f(u), which is fully consistent with the
algorithm’s spirit and second-order accurate in the varia-
tion of u along the edge. Then the value of fAt — Ax will
determine z uniquely, through the solution of a nonlinear
system of equations, provided f(u;)At — wAx # f(up)
At — upAx whenever u; # uy. But this is true if |Ax/Af] >
max;, |A(u)|, where the A;’s are the eigenvalues of f'(u),
and the maximization is carried out along any curve joining
uy and u,. This follows from considering the difference

I(f (ur) = fuo))At — (w1 — uo)Ax||
= (|Ax/At| [y = uoll = | f (ur) = f(uo)l)) |Ae]
= (1Aw/A] = max A s — ol || > 0.
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Valid spatial edges

Invalid spatial edges: They do not
encompass all characteristic families
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Valid grid.

Invalid temporal edge: crosses the
domain of dependance of two vertices.

FIG. 2. Edges and characteristics. Edges are drawn in thick lines and characteristics in thin lines. Shadowed regions represent expansion fans.

This does not impose a new restriction on the spatial
edges, since the well-posedness of the initial-value prob-
lems required the slope of a spatial edge to be bounded
by the inverse of the maximum eigenvalue of f'(u). Other-
wise, we would march backwards in time at least along
one characteristic family and, therefore, violate the entropy
condition across this family’s shocks.

With this restriction on the spatial edges, advancing the
solution in time in a neighborhood of a grid point becomes
a Riemann problem, even though the initial data are not
really given on a line of constant time. We can see this by
inverse reasoning: the solution to a real Riemann problem
is always constant below the lines x/t = *max;, |A(u)|,
s0, in particular, it has the same values on the spatial edges
as on the line ¢t = 0.

Let us now preceed to a second-order algorithm. Its
structure is essentially the same as the one described above.
The grid is divided into spatial and temporal edges, with
the restrictions already discussed. Then we apply a simple
extension of Van Leer algorithm [15] to build higher order
Godunov methods. For a second-order method, suppose
that we have already found the values of u; on a row of
spatial edges, as in Fig. 3. We can compute a second-order
accurate estimate for the average slope du/dq at every edge
i (here g stands for a variable in the direction of the edge),
by comparing the values of u;_;, u;, and u;,; with the ones
predicted by a Taylor expansion at x; (this is actually true
only if the points x;_1, x;, and x;,; either are not aligned

or lie all on the g axis; this adds a minor restriction to the
design of a grid). The formula for du/dq is

a_u » kzul;l - klqu - (k2 - kl)ui
(:)q kzhl - klhz

if the three points are not aligned and

u h%(qu —u;) — h%(ui—l — u;)
dq hihy — hhs

if they all lie on the ¢ axis. Here h;, and k; , stand for the
coordinates, in the directions of ¢ and its normal (with
origin at x;), of x,_; and x;.;.

We further constrain these slopes with the monotonicity
conditions due to Van Leer: If u; lies between u; ; and
u;.1, we require the same from the linear interpolant u; +
u,0 inside the ith interval; otherwise, we adopt u, = 0.
These restrictions, or their equivalent in the ENO schemes
[6], are necessary to avoid spurious oscillations in the vicin-
ity of shocks.

Once the linear interpolant for the u;’s has been built,
we proceed to compute the average fluxes # and f(u) on
the temporal edges connecting to the next row of spatial
ones. This involves, however, solving with second-order
accuracy a generalized version of the Riemann problem,
in which the states at both sides of the discontinuity are
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FIG. 3.

linear instead of constant. We show how to solve these
generalized Riemann problems in the following section.
With the fluxes computed, we can use (3) to find the u/’s
on the new spatial edges.

2. THE GENERALIZED RIEMANN PROBLEM

A basic ingredient of the method just described is the
computation to second order of the interaction between
two contiguous cells. This section introduces a general al-
gorithm that performs this computation if a standard Rie-
mann solver is provided. The idea behind the algorithm is
to find a first-order solution, henceforth denoted as basic
state, and let the second-order perturbations propagate
along its characteristics.

This algorithm should be viewed as an alternative to
other ones proposed to solve the generalized Riemann
problem. Flux-limiter methods, as the one discussed in
[9], implicitly incorporate a generalized Riemann problem
solver into a finite difference scheme, i.e., Lax—Wendroff.

