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A methodology is developed for the numerical solution to the sample-based
optimal transport and Wasserstein barycenter problems. The procedure is
based on a characterization of the barycenter and of the McCann interpolants
that permits the decomposition of the global problem under consideration
into various local problems where the distance among successive distributions
is small. These local problems can be formulated in terms of feature func-
tions, and shown to have a unique minimizer that solves a nonlinear system
of equations. Both the theoretical underpinnings of the methodology and its
practical implementation are developed, and illustrated with synthetic and
real data sets.

1 Introduction

The optimal transport problem, as proposed originally by Monge in 1781 Monge (1781),
addresses the displacement of a pile of soil between two locations with minimal cost.
Given the cost c(x,y) of moving a unit mass from point x to point y, one seeks the map
y = f(x) that minimizes its integral. After normalizing the two piles so that each has
total mass one, they can be regarded as probability measures, and the problem adopts
the form

inf
f ] µ=ν

∫
c(x, f(x))dµ(x), (1.1)

1



where µ and ν are the source and target measures, and f ] µ denotes the pushforward
measure of µ by the map f .

In the 20th century, Kantorovitch (1958) relaxed Monge's problem, allowing the move-
ment of soil from one to multiple locations and vice versa. Denoting the mass transported
from x to y by π(x,y), the minimization problem can be rewritten as

inf
π∈Πµ,ν

∫
c(x,y)π(x,y)dx dy, (1.2)

where Πµ,ν is the set of all the transfer plans π(x, y) satisfying the marginal constraints∫
π(x,y)dy = µ(x),∫
π(x,y)dx = ν(y).

Since the second half of the 20th century, mathematical properties of the optimal trans-
port solution have been studied extensively. Here we introduce only those developments
that are relevant to the methodology of this article. For a comprehensive review, we
refer the readers to Villani (2008).

The optimal transport with Lp cost functions has been particularly well-studied. The
induced total transportation cost de�nes the Wasserstein distance (Kantorovitch, 1958),

Wp(µ, ν) =

(
inf

π∈Πµ,ν

∫
d(x,y)pdπ(x,y)

) 1
p

. (1.3)

This distance provides a natural metric in the space of probability measures, which is
important from a theoretical perspective and also because it arises naturally in many
practical problems. A recent development in the �eld is the Wasserstein barycenter
(Agueh and Carlier, 2011), which extends the concept of barycenter to probability mea-
sures.

The depth of the mathematical theory of optimal transport and its natural connection
to many practical problems has attracted the attention of researchers in various �elds.
In economics, optimal transport is used in optimal assignment and matching problems
(see Galichon (2016)), for which the Kantorovich dual theorem provides a direct link
between optimality and the equilibrium of matching between two populations. In image
processing, the optimal transport distance is known as the earth mover's distance (Rub-
ner et al., 1998), which has been used in many applications such as color transfer (Pitié
et al., 2007) and image segmentation (Ni et al., 2009). Optimal transport is also used in
medical research. In Sandhu et al. (2015), it was found that the Ollivier-Ricci curvature
computed through 1-Wasserstein distance is a proxy for robustness of gene expression
networks, which can be applied to the characterization of cancer. The Wasserstein dis-
tance also appears in machine learning applications (Arjovsky et al., 2017; Montavon
et al., 2015) as a good measure of the distance between probability distributions.
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Computational algorithms have been proposed to solve optimal transport and barycenter
problems in a variety of settings. We reference below some recent representatives of the
various approaches taken. Benamou and Brenier (2000) introduced a computational
�uid approach to solve the problem with continuous distributions µ1,2, exploiting the
structure of the interpolant of the optimal map to solve the PDE corresponding to the
dual optimization problem. Oberman and Ruan (2015) discretized the given continuous
distributions and solved the resulting linear programming problem in an adaptive way
that exploits the sparse nature of the solution (the fact that the optimal plan has support
on a map). In image processing applications, several approaches have been proposed to
regularize the discrete linear optimization problem of the earth mover's distance. The
Entropy regularization approach (Solomon et al., 2015) adds an entropy term which leads
to e�cient algorithms to derive new solutions. Ferradans et al. (2014) proposed to add a
graph regularization term to generate more regular solutions. Data-driven formulations
take as input not the distributions µ1,2 but sample sets from both. Methodologies
proposed include a �uid-�ow-like algorithm Tabak and Trigila (2014) and an adaptive
linear programming approach (Chen and Tabak, tion).

In this article, we propose a new family of algorithms to solve sample-based optimal
transport and barycenter problems. With �nite sample sets as inputs, the sample-
based optimal transport algorithm (SOT) �nds the optimal map from one sample set to
the other; the sample-based barycenter algorithm (SCB) generates sample points from
the barycenter of multiple sample sets. These algorithms solve optimization problems
directly de�ned at the level of the sample sets. Instead of modeling the distributions
underlying the data, we model the mapping functions as gradients of feature functions,
where the features capture the structure of the sample sets and can be customized
by the users. These algorithms, grounded on a necessary and su�cient property that
characterizes the barycenter measure and on the McCann interpolants (McCann, 1997),
reduce general optimal transport and barycenter problems to �local� optimal transport
problems.

This article is organized as follows: Section 2 introduces the theoretical formulation of
the algorithms. Starting with a key property of barycenter measures and their connec-
tion with the McCann interpolants, we introduce a number of �theoretical� algorithms
(theoretical because they assume that the distributions de�ning the problem are given
and that a �black box� solver is provided for the simpler problems into which the full
problem can be decomposed.) We then develop the concept of L-descending maps to
prove the convergence of the proposed algorithms in a general setting. Section 3 de-
velops the practical version of the algorithms by re-formulating the continuous version
of optimal transport in a sample-based setting. We propose to model optimal maps
using the gradient of feature functions and discuss their selection in practice. Section 4
is devoted to numerical examples. First synthetic examples are used to assess the per-
formance of the new algorithms and draw comparisons with existing ones, and then
the sample-based algorithms are appied to the transfer of multimodal distributions and
to color transfer and shape transformations. Finally, Section 5 summarizes the work,
discusses its limitations and applications, and suggests possible extensions.
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2 Solving the theoretical optimal transport and

barycenter problems

This section reviews the theoretical formulation of the optimal transport and barycenter
problems and introduces formulas to characterize and derive their solutions. Algorithms
are proposed as a bridge from the theoretical continuous formulation to the sample-based
discrete formulation, which is the topic of Section 3.

2.1 Optimal transport and barycenter problems

Let µ1 and µ2 be in P (X ), the set of Borel probability measures on a Polish space
X . Optimal transport asks how to �optimally� move mass from µ1 to µ2. An optimal
transport problem, requires the following two elements:

De�nition 1 (Cost Function). The cost function c : X ×X → R represents the cost of
moving a unit mass from location x to y. For much of this paper, we will focus on the
quadratic cost on Rd, c(x,y) = ‖x−y ‖2.

De�nition 2 (Transfer Plan). A measure π ∈ P (X × X ) is a transfer plan between µ1

and µ2 if for any Borel set E ⊂ X ,

π(E ×X ) = µ1(E), π(X × E) = µ2(E). (2.1)

We denote by Πµ1,µ2 the set of all transfer plans between µ1 and µ2.

The value of a transfer plan π at (x,y) represents the amount of mass moved from
location x to y, so the total cost C(π) of a transfer plan is given by

C(π) =

∫
X
c(x,y) dπ(x,y). (2.2)

We call a transfer plan π∗ optimal if it minimizes the total transportation cost,

π∗ = argmin
π∈Πµ1,µ2

C(π). (2.3)

This is theMonge-Kantorovich problem, for which Kantorovich proved the following
duality theorem (theorem 5.10 in Villani (2008)):

If c(x, y) is a lower semi-continuous function such that

∀x,y ∈ X , c(x,y) ≥ a(x) + b(y), (2.4)

for some real-valued upper semicontinuous functions a ∈ L1(µ1) and b ∈ L1(µ2), then
the following duality principle holds:

min
π∈Π(µ1,µ2)

∫
X
c(x,y)dπ(x,y) = sup

(φ,ψ)∈L1(µ1)×L1(µ2)
φ+ψ≤c

∫
X
φ(x)dµ1(x) +

∫
X
ψ(y)dµ2(y). (2.5)
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The two dual functions φ and ψ satisfy

φ(x) = inf
y

(c(x,y)− ψ(y)) , ψ(y) = inf
x

(c(x,y)− φ(x)) . (2.6)

In 1996, Gangbo and McCann (1996) investigated optimal transport problems with cost
functions of the form

c(x,y) = h(x−y), where h(x) is a strictly convex function. (2.7)

Under minor constraints, they proved that the optimal transfer plan is unique and is
induced by a map s that makes µ1's pushforward measure s] µ1 equals to µ2. The optimal
transfer plan can then be written as

π = (id× s)]µ1, (2.8)

where id stands for the identity map. Moreover, the optimal map s is of the form

s(x) = x−∇h∗(∇φ(x)), (2.9)

where h∗ is the Legendre transform of h and φ is a c-concave function.

In the special case where h(x) = ‖x ‖2, the statement above adopts the particularly
simple form:

The optimal transfer plan of the quadratic optimal transport problem in Rd is
induced by a unique optimal map, given by the gradient of a convex function.

This convex function φ(x) satis�es the Monge-Ampere equation

dµ2(∇φ(x)) det (∇2φ(x)) = dµ1(x), (2.10)

a PDE that can be interpreted as∫
Rd
h(∇φ(x))dµ1(x) =

∫
Rd
h(y)dµ2(y) (2.11)

for all continuous functions h (Evans, 1997).

For the quadratic cost function, the optimal transfer cost C(π) is the square of the
2-Wasserstein distance

W2(µ1, µ2) =

(
min

π∈Πµ1,µ2

∫
Rd
‖x−y ‖2dπ(x,y)

) 1
2

, (2.12)

which provides a metric in the space of measures

P2(Rd) :=

{
µ ∈ P (Rd);

∫
Rd
‖x ‖2dµ(x) < +∞

}
. (2.13)
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From now on, unless otherwise speci�ed, we will consider the quadratic cost function and
measures in P2(Rd). To keep the notation simple, we also use X for Rd in the current
section.

The McCann interpolant is de�ned as a continuous family of measures µ(t) (t ∈ [0, 1])
between µ1 and µ2. If s is the optimal map between µ1 and µ2, we de�ne the McCann
interpolant measure as

µ(t) = [t s +(1− t)id]]µ1. (2.14)

The induced map from νs to νt (0 ≤ s, t ≤ 1) is also the optimal map between them.
This property, which parallels similar ones for the barycenter of a set of measures, is
essential to the algorithms that we will propose.

The barycenter problem is a relatively recent development in the �eld of optimal trans-
port. Consider �rst the weighted barycenter of a set of points in X . Given the points
x1,x2, · · · ,xK and positive weights w1, w2 · · · , wK (

∑
wk = 1), their weighted barycen-

ter x̄ =
∑K

k=1wk xk can be characterized through

x̄ = argmin
x

K∑
k=1

wk‖xk−x ‖2. (2.15)

Moreover, for any y,

K∑
k=1

wk‖xk−y ‖2 −
K∑
k=1

wk‖xk−x̄‖2 = ‖y−x̄‖2. (2.16)

Similarly, the barycenter of a set of measures µ1, µ2, · · · , µK ∈ P2(X ) with weights
w1, w2, · · · , wK is the minimizer of the following problem (Agueh and Carlier, 2011):

µ̄ = argmin
ν∈P2(X )

K∑
k=1

wkW
2
2 (µk, ν). (2.17)

A duality results similar to the one for the optimal transport problem holds:

min
ν∈P2(X )

K∑
k=1

wkW
2
2 (µk, ν) = sup∑K

k=1 φk(xk)≤
∑K
k=1 wk‖xk −x̄‖2

K∑
k=1

∫
X
φk(x)dµk(x), (2.18)

where x̄ is the barycenter of the K vectors xk. Still another equivalent form of the
barycenter problem is the multidimentional formulation (Agueh and Carlier, 2011; Gangbo
and Swiech, 1998):

min
π̂∈Πµ1,µ2,··· ,µK

∫
XK

(
K∑
k=1

wk‖xk−x̄‖2

)
dπ̂(x1,x2, · · · ,xK), (2.19)

where Πµ1,µ2,··· ,µK is the set of measures π̂(x1,x2, · · · ,xK) with kth marginal µk.
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The equivalence of the two forms (2.17) and (2.19) is established in Agueh and Carlier
(2011).

