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Evolution of Tsunami-Induced Internal Acoustic–Gravity Waves
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ABSTRACT

We present an idealized theoretical and numerical study of tsunami-induced internal waves in the atmo-
sphere. These are gravity waves modified by acoustic effects that can propagate rapidly from the ocean
surface up to the ionosphere, where they are well known to leave a detectable fingerprint in air-glow patterns
and other remote sensing observables. Accurate modeling of the wave propagation is a prerequisite for being
able to detect and decode this transient observational fingerprint by remote sensing methods. We study this
problem by formulating the initial-value problem for linear waves forced by an idealized tsunami at the lower
boundary and then employing a semi-analytic Fourier–Laplace method to solve it. This approach allows us
to compute the detailed time evolution of the waves whilst ensuring that the correct radiation condition in the
vertical is satisfied at all times, a non-trivial matter for these transient waves.
We also compare the predictions of an anelastic model with that of a fully compressible model in order to
discern the importance of acoustic effects. Our findings demonstrate that back-reflection at the tropopause is
a significant factor for the structure of these waves, and that the earliest observable signal in the ionosphere is
in fact a fast acoustic precursor wave generated by the nearly impulsive formation of the tsunami itself.

1. Introduction

It has been realized since the early days of gravity wave
research that vertically propagating gravity waves can pro-
vide a very fast mechanism for information transfer across
the atmosphere, from ground level all the way up to the
ionosphere (Hines (1972)), raising the possibility of tsuna-
mi detection via gravity-wave-induced modulations in the
air-glow patterns in the ionosphere at roughly 100km al-
titude. Of course, this is due to the decay of background
atmosphere density with altitude, which increases the am-
plitude of linear waves by a factor of roughly 3000 be-
tween ground level and 100km altitude. This implies that
vertical displacements of only tens of centimeters at the
ocean surface can give rise to vertical displacements of
hundreds of meters in the ionospheric E region, making
possible the detection of tsunamis by monitoring the iono-
sphere (Peltier and Hines (1976)). This theoretical pos-
sibility has been confirmed in principle by isolated post-
event matching of ionospheric observations with tsunami
data (Artru et al. (2005); Rolland et al. (2010); Occhipinti
et al. (2011); Makela et al. (2011)).

However, current gravity-wave modeling approaches
based on vertical ray tracing or simple normal mode the-
ory rely on many restrictive assumptions that are simply
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not satisfied in the real-world complex atmospheric envi-
ronment. In essence, these approaches reduce the problem
to that of stationary mountain lee waves with the tsunami
playing the role of the mountain, a simplicity that comes
at a price: (1) considering only stationary solutions omits
many observable time-dependent quantitative details asso-
ciated with the onset of the tsunami; (2) the assumption of
only upward-propagating waves does not hold in a non-
uniformly stratified atmosphere, where significant partial
back-reflection of waves in the vertical naturally occurs,
particularly at the tropopause; and (3) compressibility ef-
fects are neglected, yet the acoustic component of the sig-
nal is significant, due both to the sudden onset of the t-
sunami and to its fast propagation at roughly two-thirds of
the speed of sound.

In this paper, we develop a more complete modeling ap-
proach for an idealized two-dimensional setting that cap-
tures the wave dynamics in a vertical xz-plane aligned with
the tsunami’s direction of propagation. (The extension to
three-dimensional waves is straightforward in principle.)
We find that the non-satisfaction in the real world of each
of the three assumptions above leads to significant effects:
the acoustic signal associated with the onset of the tsuna-
mi is the first and strongest to arrive at the ionosphere; the
subsequent signal is far from stationary for a significant
time interval; and the effects of compressibility and wave-
reflection at the tropopause account for significant changes
in both the transient and the asymptotic stationary state.
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a. Wave reflection at the tropopause

A standard simplified approach to solve for atmospheric
gravity waves generated by a specified vertical displace-
ment at the ground level ζ (x,0, t), say, is to use the plane-
wave structure of vertically upwards propagating waves
in order to compute the vertical derivative ∂zζ (x,0, t) also
at the ground level (Occhipinti et al. (2008)). Mathemat-
ically this amounts to finding the Dirichlet-to-Neumann
map at the ground, under the assumption that the gravi-
ty wave field consists exclusively of upward propagating
modes. This is an approximate procedure, because it ne-
glects the partial back-reflections of waves in the vertical,
which easily arise in the presence of non-constant buoy-
ancy frequency. In particular, at the tropopause, the value
of buoyancy frequency approximately doubles over a dis-
tance of just a few hundred meters, which for the compar-
atively long vertical waves induced by tsunami means a
rapid, nearly discontinuous change. This leads to the back
reflection of a significant portion of the tsunami-induced
waves, and therefore the wave structure in the troposphere
cannot be approximated well using upward propagating
waves alone. Conversely, solving for the wave field using
the simplified approach in the presence of back-reflection
at the tropopause leads to unphysical incoming internal
waves in the upper atmosphere, which clearly do no sat-
isfy the radiation condition there.

The key factor is to enforce the proper radiation con-
dition in the upper atmosphere as well as the kinematic
and dynamic boundary conditions at the tropopause (Nap-
po (2002) pp. 87-88) in order to achieve a well-posed
and correct solution devoid of unphysical waves. We can
achieve this in our idealized setting by adapting the recent
modeling approach developed in Chumakova et al. (2013),
where the wave field is restricted to consist of vertically
upwards propagating waves not at the ground, but in the
region above the tropopause. In the present case this en-
sures that the relevant boundary conditions are satisfied in
a situation where the buoyancy frequency and wind speed
can change discontinuously at the tropopause. This leads
to a well-posed problem in which back-reflection is natu-
rally incorporated for both stationary and transient waves.

b. Non-stationarity and compressibility effects

Treating the tsunami as stationary in a moving frame
completely neglects both the signal associated with its
sudden onset and the transient period of adjustment of the
atmospheric wave field to the propagating tsunami. In or-
der to go beyond these severe limitations we combine the
usual Fourier transform of the governing equations in the
horizontal coordinate x with a Laplace transform in time
t. This allows us to the ascertain the correct causal solu-
tion to the initial-value problem for the tsunami-generated
internal waves, which in the long run asymptotes towards

the stationary solution described by the mountain lee wave
approach.