Slope computation: (a) Data at the beginning of a step; (b) slope computation; (c) piecewise linear interpolant.

The method proposed here, instead, solves the generalized
Riemann problem in a separate step. Closer in spirit are
the algorithms proposed in [1, 3]; these, however, concen-
trate on a specific problem, i.e., gas dynamics. We will
consider general systems instead. From a practical point
of view, the algorithm proposed here and the ones in [3,
9] are in some sense equivalent, since they are all second-
order accurate for weak discontinuities and they involve
roughly the same amount of work. (Although the algorithm
presented here has a more laborious outlook, it reduces,
in its final implementation, to hardly more than the solution
of a system of linear equations.) An advantage of the
present algorithm is that it is conceptually simple, provid-
ing a clear understanding of the information flow along
the characteristics. In addition, it is particularly appropriate
for use with the general conservative method of this paper,
since it computes the solution to second order at any point
(x, ), not necessarily at x = 0.

The generalized Riemann problem may be posed as
follows: Given an initial condition consisting of two smooth
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FIG. 4.

states separated by a discontinuity at x = 0, we are required
to find the solution to (1) with second-order accuracy in
time. Formally, we have the initial condition

B w(x) forx<0 A
u(x0) = u(x) forx>0 @

with u; and u, smooth, and we want to compute u(x, &t)
to O(&?). For a second-order Godunov, the states on both
sides of the discontinuity will be linear in the conserved
quantities, but we will allow more general initial conditions.
The method that we will describe remains basically un-
changed with data given not on the x-axis but on any pair
of space-like edges, as required by the algorithm of the
previous section.

The plan of this section is the following: We will start
by describing an algorithm which solves the generalized
Riemann problem (4) with second-order accuracy. The
algorithm consists of the solution of a set of standard Rie-
mann problems, designed so that the information carried
along every characteristic to (x, et) is taken into account.
This first algorithm is conceptually simple, but computa-
tionally inefficient, since it requires a relatively large num-
ber of operations. We proceed therefore to simplify it and
give a second, much simpler version, which requires very
little computational effort.

We will denote by (u;, u,) the solution to a Riemann
problem with u = u; for x < 0 and u = u, for x > 0. The
first algorithm starts computing the basic state, which is
the exact solution to the Riemann problem (14(0), u,(0)).
A typical basic state consists of n + 1 constants (n being
the number of components of the vector u) separated by
n simple waves (shocks, rarefactions, or slip-lines).

Then we “‘trace back” the characteristics. By this we
mean drawing the characteristic lines of the basic state
which contribute to (x, et) (see Fig. 4); we may replace
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(a) Tracing backwards the characteristics; (b) looking for the corresponding values in the initial configuration.

the exact characteristics by straight lines without losing
second-order accuracy. Denote by x; the point where the
characteristic j of the basic state hits the ¢t = 0 axis (or, in
the general case, the line in space-time where the data are
provided). From the initial condition, we read off u(x;, 0).
This leaves us with n states, one for each characteristic,
that we will make interact to produce an estimate for the
solution at (x, et).

In our first procedure, we compute pairwise interactions
between the states using a standard Riemann solver for
(1). The algorithm is best described in the language of
trees. We begin with the tree of traced-back characteristics
of the basic state and transform it into a binary tree by
adding intermediate nodes and edges, with the following
restrictions: different edges should not cross (i.e., the order
of the nodes must be respected), and branches coming
from different sides of the initial discontinuity should not
be combined until the uppermost node. Figure 5a shows
two admissible trees; those on Fig. 5b, on the other hand,
are not admissible. They all correspond to a system with
six characteristic families.

Next we label the edges of this new binary tree with two
numbers, denoting the leftmost and rightmost characteris-
tic that they represent. For the lowest edges, the two num-
bers are equal; they are those of the corresponding charac-
teristic family in the original tree. For a parent edge, the
left number is the same as that of the left child, while the
right number repeats that of the right child.

We now proceed to compute states associated with each
node. The ones on the lowest row have already been as-
signed from the initial data. To find the state of a parent
node given those of its two children, we solve the Riemann
problem (ul, ur), where ul and ur are the states of the
left and right children. Then we assign to the parent the
constant state in this solution where the characteristics that
label the left edge come from the left, and those that label
the right edge come from the right (see Fig. 6). By construc-
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X
x=0
Two edges cross

FIG. 5.

tion, the rightmost characteristic of the left child and the
leftmost one of the right child are consecutive; therefore,
the state to choose is the one located between the waves
of these two families.