A special case is the two-measure barycenter problem,

min
ν∈P2(X )

wW 2
2 (µ1, ν) + (1− w)W 2

2 (µ2, ν), (2.20)

whose solution coincides with a McCann interpolant measure between µ1 and µ2: if µ(t)
is the interpolant measures de�ned in (2.14), then

µ(1− w) = argmin
ν∈P2(X )

wW 2
2 (µ1, ν) + (1− w)W 2

2 (µ2, ν). (2.21)

2.2 A sequence of algorithms

This subsection introduces the main theoretical algorithms of this article informally,
without proofs.

In order to address the numerical solution to the optimal transport and barycenter
problems, we start with a simpler question: assuming that we already have a black box
solver for the optimal transport problem, �nd an e�cient algorithm that uses it to solve
the barycenter problem.

Given an arbitrary initial measure ν ∈ P2(X ), we seek to update it so as to reduce the
total cost in the barycenter problem (2.17). Constructing the optimal transfer maps
from ν to the µk, which we denote by sk, we have

K∑
k=1

wkW
2
2 (ν, µk) =

K∑
k=1

wk

∫
X
‖y− sk(y)‖2dν(y) =

∫
X

[
K∑
k=1

wk‖y− sk(y)‖2

]
dν(y).

(2.22)
Comparing the integrand of the last expression with the characterization of the pointwise
barycenter in (2.15) suggests de�ning a transformation f that maps y to the barycenter
of s1(y), s2(y), · · · , sK(y):

f(y) :=
K∑
k=1

wk sk(y). (2.23)
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Pushing forward ν via f , we have the following inequality1:

K∑
k=1

wkW
2
2 (ν, µk) ≥

∫
X

[
K∑
k=1

wk‖ f(y)− sk(y)‖2

]
dν(y)

=

∫
X

[
K∑
k=1

wk‖ỹ − sk(f
−1(ỹ))‖2

]
d f ] ν(ỹ)

≥
K∑
k=1

wkW
2
2 (f ] ν, µk).

(2.24)

Applying repeatedly the map f yields Algorithm 1 (Álvarez-Esteban et al., 2016).

Algorithm 1 Basic Theoretical Barycenter Algorithm (BTB)

1. Set ν = ν0 where ν0 ∈ P2(X ) is an arbitrary initial measure;

2. Find the optimal maps sk from ν to µk (k = 1, 2, · · · , K);

3. De�ne f using (2.23);

4. Set ν = f ] ν and return to step 2.

Notice that, for the updated measure f ] ν, the map sk(f
−1(ỹ)) between f ] ν and µk may

not be optimal anymore. Hence at every iteration of the BTB algorithm, one needs to
recompute the optimal maps between ν and µk using the black box optimal transport
solver. This can make the complexity of the BTB algorithm quite high.

The same idea can be used to solve a standard optimal transport problem. In the
last section, we pointed out the connection between the two-measure barycenter and
McCann's interpolant. Applying BTB to a two measure barycenter problem, if the
algorithm converges, we will get a McCann Interpolant measure, which also gives us the
optimal map s2 ◦ s−1

1 between µ1 and µ2.

It may seem unnecessary to use the BTB algorithm for the optimal transport problem,
as this can be solved directly using the black box solver which BBT requires. The
algorithm's utility becomes clearer when instead of the barycenter problem we consider
the following alternative:

min
ν0,ν1,··· ,νK∈P2(X )
ν0=µ1,νK=µ2

K∑
k=1

wkW
2
2 (νk, νk−1). (2.25)

1Even though f is assumed to be invertible for this calculation, we prove in section 2.5 a general version
for which this assumption is not required.

8



Since ν0, ν1, · · · , νK form a chain between µ1 and µ2 and the Wasserstein distance is a
metric on P2(X ), Cauchy's inequality yields[

K∑
k=1

wkW
2
2 (νk, νk−1)

][
K∑
k=1

1

wk

]
≥

[
K∑
k=1

W2(νk, νk−1)

]2

≥ W 2
2 (µ1, µ2), (2.26)

with both equalities attained if and only if ν0, ν2, · · · , νK are McCann interpolant mea-
sures with the speci�c time parameters:

λk =
k∑
i=1

1

wi

/
K∑
i=1

1

wi
, (2.27)

νk = µ(λk). (2.28)

If sk is the optimal map from νk−1 to νk and (ν0, ν1, · · · , νK) is the minimizer of (2.25),
the optimal map from µ1 to µ2 is

sc = sK ◦ sK−1 ◦ · · · ◦ s1, (2.29)

thus leading to the introduction of Algorithm 2 (TOT).

Algorithm 2 Theoretical Optimal Transport Algorithm (TOT)

1. Let ν0 = µ1 and νK = µ2. Set νk (k = 1, 2, · · · , K−1) to arbitrary initial measures
in P2(X );

2. Find the optimal maps sk from νk−1 to νk (k = 1, 2, · · · , K);

3. De�ne sc using (2.29) and the weights λk using (2.27);

4. For k = 1, 2, · · · , K − 1, update νk to

νk = [λk sc +(1− λk)id]]µ1 (2.30)

and return to step 2.

To �nd the optimal map from µ1 to µ2, the TOT algorithm approximates not only the
optimal map itself but also the McCann interpolant measures. Notice that we still need
to solve optimal transport problems between νk−1 and νk at every iteration. However, by
choosing enough interpolant measures, TOT can always make νk−1 and νk as close to each
other as needed. The solution to these �local� optimal transport problems turns out to be
far easier to approximate. Hence TOT provides a feasible way to solve arbitrary optimal
transport problems assuming that one can solve local optimal transport problems.

Next we can merge the TOT algorithm above into the barycenter algorithm, using it as
a black box solver. Moreover, instead of solving an optimal transport problem at every
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Algorithm 3 Composite Theoretical Barycenter Algorithm (CTB)

1. Set ν = ν0 where ν0 ∈ P2(X ) is an arbitrary initial measure;

2. Run steps 1,2,3 of the TOT algorithm 2 once to �nd a map sck from ν to µk for
each k = 1, 2, · · · , K;

3. De�ne the map f c as:

f c(y) =
K∑
k=1

wk sck(y); (2.31)

4. Update ν and sck:

ν = f c] ν (2.32)

sck = sck ◦(f c)−1; (2.33)

5. Run step 4, 2, 3 of TOT once for each pair (ν, µk) to update sck and return to step
3.

step, we can simply update the map using one iteration of TOT every step, which gives
the following composite theoretical barycenter algorithm 3.

The CTB algorithm 3 solves the barycenter problem under the single assumption that
one knows how to solve local optimal transport problems, a problem that will be ad-
dressed in section XXX.

None of the three theoretical algorithms introduced in this section, BTB, TOT and
CTB, can be applied to realistic settings directly, since typically in practice one does
not know the continuous distributions that de�ne the problem. Instead, the input data
often consists of sample sets drawn from these distributions. Yet before discussing how
to apply these algorithms in practical scenarios, we prove below their convergence.

2.3 A necessary and sufficient characterization of the

barycenter

In the BTB algorithm 1, we perform two basic operations: �nding the optimal map
between pairs (ν, µk) and �nding the barycenter of sets of points. The algorithm stops
when both of the following conditions are satis�ed:

1. For any k = 1, 2, · · · , K, sk is the optimal map from ν to µk;
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2. For any y ∈ X ,

y =
K∑
k=1

wk sk(y). (2.34)

The next theorem shows these two conditions are both necessary and su�cient for ν to
be the barycenter of the µk:

Theorem 1 ((Agueh and Carlier, 2011)). Consider the barycenter problem (2.17) with
absolutely continuous measures µ1, µ2, · · · , µK and positive weights w1, w2, · · · , wK (

∑K
k=1wk =

1). A measure ν is the barycenter if and only if for almost all y ∈ supp(ν),

y =
K∑
k=1

wk sk(y) (2.35)

where sk is the optimal map from ν to µk.

Proof. To start with, the existence of optimal map sk is guaranteed by the regularity of
ν (ν will be an absolutely continuous measure), which is proved in Agueh and Carlier
(2011).

For necessity, we use the inequality in (2.24),

K∑
k=1

wkW
2
2 (ν, µk)−

K∑
k=1

wkW
2
2 (f ] ν, µk) ≥

∫
X
‖y− f(y)‖2dν(y). (2.36)

Since ν is the minimizer, it follows that y = f(y) ν-almost everywhere.

For su�ciency, let (φ∗k(x), ψ∗k(y)) be the optimizer of the dual optimal transport problem
(2.5) between ν and µk. To unify notations, we set the cost function to be wk‖x−y ‖2

instead of the usual ‖x−y ‖2. Then the constraints in the dual problems can be written
as

φ∗k(x) + ψ∗k(y) ≤ wk‖x−y ‖2. (2.37)

Equation (2.9) and related properties imply the following relation:

sk(y) = ∇
[
‖y ‖2

2
− ψ∗k(y)

wk

]
, (2.38)

which combined with (2.35) yields

y =
K∑
k=1

wk sk(x) =
K∑
k=1

wk∇
[
‖y ‖2

2
− ψ∗k(y)

wk

]
= y−∇

K∑
k=1

ψ∗k(y). (2.39)

This indicates that
∑K

k=1 ψ
∗
k(y) = C is a constant, which we can set to zero without

changing the optimal map. Thus

K∑
k=1

∫
φ∗k(x)dµk(x) =

K∑
k=1

[∫
φ∗k(x)dµk(x) +

∫
ψ∗k(y)dν(y)

]
. (2.40)
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From the strong duality property of the optimal transport problem,∫
φ∗k(x)dµk(x) +

∫
ψ∗k(y)dν(y) = wkW

2
2 (µk, ν), (2.41)

which summed up over all k yields

K∑
k=1

∫
φ∗k(x)dµk(x) =

K∑
k=1

wkW
2
2 (µk, ν). (2.42)

Hence {φ∗k(x)} and ν satisfy the strong duality of the barycenter problem, implying that
ν is the barycenter of the µk.

This theorem is �rst introduced in (Agueh and Carlier, 2011). We propose the above
proof in the spirit of the barycenter algorithm. The theorem provides an easy check on
whether a measure is the barycenter. A direct corollary of this theorem corresponding
to the TOT algorithm is

Theorem 2. Consider problem (2.25) with absolutely continuous measures µ1, µ2 mea-
sures and positive weights w1, w2, · · · , wK (

∑K
k=1wk = 1). Absolutely continuous mea-

sures (ν0, ν1, · · · , νK) minimize (2.25) if and only if for almost all y ∈ supp(µ1) and all
k = 1, 2, · · · , K,

sk ◦ · · · ◦ s2 ◦ s1(y) = (1− λk) y +λk sc(y) (2.43)

where sk is the optimal map from νk−1 to νk and sc is de�ned by (2.29).

Proof. Necessity follows directly from (2.26): for all inequalities to become equalities,
νk has to be on the geodesics between µ1 and µ2, thus must be absolutely continuous
themselves. With the existence of sk, the condition in the theorem must be satis�ed.

On the other hand, it follows from the conditions that, for k = 1, 2, · · · , K − 1,

sk ◦ · · · ◦ s2 ◦ s1(y) = (1− λk
λk+1

) y +
λk
λk+1

sk+1 ◦ · · · ◦ s2 ◦ s1(y). (2.44)

Theorem 1 for k = 2, 3, · · · , K implies that sk ◦ · · ·◦s2 ◦ s1 is the optimal map from µ1 to
νk. Speci�cally, when k = K, sc is the optimal map between µ1 and µ2, thus νk is indeed
a McCann interpolant measure with time variable λk, which proves that (ν0, ν1, · · · , νK)
is the minimizer of (2.25).

The above two theorems characterize the barycenter and the McCann interpolant mea-
sures. While necessity is quite straightforward, su�ciency is particularly useful, as it
provides a way to de�ne the barycenter and the McCann interpolant. To prove the
convergence of the algorithms proposed in the prior subsection, we will �rst prove that
they converge to measures that satisfy the above properties. Using these theorems, it
is then guaranteed that these limit measures are indeed the barycenter and McCann
interpolant measures respectively.
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2.4 A general convergence theorem for Ldescending maps

To prove the convergence of the proposed algorithms, we will �rst introduce a set of
more general convergence theorems that can be applied to BTB, TOT, CTB and to a
broader class of algorithms. We �rst de�ne the following concept:

De�nition 3 (L-Descending Map). Suppose F is a map between measures:

F : P2(X )→ P2(X ) (2.45)

and L : P2(X ) → R is a cost function with a lower bound. We call F an L-descending
map if it satis�es the following conditions:

1. F is a continuous map with respect to the W2 metric on P2(X ).

2. For arbitrary π ∈ P2(X ), we have

L(F π) ≤ L(π) (2.46)

and equality holds if and only if

F π = π = π∗ (2.47)

where π∗ is a minimizer of L.