Yet particularly noteworthy is the existence of a much
faster signal arrival in the ionosphere than that of grav-
ity waves. This is the rapid acoustic component of the
tsunami-induced waves. In order to capture this signal,
we extend the model beyond the anelastic equations to a
fully compressible atmosphere. It turns out that the only
extra complexity that this adds to the Laplace-transformed
problem is in the expressions for the eigenvalues associat-
ed with the boundary value problem, but the structure of
this problem remains the same.

c. Plan of the paper

Section 2 sets the scene by studying the anelastic mod-
el. After posing the system and reducing it to a sin-
gle fourth order equation, we consider a simplified sce-
nario with piecewise-constant coefficients, corresponding
to two isothermal states with uniform wind, one model-
ing the troposphere and one the stratosphere and above.
We Fourier transform this system in space and Laplace
transform it in time, derive the jump conditions at the
tropopause and solve the resulting boundary-value prob-
lem in closed form. By adopting idealized shapes for the
propagating tsunami and for its nearly impulsive onset,
the Fourier–Laplace transformed solution can be found ex-
plicitly, although the inverse transforms to recover the so-
lution in physical space must be computed numerically.
The numerical inverse Laplace transform is adopted from
Brančı́k (2011). The solution is compared to one without
back-reflection at the tropopause and with the more classi-
cal stationary solution isomorphic to mountain lee waves.
It is found that the existence of back-reflection gives rise
to a nontrivial sensitivity of the solution to the tsunami
speed: a discrete set of speeds yields waves that resonate
with the height of the tropopause, thus creating alternating
maxima and minima in the wave drag. Also, for speeds
above a critical value of roughly 250m s−1 for a realis-
tic atmosphere, the wave drag vanishes, with the tsunami
yielding evanescent rather than radiating waves.

Section 3 extends the analysis by considering a fully
compressible atmosphere. Much of the analytical struc-
ture of the solution carries through to this more compli-
cated scenario. An interesting modeling issue arises that
the full atmosphere can no longer be consistently mod-
eled as two contiguous isothermal layers, since the strato-
sphere would have to be simultaneously warmer than the
troposphere for the tropopause to be convectively stable
and colder so as to have higher stratification. We have
found an elegant solution to this dilemma, modeling each
layer through a system with constant coefficients, as in an
isothermal atmosphere, but specifying not the temperature
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but the lapse rate. We check the accuracy of this approx-
imation by dividing the troposphere into more layers and
verifying that the solution changes little.

Section 4 explores the consequences of including com-
pressibility effects. These come in two types: a fast a-
coustic pulse that carries the first signal of the develop-
ing tsunami high into the atmosphere, and a quantitative
change present even in the asymptotic stationary regime
and that can be partially interpreted using the Prandtl–
Glauert factor familiar from compressible airfoil theory
(Shapiro (1953)), which departs significantly from unity
for real tsunamis, which have Mach numbers of roughly
two thirds. Finally, some concluding remarks are offered
in section 5.

2. Anelastic fluid model

a. Governing equations for anelastic waves

The target depth of vertical propagation from the sea
surface to the ionosphere is about 100 km, which makes
modelling the density decay an essential component. The
simplest model is therefore a set of anelastic equations,
which filters sound waves but accommodates the density
decay. We use a very simple version of the anelastic equa-
tions, which differs from the standard Boussinesq equa-
tions only in the continuity equation. Specifically, we use
the two-dimensional linear anelastic equations for a fric-
tionless adiabatic fluid ((18)-(21) in Lipps (1990); (4.1) in
Bannon (1996))

∂x(ρ0u)+∂z(ρ0w) = 0

Dtu+U ′w+∂x(p/ρ0) = 0
Dtw+∂z(p/ρ0)−b = 0

Dtb+N2w = 0.

(1)

Here Dt = ∂t +U∂x with U =U(z) the background wind,
u is the linear perturbation from U , w is the vertical ve-
locity, ρ0(z) is the background density, p is the linear per-
turbation from the background pressure, b is the buoyancy
disturbance, (·)′ denotes the vertical derivative of a back-
ground field, and N(z) is the buoyancy frequency. The
peculiar placement of ρ0(z) inside the z-derivative in the
vertical momentum equation is consistent with the defini-
tion of the buoyancy disturbance in the presence of a finite
density scale height H(z) = −ρ0/ρ ′0. Coriolis forces are
neglected as it will turn out that the internal waves have in-
trinsic frequencies that are much higher than the Coriolis
frequency.

We now derive a single equation for the vertical particle
displacement ζ defined by Dtζ = w. First, we eliminate ρ

and u from (1) and obtain

D2
t (ρ0w)+N2

ρ0w =−Dt∂z p− 1
H

Dt p

−∂
2
x p =−Dt∂z(ρ0w)+U ′∂x(ρ0w).

(2)

Second, we rescale ζ and p by

ζ̃ ≡
√

ρ0ζ and p̃≡ p/
√

ρ0 (3)

and substitute in (2) to obtain

(D2
t +N2)ζ̃ =−

(
∂z +

1
2H

)
p̃

∂
2
x p̃ = D2

t

(
∂z−

1
2H

)
ζ̃ .

(4)

Finally, by eliminating p̃ we obtain the single equation[
(D2

t +N2)∂ 2
x +

(
∂z +

1
2H

)
D2

t

(
∂z−

1
2H

)]
ζ̃ = 0,

(5)

which has to be augmented with suitable initial and bound-
ary conditions, of course. So far we allowed for arbitrary
coefficients described by background fields (U,N,H) as
a function of altitude, but we now restrict to two layer-
s with piecewise constant sets of coefficients, one for the
troposphere and one for the rest of the atmosphere, which
includes the stratosphere. Physically, this corresponds to
an isothermal background state within each layer.

b. Solution with piecewise constant coefficients

We use subscripts 1 and 2 to denote quantities in the
troposphere and the air above, respectively, and use zp for
the height of tropopause that separates the two regions.
Within these regions (U,N,H) are constant and hence (5)
simplifies to (i = 1,2):

(∂t +Ui∂x)
2
(

∂
2
x +∂

2
z −

1
4H2

i

)
ζ̃i +N2

i ∂
2
x ζ̃i = 0. (6)

We assume zero initial conditions for ζ̃i(x,z, t), i.e.,

ζ̃i(x,z,0) = ∂t ζ̃i(x,z,0) = 0. (7)

We apply a Fourier transform in x and a Laplace transform
in t to (6) and, using (7), we obtain its transformed coun-
terpart

∂
2
z ζ̂

T
i =

(
k2N2

i
(s+ ikUi)2 + k2 +

1
4H2

i

)
ζ̂

T
i (8)

for ζ̂ T
i (k,z,s). Here (̂·)(k, ·) denotes the Fourier transfor-

m in x and (·)T (·,s) denotes the Laplace transform in t.
For fixed k and s this is a second-order ODE in z in each
of the two regions and therefore four boundary condition-
s in z are required to determine ζ̂ T

1 (k,z,s) and ζ̂ T
2 (k,z,s)

uniquely.
At the sea level z = 0 we have the kinematic boundary

condition ζ̃ =
√

ρ0(0) h, where h(x, t) is a given function
that describes the ocean tsunami motion. This yields

ζ̂
T
1 (k,0,s) =

√
ρ0(0) ĥT (k,s). (BC1)
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FIG. 1. Snapshots of scaled vertical displacement ζ̃ in the anelastic model for V = 200m s−1. Also shown are three line plots defined by
z+15000∗ ζ̃ (x,z, t) with z ∈ {30,60,100}km, respectively. These are material lines with greatly exaggerated deformations and they illustrate that
shorter scales travel faster than longer scales. Left: uniform stratification at t = 40mins. Middle: with tropopause located at z = 10km. Right: with
tropopause, but at earlier time t = 5mins.