In summary, we trace the tree of characteristics, trans-
form it into a binary tree, assign values to its lowermost
nodes from the initial data, and compute a root node from
its descendents. The value at the uppermost node is our
estimate for the solution at (x, &t).

There is only one point left, namely what to do if (x,
et) lies inside a rarefaction wave of the basic state. In this
case, the corresponding characteristic will trace back to
x = 0 and no state can be assigned to it. Instead, we erase
that edge from the tree altogether, and only in the last step,
when computing the interaction between representatives

Rightmost characteristic
of the left child.

\ 4

State to choose

Leftmost characteristic
of the right child

5

FIG. 6. Assignment of a state to a parent node in the Riemann
problem between its two children.

X

x=0
Branches from left and right meet
too early

(a) Valid trees; (b) invalid trees.

from left and right, do we assign to the final node the state
arising at (x, &t).

Let us now examine the algorithm more closely to gain
insight into why it works and how we can achieve the same
results with less computational effort. Clearly, the whole
algorithm is based on assuming that the domain of depen-
dence of (x, et) at t = 0 is the finite set of points x;. This
is only true if the system has Riemann invariants and,
moreover, the solution we are dealing with is smooth. The
reason why the validity of the method goes far beyond
these restrictive hypotheses is that all the interacting states
are close to each other. Thus there are indeed ‘“‘pseudo
Riemann invariants,” which are the invariants of the sys-
tem linearized at any of these states. These “‘invariants”
are conserved to second order in ¢ in both the exact solu-
tion and our numerical procedure. Formally, if u(x, t) =
uy + O(e), we can approximate (1) with u, + Au, = 0,
where A is the Jacobian of f(u) evaluated at u,. If Z; is the
jth component of the ith left eigenvector of A, then the
quantities R' = X, lu; are pseudo Riemann invariants,
meaning that, along the ith characteristic, R; is conserved
up to O(&?). As both the real evolution and our pairwise
interactions are close to the same state u, and they both
start with the same values of these pseudo Riemann invari-
ants, the difference between the exact value and the numer-
ical estimate for u(x, et) is O(&?), proving that the method
is second-order accurate.

This proof gives us a clue on how to obtain the same
accuracy without having to solve n Riemann problems:
If we know some linear expressions that are ‘“‘almost”
conserved along the characteristics, why not find the final
state directly from these? The whole procedure would thus



SECOND-ORDER GODUNOV ON ARBITRARY GRIDS

reduce to solving a linear system of equations. Indeed it
does so, but for a little detail. The states to the right of
the initial discontinuity are close to each other, since we
are assuming that the initial data is piecewise smooth. So
are the states to the left. The states from left and right are
also close in regions where the solution is smooth, which
completes the proof of the order of the algorithm. But we
would like the method to work also for large discontinu-
ities, since shocks are a common occurrence in hyperbolic
waves. This is the reason why, when forming the binary
tree, the information from the left and the right was kept
separate until the last step. This makes the estimate at
least first-order accurate, even if the states on the right
and the left are not close at all, because the last Riemann
problem mimics the real one.

Thus the following algorithm suggests itself: Solve the
basic Riemann problem and trace back the characteristics.
Linearize the equations both to the left and to the right
of the initial discontinuity, and calculate the expressions
for the linear Riemann invariants on both sides. Compute
a representative from the left and the right by imposing
the conservation of these Riemann invariants. Then solve
the final Riemann problem between these two states to
calculate the solution at (x, t). Of course, this last step
can also be reduced to solving a system of equations, if
we linearize this last Riemann problem in the spirit of Roe
[7]. If we choose to do so, we can use this linearization
globally and solve only one system of equations. But this is
just one possible implementation of the standard Riemann
solver, that we are in this section considering as a black box.

Let us write explicitly the system of equations to solve
in order to find u’", a representative from all the states
coming from x < 0. Assume that, after tracing back the
characteristics, we find that the first n; of them originated
to the left of the initial discontinuity. Denote by u! the jth
component of the state at x;, and by u'"™ the state at which
we have chosen to linearize the equations. This can be any
of the u”’s with i < n; or, more consistently, just 1;(0). Using
the corresponding pseudo Riemann invariants, we can find
u'" from the system

i

l' et Ej=1 l/u]

i —

Lt =

7
1

fori=mn

N

J

nooo .
2 [l otherwise.