Consider an iterative algorithm seeking the minimizer of a cost function L. If each
iteration updates the current measure through a map, it is natural to require that the
map reduces the value of L. At the same time, a necessary condition for the algorithm to
succeed is that when the algorithm can no longer reduce the value of L, the minimizer
must have been reached. Combining these two conditions and the continuity of the
map, we get exactly the above de�nition of L-descending maps. Next we prove a general
convergence theorem.

Theorem 3. Let F be an L-descending map. We de�ne a sequence {πn}n=1,2,... through

πn+1 = F πn, n = 0, 1, ... (2.48)

where π0 ∈ P2(X ) is an arbitrary initial measure.

If the following two conditions are satis�ed:

1. {πn}n=1,2,... is sequentially compact with respect to the W2 metric,

2. L is continuous with respect to the W2 metric and it has a unique minimizer π∗,

then
πn

W2−−→ π∗ (2.49)
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Proof. Because {πn}n=1,2,... is sequentially compact, we can extract a subsequence that
converges to some measure π′:

πnj
W2−−→ π′. (2.50)

From the continuity of F and L, we have that

F πnj W2−−→ F π′, (2.51)

and

lim
j→+∞

L(πnj) = L(π′) (2.52)

lim
j→+∞

L(F πnj) = L(F π′). (2.53)

On the other hand, because L(πn) is a non-increasing sequence,

L(F π′) = lim
n→+∞

L(F πnj) = lim
n→+∞

L(πnj) = L(π′). (2.54)

From the de�nition of L-descending maps, π′ must be the unique minimizer of L. TheW2

convergence of the full sequence follows from the fact that any subsequence of {πn}n=1,2,···
W2 converges to the same measure π∗.

2.5 Convergence of the optimal transport and barycenter

algorithms

The general convergence theorem for L-descending maps helps us prove a series of con-
vergence results, for which we only need to verify the conditions in Theorem 3. Consider
�rst the following general algorithm:

De�nition 4 (General Descending Optimal Transport Algorithm (GDOT)). Consider
an iterative algorithm that updates a transfer plan π ∈ Πµ1,µ2:

πn+1 = F πn, n = 0, 1, · · · (2.55)

We call an algorithm a general descending optimal transport algorithm if the associated
iteration map F is an L-descending map in which the cost function L(π) is the total
transport cost de�ned in (2.2).

Theorem 4. Assume that the two target measures µ1 and µ2 are in P2(X ) and the
optimal transfer plan is unique. Then the GDOT algorithm converges to the optimal
transfer plan π∗ in the W2 metric.

Proof. In order to use Theorem 3 to prove the W2 convergence of {πn}, we verify the
two conditions in Theorem 3.
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To prove that {πn}n=1,2,... is sequentially compact with respect to W2 metric, we prove
that Πµ1,µ2 is tight. First, Πµ1,µ2 ⊂ P2(X 2), because∫

X 2

(‖x ‖2 + ‖y ‖2)dπ =

∫
X
‖x ‖2dµ1 +

∫
X
‖y ‖2dµ2 <∞. (2.56)

Then, for any ε > 0, we can choose compact sets Kµ1
ε and Kµ2

ε such that

µ1(X \Kµ1
ε ) <

ε

2
, µ2(X \Kµ2

ε ) <
ε

2
. (2.57)

It follows that, for any π ∈ Πµ1,µ2 ,

π(X 2 \Kµ1
ε ×Kµ2

ε ) ≤ µ1(X \Kµ1
ε ) + µ2(X \Kµ2

ε ) < ε. (2.58)

By Prokhorov's theorem (Prokhorov, 1956), {πn}n=1,2,... has a subsequence {πnj}j=1,2,...

that converges weakly to a measure π′. Since the marginal measures of πnj are the same
as those of π′'s,∫
X 2

(‖x ‖2 + ‖y ‖2)dπnj =

∫
X
‖x ‖2dµ1 +

∫
X
‖y ‖2dµ2 =

∫
X 2

(‖x ‖2 + ‖y ‖2)dπ′ (2.59)

By Theorem 6.9 of Villani (2008), the convergence of quadratic functions indicates that

πnj
W2−−→ π′. Thus πn ∈ Πµ1,µ2 indeed has a W2 convergent subsequence.

For condition 2 of Theorem 3, we need to prove that the cost function C(π) is continuous
with respect to the W2 metric. Since the quadratic cost can be controlled by quadratic
terms:

‖x−y ‖2 ≤ 2(‖x ‖2 + ‖y ‖2), (2.60)

if πn
W2−−→ π, by the de�nition of W2 convergence, we have that

lim
n→∞

C(πn) = lim
n→∞

∫
X 2

‖x−y ‖2dπn =

∫
X 2

‖x−y ‖2dπ = C(π). (2.61)

Since both conditions are satis�ed, Theorem 3 shows that {πn}n=1,2,... converges to the
optimal transfer plan π∗.

This theorem provides a general framework for proving convergence for optimal transport
algorithms. As long as one can show that the map in the algorithm is an L-descending
map and that the optimal map is unique, convergence is guaranteed. Notice that the
theorem does not require the transfer plan to be a map.

The simplest L-descending map is the one that maps every transfer plan to the optimal
transfer plan. As we will see later, the map in TOT is also an L-descending map. Before
going into speci�c cases, we build a general framework for the barycenter problem.

Since the barycenter measure is not a transfer plan, in order to prove convergence to the
barycenter measure ν we need to consider the multimarginal measure π̂. Informally, in
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every iteration after step 2 of the BTB algorithm, we have a family of optimal transfer
plans between the barycenter and the target measures:

πk = law(y, sk(y)), k = 1, 2, · · · , K. (2.62)

Combining all the maps together yields the multimarginal measure π̂:

π̂ = law(s1(y), s2(y), · · · , sK(y)). (2.63)

Instead of thinking of the update of ν at every iteration, we will view the barycenter
algorithms as updating the π̂ measure. Clearly π̂ stores more information than ν, which
can be derived from π̂ though

ν(E) := π̂

(
{(x1, · · · ,xK)|

K∑
k=1

wk xk ∈ E}

)
, for all Borel sets E. (2.64)

However, when we update general transfer plans πk (not transfer maps), the multi-
marginal measure is not fully determined by the transfer plans: when we �x a point
y in measure ν, the conditional measure πk|y in general does not concentrate in one
location, as it does when we have a transfer map. Thus for the joint conditional measure
π̂|y, only its marginals are de�ned by πk|y. To fully de�ne π̂, we need to either only
consider transfer maps or specify π̂ for general πk.

Even if we restrict attention to transfer maps, as in BTB and CTB, we still need the
map f to be invertible in order to fully determine π̂. In Álvarez-Esteban et al. (2016),
the authors proved the invertibility of f in BTB in a similar setting, but we found that
this property might not hold for the CTB algorithm. Moreover, to build a more general
convergence theorem, we would like to consider general transfer plans.

In order to fully de�ne π̂, we build the conditional measure π̂|y as the product measure
of the πk|y:

π̂|y = π1|y×π2|y× · · · × πK |y, (2.65)

thus making the conditional marginal measures independent of each other. Then we
de�ne a general descending barycenter algorithm:

De�nition 5 (General Descending Barycenter Algorithm (GDB)). Given an arbitrary
L-descending map F for the GDOT algorithms, we de�ne the map:

G : Πµ1,··· ,µ2,··· ,µK → Πµ1,··· ,µ2,··· ,µK (2.66)

and use it to update the current multimarginal measure π̂n:

π̂n+1 = G π̂n. (2.67)

We call such an algorithm a general descending barycenter algorithm if G is induced by
F through the following steps:
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1. Derive νn from π̂n using (2.64);

2. For k = 1, 2, · · · , K, set the current transfer plan πnk to

πnk (Eν × Ek) := ν(Eν) · π̂n ({(x1, · · · ,xK)|xk ∈ Ek}) , for all Borel sets Eν , Ek;
(2.68)

3. Apply the map F to all πnk ,
πn+1
k = F πnk (2.69)

and de�ne the conditional measure πn+1
k |y;

4. Set π̂n+1 as the product measure:

π̂n+1(E1 × E2 × · · · × EK) =

∫
X

[
K∏
k=1

πn+1
k |y(Ek)

]
dν(y). (2.70)

The general descending barycenter algorithm is a generalization of the BTB and CTB
algorithms that updates transfer plans instead of maps. The optimal transport solver
is not speci�ed in GDB: for any L-descending map F for the GDOT algorithm, we can
de�ne a corresponding GDB algorithm.

Theorem 5. The general descending barycenter algorithm has the following properties:

(I) G is a L-descending map, where the cost function L is the barycenter cost in the
multimarginal formulation (2.19):

L(π̂) =

∫
XK

(
K∑
k=1

wk‖xk−x̄‖2

)
dπ̂(x1,x2, · · · ,xK), π̂ ∈ Πµ1,µ2,··· ,µK ; (2.71)

(II) If the barycenter problem has a unique solution, the GDB algorithm always con-
verges to the minimizer π̂∗ of the L(π̂) de�ned above; the corresponding ν∗ is the
barycenter.

Proof of (I). To prove that G is an L-descending map, we verify the conditions in De�-
nition 3.

First, we prove that G is continuous. Let a sequence of measures {π̂n}n=1,2,··· converge
to some π̂∗ in the W2 metric. We would like to show that

G π̂n W2−−→ G π̂∗. (2.72)

We �rst show that the corresponding νn converges to ν∗ in W2. By de�nition (2.64),
ν(y) can be viewed as π̂'s marginal measure for y =

∑K
k=1 wk xk. For any continuous

function φ such that |φ(y)| ≤ C(1 + ‖y ‖2),

|φ(y)| ≤ C(1 + ‖y ‖2) ≤ C(1 +
K∑
k=1

wk‖xk ‖2) ≤ C̃(1 +
K∑
k=1

‖xk ‖2). (2.73)
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Since ∫
X
φ(y)dν(y) =

∫
XK

φ(
K∑
k=1

wk xk)dπ̂, (2.74)

the W2 convergence of π̂n yields

lim
n→∞

∫
X
φ(y)dνn(y) =

∫
X
φ(y)dν∗(y), (2.75)

the W2 convergence of νn. The joint measure of νn and π̂n also converges, and so

πnk
W2−−→ π∗k. (2.76)

Since F is an L-descending map,

F πnk
W2−−→ F π∗k. (2.77)

Finally, since G π̂n is de�ned by the product of the F πnk 's conditional measures,

G π̂n W2−−→ G π̂∗. (2.78)

Next we prove that G reduces the cost function L.

L(π̂n) =

∫
XK

[
K∑
k=1

wk‖xk−x̄‖2

]
dπ̂n(x1,x2, · · · ,xK)

=
K∑
k=1

wk

∫
X 2

‖xk−y ‖2dπnk (xk,y)

≥
K∑
k=1

wk

∫
X 2

‖xk−y ‖2dπn+1
k (xk,y) (2.79)

=
K∑
k=1

wk

∫
X

∫
X
‖xk−y ‖2d

(
πn+1
k |y

)
(xk) dν

n(y)

=

∫
X

∫
XK

[
K∑
k=1

wk‖xk−y ‖2

]
d
(
π̂n+1|y

)
(x1,x2, · · · ,xK) dνn(y)

≥
∫
X

∫
XK

[
K∑
k=1

wk‖xk−x̄‖2

]
d
(
π̂n+1|y

)
(x1,x2, · · · ,xK) dνn(y) (2.80)

=

∫
XK

[
K∑
k=1

wk‖xk−x̄‖2

]
dπ̂n+1(x1,x2, · · · ,xK)

= L(π̂n+1).
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If L(π̂n) = L(π̂n+1), from the inequality turned equality in (2.79), we have that∫
X 2

‖xk−y ‖2dπnk (xk,y) =

∫
X 2

‖xk−y ‖2dπn+1
k (xk,y). (2.81)

Since F is an L-descending map, it follows that πnk must be the optimal transfer plan
between µk and νn. The di�erence between the two sides of the inequality turned equality
in (2.80) yields ∫

X

∫
XK
‖x̄− y ‖2dπ̂n+1|y(x1,x2, · · · ,xK)dνn(y) = 0, (2.82)

implying that x̄ = y almost everywhere. So νn = νn+1 and π̂n = π̂n+1.