For the initial-value problem that we are envisaging the
correct boundary condition at infinite altitude is ζ̃ = 0,
which yields

ζ̂
T
2 (k,∞,s) = 0. (BC2)

The kinematic and dynamic boundary condition at the
tropopause z = zp are that the vertical displacement and
the total pressure are continuous across the undulating
tropopause in a manner that is familiar from solving for
interfacial waves between fluid layers of unequal densi-
ty. However, the present situation is somewhat simpler
because the background density and therefore the back-
ground pressure gradient due to hydrostatic balance are
continuous across the tropopause. First, the kinematic
condition obviously implies

ζ̂
T
1 (k,zp,s) = ζ̂

T
2 (k,zp,s). (BC3)

Second, the dynamic pressure condition reduces to conti-
nuity of the perturbation pressure p̃, which by the second
equation in (4) implies[

D2
t ∂zζ̃

]zp+

zp−
=

[
D2

t ζ̃

2H

]zp+

zp−

.

After the Fourier–Laplace transform this gives[
(s+ ikU)2

∂zζ̂
T
]zp+

zp−
=

[
(s+ ikU)2ζ̂ T

2H

]zp+

zp−

. (BC4)

A lengthy but straightforward computation then yields the
solution as

ζ̂
T
1 (k,z,s) =

√
ρ0(0) ĥT (k,s)×

µ(k,s)sinh(λ1(k,s)(zp− z))+ cosh(λ1(k,s)(zp− z))
µ(k,s)sinh(λ1(k,s)zp)+ cosh(λ1(k,s)zp)

ζ̂
T
2 (k,z,s) =

√
ρ0(0) ĥT (k,s) e−λ2(k,s)(z−zp)

µ(k,s)sinh(λ1(k,s)zp)+ cosh(λ1(k,s)zp)
(9)

with

λi(k,s) =

√
k2N2

i
(s+ ikUi)2 + k2 +

1
4H2

i

µ(k,s) =
A2(k,s)−A1(k,s)+λ2(k,s)B2(k,s)

λ1(k,s)B1(k,s)
.

(10)

Here λi’s are chosen with the positive real parts and

Ai(k,s) =
(s+ ikUi)

2

2Hi
, Bi(k,s) = (s+ ikUi)

2. (11)

Notably, this solution still allows for different wind speed
U1,2 in the two layers. The physical wave field ζ (x,z, t) is
obtained from inverting (9)

ζi(x,z, t) =
ζ̃i(x,z, t)√

ρ0(z)
=

1√
ρ0(z)

F−1[L −1[ζ̂ T
i ]](x,z, t)

(12)

where F−1 and L −1 denote the inverse Fourier and
Laplace transform respectively. In our numerical exam-
ples we choose very idealized functions h(x, t) such that
ĥT (k,s) can be found analytically, but in any case the in-
verse Fourier and Laplace transforms in (12) have to be
performed numerically.

c. Idealized set-up and lee wave theory

We set the tropopause height at zp = 10 km and use
typical tropospheric and stratospheric values for N and H:
N1 = 0.01 s−1, H1 = 9 km; N2 = 0.02 s−1, H2 = 6 km.We
allowed piecewise constant wind in our equations, but
from now on we consider only the case of no background
wind, i.e., U1 =U2 = 0.

Our idealized model for the tsunami elevation at the sea
surface h(x, t) is as follows: in the first phase of duration τ

the elevation h(x, t) grows linearly in time until it reaches a
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prescribed shape f (x), say. This models the active under-
water earthquake and the concomitant near-impulsive de-
formation of the sea surface into the shape f (x). In the sec-
ond phase this shape then simply travels horizontally to the
right with a constant speed of propagation V , which mod-
els the external wave speed

√
gHO where HO is the ocean

depth. For example, if HO = 4km then V = 200m s−1.
Of course, this ignores the equal-and-opposite propa-

gation of another tsunami shape to the left, which could
trivially be added by linear superposition. As the internal
waves stay sharply localized above the moving tsunami
source, we find that this makes little difference in practice,
so for clarity we focus on the right-going tsunami only.
We therefore have

h(x, t) =
{

(t/τ) f (x), 0 < t 6 τ

f (x−V (t− τ)) t > τ.
(13)

The transform of h(x, t) is (c.f. Appendix A)

ĥT (k,s) = e−sτ

(
2e

sτ
2 sinh( sτ

2 )

s2τ
− 1

s
+

1
s+ ikV

)
f̂ (k).

The tsunami shape is idealized as a Gaussian bump f (x) =
exp(−x2/2σ2) where σ = 20km. It is shown in ap-
pendix B that this leads to a typical horizontal wavelength
of size

λx = 2π
3/2

σ ≈ 200km. (14)

The numerical domain length was 6400km in the horizon-
tal, which was sufficient to make boundary effects negli-
gible.