The choice of the right-hand side of the last n — n
equations was quite arbitrary, since any state close to the
ones on the left of the initial discontinuity would have
worked. We need second-order accuracy only in the first
n; pseudo Riemann invariants of u'%; the others will not
count (up to O(&?)) in the final determination of u(x, et).

The description of the algorithm is now complete; let us
see how it works in a simple example. We solved the
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generalized Riemann problem for a perfect gas with den-
sity p, velocity u, specific energy e, and pressure P given
by P = (y — 1)pe, with y = 1.4. As initial data we took

4—01x, x<0 —05+01x, x<0
= u =
P71 - 005x, x>0, —1.0+0.1x, x>0,
3-01x, x<0
e =
1-0.05x, x>0.

We computed the solution at ¢ = 1 at 30 equidistant points
between x = —3 and x = 3 with the algorithm just de-
scribed, and plotted it with the stars in Fig. 7. The dotted
lines correspond to the ‘“‘exact” solution computed with
the second-order Godunov of Section 1 with 300 points
and Ar = 0.005. We used a locally Lagrangian grid (see
Section 3 below) to avoid smearing the contact discon-
tinuity.

We can see the nearly perfect agreement of the two
solutions, even though neither the jump in the data nor
the time interval are small, as required by the algorithm.
The only perceptible consequence of this is an error in the
location of the shock that our generalized Riemann solver
moves at a constant velocity equal to its exact initial speed.
It follows that, if we want to use the generalized Riemann
solver of this section for long times and big discontinuities
for some practical purpose, as for a fast, “‘manual” estimate
of the consequences of a dam’s break due to flooding, only
the shock’s location has to be further corrected, averaging,
for instance, its initial and (predicted) final speeds. This
is, of course, not necessary for the use of the Riemann
solver as part of a second-order Godunov. There the time
intervals have to be small, the jumps are of the order of
a cell’s size except at the shocks, and these move at the
right speed due to the conservative nature of the algorithm.

3. APPLICATIONS

In this section, we describe some applications of the
algorithm of Section 1. We show how it helps implementing
grid refinement, designing locally Lagrangian grids for the
computation of sharp contact-discontinuities, solving sys-
tems of conservation laws in moving domains, and dealing
with changes of coordinates, as those occurring in the solu-
tion to the equations of unsteady transonic flow.

An algorithm that works on general grids is clearly well
suited for local grid refinement. In particular, the flexibility
provided by the inclusion of space-like edges (as opposed
to purely spatial ones) enables us to treat the fluxes at the
boundaries between fine and coarse sections of a grid in
a natural way. At places where the grid is finer, the CFL
condition requires the time intervals to be smaller as well.
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FIG. 7. Generalized Riemann problem for a perfect gas. Stars, one step solution; dots, generalized 2nd-order Godunov.

If one does not want to take the smallest A¢ throughout
the grid (a very expensive solution), one needs to provide
internal boundary conditions for the finer grid at the inter-
mediate times not computed in the coarser sections. This
usually requires some ad hoc interpolation of the outer
solution, which at best sheds some doubts on the accuracy
of the solution at the first few cells of the finer grid. The
grid plotted in Fig. 8, instead, shows a natural way to
implement these intermediate boundary conditions. The
oblique edges at the interface are all space-like, as follows
from the CFL condition for the coarser grid.

Next we discuss an application to the tracking of contact-

discontinuities, following an idea that, generalized to track
any simple wave, was proposed by Harten and Hyman in
[5]- There are regions in the solution to some problems in
fluid dynamics—close, for instance, to the interface be-
tween two fluids—where a precise computation of pas-
sively transported quantities becomes important. A stan-
dard Godunov performs poorly on this, since the diffusion
caused by the continuous averaging of the solution is not
balanced, at linearly degenerate waves, by the nonlinear
compression that keeps shock waves sharp. Instead, we
can define locally a Lagrangian grid, moving at approxi-
mately the velocity of the fluid. It is easily seen that the

FIG. 8.