Now using theorem 1, we have that this �xed point νn must be the barycenter of ν.
Moreover π̂n must be the minimizer of L(π̂n). This concludes the proof that G is an
L-descending map.

Proof of (II). Having shown that G is an L-descending map, the proof of the second part
follows the same steps as the proof of Theorem 4.

With the above general convergence theorems 4, 5 for the GDOT and GDB algorithms,
the convergence of the speci�c algorithms proposed in the previous section are simple
corollaries: the proofs boil down to showing that the associated maps in the iterative
algorithm are L-descending maps.

When the BTB, TOT and CTB algorithms were introduced, the transfer plans were
limited to transfer maps. As we have discussed, a more accurate and general de�nition
should be made in terms of general transfer plans, which we do here for completeness:

Algorithm 4 Basic Theoretical Barycenter Algorithm (BTB)

1. Set ν = ν0 where ν0 ∈ P2(X ) is an arbitrary initial measure;

2. Find the optimal transfer plan πk between ν and µk (k = 1, 2, · · · , K);

3. De�ne the multimarginal measure π̂ from πk;

4. Derive ν from π̂ using (2.64) and go to step 2.

One crucial step in the TOT algorithm is the derivation of the transfer plan π̂ from
the local transfer plans πk. As for the barycenter multimarginal measure case, with
transfer plans more general than maps, we need to specify how to couple the transfer
plans together. As in the barycenter case, we couple the conditional measures together
independently. Consider the process from x to y through x1,x2, · · · ,xK−1. For each k,
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Algorithm 5 Theoretical Optimal Transport Algorithm (TOT)

1. Let ν0 = µ1 and νK = µ2. Set νk (k = 1, 2, · · · , K−1) to arbitrary initial measures
in P2(X );

2. Find the optimal transfer plan πk between νk−1 to νk (k = 1, 2, · · · , K);

3. Derive the transfer plan π̂ between µ1 and µ2 from πk by (2.84) and de�ne λk by
(2.27);

4. For k = 1, 2, · · · , K − 1, update νk to

νk(E) := π̂ ({(x,y)|λk y +(1− λk) x ∈ E}) , for all Borel sets E (2.83)

and go to step 2.

Algorithm 6 Composite Theoretical Barycenter Algorithm (CTB)

1. Set ν = ν0 where ν0 ∈ P2(X ) is an arbitrary initial measure;

2. Run step 1,2,3 of TOT once to �nd a transfer map πk from ν to µk for each
k = 1, 2, · · · , K;

3. De�ne the multimarginal measure π̂ from πk;

4. Update ν using (2.64) and derive new πk from π̂;

5. Run step 4, 2, 3 of TOT once for each pair (ν, µk) to update πk and go to step 3.

the conditional measure πk|xk−1 can be thought of as a Markov kernel from νk−1 to νk.
Then one can derive the Markov kernel from µ1 to µ2 by compositing all the conditional
measures:

π̂(Ex, Ey) :=

∫
Ex

∫
X
· · ·
∫
X

∫
Ey

[
K∏
k=1

dπk|xk−1(xk)

]
dµ1(x) (2.84)

Now we prove the convergence theorems for all the algorithms proposed:

Theorem 6 (Convergence of Theoretical Optimal Transport Algorithm). Consider the
quadratic optimal transport problem with measures µ1 and µ2. The map FTOT associated
with the TOT algorithm is an L-descending map and TOT always converges to the
optimal transfer plan.

Proof. To show that FTOT is an L-descending map, we verify all the conditions in de�-
nition 3.
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We �rst show the continuity of FTOT. Suppose we have a sequence of transfer plans
{πn}n=1,2,··· converging to π∗. For all k, νnk will also converge to ν∗k in the W2 metric. By
Theorem 5.20 in Villani (2008) and the uniqueness of the optimal transfer plan in our
case, we have, for the local transfer plans πnk :

πnk
W2−−→ π∗k. (2.85)

By the construction of FTOT π̂
n from πnk (2.84), we have

FTOT π̂
n W2−−→ FTOT π̂

∗, (2.86)

proving continuity. For the descending property of FTOT, we directly compute the cost
function. De�ning

xk = λk y +(1− λk) x, (2.87)

we have that
xk−1−xk = (λk − λk−1)(x−y), (2.88)

and thus ∫
X 2

‖x−y ‖2dπ̂n(x,y) =
K∑
k=1

∫
X 2

(λk − λk−1)‖x−y ‖2dπ̂n(x,y) (2.89)

=
K∑
k=1

∫
X 2

‖xk−1−xk ‖2

λk − λk−1

dπnk (xk−1,xk) (2.90)

≥
K∑
k=1

∫
X 2

‖xk−1−xk ‖2

λk − λk−1

dπn+1
k (xk−1,xk). (2.91)

Following the de�nition of π̂n+1, we can write the summation of integrals above as one
integral over the joint measure π̃n+1(x,x1, · · · ,xK−1,y),∫

X 2

‖x−y ‖2dπ̂n(x,y) ≥
K∑
k=1

∫
X 2

‖xk−1−xk ‖2

λk − λk−1

dπn+1
k (xk−1,xk) (2.92)

=

∫
XK

K∑
k=1

‖xk−1−xk ‖2

λk − λk−1

dπ̃n+1
k (x,x1, · · · ,xK−1,y)

≥
∫
XK

‖
∑K

k=1 xk−1−xk ‖2∑K
k=1 λk − λk−1

dπ̃n+1
k (x,x1, · · · ,xK−1,y) (2.93)

=

∫
XK
‖x−y ‖2dπ̃n+1

k (x,x1, · · · ,xK−1,y)

=

∫
X 2

‖x−y ‖2dπ̂n+1(x,y)

This shows the transport cost is not increasing. If it is not decreasing either, we check
the inequalities turned into equalities in the above calculation for the conditions that π̂n
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must satisfy. From (2.92), we have that πnk must be the optimal transfer plan between
νk−1 and νk. From (2.93) and Cauchy's inequality, we have that

xk−1−xk
λk − λk−1

= x−y, (2.94)

a relation equivalent to (2.44). By Theorem 2, we have that π̂n must be the optimal
transfer plan between µ1 and µ2.

This concludes the proof that FTOT is an L-descending map. Then Theorem 4 shows
that the TOT algorithm converges to the optimal transfer plan.

Theorem 7 (Convergence of the Theoretical Barycenter Algorithms). Consider the
barycenter problem (2.17) with measures µ1, µ2, ..., µK and positive weights w1, w2, ..., wK
(
∑K

k=1 wk = 1). We have

(I) The BTB algorithm is a special case of the GDB algorithm with the L-descending
map that maps all the transfer plan to the corresponding optimal transfer plan.
Thus it converges to the barycenter measure.

(II) The CTB Algorithm is a special case of the GDB algorithm with the L-descending
map FTOT. Thus it converges to the barycenter measure.

Proof. It follows straightforwardly from the de�nitions of BTB and CTB that both are
special cases of GDB.

2.6 Conclusions of section 2

This section proposed three theoretical algorithms to solve the optimal transport and
barycenter problems. These algorithms perform iterations that reduce the corresponding
cost function. The iterations are L-descending maps, so the general convergence theorem
Theorem 3 provides the basic framework to show their convergence.

For the optimal transport problem, the TOT algorithm approximates the McCann in-
terpolant measures and updates the transfer plans for each of its segments. For the
barycenter problem, both the BTB and CTB algorithms alternate between updating
the barycenter measure via point-wise barycenter problems and updating the transfer
plans between the barycenter and each target measure. A shared feature of these algo-
rithms is that they both alternate between two di�erent operations to reduce the cost
function. The su�ciency conditions proved in Theorem 1 and Theorem 2 guarantee
that these algorithms converge to the optimal transfer plan and barycenter measure
respectively.

The convergence theorems Theorem 4 and Theorem 5 show the convergence of a broad
family of optimal transport and barycenter algorithms. To apply these theorems, one
only needs to verify that the associated map in an algorithm is an L-descending map.
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Using the TOT and CBC algorithms, one can solve optimal transport and barycenter
problems de�ned by arbitrary P2(X ) measures, assuming that one can solve �local�
optimal transport problems. In many cases, these local optimal transport problems are
relatively easy to solve. For instance, when two measures are close to each other, the
gradient �ow (Ambrosio et al., 2008) o�ers a good approximation to the optimal transfer
plan. Local optimal transport problems also play an important role in the sample-based
formulation described below.

3 The sample-based optimal transport and

barycenter problems

The prior section discussed optimal transport and barycenter problems when the data is
provided in the form of a set of measures. This setting, which connects with the classical
theory of optimal transport, enabled us to propose theoretical algorithms. However, the
classical setting is not enough for practical data analysis, since more often than not one
has access not to the actual conditional distributions of the data but only to samples
drawn from these distributions.

The plan of this section is as follows. In the �rst subsection, we discuss di�erent practical
formulations of the optimal transport problem and introduce the sample-based Monge-
Ampere equation and the sample-based optimal transport and barycenter problems. In
the second subsection, we prove a local solution theorem for the sample-based formula-
tion. Then we adapt all the theoretical algorithms to their sample-based forms using the
new local solver in the third subsection. Finally we discuss the selection of the feature
functions that the solver requires.

3.1 The sample-based formulation

The starting point of statistics/data analysis is data, which can be modeled as a set
of independent realizations of random variables from unknown underlying distributions.
Hence, in order to use optimal transport as a tool for data analysis, one must reformulate
the problem in terms of datasets in Rd instead of known distributions.

Let {xi}Nxi=1 and {yi}
Ny
i=1 be i.i.d. samples from the unknown distributions µ1 and µ2

in Rd, respectively. We would like to de�ne a quadratic optimal map between the two
sample sets and develop practical algorithms to �nd it.

We will focus our attention on optimal maps rather then general transfer plans. On the
one hand, the solution to the classical quadratic optimal transport problem is a map.
On the other, when transferring a �nite sample set, one would expect the result to also
be a �nite sample set. The simplest such transform consists of moving each sample point
to a new sample point, as maps do.
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To formulate the optimal transport problem in this setting, we need to give the sample-
based version of the following two statements:

1. A map f pushes measure µ1 to µ2:

f ] µ1 = µ2 (3.1)

2. A map f minimizes the transport cost:∫
c(x, f(x))dµ1(x) (3.2)

One relevant setting is the assignment problem in combinatorial optimization, which
seeks a one-to-one mapping between {xi}Ni=1 and {yi}Ni=1 minimizing

N∑
i=1

‖xi−yσ(i) ‖2, (3.3)

where σ is a permutation of {1, 2, · · · , N}. There are broad applications of the assign-
ment problem (Burkard and Cela, 1999) and various practical algorithms (Munkres,
1957) to solve it. Yet the assignment problem has signi�cant di�erences with the sce-
nario we are interested in. The most important one is that we do not restrict the images
of {xi}Ni=1 to be among the {yi}Ni=1: since the sample points are random variables drawn
from some continuous distributions, the range of the map should be the whole support
of the continuous distribution, not a �nite subset of points. Another limitation of the
assignment problem is that it requires both sets to have the same number of elements,
which is not a requirement of our problem.

Heuristically, the optimal map between {xi}Nxi=1 and {yi}
Ny
i=1 should be similar to the

classical optimal map between the two measures µ1 and µ2. One possible way to proceed
would de�ne the sample-based optimal map in two steps: one would obtain density
estimates µ̃1 and µ̃2 from sample the sets {xi}Nxi=1 and {yi}

Ny
i=1, and then solve the classical

optimal transport problem between µ̃1 and µ̃2.

If one knows which parametric classes are well-suited to approximate µ1 and µ2 and
the sample size is large enough, one can derive accurate estimators for µ1 and µ2. For
instance, if one knows that the sample points are drawn from normal distributions,
given enough samples one can obtain good approximations to their means and covariance
matrices, and hence to the distributions themselves. Since the optimal transport problem
between normal distributions has a closed-form solution (Givens et al., 1984), one can
then de�ne it as the solution to the sample-based problem between {xi}Nxi=1 and {yi}

Ny
i=1.