One objective of our numerical examples is to show
the significance of back-reflection at the tropopause inter-
face and for ease of comparison we therefore also run a
reflection-free set-up in which the parameter values of the
upper layer are extended to the lower layer as well, so N
and H are constant throughout and equal to their strato-
spheric values. Now, the natural reference solution is the
steady-state solution that is established a long time after
the tsunami has been created. As argued in Peltier and
Hines (1976), this steady-state solution is equivalent to the
familiar lee wave problem where the effective wind speed
is equal to −V . This can be analyzed with elementary
wave theory and group-velocity concepts. For example,
the dispersion relation linking (k,m) and the intrinsic fre-
quency ω̂ is

m2 = k2
(

N2

ω̂2 −1
)
− 1

4H2 . (15)

Using the condition of zero absolute frequency, ω̂2 =
V 2k2, this yields

m2 =
N2

V 2 − k2− 1
4H2 ≈

N2

V 2 (16)

for the vertical wavenumber m. The indicated rough ap-
proximation is valid because for our choice of f (x) the
relevant range of horizontal wavenumbers is |k| ≤ 1/σ ,
which makes the other two terms comparable in size but
small compared to the first term. Hence the expected ver-
tical wavelength is approximately

λz =
2π

|m|
=

2πV
N
≈ 60km. (17)

These are therefore very deep waves, with a vertical wave-
length that is some ten times larger than the familiar
mountain lee waves because the effective wind speed is
ten times larger. The size of the vertical group velocity
wg = ∂ω̂/∂m is easily computed and takes the form

|wg|=V 2 |k|
N

=V
|ω̂|
N
≈ 50−100m s−1. (18)

The the first expression shows that for fixed k the group
velocity is proportional to V 2 whilst the second expres-
sion makes obvious that V is an upper bound for wg. For
fixed V and f (x) we have that small-scale horizontal fea-
tures travel fastest in the vertical; for the envisaged param-
eter values we get the indicated range of wg, which shows
that tsunami-induced internal waves can travel to the iono-
sphere at 100km altitude in less than an hour.

d. Numerical examples, back-reflection, and tsunami
speed

Fig. 1 shows two snapshots of the scaled vertical dis-
placement ζ̃ at time t = 40min. for V = 200 m s−1,
which is the speed of a tsunami on an ocean with depth of
HO = 4km; there is also a third snapshot at time t = 5min
for comparison with the later compressible model. The
plots are centered over the current position of the tsuna-
mi and the hydrostatic part of the wave field remains on
top of the tsunami whilst the non-hydrostatic part of the
wave field lags behind, which is a scenario that is familiar
from mountain lee waves. These plots also illustrate that
smaller horizontal scales travel faster than larger horizon-
tal scales, which is consistent with (18). Moreover, the left
panel is the control run without a tropopause, which clear-
ly shows significantly higher wave amplitudes than the run
with a tropopause on the right. The size of the amplitude
difference turns out to be a sensitive function of the tsuna-
mi speed V .

This is illustrated in Fig. 2, which shows the time his-
tory of the horizontally averaged root-mean-square value
of scaled vertical displacement at altitude 100km for three
different speeds V . The plotted displacement amplitude
has been normalized by the amplitude of the topography
shape f (x). In the first panel the speed is very low, name-
ly just V = 30 m s−1, and there is little difference be-
tween the wave field with or without the tropopause jump.
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This is the familiar situation from topographic gravity-
wave parametrization schemes, where near-surface winds
are a few tens of metres per second at most, and where
back-reflection is typically ignored. The situation changes
significantly in the second panel, where V = 100 m s−1.
Here the uniformly stratified case exhibits a significant-
ly higher (almost double) asymptotic wave amplitude than
the case with a tropopause, which indicates that signifi-
cant back-reflection is taking place there. Comparing with
the first panel we can also see that the faster horizontal t-
sunami speed results in faster vertical propagation of the
internal waves, as predicted by (18). Finally, the third pan-
el is based on V = 200 m s−1. Again the inclusion of the
tropopause is clearly significant.

At this point it seems that speeds below V = 30m s−1

are unaffected by the tropopause, but this is actually not
the case. One easy way to show this is presented in the
first panel in Fig. 3, which shows minus the steady-state
wave drag (divided by ρ0(0))

D =−u′w′ at z = 0 (19)

exerted by the internal waves on the tsunami shape, or,
equivalently, the steady-state vertical flux of horizontal
pseudomomentum. The size of this drag is a good in-
dicator for the importance of back-reflection, as without
reflection the lee wave drag takes the simple shape indi-
cated by the blue line in the first panel. By contrast, the
red line shows the drag after including the tropopause,
which has a complicated oscillatory structure for speed-
s below V = 50m s−1, and remains below the blue curve
at higher speeds. This shows that the agreement for V =
30m s−1 in the previous figure was fortuitous, and back-
reflection may be relevant even for the comparatively s-
mall wind speeds typical for mountain wave generation
and parametrizations in GCMs.

We find that for a certain number of low speeds the wave
drag does not depend on whether the stratification is con-
stant or not. For example for the speed is 30 m s−1, the
drags are the same, and correspondingly the wave fields
are also the same. Interestingly, for this speed half the ver-
tical wavelength fits into the troposphere, a situation that
is not possible at higher speeds, but occurs for many lower
speeds as indicated in the figure. This indicates a reso-
nance condition between the vertical wave structure and
the tropopause height.

Another observation of Fig. 3 is that for anelastic waves,
there is a speed barrier of 268 m s−1 for the drag such that
when the tsunami travels faster than this speed there is no
pseudomomentum flux into the stratosphere and thus the
wave field above the tropopause is evanescent. Indeed,
this is the reason why the asymptotic amplitude for the
blue line in the third panel of Fig. 2 fall short of unity:
some horizontal wavenumbers are already evanescent for
this high tsunami speed. In summary, if we model gravity
waves as anelastic, the effect of stratification is significant

for fast-moving lower boundary of speeds 50∼ 250 m s−1

in the open ocean, except for some slow speeds no greater
than 30 m s−1 whose induced vertical wavelength fits the
troposphere.

The present anelastic model suffers from several short-
comings in the tsunami problem. For example, the Mach
number based on the tsunami speed V for a realistic o-
cean depth is about 2/3, which is not small. This makes
dynamic compressibility relevant, an effect that is missing
from the anelastic continuity equation. Moreover, even for
smaller speeds V the anelastic model is unrealistic for the
very early stage of the wave propagation, which is relevant
for discerning the precise nature of the first-arrival signal
at the ionosphere. This is due to the action-at-a-distance
property that the anelastic equations share with the famil-
iar Boussinesq equations: in these models the sound speed
is effectively infinite and signals may get transmitted in-
stantaneously. For example, as shown in appendix D, the
anelastic response in terms of the Fourier-transformed ver-
tical displacement ζ̂ to an impulsively started tsunami has
a vertical structure that decays as exp(−λ z) where

λ =

√
k2 +

1
4H2

2
− 1

2H2
. (20)

This means that the ionosphere at z = 100km is instan-
taneously disturbed by the creation of the tsunami at sea
level, which is unphysical. Of course, the size of the im-
pulsive disturbance decays with altitude, but the decay rate
implied by (20) is actually quite modest if k2 ∼ 1/σ2, with
an implied e-folding length of about 20 km or more. In-
deed, we have found that plots analogous to the first two
panels in Fig. 1 but taken at lower altitude were noticeably
affected by the spurious instantaneous response at early
times. This fact together with the inevitability of finite
Mach number effects calls for the use of a fully compress-
ible model, as in Peltier and Hines (1976), which we pur-
sue next.