Interface between fine and coarse grids.
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|
dx < dxmid

FIG. 9. (a) Deletion of a grid point; (b) addition of a grid point.
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FIG. 10. Evolution of S and SC: (a) with a fixed grid; (b) with a Lagrangian grid.
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FIG. 11. Piston problem for a perfect gas.

flux of mass through the interfaces of such a grid will
be negligible—null for a perfect Lagrangian grid—so the
distribution of passive quantities will not be diffused due
to the averaging that is intrinsic to Godunov’s method.

As an example, consider the concentration of salt in a
river. For simplicity, we will consider a prismatic channel
with constant cross section and model it with the equation
of conservation of mass,

S+ 0,=0, Q)

together with a hydrological law Q = Q(S). Here x is the
longitudinal coordinate along the reach, § is the area with
water, and Q is the flux of water through it. The mean
velocity of the flow is U = Q/S, and the equation for the
convection of salt reads

(8C), + (QO), = 0, (6)

where C is the concentration of salt. Notice that no diffu-
sion was incorporated into this model, so an initially sharp
distribution of salt should remain sharp forever. We would
like the numerics to mimic this, not only because the diffu-
sion may be really negligible, as is the case in most phenom-
ena that involve small time scales, but also because we may
be interested in modeling the diffusion based on physical
considerations, and not on an uncontrollable numerical
error. One solution is to use a Lagrangian grid close to
discontinuities and high gradients of C.

We solved numerically (5) and (6) with Q(S) = $?%/2,
periodic boundary conditions, and initial data

1 for03<x<0.7

S(x,0) =2+ sin(2mx), C(x,0)=

0 elsewhere,

with a mixed grid, Lagrangian over a domain slightly larger
than the support of C and Eulerian elsewhere. We have
adopted the following simple rules for handling the grid:
If two grid-points get closer to each other than a given
distance dxmin, we erase one of them from the grid. In-
stead, if two contiguous points get further appart than a
given dxmax, we create a new point in between. Notice
that, with the algorithm of this paper, there is no need to
arbitrarily redistribute averages when points are added or
removed from the grid; the conservation laws applied to
the grid take care of that. In Fig. 9, addition and removal
of grid-points is exemplified.

The results with a fixed grid and with the one described
above are plotted on Figs. 10a and b. The dotted lines
correspond to S, while the continuous lines represent the
product SC, the other conserved quantity. For both runs,
we took only 40 grid points, about 20 of them Lagrangian
for the second run, to underline the efficiency of the
method.

For Egs. (5) and (6), the nonlinear characteristic velocity
is S and the linearly degenerate one is Q/S = S/2. We see
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FIG. 12.

how the Lagrangian grid handles difficult situations, like
the repeated interaction of the contact discontinuity with
a shock, without smearing the sharp initial profile of C. A
fixed grid, on the other hand, does a poor job on this,
smearing the discontinuities continuously, due to averag-
ing. On the other hand, the absence of numerical viscosity
is responsible for the appearance of slight overshoots near
the discontinuities. Once such overshoots are created, due
to the imperfect character of the monotonicity constraints,
there is no viscous mechanism that will damp them away.

The same idea can be applied to gas dynamics. Here, a
grid that locally moves with the fluid will account for very
sharp slip-lines, something that would otherwise require
sophisticated techniques (see, for instance, [17]). We have
used a locally Lagrangian grid in the solution to the gener-
alized problem for gas dynamics of Section 2; a fixed grid
would have smeared the slip-line, requiring many more
points to match the accuracy of the one-step generalized
Riemann solver. One important point should be made
though: this tracking technique for contact discontinuities
works well (almost perfectly indeed) for one-dimensional
problems; it does not seem to generalize in any simple way
to the multidimensional case.

Another reason we may have to adopt a moving grid is
that the region we are interested in may change in time.
This is the case, for instance, of a gas initially at rest pushed
from the left by a moving piston. In this case, we would
like to have the left boundary of the grid coincident with
the moving piston, while, on the right, we would like to
have our domain growing so as to keep the first wave
coming into the unperturbed state always inside. In Fig.
11, we see the grid in x-¢ space corresponding to a periodic
movement of the piston, and the computed values of the
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b

(a) Domain of integration; (b) optimal grid.

density, velocity, and pressure at t = 2 for a perfect gas
with y = 1.4. The gas is initially at rest, with density and
internal energy normalized to 1 and the movement of the
piston given by

x = 0.25 % (1 — cos(2mt)).