However, it is generally di�cult both to select a parametric model for the unknown den-
sity functions and to do an accurate density estimation with limited sample size. These
concerns, common to many statistical problems, make density estimation a not very
favorable route, especially for problems in high dimensions. Moreover, even if provided
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with good density estimates, we would still need to solve the classical optimal transport
problem numerically, since there is no closed-form solution for the multidimensional
problem between general measures.

A popular formulation of the optimal transport problem is the discrete formulation.
Suppose the underlying space X is discrete and the two distribution functions are {µi}Ni=1

and {ρj}Nj=1. The Kantorovich formulation (2.2) can be written as

min∑N
i=1 πij=µj∑N
j=1 πij=ρi

N∑
i,j=1

cijπij, (3.4)

also known in image processing as the earth mover's problem (Peleg et al., 1989). This
�ts well imaging applications in which the input (an image) can be naturally represented
as a discrete distribution. Yet this is not true for general random sample sets. One
disadvantage of the discrete form (3.4) is that its optimal transfer plan is not necessarily
a map as in the classical case. On the other hand, to apply the discrete form to our
problem, we need to properly discretize the problem �rst. As discussed in Section 4.2,
this is not always a trivial task.

To summarize, properly converting the sample-based problem to either classical problems
or to a discrete formulation are nontrivial tasks. In this paper, we will instead formulate
the problem directly in terms of sample sets.

To de�ne an optimal map f directly from the two �nite sample sets {xi}Nxi=1 and {yi}
Ny
i=1,

we �rst need to rede�ne the constraint f ] µ1 = µ2 so that it makes sense for samples. The
statement that f pushes µ1 to µ2 can be informally paraphrased as {f(xi)}Nxi=1 and {yi}

Ny
i=1

are drawn from the same distribution. Since the underlying distribution is unknown and
hard to estimate, we would like to develop an equivalence relation that can be directly
veri�ed from sample sets.

We propose the following equivalence relation that compares sample sets through feature
functions:

De�nition 6 (sample-based equivalence). We say that a sample set {xi}Nxi=1 is sample-

based equivalent to {yi}
Ny
i=1 with respect to a set of feature functions {Fj(x)}Mj=1 : Rd → R

if

1

Nx

Nx∑
i=1

Fj(xi) =
1

Ny

Ny∑
j=1

Fj(yi), j = 1, 2, · · · ,M (3.5)

We denote this equivalence relation by

{xi}Nxi=1 ∼ {yi}
Ny
i=1 (3.6)

Similar ideas have appeared in di�erent contexts to compare measures and sample sets,
for instance in the MaxEnt framework of Berger et al. (1996) and in the constrained
density estimation technique of Laurence et al. (2014).
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One interpretation of the sample-based equivalence arises from the Monge-Ampere equa-
tion (2.11). If we replace the test function h(x) in (2.11) by a feature function and
substitute the integrals over measures by the corresponding empirical means, we obtain:

1

Nx

Nx∑
i=1

Fj(∇φ(xi)) =
1

Ny

Ny∑
i=1

Fj(yi), j = 1, 2, · · · ,M (3.7)

which is equivalent to {∇φ(xi)}Nxi=1 ∼ {yi}
Ny
i=1.

Using the above as constraints on the function φ(x), the sample-based optimal transport
problem can be cast as the following optimization problem:

min
{∇φ(xi)}Nxi=1∼{yi}

Ny
i=1

Nx∑
i=1

‖∇φ(xi)− xi ‖2, (3.8)

In the above problem we substitute the transportation cost by the empirical cost on the
sample set. A closer look at (3.8) reveals that some further speci�cations are needed.
If the function space for φ is not further constrained, the values of ∇φ(xi) for di�erent
xi are uncorrelated. In addition, for locations x 6∈ {xi}Nxi=1, the value of ∇φ(x) is not
speci�ed or controlled by the optimization problem (3.8). To solve this problem, we
constrain φ to lie in a �nite-dimensional space:

φ(x) =
‖x ‖2

2
+

M∑
j=1

sjFj(x). (3.9)

The ‖x ‖
2

2
term is included so that when all the sj are zeros φ(x) corresponds to the

identity map.

To summarize, we de�ne below the sample-based Monge-Ampere equation and the
sample-based optimal transport problem:

De�nition 7 (Sample-based Monge-Ampere Equation). For two sample sets {xi}Nxi=1

and {yi}
Ny
i=1 and a given set of C1 feature functions {Fj(x)}Mj=1, we say a function φ(x)

is a solution to the sample-based Monge-Ampere equation if φ(x) satis�es (3.9) and

{∇φ(xi)}Nxi=1 ∼ {yi}
Ny
i=1.

De�nition 8 (Sample-based Optimal Transport). For two sample sets {xi}Nxi=1 and

{yi}
Ny
i=1 and a given set of feature functions {Fj(x)}Mj=1, the optimal map f from {xi}Nxi=1

to {yi}
Ny
i=1 is de�ned as f(x) = ∇φ∗(x), where φ∗ is the solution to the sample-based

Monge-Ampere equation that minimizes

Nx∑
i=1

‖∇φ(xi)− xi ‖2. (3.10)
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Expanding φ as a linear combination of the feature functions as base functions can be
interpreted as applying a �nite element method to the classical Monge-Ampere equation
(2.10). There is a clear correspondence between the classical and sample-based Monge-
Ampere equation: when the two measures µ1 and µ2 are known, the classical solution
must satisfy (2.11) for all continuous functions h. When we only have �nite sets of
samples {xi}Nxi=1 and {yi}

Ny
i=1, the sample-based solution must lie in a prescribed �nite

dimensional space and satisfy (3.7) for all feature functions.

As in the classical setting, once the sample-based optimal transport problem is de�ned,
we can extend it to the barycenter problem:

De�nition 9 (Sample-based barycenter problem). Given K sample sets {xki }
Nk
i=1, k =

1, 2, · · · , K, positive weights w1, w2, · · · , wK, (
∑K

k=1wk = 1) and a �xed parameter Ny,

we call a sample set {yi}
Ny
i=1 the barycenter if it minimizes

K∑
k=1

wk

Ny∑
i=1

‖∇φk(yi)− yi ‖2, (3.11)

where {∇φk(yi)}
Ny
i=1 ∼ {xki }

Nk
i=1 for k = 1, 2, · · · , K.

Instead of a barycenter measure ν, in the sample-based formulation the target is a sample
set {yi}

Ny
i=1, depending on the parameter Ny, the sample size of the barycenter.

If we set Ny = 1 and consider the single feature function

F(x) = x, (3.12)

the solution is given by

y1 =
K∑
k=1

wk
1

Nk

Nk∑
i=1

xki , (3.13)

the weighted average of the barycenters of the given sample sets. With Ny > 1 and more
general feature functions, the solution captures more detailed structures in the data and
becomes harder to solve. We discuss properties of the sample-based formulation in the
next subsections.

3.2 The solution of the local sample-based optimal

transport problem

As in the classical Monge-Ampere equation, the sample-based version can have multiple
solutions: even though there are exactly M unknowns {sj}Mj=1 to be solved from the
M equations (3.7), the feature functions are typically nonlinear. To derive all the so-
lutions and �gure out which gives the smallest transportation cost is computationally
intractable. In addition, nonlinearity can lead to the nonexistence of solutions.
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However, when the two sample sets are close to each other, we will be able not only to
guarantee the existence of a solution but also �nd the global minimizer of the objective
function. We call this type of problems �local sample-based optimal transport problems�.

To state the full theorem, we �rst introduce some notation:

Denote by F : Rd → RM the feature function vector:

F(x) =


f1(x)
f2(x)
· · ·

fM(x)

 . (3.14)

We de�ne the matrices Ai ∈ RM×d,A ∈ RM×dNx , by

Ai = ∇F(xi), i = 1, 2, · · · , Nx (3.15)

and
A =

(
A1 A2 · · · ANx

)
. (3.16)

Denote the feature values of the two sample sets by column vectors a,b ∈ RM :

a =
1

Nx

Nx∑
i=1

F(xi), b =
1

Ny

Ny∑
i=1

F(yi). (3.17)

Inspired by the sample-based Monge-Ampere equation, de�ne G : RM → RM :

G(s) =
1

Nx

Nx∑
i=1

F(xi + sT Ai). (3.18)

Theorem 8. Assume that A has full row rank. Then there exist an open set U around
0 and an open set V around a such that

(I) G : U → V gives a bijection between U and V . Thus for all b ∈ V , the solution
to the sample-based Monge-Ampere equation exists and is unique.

(II) For all b ∈ V , we can de�ne a map φ∗ through (3.9) with s∗ = G−1(b). Then
φ∗(x) gives the global minimum of the sample-based optimal transport problem.

(III) For a �xed compact set X ⊂ Rd, if all feature functions are C2 functions in X ,
φ∗(x) is convex in X .

Before giving the proof, we interpret the meaning of the theorem. Comparing to the
general non-local case, Theorem 8 establishes the existence of the sample-based Monge-
Ampere solution and states that the local solution is the minimizer of the nonlinear
global optimization problem (3.10). In addition, the convexity of the optimal φ∗ is also
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guaranteed when the feature functions' Hessian matrices are uniformly bounded, which
corresponds to a key property of the solution to the classical quadratic optimal transport
problem.

The compactness of set X in III can be substituted by other conditions. For instance,
we can choose X = Rd and enforce that all the feature functions' Hessian matrices are
uniformly bounded in Rd, from which we can prove the global convexity of the optimal
φ∗. We ask X to be compact in the main theorem because the sample sets are �nite, so
it is reasonable to discuss properties of the optimal map in a compact set.

The �rst requirement of the theorem is that A be full row rank. One necessary condition
for this is that

M < dNx, (3.19)

which loosely states that the number of feature functions should not exceed the number
of sample points. If this is not satis�ed, we are over�tting and no longer have Theorem 8.

The other requirement is that the two sample sets should be close to each other, measured
by the feature vectors they yield. The closeness of sample sets coincides with the concept
of �local optimal transport� introduced in the theoretical algorithm section. As we will
see in the next section, using a solver for the local sample-based Monge-Ampere equation
as the black box solver in the algorithms, we can adapt all the theoretical algorithms to
solve practical sample-based problems.

The theorem guarantees the existence of an open set V . The size of V represents how
close the feature vector b needs to be to a for the theorem to hold. An estimate of the
size of V can be found by combining the estimates for V1, V2 and V3 in the proof below.
The upper bound on the size of V1 is essentially a bound on the size of the neighborhood
on which the function is invertible. Such an estimate can be derived when the Jacobian
matrix is Lipschitz �see for instance Theorem 2.9.7 in Hubbard and Hubbard (1999).
For V2 and V3, the bounds can be computed from their de�nitions (3.24) and (3.30). In
this article we do not give an explicit bound for the size of V . However we will discuss
how to ensure that b−a is small enough in practice (Section 3.3). For further discussion,
we refer readers to Section 5.

proof of theorem 8. We would like to use the inverse function theorem to prove I. For
the function G de�ned in (3.18), we have G(0) = a. To apply the inverse function
theorem, we verify that the Jacobian matrix at s = 0 is invertible.

∂G(s)

∂ s
=

1

Nx

Nx∑
i=1

∇F(xi + sT Ai)A
T
i , (3.20)

so
∂G(0)

∂ s
=

1

Nx

Nx∑
i=1

AiA
T
i =

1

Nx

AAT . (3.21)
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Since A is full row rank, the Jacobian matrix is positive de�nite, thus invertible. By
the inverse function theorem, there exists an open set U1 around 0 and an open set V1

around a such that G gives a bijection between U1 and V1.

Thus as long as b ∈ V1, there exists an s∗ satisfying

s∗ = G−1(b). (3.22)

The corresponding φ∗ is the local solution for the sample-based Monge-Ampere equation.

For II, we compute the objective function in (3.10):

Nx∑
i=1

‖φ∗(xi)− xi ‖2 =
Nx∑
i=1

‖ sT Ai‖2 = sT AAT s . (3.23)

Since AAT is positive de�nite, it provides a metric for RM . Then there exists δ > 0,
such that

U2 :=
{

s
∣∣∣√sT AAT s < δ

}
⊂ U1. (3.24)

De�ne V2 = G(U2), we have that for any b ∈ V2, s∗ = G−1(B) is the unique point in U2

that solves G(s) = b. Thus s∗ gives the global minimum of the sample-based optimal
transport problem.