3. Compressible fluid model

The fully compressible fluid model allows for acoustic–
gravity waves, has no spurious action-at-a-distance effect-
s, and can deal with the high Mach numbers associated
with the tsunami speed V . In particular, the inclusion of
realistic acoustic waves for the initial-value problem is im-
portant because observations show that the first arrival of
a transient signal of tsunami-induced waves occurs at 100
km altitude just 5 minutes after the tsunami is generated.
This fast and transient response is clearly acoustic in na-
ture. We find that the structure of the asymptotic, steady-
state wave field also differs noticeably from the anelastic
case, which is because of the high Mach number of about
2/3.
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FIG. 2. Time evolution of anelastic gravity-wave amplitudes at z = 100km with a tropopause (red line) and without (blue line). The tsunami
speeds across the panels are V = (30,100,200) m s−1 and the stippled lines indicate the asymptotic steady-state limit; note the much longer
integration time on left panel. In the V = 200 m s−1 case the uniformly stratified limit is less than unity because part of the wave field is evanescent.

a. Governing equations for compressible waves

We use the equations for a linearized stratified com-
pressible adiabatic fluid in the form

Dtρ +ρ0(∂xu+∂zw)+ρ
′
0w = 0

ρ0(Dtu+U ′w)+∂x p = 0
ρ0Dtw+∂z p+gρ = 0

Dt p+ p′0w− c2(Dtρ +ρ
′
0w) = 0

p′0 +ρ0g = 0.

(21)

The notation is the same as before, with additional sym-
bols for the background pressure p0 and the background
sound speed

c2 = γ
p0

ρ0
= γRT0. (22)

Here γ is the ratio of the specific heats, R is the gas con-
stant, and T0 is background temperature. The buoyancy
frequency is now defined as

N2 =
g
H
− g2

c2 and H =−ρ0

ρ ′0
(23)

as before. If the lapse rate is defined by Γ =−T ′0 then the
profiles of (N,H,c,T0) are linked by (22) as well as

H =
RT0

g−ΓR
and N2 =

g2

RT0

(
γ−1

γ
− ΓR

g

)
. (24)

Eliminating ρ and u from (21), we obtain a complete set
of equations for ρ0w and p

D2
t (ρ0w)+N2

ρ0w =− g
c2 Dt p−Dt∂z p

D2
t p− c2

∂
2
x p =

−c2N2

g
Dt(ρ0w)−c2Dt∂z(ρ0w)+ c2U ′∂x(ρ0w).

(25)

Applying the rescaling (3) again turns (25) into

(D2
t +N2)ζ̃ =

(
1

2H
− g

c2 −∂z

)
p̃

(D2
t − c2

∂
2
x )p̃ = c2D2

t

(
1

2H
− N2

g
−∂z

)
ζ̃ .

(26)

This is a complicated set of equations, although in the spe-
cial case of constant U and T0 this set has constant coeffi-
cients and therefore admits plane acoustic–gravity waves
with the celebrated dispersion relation

m2 =
ω̂2

c2 + k2
(

N2

ω̂2 −1
)
− 1

4H2 . (27)

The compressible term ω̂2/c2 always increases the value
of m2 over its anelastic value, and for the lee wave problem
the relative magnitude of this increase can be estimated
as (ω̂2/N2)(V 2/c2), which exhibits the importance of the
Mach number squared.

Returning to the general (26), we cannot simply elimi-
nate p̃ in the physical space variables because the opera-
tors on p̃ do not commute. But if we apply the Fourier–
Laplace transform and use homogeneous initial condition-
s for ζ̃ and p̃ and their time derivatives, then we are able
to obtain a single equation for the transformed variable
ζ̂ T (k,z,s):

((s+ ikU)2 +N2)ζ̂ T =(
∂z +

g
c2 −

1
2H

)
c2(s+ ikU)2

(s+ ikU)2 + c2k2

(
∂z +

N2

g
− 1

2H

)
ζ̂

T .

(28)

b. Modeling the troposphere and tropopause

Peltier and Hines (1976) computed the steady-state
wave pattern based on a completely isothermal atmo-
sphere, which admits simple plane wave solutions with the
dispersion relation (27). We seek to model the tropopause
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and the positive jump in N2 across it, but it is not possi-
ble to do this by simply adjoining two isothermal layers,
because of convective instability. This is easy to see from
(24) with zero lapse rate Γ= 0. Then, if N increases across
a tropopause jump it follows that T0 must decrease, and
pressure continuity then implies that ρ0 increases across
the tropopause. This means the background state would
be unstable.

In the real atmosphere the lower value of N1 in the tro-
posphere is associated with the nonzero lapse rate Γ1 ≈
7 K km−1 there, whilst Γ2 ≈ 0 to first approximation in
the stratosphere. We therefore proceed by adopting a sim-
ple two-layer model that uses these two lapse rates but
ignores the vertical variations of temperature in the two
layers. Specifically, we use T2 = 218K in the upper lay-
er and a mid-tropospheric value T1 = 254K in the lower
layer; the corresponding sound speeds are c2 ≈ 296 m s−1

and c1 ≈ 320 m s−1. The values for H and N in the t-
wo layers are then the same as for the anelastic model:
N1 = 0.01 s−1, H1 = 9 km; N2 = 0.02 s−1, H2 = 6 km. Of
course, this simplistic approach ignores variations in T0

and the other fields of some 10−20% in the troposphere.
In order to check how sensitive our results are we have also
formulated a more complicated multi-layer model, which
is described in §c below.

We now substitute piecewise constant (N,H,c,U) into
(28) and obtain

∂
2
z ζ̂

T
i =

[(
1

2Hi
− N2

i
g

)2

+

((s+ ikUi)
2 +N2

i )((s+ ikUi)
2 + c2

i k2)

c2
i (s+ ikUi)2

]
ζ̂

T
i

(29)

to be solved in two layers indexed by the subscript i ∈
{1,2}. This requires four boundary conditions and the first
three boundary conditions are the same as (BC1)-(BC3).
The jump condition for the vertical gradient of vertical dis-
placement is slightly modified. Integrating (28) from zp−
to zp+, we obtain the jump condition

[
c2(s+ ikU)2

(s+ ikU)2 + c2k2 ∂zζ̂
T
]zp+

zp−

=

[
c2(s+ ikU)2

(s+ ikU)2 + c2k2

(
1

2H
− N2

g

)
ζ̂

T
]zp+

zp−
(BC4′)

The solution of (29) with boundary conditions (BC1)-
(BC3) and (BC4′) is given by (9) with

λi(k,s) =√(
1

2Hi
−

N2
i

g

)2

+
((s+ ikUi)2 +N2

i )((s+ ikUi)2 + c2
i k2)

c2
i (s+ ikUi)2

µ(k,s) =
A2(k,s)−A1(k,s)+λ2(k,s)B2(k,s)

λ1(k,s)B1(k,s)
(30)

where the λi are chosen with the positive real parts, and

Ai(k,s) =
c2

i (s+ ikUi)
2

(s+ ikUi)2 + c2
i k2

(
1

2Hi
− N2

i
g

)
Bi(k,s) =

c2
i (s+ ikUi)

2

(s+ ikUi)2 + c2
i k2 .