To make the adjustment of the grid automatic, we adopted
for the velocity of the right boundary the maximum value
of the rightgoing acoustic characteristic velocity of the fluid
over the last few gridpoints. The rules for adding or delet-
ing grid points were the same as for the problem of salt
concentration in a river. The grid shown is very coarse
(it starts with only five cells) for clarity in the plots; the
numerical results can be made much more accurate by
refining the grid.

When changes of coordinates are required, a problem
with simple geometry in physical space may get moving
boundaries in the new coordinate system, leading naturally
to the application of the algorithm described in this paper.
As an example, let us take the one that motivated this
work: the equations of time dependent small disturbance
transonic flow. These equations, which describe many dif-
fraction patterns of weakly nonlinear geometrical acoustics
(see, for example, [7, 11]), can be written in the form

o, + (d?/2), + n,=0
N — oy, =0.

Here o is proportional to the first term in the perturba-
tion expansions for the density, pressure, temperature, and
longitudinal velocity of the gas, while n relates to the
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FIG. 13. Pseudo Mach-stem. Contour lines and spatial view of o.

expansion of the transversal velocity. Normally, one
would like to solve these equations in some rectangular
domain, given initial and boundary conditions which
depend on the problem. However, the planes with con-
stant ¢ turn out to be characteristic surfaces of these
equations, making the initial value problem for them ill-
posed. Although the mixed initial-boundary value prob-
lem one would like to solve is believed to be well posed,
the characteristic nature of time makes the numerical

solution of the system very difficult (for a full report
on this and on the numerical scheme that will be briefly
sketched here, see [13]). A way to avoid these difficulties,
is to switch to a new coordinate system ¢, y, 7, where
=1t + xand 7 = t — x. In these coordinates, the
equations read

(0= a*2),+ (o+ d*2);+m,=0

n.—1n:+ o, =0.
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Introducing @ = o — o¢?/2, with inverse ¢ = 1 —
V1 -2 (assuming o < 1 and o < 1/2), we get

0.~ (w+2V1l—-—w)+1,=0
7= = (V1 = 2w), = 0.

Here 7 is not a characteristic of the equations; indeed,
it is a valid time-like variable. Thus we can think of
advancing in 7 instead of ¢, using a fractional-step alter-
nate-direction procedure to decouple the £ and y deriva-
tives. The two systems to solve are

o, (0 +2V1—-w);=0
7’7_77520
and

w.+1n,=0

7.~ (V1 -2w),=0.

The first system decouples into two scalar equations,
while the second may be viewed as describing a polytropic
evolution of gas dynamics in Lagrangian coordinates,
with @ acting as specific volume, (—7) as velocity, and
with pressure given by the convex P(w) = V1 —2w.
Thus both systems can be solved with high order Godunov
methods. However, in the original variables, we had a
mixed initial-boundary value problem, so the domain of
integration, for fixed y, has the shape sketched in Fig.
12a. This region clearly cannot be covered by a fixed
grid, for its boundaries are moving. Thus the algorithm
of this paper is called upon. Among the various ways
to design a grid apt for this problem, a simple analysis
based on the characteristic velocities led us to choose
the one drawn on Fig. 12b.

As an example of the use of this algorithm, we have
plotted in Fig. 13 its computation of the “pseudo Mach-
stem” arising in the context of the von Neumann paradox
of oblique shock reflection. Here the initial data consists
of a single shock wave separating two constant states,
impinging obliquely upon a wall. The boundary data are
the no-flux condition through the wall n = 0 at y = 0
and the absorbing conditions at the other three numeri-
cal boundaries.

The paradox that von Neumann observed in [16] and
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that since has been the subject of many research efforts
(see [12] and references therein) is that, for small angles
of incidence and weak shocks, the solutions observed both
numerically and experimentally appear to be inconsistent
with the equations of gas dynamics.

In Fig. 13, we have plotted contour lines and a perspec-
tive of 0. The point where three shocks appear to meet
constitutes the heart of the paradox, since the equations
do not admit such triple shocks. For a full account on
this, as well as on similar applications of this algorithm
to the numerical elucidation of the self-focusing of waves
and the structure of nonlinear singular rays, we refer
the interested reader to [12].
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