For III, we �rst claim that the L2 norm of all feature functions' Hessian matrices are
uniformly bounded on X , i.e. there exists a �nite number C, such that for all x ∈ X
and j,

‖HFj(x)‖2 < C. (3.25)

Since HFj(x) is a continuous function on the compact set X , and

‖HFj(x)‖2 = max
‖t‖=1

‖HFj(x)t‖, (3.26)

‖HFj(x)‖2 is also a continuous function of x. From the compactness of X , there exists
a constant Cj such that

‖HFj(x)‖2 < Cj,∀x ∈ X (3.27)

We can than set C = max
j
Cj and establish the uniform boundedness of the Hessian

matrices.

Compute the Hessian matrix of φ∗,

Hφ∗(x) = I +
M∑
j=1

s∗jHFj(x) (3.28)

Since

‖
M∑
j=1

s∗jHFj(x)‖2 ≤
M∑
j=1

‖s∗jHFj(x)‖2 ≤ C‖ s∗ ‖1, (3.29)
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if we constrain s∗ such that C‖ s∗ ‖1 < 1, Hφ∗(x) is invertible. Since ‖ · ‖1 also gives a
metric on RM , using the same argument we can de�ne U3 and V3 that guarantee that
φ∗ is convex on X :

U3 :=

{
s

∣∣∣∣‖ s ‖1 <
1

2C

}
⊂ U2, V3 = G(U3) (3.30)

This concludes the proof of III.

3.3 Sample-based optimal transport and barycenter

algorithms

In this section we adapt the theoretical algorithms introduced in Section 2.2 by using
the local solution theorem in Section 3.2 to solve sample-based problems.

Theorem 8 guarantees that the local solution to the sample-based Monge-Ampere equa-
tion (3.7) is the solution to the sample-based optimal transport problem. In practice, we
use a standard iterative nonlinear system solver, such as a trust region method (Conn
et al., 2000) or the Levenberg-Marquardt method (Moré, 1978), to solve the system
(3.7). We set the initial point of the numerical algorithm to s = 0, thus the solution
given by the solver, if successful, will be the local solution sought.

The theoretical algorithms TOT and CTB introduced in Section 2.2 are based on a black
box solver for the local optimal transport problem. This corresponds exactly to the local
sample-based problem and the nonlinear system solver. Thus if we use the nonlinear
system solver to solve local problems in the theoretical algorithms, we can extend the
algorithms to solve sample-based problems.

While the theoretical algorithms can be naturally extended to the sample-based case,
the latter requires the speci�cation of feature functions. These can be de�ned by the
user, based on expert knowledge of the nature of the sample sets, which gives great
�exibility to the sample-based formulation. We devote the next section to discuss some
general ways of selecting feature functions.

(Notice that, for the SOT algorithm, we chose for simplicity to use equal weights 1
K
.)

To complete the description of the algorithm, we need to further specify initial sets and
stopping criteria.

For the initial sets in the SOT algorithm, we need to ensure that {xk−1
i }

Nk−1

i=1 and {xki }
Nk
i=1

are close to each other so that Theorem 8 holds for the subproblem. We �rst assign to
each point xi a random points zi in the set {yi}

Ny
i=1. Then we use step 5 of the SOT

algorithm to de�ne all the initial sets. With K large enough, we can guarantee that
every pair of sample sets gives close feature vectors.

For the CSB algorithm, the initial set can be chosen arbitrarily. In practice, we choose
the set to be identical to one of the sets given.
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Algorithm 7 Sample-based Optimal Transport Algorithm (SOT)

1. Let {x0
i }Nxi=1 = {xi}Nxi=1 and {xKi }

Ny
i=1 = {yi}

Ny
i=1. Set initial sample sets {xki }Nxi=1

(k = 1, 2, · · · , K − 1);

2. Select a set of feature functions {Fj(x)}Mj=1;

3. Set the current set {zi}Nxi=1 = {x0
i }Nxi=1;

4. For k = 1, 2, · · · , K, solve the sample-based optimal map f from {zi}Nxi=1 to {xki }
Nx
i=1

using a standard nonlinear system solver and update {zi}Nxi=1 through

{zi}Nxi=1 = {f(zi)}Nxi=1; (3.31)

5. For k = 1, 2, · · · , K − 1, update {xki }Nxi=1 through

{xki }Nxi=1 = {K − k
K

x0
i +

k

K
zi}Nxi=1 (3.32)

and go to step 3.

Algorithm 8 Composite Sample-based Barycenter Algorithm (CSB)

1. Set the initial sample set {yi}
Ny
i=1;

2. Select a set of feature functions {Fj(x)}Mj=1;

3. Run step 1,3,4 of SOT once for each pair ({yi}
Ny
i=1, {xki }

Nk
i=1) to map {yi}

Ny
i=1 to a

new set {zki }
Ny
i=1;

4. Update {yi}
Ny
i=1 through

{yi}
Ny
i=1 =

{
K∑
k=1

wk zki

}Ny

i=1

. (3.33)

5. Run step 5, 3, 4 of SOT once for each pair ({yi}
Ny
i=1, {xki }

Nk
i=1) to update {zki }

Ny
i=1

and go to step 4.

We stop the algorithm when an iteration does not signi�cantly change the map. More
speci�cally, in the SOT algorithm we compare the images of {xi}Nxi=1 before and after
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one iteration. If
1

Nx

Nx∑
i=1

‖ zbeforei − zafteri ‖2 < ε, (3.34)

we stop the algorithm. In the CSB algorithm, we compare the set {yi}Nxi=1 before and
after one iteration, if

1

Ny

Ny∑
i=1

‖ybefore
i −yafter

i ‖2 < ε, (3.35)

we stop the algorithm.

The SOT and CSB algorithms can be directly applied to sample sets. Except for the
selection of feature functions, there are only three parameters. For both algorithms, two
of the them are for the stopping criteria, one for the local nonlinear system solver and
the other the ε introduced above. The third parameter is K, the number of interpolant
sample sets in the SOT algorithm (which is also used in the CSB algorithm). K should
be large enough so that every subproblem is local so that it has a solution. In practice,
we set K to an initial value K0; if the local problem does not have a solution (a fact
informed by the local nonlinear system solver), we double the value of K and rerun the
current iteration.

3.4 Selection of feature functions

Both the optimal map and the time complexity of the algorithms for the sample-based
optimal transport and barycenter problems are highly dependent on the choice of feature
functions. The more feature functions one uses, the richer the structure of the optimal
map ∇φ(x) (though one must be careful not to over�t the problem) and the slower the
algorithm.

Feature functions can be de�ned by the user, based on expert knowledge of the nature of
the sample sets. Feature functions constructed in this way can be very informative and
useful. We will discuss an example of problem-speci�c feature functions in the numerical
tests Section 4.3.

In this section we introduce techniques to choose feature functions that are not problem-
speci�c, and attempt to automatically capture the most signi�cant aspects of the sample
sets without requiring the user's external insight.

3.4.1 Moments

The simplest feature functions are moments of the sample sets. Choosing for feature
functions the components of x:

Fj(x) = x(j), j = 1, 2, · · · , d, (3.36)
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the sample-based Monge-Ampere equation simply matches the means of {∇φ(xi)}Nxi=1 and
{yi}

Ny
i=1. Since ∇F(x) = I, the corresponding function space of the map only contains

translations,
∇φ(x) = x + s, (3.37)

which shift the �rst sample set so as to match the mean of the second sample set.

Choosing for feature functions the �rst and second moments,

Fj(x) = x(j), j = 1, 2, · · · , d, (3.38)

F (2n−i+1)i
2

+j
(x) = x(i) x(j), 1 ≤ i ≤ j ≤ d, (3.39)

the sample-based Monge-Ampere equation matches the means and covariance matrices
of {∇φ(xi)}Nxi=1 and {yi}

Ny
i=1. Suppose the means of {xi}Nxi=1 and {yi}

Ny
i=1 are m1 and m2

and the covariance matrices are Σ1 and Σ2. The solution of the sample-based Monge-
Ampere equation can be written as

∇φ(x) = s1 +(x−m1)S, (3.40)

where s1 ∈ Rd is a row vector, S ∈ Rd×d is a symmetric matrix. From the Monge-Ampere
equation, they satisfy

s1 = m2, (3.41)

SΣ1S = Σ2. (3.42)

Solving the above yields the optimal linear map:

∇φ∗(x) = m2 + (x−m1)Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 , (3.43)

which agrees with the optimal map solution between multivariate normal distributions
(Givens et al., 1984). For these moment functions, the sample-based Monge-Ampere
equation, because of linearity, has a unique solution.

Since in this case the solution has a closed-form, we do not need to use the SOT algorithm
to solve the sample-based optimal transport problem. Instead, we can simply compute
the empirical mean and covariance matrices of the two sample sets and apply (3.43).

In the same setting for the sample-based barycenter problem, when the mean and covari-
ance matrix of the kth sample set are mk and Σk, we can use the BTB algorithm to �nd
the barycenter. Using the closed-form solution (3.43), we have the following adaptation
of the BTB algorithm 9.

This algorithm can also be viewed as an algorithm iterating over the mean my and
covariance matrix Σy. After step 4 of each iteration, we can compute the new mnew

y and
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Algorithm 9 Fixed Point Barycenter Algorithm

1. Set the initial sample set {yi}
Ny
i=1;

2. Calculate the empirical mean and covariance matrix of {yi}
Ny
i=1,

my =
1

Ny

Ny∑
i=1

yi (3.44)

Σy =
1

Ny

∑
i=1

(yi−my)
T (yi−my); (3.45)

3. De�ne the optimal maps from {yi}
Ny
i=1 to {xki }

Nk
i=1 (k = 1, 2, · · · , K) using (3.43):

∇φk(y) = mk + (y−my)Σ
−1/2
y (Σ1/2

y ΣkΣ
1/2
y )1/2Σ−1/2

y ; (3.46)

4. Update {yi}
Ny
i=1 using

yi =
K∑
k=1

wk∇φk(yi), i = 1, 2, · · · , Ny (3.47)

and go to step 2.

Σnew
y with respect to the old ones,

mnew
y =

K∑
k=1

wkmk, (3.48)

Σnew
y = Σ−1/2

y

(
K∑
k=1

wk(Σ
1/2
y ΣkΣ

1/2
y )1/2

)2

Σ−1/2
y . (3.49)

The �xed point of this algorithm satis�es

Σy =
K∑
k=1

wk(Σ
1/2
y ΣkΣ

1/2
y )1/2, (3.50)

which agrees with the solution of barycenter problems of multiple normal distributions
(Agueh and Carlier, 2011). The iteration formula also agrees with the �xed point itera-
tive methods found in Álvarez-Esteban et al. (2016).

We can see that using �rst and second moment functions as feature functions gives us
exact solutions of the optimal transport and barycenter problems with normal distri-
butions. Moreover, it gives an iterative algorithm to solve the sample-based barycenter
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problem. The other advantage of the sample-based formulation is that we can use this
solution on arbitrary sample sets without the assumption of normal distributions. The
result is justi�ed as a speci�c solution when only the �rst and second moments are chosen
as feature functions.

3.4.2 Kernel functions

Another type of feature functions can be used to characterize the local structure of a
sample set. For a given location z0 and a bandwidth parameter h, we can de�ne a kernel
function F (x) such that

F (x) = K

(
x− z0

h

)
(3.51)

where K(x) is a nonnegative C1 function that vanishes as x tends to in�nity. The mean
of F (x) over a sample set {xi}Nxi=1 is

1

Nx

Nx∑
i=1

K

(
xi− z0

h

)
, (3.52)

which can be interpreted as the value of a kernel density estimator at point z0. Thus
if the feature function set consists of kernel functions at (z0, h0), (z1, h1), · · · , (zM , hM),
the sample-based equivalence 6 between two sample sets corresponds to their density
functions from kernel density estimation agreeing at the locations {zj}Mj=1.

One natural candidate for the kernel function K(x) is the Gaussian kernel

Kh(x) =
1√

(2π)d
exp

(
−‖x ‖2

2h2

)
, (3.53)

which we have used to build feature functions in most of the numerical test in Section 4.

The remaining choice to make is the location/bandwidth set {(zj, hj)}Mj=1. The simplest
strategy is to choose for {zj}Mj=1 a regular grid in sample space. This is shown to work
well in applications in Section 4.3.2 and Section 4.3.3.

Data-driven approaches can better inform the choice of {(zj, hj)}Mj=1. For instance,
one might want to place more kernels in areas with a higher density of points. One
appropriate technique is the mean-shift algorithm (Cheng, 1995), which locates local
maxima of the probability density underlying data.