(31)

As in the anelastic case, in our numerical examples below
we will use zero winds so we set Ui = 0 from now on.

c. Multi-layer modeling of the troposphere

We have analytically solved the equations at the price of
approximating the linear temperature profile of the tropo-
sphere by the temperature in the middle of that layer, so as
to have constant coefficients in the equations. To improve
on this shortcoming we can model the troposphere using
several layers, i.e., we allow a number of n layers in the
troposphere. For the i-th layer from the bottom, we have
T (i)

1 = T ((i−0.5)zp/n) = T (0)−Γ(i−0.5)zp/n, and con-

sequently N(i)
1 =

√
(g/cp−Γ)g/T (i)

1 ,H(i)
1 = T (i)

1 /(g/R−

Γ), and c(i)1 =

√
γRT (i)

1 where cp is the specific heat ca-
pacity. We then need to solve n+ 1 eigenvalue problems
(including the one in the stratosphere), which are formally
the same as the ones in (29), for 2n+ 2 unknown coef-
ficients of eigenfunctions, where the eigenfunctions and
the eigenvalues are known a priori. We have n− 1 kine-
matic boundary conditions and n− 1 dynamic boundary
conditions between the semi-isothermal layers; we have
1 kinematic boundary condition and 1 dynamic boundary
condition between the top layer of the troposphere and the
stratosphere; we have 1 boundary condition at the sea lev-
el and 1 boundary condition at infinite altitude. In total
we have 2(n− 1) + 2+ 2 = 2n+ 2 boundary conditions
for 2n+ 2 unknown coefficients. This yields a solvable
(2n+2)× (2n+2) linear system.

We have compared our standard n = 1 model with re-
sults based on a model with n = 4 layers in the tropo-
sphere and found very encouraging agreement. For ex-
ample, the circles plotted in Fig. 4 are based on the n = 4
model and they compare very well with the lines based
on the n = 1 model. We therefore believe that the simple
two-layer model is capable of capturing the essence of the
tsunami-induced acoustic–gravity waves.
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FIG. 3. Left: wave drag D as a function of V in anelastic model with and without a tropopause. Middle: wave drag D for larger range of
V and for both anelastic and compressible models with and without a tropopause. The forbidden tsunami speed zone is clearly visible. Right:
root-mean-square ratio of acoustic-gravity waves to anelastic gravity waves in case with tropopause. The red circles are the actual ratios and the
blue solid line is the scaled drag ratio

√
β 2D/Dg, which crudely measures the increased back-reflection in the anelastic case. Without a tropopause

this scaled drag ratio would be unity by (33).

FIG. 4. Same as Fig. 2, but for compressible acoustic–gravity waves. In the first 5−10 minutes a signal due to a fast acoustic precursor wave
is clearly visible. The plots also indicate that our results are insensitive to the value of NLT, which is the number of tropospheric layers used in the
numerical model, see §c. Compared to Fig. 2, the evanescent part of the compressible wave field is much weaker at V = 200m s−1 and hence the
asymptotic amplitude in the uniformly stratified case is almost unity.

4. Fast and slow compressible effects

Both the slow, steady-state lee waves as well as the fast,
transient initial wave field are significantly altered by the
inclusion of compressible effects. The slow effects are
most easily discussed in terms of the steady-state wave
drag and the establishment of the vertical displacement at
different altitudes. Here the similarity with the anelastic
results depends greatly on the tsunami speed V , as expect-
ed. The new fast effects are dominated by an acoustic
pulse that crosses the atmosphere in a few minutes and
is the first signal to arrive at the ionosphere. Notably, this
acoustic pulse was entirely absent in the anelastic system.

a. Prandtl–Glauert factor, wave drag and amplitude

The steady-state wave drag for anelastic waves in a uni-
formly stratified atmosphere is (c.f. Appendix C.1)

Dg = ∑
k∈S

kV 2mg(k)|ζ̂ (k)|2, (32)

where mg is taken from the equality in (16) and S is the
set of k such that the corresponding wave modes are prop-
agating waves, i.e., m2

g > 0. Here and below we will use
the subscript g to denote anelastic gravity waves. By com-
parison, the drag for acoustic–gravity waves is (c.f. Ap-
pendix C.2)

D =
∑k∈S kV 2m(k)|ζ̂ (k)|2

1− (V/c)2 ≈
Dg

β 2 , (33)

where by (27) the wavenumber m now follows from m2 =
m2

g +V 2k2/c2. This is a modest change, so m(k)≈ mg(k)
to good approximation. The drag formula (33) highlights
the importance of the so-called Prandtl–Glauert factor

β ≡
√

1− V 2

c2 ≤ 1, (34)

which was first introduced in the context of compress-
ible airfoil theory. It makes obvious that in a uniform-
ly stratified atmosphere the drag is increased by a factor
of 1/β 2 when compressibility is taken into account. If a
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tropopause is included then these formulas can be adapted
to hold in the upper layer, where all waves are propagating
upwards, but ζ̂ (k) in the upper layer is then of course not
known a priori. The results of computing the drag numer-
ically in all cases as a function of V are shown in the mid-
dle panel of Fig. 3. Broadly speaking, differences between
the anelastic and compressible drag become significant for
speeds larger than V = 100 m s−1.

The main steady-state observable is not the drag, of
course, but the vertical displacement. In the case of unifor-
m stratification the root-mean-square value of the scaled
vertical displacement is in fact the same in the anelastic
and compressible models, because it has to be equal to the
root-mean-square value of the tsunami shape f (x). So in
this case increased drag does not translate into increased
vertical displacement.

The situation is different once a tropopause is included,
in which case compressibility tends to increase displace-
ment as well as drag, but the former increase is less pro-
nounced than the latter. This is illustrated in the right panel
of Fig. 3, which shows the ratio of compressible to anelas-
tic displacement amplitudes as a function of V in a case
with a tropopause. Physically, the interpretation is that
back-reflection at the tropopause is stronger in the anelas-
tic model than in the compressible model.

b. Forbidden tsunami speeds for propagating waves

The middle panel of Fig. 3 also makes conspicuous that
there are speeds V for which there are no propagating
waves at all. This is easily understood from (27), from
which the condition for propagating lee waves follows as

m2(k) =
N2

V 2 −
1

4H2 − k2

[
1−
(

V
c

)2
]
> 0. (35)

If 2NH < V < c then this is never satisfied, regardless
of the values of k. But for V < 2NH or V > c, there al-
ways exists a k such that m2(k) is nonnegative. Therefore,
the forbidden tsunami speeds for acoustic-gravity waves
are 2NH < V < c. The anelastic version of this result
is 2NH < V . It is noteworthy that for a subsonic tsuna-
mi there is a common speed barrier 2N2H2 ≈ 268 m s−1

such that if the tsunami travels faster than this speed then
there are no propagating waves into into the stratosphere,
no matter whether the atmosphere is uniformly stratified
or not and no matter whether compressible effects are in-
cluded.

c. Time-dependent amplitude and fast acoustic precursor
wave

Fig. 4 shows the same vertical displacement diagnos-
tic as in the earlier Fig. 2, but this time for compressible
waves. (The figure also shows a successful cross-check
of our numerical method against a simulation with more

layers in the troposphere.) At long times the structure of
the anelastic and the compressible curves is similar though
not identical, for example overall there seems to be less
back-reflection at the tropopause in the compressible case.
But at short times there is a very noticeable discrepancy
because the compressible curves show a clear signal of a
wave disturbance reaching the ionosphere a mere 5− 10
minutes after the tsunami started, which is much faster
than any internal waves travelling at its group velocity.
This is the very first tsunami-induced signal that reaches
the ionosphere.

Our interpretation of this signal is that it is a fast acous-
tic precursor wave that has been generated during the near-
ly impulsive phase t ≤ τ of our tsunami model (13), when
the tsunami shape h(x, t) grew very quickly from zero to
the prescribed shape f (x). This very quick displacemen-
t of the lower boundary sets of an acoustic wave in the
atmosphere that travels unimpeded in the vertical. This
is a very compelling interpretation as can be seen from
the snapshots in Fig. 5. The first two panels resemble the
anelastic results in Fig. 1, with some differences such as
an increased amplitude in the compressible case. But the
third panel clearly shows the fast acoustic precursor wave,
which has absolutely no counterpart in the anelastic mod-
el. This makes obvious that the precursor wave is an a-
coustic wave.

5. Concluding comments

Our idealized theory and numerical examples have
highlighted the importance of back-reflection at the
tropopause and of compressible effects for capturing
the accurate time evolution of internal acoustic–gravity
waves. These waves are generated by a tsunami at the air–
sea interface and then subsequently propagate rapidly in
the vertical to reach the ionosphere, where they can leave
a detectable fingerprint that can be picked up by remote
sensing methods. Our work has been restricted to a two-
dimensional vertical slice model for the atmosphere, but
there are no particular challenges that need to be overcome
if one wanted to extend the approach to three-dimensional
waves or indeed to more realistic air–sea interface shapes
associated with realistic tsunamis. In all cases, the prac-
tical bottleneck will be the need to compute the inverse
Laplace transform numerically, which is computationally
expensive in the absence of a usable fast transform algo-
rithm for this problem. Still, it is the power of the Laplace
transform that allows us to satisfy the appropriate radiation
condition exactly, so this is a price worth paying.

From a physical point of view perhaps the most striking
observable feature is the very fast acoustic precursor wave
that is so clearly visible in Fig. 5. Work is currently un-
derway to understand the dynamics of this precursor wave
by using a one-dimensional acoustic model along the cen-
terline of the tsunami location. The essence of the linear
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FIG. 5. Same as Fig. 1, but for the compressible model. Left: uniform stratification at t = 40mins. Middle: with tropopause. Right: with tropopause
at t = 5mins, showing a fast acoustic precursor wave that is clearly absent in Fig. 1.

dynamics of this wave is already suggested by the com-
pressible dispersion relation (27), which for x-independent
waves reduces to

ω̂
2 =

c2

4H2 + c2m2. (36)

This is a dispersive equation of the Klein–Gordon type,
with group velocities bounded by the non-dispersive
sound speed c at small scales and slower, dispersive wave
speeds associated with larger scales. Presumably, the visi-
ble large-scale oscillations behind the wave pulse in Fig. 5
can be associated with the slower, dispersive components
of the impulsively generated acoustic wave. Moreover, it
seems possible that the wave pulse sharpens and forms a
nonlinear shock at some time during its travel from the
ground to the ionosphere at 100km altitude. This suggests
the possibility of important nonlinear effects that may af-
fect the earliest observable tsunami fingerprint in the iono-
sphere. We hope to report on a detailed study of this acous-
tic wave precursor in the near future.
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APPENDIX A

Fourier–Laplace Transform of Lower Boundary

The Fourier transform of h(x, t) in (13) is

ĥ(k, t) =
{

(t/τ) f̂ (k), 0 < t 6 τ

e−ikV (t−τ) f̂ (k), t > τ.

The Laplace transform of ĥ(k, t) in t is then

ĥT (k,s) =
∫

∞

0
ĥ(k, t)e−st dt

=

(∫
τ

0
(t/τ)e−st dt +

∫
∞

τ

e−ikV (t−τ)e−st dt
)

f̂ (k)

= e−sτ

(
2e

sτ
2 sinh( sτ

2 )

s2τ
− 1

s
+

1
s+ ikV

)
f̂ (k).

APPENDIX B

Effective wavelength

We derive a simple effective wavelength λx that can be
associated with a given tsunami shape f (x). First define
an effective horizontal wavenumber as

k =
∑k |k|| f̂ (k)|2

∑k | f̂ (k)|2
or k =

∫
|k|| f̂ (k)|2 dk∫
| f̂ (k)|2 dk

(B1)

in the case of a discrete or a continuous spectrum, respec-
tively. It is easy to check that in the steady lee wave prob-
lem with uniform stratification, a sinusoidal lower bound-
ary with wavenumber k and root-mean-square amplitude
equal to that of f (x) produces the same wave energy flux
and drag as f (x). The effective wavelength is then defined
to be λx = 2π/k For the Gaussian-shaped lower bound-
ary f (x) = exp(−x2/2σ2) this yields k = (

√
πσ)−1 and

λx = 2π3/2σ .