Speci�cally, for all the input sample sets, we choose a set of bandwidth parameters {hj}.
For each hj, we use the mean shift algorithm on all the sample sets to locate a set of
local maxima {zij}. We then construct kernel functions from all pairs of (zij, hj) to form
a set of feature functions. This scheme is applied in Section 4.2.
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3.4.3 Feature functions from feature extraction techniques

Feature extraction techniques seek to extract as much information as possible using a
minimum number of functions.

One such technique is principal component analysis. Consider the optimal transport
problem between two sample sets in Rd. As mentioned, we can use all the �rst moment
functions to shift one sample set to the other, which requires d feature functions. As an
alternative, we can perform PCA on the sample sets and only select the projections on
the �rst few principle directions as feature functions.

A more useful generalization of PCA is kernel PCA (Schölkopf et al., 1998). With a
kernel function, kernel PCA can capture nonlinear structures in sample sets.

4 Numerical examples

In this section, we apply SOT and CSB algorithms on both synthetic and real examples.
We start with optimal transport between normal distributions. We use these examples
to assess the performance of the algorithms, since the true solutions are known in closed
form.

Then we present a detailed comparison between the sample-based method and classical
discrete optimal transport algorithms on a one-dimensional example. We show that when
the data consists of i.i.d. sample sets, sample-based optimal transport outperforms the
others in both accuracy and computational cost.

Finally we apply sample-based algorithms to more general sample sets, including Gaus-
sian mixture models and shape and color transfer problems. The underlying distributions
in these applications include multimodality, complex geometry, three dimensionality and
rich structure.

4.1 Optimal transport and barycenter problems of normal

distributions

Quadratic optimal transport and barycenter problems with normal distributions have
closed-form solutions (Section 3.4.1). This provides us with good synthetic examples to
assess our methods and perform error analysis.
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4.1.1 Optimal transport problem between normal distributions

Consider the two-dimensional normal distributions N (m0,Σ0) and N (m1,Σ1) with

(m0,m1) = ((0, 0), (5, 5)),

(Σ0,Σ1) =

((
2 −1
−1 2

)
,

(
2 1
1 2

))
Drawing 200 sample points from each distribution, we obtain the datasets shown in
Fig. 4.1a.

To solve the corresponding sample-based optimal transport problem, we apply the SOT
algorithm 7 with �rst and second moment functions as feature functions. In the algo-
rithm, we set the number of interpolant sample sets K to 12 and the error limit ε in
(3.34) to 10−4.

Fig. 4.1b shows the trajectories of 15 random sample points from the sample set of
µ0. We can see that all the trajectories are straight lines with equal distance between
interpolant sample sets, a property of McCann interpolants.

Fig. 4.1c displays the convergence of the SOT algorithm. The error computed is similar
to (3.34), √√√√ 1

Nx

Nx∑
i=1

‖ zji − z∗i ‖2, (4.1)

where zji is the map of xi after the jth iteration and z∗i is the optimal one. The algorithm
converges sublinearly and stops in only 5 iterations.

Fig. 4.1d shows 4 interpolant sample sets µ̃t with t = 0.25, 0.5, 0.75, 1. We can see the
sample sets moving toward µ1 and gradually changing shape.

4.1.2 Barycenter of normal distributions

Consider a two-dimensional barycenter problem with �ve normal distributions (Fig. 4.2).
For each of the 400 point sample sets, one can calculate the empirical means and co-
variance matrices, shown in Table 4.1. With �nite sample sizes, sample statistics only
provides estimates for the unknown distribution parameters. To analyze the convergence
of our algorithms, we will ignore sample errors and directly work with sample statistics.
Statistics of the true barycenter measure µ∗ in Table 4.1 is calculated using (3.50) with
the sample means and covariance matrices.

We apply two barycenter algorithms to this problem: the CSB algorithm 8 and the
Fixed Point Barycenter Algorithm 9.

There are several di�erences between these two algorithms. The �xed point algorithm
is only applicable to normal distributions, as each iteration uses directly the optimal
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Figure 4.1: Application of the SOT algorithm with parameters K = 12, ε = 10−4 to the
optimal transport problems between two normal distributions. (a) Sample sets drawn
from distributions µ0 and µ1 respectively. (b) Trajectories of 15 sample points from µ0

to µ1. (c) Empirical L2 error de�ned in (4.1) after each iteration of SOT. (d) McCann
interpolant sample sets with t = 0.25, 0.5, 0.75, 1.
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Distribution m1 m1 Σ11 Σ22 Σ12

µ1 1.22 4.63 0.59 0.25 -0.33
µ2 4.73 -1.43 0.26 0.11 0.12
µ3 -1.87 -4.62 0.32 0.57 0.27
µ4 3.47 -4.83 0.55 0.30 0.15
µ5 -2.99 -2.75 0.51 0.46 0.09
µ∗ 0.91 -1.80 0.38 0.27 0.07

Table 4.1: Sample statistics of �ve normal distributions in the barycenter problem ex-
ample.

transport solution for normal distributions (3.43). On the other hand, the CSB algorithm
solves general barycenter problems. In each iteration it does not compute full optimal
transport solutions but only performs one SOT update for each subproblem.

As mentioned in Section 3.4.1, the �xed point algorithm can be viewed as a basic sample-
based algorithm. If the optimal transport solution is unknown, it runs a full SOT algo-
rithm in every iteration, which typically consists of several SOT updates. This indicates
that the �xed point algorithm should generate much better updates per iteration.

In the experiment, we set K = 12 and ε = 10−4 for the CSB algorithm; the feature
functions chosen are the �rst and second moment functions. The resulting barycenter
sample set µ∗ is shown in Fig. 4.2a.

Fig. 4.2b displays the solution's accuracy after every iteration, measured as the Wasser-
stein distance between normal distributions. We can see that both algorithms converge
linearly and generate accurate solutions in only a few iterations. While the �xed point
barycenter algorithm does converge faster due to its additional normal distribution as-
sumption, the CSB algorithm has a comparable convergence rate, even though it only
performs one SOT update in each iteration.

4.2 Detailed analysis of a one-dimensional optimal

transport problem

`In the section, we perform a careful comparison between sample-based optimal transport
algorithms and existing ones. Speci�cally, we compare the discrete linear programming
method with the SOT algorithm 7 with meanshift feature functions.

We have so far ignored sample error: with �nite sample sets, the true solution between
unknown distributions are unavailable. The hope is that the solution derived from
sample sets is close to the unknown truth when the sample size is large enough.

To measure the quality of an algorithm, we compute the error between the true map
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Figure 4.2: Application of the CSB algorithm with parameters K = 12, ε = 10−4 to a
barycenter problem between �ve normal distributions. (a) Sample sets drawn from the
µi(i = 1, · · · , 5). (b) Errors after each iteration of the CSB algorithm and Fixed Point
Barycenter Algorithm. The error is de�ned as the Wasserstein distance between the true
and the estimated distribution.
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f ∗(x) of distributions and the map f(x) derived from an instance of �nite sample sets:

e(f) = E(f(x)− f ∗(x))2. (4.2)

Here the random variable x follows the source distribution. Then we compute the
expected error Ee(f) by averaging e(f) over multiple instances of sample sets.

We can see that in order to compute Ee(f), we need to �x both source and target dis-
tributions and generate multiple sample set instances as inputs. The other requirement
is that we need to be able to compute the true solution between general continuous
distributions, which is why we work on one-dimensional distributions.

For meaningful comparison, we create synthetic distributions such that neither method
is able to exploit their speci�c forms. The source distribution chosen is the Gaussian
mixture model (Fig. 4.3a):

p(x) ∼ 1

2
[N(

2

9
,
2

9
) +N(

7

9
,
1

9
)], (4.3)

while a beta distribution is picked as target:

q(x) ∼ Beta(2, 5). (4.4)

This example requires the algorithms to correctly transfer a symmetric, two-mode dis-
tribution into a one-mode, asymmetric one.

We now specify the discrete linear programming method we compare the SOT algorithm
with. As mentioned in Section 3.1, in order to use the linear programming method on
sample-based problems, we �rst need to construct histograms from the sample sets to
provide as inputs to the linear programming algorithm.

Speci�cally, for both the source and target sample sets, we divide their corresponding
domains into M equal sized bins, denoting the bin centers by si and tj, and the corre-
sponding histogram distributions by pi and qj (Figs. 4.3a and 4.3b). De�ning the cost
function between source bin i and target bin j as cij = (si − bj)2, we solve the following
linear programming problem:

min
πij≥0

M∑
i,j=1

cijπij, s.t.
M∑
i=1

πij = qj,
M∑
j=1

πij = pi. (4.5)

Since the solution πij of the above optimization does not automatically yield a map, we
follow the natural averaging scheme: if sample point x is in the i0th bin of the source
distribution, we de�ne the map f as the conditional expected value of the solution:

f(x) =
1

pi0

M∑
j=1

πi0jtj. (4.6)

To compare the two algorithms under di�erent sample variances, we choose as sample
sizes 50, 100, 200, 400. For the discrete solver, the main parameter is the number of

42



(a) Starting distribution (b) Destination distribution

0 0.2 0.4 0.6 0.8 1

p1(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
2
(x
)

True optimal map
Map from discrete solver
Map from SOT algorithm

(c) Optimal maps

Figure 4.3: One-dimensional synthetic example. Both sample sets have 100 sample
points. The number of bins is 10 for both histograms. The SOT solver uses the mean
shift methodology for feature selection with parameter h = 0.1, 0.5. (a) Gaussian mix-
ture 1

2
[N(2

9
, 2

9
) + N(7

9
, 1

9
)]. (b) Beta distribution Beta(2, 5). (c) True optimal map and

solutions from the discrete solver and the SOT algorithm.

bins used to obtain the empirical pdf; we use M = 5, 10, 20, 40, 80, 160 for all cases.
Notice that the number of variables in the corresponding linear programming problem
is the square of the bin numbers (i.e. 25 for M = 5 and 25600 for M = 160.) For
the SOT algorithm with mean shift feature functions, we �x the mean shift bandwidths
h = 0.1, 0.5, since this parameter describes the distribution rather than the sample set.
The number of variables (feature functions) in the corresponding non-linear optimization
problem is then �xed for a given sample set, and is shown in the caption of �gure 4.4.

As shown in Fig. 4.4, the SOT algorithm outperforms discrete linear programming al-
gorithm in every case (di�erent sample sizes and di�erent number of bins). From the
computational perspective, the SOT algorithm uses no more than 30 variables in the
optimization problem, while the discrete solver requires many more to yield solutions of
similar quality.

Notice that, with larger sample size, the value of Ee(f) decreases, which is likely due to
the component of Ee(f) arising from the sample variance of the sample sets.

Another observation is that the discrete solver requires larger bin numbers to achieve
comparable Ee(f) to the SOT solver. Hence the user needs to tune the number of bins
in the solver to the di�erent sample sizes. On the other hand, the SOT solver has as
only parameter the bandwidth h, which gives uniformly good results for all sample sizes
in our example.
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Figure 4.4: Es(f) Comparison between the discrete and the SOT solver. The Es(f)
are averaged over 500 tests for each case. The sample sizes chosen for both sample
sets are 50, 100, 200, 400. In every case, the discrete solver is used with number of bins
5, 10, 20, 40, 80, 160. The SOT solver is used with mean shift feature selection with band-
width parameter h = 0.1, 0.5.

4.3 Optimal transport between general distributions

The prior sub-sections examined sample-based algorithms applied to problems with
closed-form solutions. We now apply these algorithms to more challenging and prac-
tical problems to see the broad range of maps that the algorithm can generate.

4.3.1 Optimal transport from normal to Gaussian mixture distributions

The �rst set of examples considered compute the two dimensional optimal transport
from normal distributions to Gaussian mixtures.

One challenge that this scenario presents is that the optimal transport map needs to
divide the single mode in the source distribution into two. Hence the solution maps
a small high-density area to a large low-density one. This can potentially make the
corresponding sample-based problem di�cult, since with �nite sample size, it is relatively
hard to resolve low density areas well.

We present four examples with di�erent parameters. In all four examples we set the
starting distribution as a mean zero standard normal distribution and set the sample
sizes of both sets to 200.