APPENDIX C

Derivation of Wave Drag

a. Drag for Anelastic Gravity Waves

Equation (1)-(a) gives the relation between u and w

∂xu+∂zw−
w
H

= 0 (C1)
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where H is the density scale height. Substituting the plane
wave structure

u = ∑
k

û(k,z)√
ρ0(z)

eik(x−Vt), w = ∑
k

ŵ(k,z)√
ρ0(z)

eik(x−Vt) (C2)

into (C1), we obtain

û =
i
k

(
∂z−

1
2H

)
ŵ. (C3)

The wave drag divided by ρ0(0) is

Dg =−uw =−∑
k

Re{û(k,z)ŵ∗(k,z)}

=−∑
k

Re
{

iŵ∗(k,z)[∂zŵ(k,z)− ŵ/(2H)]

k

}
=−∑

k
Re
{

iŵ∗(k,z)∂zŵ(k,z)
k

}
.

Substituting ŵ=−ik(V−U)ζ̂ into the above equation, we
have

Dg =−∑
k

Re
{

ik(V −U)ζ̂ ∗(k,z)∂z[(V −U)ζ̂ (k,z)]
}

=−∑
k

Re
{

ik(V −U)ζ̂ ∗(k,z)[(V −U)∂zζ̂ (k,z)−U ′ζ̂ (k,z)]
}

=−∑
k

Re
{

ik(V −U)2
ζ̂
∗(k,z)∂zζ̂ (k,z)

}
(C4)

Let’s assume there is no background wind U = 0. Then
(C4) becomes

Dg =−∑
k

Re
{

ikV 2
ζ̂
∗(k,z)∂zζ̂ (k,z)

}
= ∑

k∈S
kV 2mg(k)|ζ̂ (k,z)|2.

where the last equality follows from ∂zζ̂ (k,z) =
img(k)ζ (k,z), mg(k) the vertical wavenumber from (16),
and S is the set of k such that the corresponding wave
modes are propagating waves.

b. Drag for Acoustic-Gravity Waves

Substituting (21)-(a) and (e) into (d) to cancel ρ1, we have

Dt

(
p

ρ0

)
−gw+ c2(∂xu+∂zw) = 0.

Canceling p from (21)-(b) and the above equation, we
have

(D2
t − c2

∂
2
x )u = (c2

∂
2
xz−g∂x−U ′Dt)w. (C5)

Substituting the plane wave structure (C2) into (C5), we
obtain

û(k,z) = i
∂z +1/(2H)−g/c2− [(V −U)2]′/(2c2)

k(1− [(V −U)/c]2)
ŵ(k,z).

(C6)

The wave drag divided by ρ0(0) is

D =−uw =−∑
k

Re{û(k,z)ŵ∗(k,z)}

=−∑
k

Re
{

iŵ∗(k,z)∂zŵ(k,z)
k(1− [(V −U)/c]2)

}
where in the last equality only ∂zŵ-term in (C6) sur-
vives under taking the real part of ûŵ∗. Substituting
ŵ =−ik(V −U)ζ̂ into the above equation, we have

D =−∑
k

Re

{
ik(V −U)ζ̂ ∗(k,z)∂z[(V −U)ζ̂ (k,z)]

1− [(V −U)/c]2

}

=−∑
k

Re

{
ik(V −U)ζ̂ ∗(k,z)[(V −U)∂zζ̂ (k,z)−U ′ζ̂ (k,z)]

1− [(V −U)/c]2

}

=−∑
k

Re

{
ik(V −U)2ζ̂ ∗(k,z)∂zζ̂ (k,z)

1− [(V −U)/c]2

}
(C7)

Let’s assume there is no background wind U = 0. Then
(C7) becomes

D =−∑
k

Re

{
ikV 2ζ̂ ∗(k,z)∂zζ̂ (k,z)

1− (V/c)2

}

= ∑
k∈S

kV 2m(k)|ζ̂ (k,z)|2

1− (V/c)2 . (C8)

where m(k) the vertical wavenumber from (35), and S is
the set of k such that the corresponding wave modes are
propagating waves.

The formula (C8) of wave drag is consistent with the
work-energy relation where the power of the drag bal-
ances the wave energy flux. Indeed, according to Lighthill
(1978) pp. 297-298, the vertical energy flux generated by
sinusoidal lower boundary with wavenumber k is

ωm(k)|w|2

k2− (ω/c)2 =
ωm(k)|ŵ(k,z)|2

k2− (ω/c)2 =
ω3m(k)|ζ̂ (k,z)|2

k2− (ω/c)2

where the last equality follows from ŵ(k,z) =−iωζ̂ (k,z)
and ω is the intrinsic frequency. For waves induced by
multi-chromatic lower boundary, the vertical energy flux
is the sum of monochromatic energy fluxes

I = ∑
k∈S

ω3m(k)|ζ̂ (k,z)|2

k2− (ω/c)2 = ∑
k∈S

kV 3m(k)|ζ̂ (k,z)|2

1− (V/c)2 .
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where we have substituted ω = kV in the last equality.
Substituting (C8) into the above equation, we recover the
work-energy relation

DV = ∑
k∈S

kV 3m(k)|ζ̂ (k,z)|2

1− (V/c)2 = I .

APPENDIX D

Instantaneous Response of Anelastic Gravity Waves in
the Stratosphere

We compute the structure of the instantaneous response
of the anelastic wave field to an impulsively deformed
lower boundary. This response is nonzero but decays
exponentially with altitude. From the definition of the
Laplace transform, the instantaneous response at t → 0+
is given by

lim
t→0+

ζ̂2(k,z, t) = lim
s→∞

sζ̂
T
2 (k,z,s) =

lim
s→∞

√
ρ0(0) [s ĥT (k,s)] e−λ2(k,s)(z−zp)

µ(k,s)sinh(λ1(k,s)zp)+ cosh(λ1(k,s)zp)
.

The z-dependence is included only in the e−λ2(k,s)(z−zp)-
term. From (10)-(a), we have

lim
s→∞

λ2(k,s) =

√
k2 +

1
4H2

2
(D1)

so the instantaneous response of the rescaled wave field in
the stratosphere exponentially decays with the rate (D1)
provided lims→∞ |s ĥT (k,s)|< ∞. So the instantaneous re-
sponse of the physical wave field (ζ̂2/

√
ρ0(z)) in the s-

tratosphere exponentially decays with the rate

lim
s→∞

λ2(k,s)−
1

2H2
=

√
k2 +

1
4H2

2
− 1

2H2
> 0. (D2)
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