In the �rst example, the Gaussian mixture consists of two equal ratio normal distribu-
tions that are not faraway from each other (there is no clear separation in the given
sample set). For the second Gaussian mixture, 75% percent of sample comes from the
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�rst normal distribution and 25% from the other, breaking the symmetry from the �rst
example. In the third example, the Gaussian mixture is chosen such that the density in
the area between the two modes is very low, so that the optimal transport has to opti-
mally stretch the starting distribution into the destination. In the fourth example, the
normal distributions have di�erent shapes, which adds more structure to the resulting
optimal transport. The resulting source and target distributions are shown in the �rst
column of �gure 4.5. The speci�c parameters are given in Table 4.2.

Example# m1 m2 Σ1 Σ2 mixture ratio

1 (−2, 2) (2, 2)

(
1 0
0 1

) (
1 0
0 1

)
50% : 50%

2 (−2, 2) (2, 2)

(
1 0
0 1

) (
1 0
0 1

)
75% : 25%

3 (−5, 5) (5, 5)

(
1 0
0 1

) (
1 0
0 1

)
50% : 50%

4 (−5, 0) (5, 0)

(
1 −0.7
−0.7 1

) (
1 0.7

0.7 1

)
50% : 50%

Table 4.2: Parameters of the Gaussian mixture models

For each of the examples, we �rst apply the preconditioning procedure (Kuang and
Tabak, 2017) on both sample sets. We then use the SOT algorithm 7 with mean shift
feature functions with h = 0.25, 0.5, 1, 2.

In �gure 4.5, each row corresponds to the corresponding row in Table 4.2. The trans-
ported sample set µ̃1 is shown in the last column, together with the original target sample
set. The resulting interpolant sample sets µ̃0.25,µ̃0.5 and µ̃0.75 are shown in the 2nd, 3rd
and 4th columns respectively. We can see in all the examples the SOT algorithm's
e�ectiveness in mapping normal to Gaussian mixture models.

4.3.2 Shape transforms

Optimal transport and barycenter problems have been used to solve shape transform
problems (Solomon et al., 2015). The task is to �nd maps or barycenters for di�erent
shapes in two and three-dimensional spaces.

The application starts by viewing a shape as a uniform distribution supported on a
given domain Ω. To transfer one shape to the other is equivalent to solving the optimal
transport problem between the corresponding uniform distributions.

One of the advantages of the optimal transport methods is that they give one-to-one
point maps between shapes and also intermediate shapes (interpolant and barycenter
measures). This is particularly true in the sample-based setting, since the sample-based
algorithm gives analytical map functions, which directly provide maps of arbitrary points
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Figure 4.5: Sample-based optimal maps and interpolant maps at t = 0.25, 0.5, 0.75 from
normal to 2-Gaussian mixture distributions by the SOT algorithm with mean shift fea-
ture functions. Source and mapped sample sets are displayed as blue circles, and target
sample sets as red dots.
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without any further averaging scheme. Thus it is straightforward to derive intermediate
shapes from the optimal solution.

An important issue to address is the representation of shapes in the sample-based setting.
For source shapes, we generate sample sets through equal-distance grid points (e.g.
Fig. 4.6). This simple process allows us to control the sample size by tuning the grid
size. Choosing larger sample sizes allows us to represent more detailed structure in a
shape. For instance, to represent the 'bird' shape in �gure Fig. 4.7, we used 5000 sample
points while for the ring (Fig. 4.6d) we used only 1000 sample points.

On the other hand, we need to develop a post-processing procedure to recover shapes
from �nite sample sets. We �rst generate a kernel density estimator p̃(x) from the sample
set. Then we construct the shape Ω̃ by adopting as boundary a level set with relatively
large p̃(x).

In this article, we use Gaussian kernels for kernel density estimation. The bandwidth is
chosen to be half of the rules of thumb bandwidth (Jones et al., 1996) to avoid blurring
the shape's boundary. Then we de�ne the following as the output shape:

Ω̃ = {x |p̃(x) >
1

2
max

x
p̃(x)}. (4.7)

In this section, all shape transforms are carried out using the preconditioning procedure
in Kuang and Tabak (2017) and the SOT algorithm 7. The feature functions are chosen
as Gaussian kernels with centers on a 7× 7 grid with two bandwidths h = 0.5, 1.

In Fig. 4.6, we transfer an ellipse 4.6a to a ring 4.6d. Both sample sets consist of
approximately 1000 grid points. We color the source sample sets with four di�erent
colors to show what each subset transforms into in the process. Interpolant sample sets
are shown for t = 1/3, 2/3 (Figs. 4.6b and 4.6c).

To recover shapes from sample sets, we implement the post-processing step on all the
sample sets. The corresponding shapes in Fig. 4.6 are recovered and shown in the �rst
row of Fig. 4.7.

Three additional shape transforms are shown in Fig. 4.7. We can see that shapes with
di�erent orientations, di�erent topologies and sharp corners can be e�ectively mapped
into each other by the algorithm.

4.3.3 Color transfer

Next we apply sample-based algorithms to color transfer problems (Reinhard et al.,
2001; Welsh et al., 2002; Faridul et al., 2015), which have as general objective to recolor
an source image so that its colors resemble those of a target image. One can view the
set of colors of an image as a a distribution and �nd the optimal map between the
source and the target, using the earth mover's distance (EMD) (Rubner et al., 1998) as
a quanti�cation of the transfer required.
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Figure 4.6: Optimal transport from an ellipse sample set (a) to a ring sample set (d).
(b)(c) are intermediate sample sets with t = 1/3, 2/3. The sample set in (a) is colored
to identify the trajectory of four subsets.
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Figure 4.7: Each row shows a two-dimensional shape transform and intermediate shapes.
The shapes are generated from the sample sets using the post-processing procedure.
Intermediate shapes are shown for t = 0.25, 0.5, 0.75.
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We follow the algorithm framework in Rabin et al. (2014), substituting the core optimal
transport step by the SOT algorithm 7.

To represent an image, one assigns to each pixel a 5-dimensional vector x = (xs,xc), in
which xs = (x, y) represents the pixel location and xc = (l, a, b) represents color in the
CIELAB color space. Thus the sample set S = {xi} of all pixels is a full representation
of the corresponding image.

The �rst step of the color transfer meta-algorithm is Spatio-color Clustering. Using the
super-pixel method (Achanta et al., 2012), pixel set S is clustered into several subsets
Sj, where each Sj has mean vector x̄j = (x̄j, ȳj, l̄j, āj, b̄j) and empirical covariance matrix
Σj. Then we de�ne a new weighted sample set S̃ = {x̄j} with weights |Sj|/|S| as a more
compact approximation to an image (e.g. 4.8c).

There are two reasons for applying spatio-color clustering. First, since we only apply
optimal transport on the color dimensions of sample sets, this step incorporates spatial
information into the meta-algorithm. Second, compared to the original S, S̃ is a much
smaller sample set. This makes the core optimal transport algorithm much faster since
the computational cost scales with the sample size2.

The second and core step is to apply an optimal transport algorithms to the weighted
sample sets. De�ne S̃c ∈ R3 as the set of points in CIELAB color space projected from
the elements in S̃. To �nd an optimal map T between S̃csource and S̃ctarget of source and
target images, we apply the preconditioning procedure along with the SOT algorithm.

The third step is image synthesis. As the optimal map f above only maps mean color
vectors, one needs to construct a color map for all pixels in the original set S that
incorporates geometrical information.

As in Tai et al. (2005), we de�ne a similarity metric ωj(x) using Gaussian kernels:

ωj(x) = exp (−1

2
(x−x̄j)Σ̃j

−1
(x−x̄j)

T ), (4.8)

where Σ̃j is a weighted covariance matrix de�ned by

Σ̃j = WΣjW, W = diag(σs, σs, σc, σc, σc). (4.9)

Here σs, σc are parameters that control the strength of smoothing in the spatial and
color spaces respectively.

For each pixel x, we de�ne the map T̃ :

T̃ (xc) =
∑
j

ωj(x)T (x̄cj) (4.10)

In the �nal step we apply iterative TMR �lters (Rabin et al., 2011) to the transferred
image to restore sharp details of the original image.
2This is true both for sample-based algorithms and for the regularized optimal transport in Rabin
et al. (2014).
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While we used the framework introduced in Rabin et al. (2014), there are several di�er-
ences in our implementation. First and foremost, we used the sample-based algorithm
instead of the relaxed optimal transport. Although no relaxation is mentioned directly,
adopting the sample-based setting itself can be considered as a relaxation, since in the
sample-based setting we do not require source sample points to map to the exact lo-
cations of target sample points, and using a �nite set of feature functions requires the
distributions to match only in the desired subspaces.

The other di�erence is that we de�ne optimal transport in CIELAB color space, because
the Euclidean distance in CIELAB space better approximates the perceptual di�erence
among colors (Jain, 1989).

For all the examples in this section, we use the super-pixel method with the number of
super-pixels set to 2000 and the compactness parameter set to 2. For the SOT algorithm
we use Gaussian feature functions on a 5 × 5 × 5 grid with bandwidth h = 1. In the
image synthesis step we set σs = 10, σc = 1.

In Fig. 4.8 we present step-by-step results of the full algorithm on the widely used
parrot image, comparing it to existing methods. We can see that the �nal image Fig. 4.8e
preserves sharp features in the source image and is free of the arti�cial defects in Figs. 4.8f
and 4.8g. This is partially contributed by the post-processing step, although we can see
that even without post-processing Fig. 4.8d is also very smooth in color. Comparing to
Fig. 4.8h, the sample-based algorithm makes some di�erent choices of color transfer. We
can see that visually it is closer to the raw optimal transport in Fig. 4.8f, which suggests
that the sample-based solution is closer to optimal in the optimal transport sense. In
Figs. 4.8i to 4.8l, source, target and transferred sample sets are projected to l-a and l-b
spaces. While both source and target sample sets have complex geometric features, the
sample-based method is able to optimally transfer one to the other.

In Fig. 4.9 we present more examples of color transfer. The algorithm creates reasonable
results in all three examples and the transferred sample set in l-a does agree with the
target sample set. It is also worth noting that while the sample-based approach transfers
the color distribution, it doesn't always create visually perfect results. For instance in
the �ower example the transferred �gure has purple in the background due to the fact
that the purple color has more weights in the target image than in the source image.

5 Conclusions and future work

This article introduces a new family of optimal transport and barycenter algorithms for
�nite sample sets. Two features are unique to these algorithms. One is that they solve
the optimal transport and barycenter problems iteratively, by approximating an adaptive
number of interpolant measures using key properties 1 and 2. In each iteration, the local
updates alternate with a global update, in which new sample sets are constructed as
interpolants of the global map. The second feature is that the sample sets are compared
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(a) Source Image (b) Target Image (c) Space-color Clusters (d) Image Synthesis

(e) Post-processing (f) Pitié et al. (2007) (g) Papadakis et al.
(2011)

(h) Rabin et al. (2014)
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Figure 4.8: Color transfer of parrot images by the SOT algorithm.
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Figure 4.9: More Color Transfer Examples, with source images on the top row, targets
on the second row and the results of transferring on the third. The bottom row displays
the sample points of the target and those of the transformed source.
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with each other through a set of feature functions, whose gradients also de�ne the
function space to which the maps considered are constrained.

Through synthetic examples, we found that these algorithms converge to the optimal
solution in just a handful of iterations. Also, the new algorithms give encouraging results
in applications such as the shape transform and the color transfer problems.

One possible extension is to develop other algorithms under the same theoretical frame-
work: since we proved general convergence theorems for GDOT 4 and GDB 5, which are
not limited to the proposed SOT (7) and CSB (8) algorithms, one can use these theo-
rems to prove convergence for all those algorithms that meet the bare requirements of an
L-descending map (3). For instance, a useful extension of the SOT algorithm consists of
choosing adaptively the time variables ti of the interpolant measures. Since the amount
of improvement in the transportation cost of each interpolant segment can be di�erent
after applying a local update, it is natural to put less e�ort into those segments of the
interpolant that are closer to convergence. This improvement can potentially speed up
the SOT algorithm.

Several improvements can be made in the sample-based formulation. An extension of
the sample-based equivalence (6) consists of relaxing the equality of expected feature
values, since exact equality is not a strict requirement in the presence of sample noise
in the empirical expected values.

One important component of the algorithm is the selection of feature functions. While
we looked into several possibilities, including moments and kernel functions, improve-
ments could be made to better incorporate information from data, especially when the
dimensionality of the sample space is high.

Other extensions under development include applications to constrained density esti-
mation and the computation of the sample-based barycenter of probability measures
conditioned on continuous variables.
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